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Abstract

Data augmentation is a process to create new artificial data by altering the available data set. It has by
many been considered a key factor for increasing robustness and performance of image classification
tasks using deep learning methods, such as the convolutional neural network. This report aims to
investigate the effect of data augmentation for the segmentation of magnetic resonance (MR) images
using neural networks. Geometric data augmentation techniques such as rotation, scaling, translation
and elastic deformation are evaluated for different data set sizes. Also, motion artifacts are simulated
in MR images as an augmentation to increase segmentation performance on images containing real
artifacts. A method for simulating these artificial motion artifacts is developed, where the k-space of
the image is altered to simulate patient movement due to breathing.

Results showed that geometric data augmentation improved performance of the network for smaller
data sets, but lost importance as the amount of available training data grew bigger. Segmentation
performance of images containing motion artifacts significantly increased if the neural network had
been trained on a training set augmented with simulated artifacts.
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Chapter 1

Background

1.1 Introduction

The last few years there has been a paradigm shift within the field of image analysis, where deep neural
networks have shown themselves to be extremely effective in image classification and analysis. A neural
network is defined by several layers of calculations where the connections between every layer consists of
convolutions and activation functions that are trained using a large amount of training examples. One
of many applications for this is automatic segmentation in medical images, for example in magnetic
resonance imaging (MRI). Every MR image volume consists of many millions of data points which
can be used for training the algorithm. The total amount of training data can easily become billions
of data points from several image volumes that teach the network for example what is a hip bone and
what is the surrounding tissue. Generally, the more qualitative training examples that a neural network
has seen, the better it will perform.

However, the limited amount of training data is often a problem in the case of medical images, either
because the images are protected for privacy reasons, or because the data simply does not exist. Even if
a small number of image volumes contain a lot of data, it might not be well distributed, meaning that
the data does not cover all the normal characteristics that are expected to be found. At the same time,
it is widely claimed that the performance and robustness of a trained model can be directly linked to
the amount of training data that is accessible, and its quality. How can a model be trained to find
something which it has barely seen during its training? By using mathematical models that describe
the natural variations that can be expected in unseen images, one can expand the training data with
artificial training data, and thereby hope to increase the performance and robustness of the neural
network.

1.2 Context and problem formulation

This master thesis was conducted at Spectronic Medical AB in Helsingborg. The company provides
a software that produces synthetically created computed tomography (sCT) images by using an MR
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image. This data is then used for radiation therapy planning for prostate cancer treatment. By using
the sCT, the correct radiation dosage can be given to the tumor, while minimizing the radiation dose
to nearby sensitive healthy organs.

The software provided by the company uses a preprocessing step involving image segmentation, where
bone segments are used to align images. Automatic segmentation of bone structures is therefore of
great interested for the performance of the sCT algorithm.

Except for being useful in the context of the algorithm used to create sCTs, automatic segmentation
of anatomical structures in medical images is interesting for several other reasons. Most medical image
data today is processed manually by clinicians. This means that someone with expert knowledge has to
look at the MR image in all three dimensions and manually segment different areas. This is obviously
a time consuming and by extension expensive task, that is variable depending on the knowledge and
experience of the expert conducting the segmentation. It would be of great value if an algorithm could
automatically detect and segment risk organs such as the bladder, or pathological structures such as
tumors.

In medical applications, an automatic process has to be very reliable. This means that the model created
by the machine learning algorithm must perform very well and must be robust to all kinds of data.
A neural network’s performance and robustness depends entirely on the training data it is using to
create its models. The training data needs to represent a large enough variation so that the network
can generalize what it learns to new data. Unfortunately, the amount of available medical data is often
insufficient.

To expand these insufficient data sets, one can create ”fake” data using data augmentation. By aug-
menting the existing data in ranges within the normal variation, the networks performance towards
”normal” data will, theoretically, increase. By augmenting the existing data with uncommon variations,
the network could learn to perform well on this kind of data which would increase its robustness.

Augmentation of medical data to expand a training set has been done in several studies and has been said
to greatly improve performance of machine learning algorithms, such as neural networks. However,
much of the research is still very recent and is constantly evolving due to new state-of-the-art algorithms.
It is therefore relevant to investigate the effect of data augmentation on neural networks for different
data sets and tasks, such as segmentation in MR images.

1.3 Aim

The aim of this master thesis is to evaluate if data augmentation can improve the performance of
convolutional neural networks. Another aim is to propose a data augmentation method based on the
simulation of motion artifacts in MR images.
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Anatomical planes

In medical terms the body is divided into different planes that is useful to know for the purpose of
reading this thesis. The different planes can be seen in Figure 1.1 and are described below.

• Transverse plane: A horizontal plane that separates the body into a lower and an upper part.

• Sagittal plane: A vertical plane that splits the body in a left and a right side.

• Coronal plane: A vertical plane that divide the body in a front and a back.

Figure 1.1: The different planes of the human body.[18]

1.4 Data

The primary data set that has been used consists of 50 magnetic resonance image volumes. The MR
images has been acquired in hospitals using MR camera systems from two different producers and were
taken specifically for the purpose of being used in the algorithm used by Spectronic Medical to produce
synthetic CT images. The images are taken around the area of the prostate, from the diaphragm to the
middle of the thighs. All data has been fully stripped of personal patient information.

The data has been collected in different hospitals, with different settings on the MR camera, and on two
different imaging systems. For a physician, this non-uniform data might not make a big difference for
their medical evaluation, however, the large variance in data can make big difference for an automated
machine-based system. In Figure 1.2 two different images are presented that were acquired from two
different MR camera systems. For example, notice the difference in intensity for the bladder in the
middle of the body, and the difference in noise level outside the body.

This comparison also demonstrates the physiological variations between different templates. For ex-
ample, the shape and size of the bladder varies greatly between templates, as does the shape of the
body. The data that was provided for this master thesis was primarily provided in the form of .nrrd
files, which is a format for representing n-dimensional raster data. In this report, these files will be
referred to as templates.
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Figure 1.2: Comparison of MR images ¹ in the transverse plane from two different camera systems.

The images has either been processed in its original 3D format, or have been converted into 2D arrays in
the transverse plane. A 2D image taken from a 3D MR image is commonly referred to as a slice.

The data consists of both the MR images, as well as ground truth. The ground truth has been drawn
out by experts with anatomical knowledge and consists of up to eight different segments: air, body,
pelvis, spine, left femur, right femur, bladder and colon. These segments are also called labels or classes.
For practical reasons, the 2D arrays were zero padded, technically adding a ninth label. Since this
label exists for pure practical reasons, it will from now on be ignored when discussing labels. Different
experiments used a different number of classes.

In Figure 1.3, an example of a transverse slice together with its labels is presented. The image in the
middle shows a ground truth containing three labels, while the image to the right contains eight labels.
The different labels are visually separated by different intensities of gray.

Figure 1.3: A MR image¹ to the left together with two different ground truths. The ground truth in
the middle contain three labels and the one to the right contain eight labels.

During this project, primarily 50 different templates have been used for data augmentation, network
training and network validation. The 50 templates are 3D volumes, and therefore they each become
several slices when shown in 2D. In total, they contain 9424 unique slices, each with one image and one
ground truth. One slice of a template has 454 x 466 pixels and there are about 200 slices per template,
although the exact number varies. A number of other templates have also been used to validate the
segmentation algorithms depending on the experiment. For example, when evaluating motion artifact
augmentations, a test set containing templates with motion artifacts has been put together.

¹Original MRI courtesy of Gentle Radiotherapy.
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Chapter 2

Theory

2.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) differs a lot from most other imaging system and involves many
concepts. The full details of how it works is beyond the scope of this thesis, and therefore a summary
of the most important and relevant part is made here.

A key part of the functionality of the MRI is the strong magnetic field. This is formed by supercon-
ducting wires around the cylinder where the patient lies. When protons are placed inside this magnetic
field they will align in one on two directions: either along the direction of the magnetic field or in the
opposite direction. The chance for aligning with the magnetic field is slightly higher and a so called net
magnetization is created by the slightly bigger proportion of protons aligned with the magnetic field.
If not in a magnetic field, the protons are ordered randomly in all directions.

This is part of the main concept of MRI, that the protons in the nuclei of hydrogen atoms can act as
tiny magnets. The proton also spins around its axis which also contribute to the physical properties that
allows us to create images. Beside these magnetic properties and spin of the proton, it also precesses,
meaning that the axis itself rotates. This can be likened with a spinning top toy that not only spins
around its center, but where the center also starts to wobble in circles. The frequency of this precession
increases with the strength of the magnetic field.

As a final action to create an image, radio frequency (RF) energy is needed. The RF must match the
frequency of the precession of the protons, which in a normal magnetic field of 1.5 Tesla will be about
64 MHz. When an RF pulse is sent, this energy will be absorbed by the protons and the previously
mentioned net magnetization will as a result move away from the direction of the magnetic field. How
far away it will tilt depends on the strength and duration of the RF pulse. The net magnetization will
begin to flip back to being parallel with the magnetic field, but it will take a different amount of time
for different tissues. Utilizing this difference for imaging is called T1. The RF pulse also makes the
precession of the protons become in phase so that they precess in the same way. When the pulse is
gone, they start to become out of sync, and they are soon totally unsynchronized again. The speed of
this to occur depends on several things, including the type of tissue. Using this property to acquire an
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image is called T2 [22].

By applying different gradient magnetic fields, it is possible to change the frequency and phase of each
unique location in the image. Over the course of the MR scan, each location will have experienced a
unique combination of field variations, which means that they are encoded with different phases and
frequencies

Which direction that encodes for phase and which encodes for frequency can be arbitrarily chosen. In
a transverse slice, the y-axis is often chosen as the phase encoding direction and the x-axis is chosen as
the frequency encoding direction [17].

The signal received from these processes is collected in frequency space, known as k-space.

2.1.1 K-space

To understand the MR imaging process, it is fundamental to understand k-space, which is the data
matrix directly obtained by the magnetic resonance scanner. By using the inverse Fourier transform,
the k-space matrix can be reconstructed into the actual image depicting relevant physiological struc-
tures. In Figure 2.1 an example of a MR image and its k-space representation is shown. The k-space
representation was created by Fourier transformation of the original MR image.

K-space represents the spatial frequency information of the image. This frequency describes how the
features of the image changes depending on its position. Objects containing many edges will therefore
have many high spatial frequencies in k-space, while large smooth objects will have an abundance
of low spatial frequencies. High frequency components are mapped to the periphery of the k-space
matrix, while low frequency components are mapped to the center of k-space. The center of k-space
therefore contains the bulk of the information in the image [19].

It should be noted that due to the relationship between k-space and the image, every point in k-space
contains some information about every data point in the image domain. Removing a line in k-space,
for example, will therefore affect the whole image and not just the corresponding line in the image.
Theoretically, the whole image can be reconstructed from just half of the k-space matrix. This is possible
due to the fact that k-space can be seen as a collection of cosine and sine waves of different frequencies,
which are symmetrical and anti-symmetrical.

K-space trajectories

How to fill the k-space is called the k-space trajectory and can be done in several different ways. The
most common strategy is the Cartesian trajectory which samples the k-space lines in a rectangular grid
[32], [33]. This way allows for efficient reconstruction of the image using the algorithm fast Fourier
Transform (FFT). Some other trajectories, with self-explaining names, are the radian trajectory, the
spiral trajectory and the zig-zag trajectory. Different trajectories are related to different artifacts, image
collecting time as well as other factors, and should be chosen depending on the purpose of the MR
scan.

There are also other techniques for sampling the k-space faster, by for example collecting several lines at
the same time. This can be done with a turbo spin echo sequence, also called fast spin echo. A number
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of echoes will be produced by one excitation pulse, each sampling a line of k-space. The number of
echoes created by each pulse is called the echo train length, or ETL for short [22], [19].

Figure 2.1: An MR image¹ and its k-space counterpart.

2.1.2 Motion artifacts

Artifacts are something that occurs in all images and due to the importance of medical images they
are of great interest within this field. They can arise from hardware limitations or from the software
collecting the image. MR images can contain a range of different artifacts that can appear as stripes,
ghosts, spikes, shadows and distinct lines in the image. However, only one artifact will be further
discussed in this thesis: the motion artifact.

Motion artifacts are one of the most common artifact present in MR images, and has been a challenge
since MRI was introduced. The different kinds of movements that causes this kind of artifact can be
categorized as rigid body motion, elastic motion and flow [32]. In this work, the focus will lie on
rigid body motion, also called bulk motion. Examples of this kind of motion is movement of the
diaphragm due to breathing, or movement of the head. Mathematically, the former can be modeled
with a translation in one dimension, while the latter requires six degrees of freedom.

Acquisition of adjacent points in the frequency encoding direction is relatively short, while it is much
longer for the phase encoding direction. This entails that the phase encoding direction is much more
susceptible for motion, since most patient movement is faster than the data is encoded to the k-matrix.
Object movement during acquisition of data in the phase encoding direction will lead to inconsistencies
in k-space, since k-space lines will be sampled when the object has moved position. When the k-space
is Fourier transformed, artifacts will appear in the resulting image.

Motion artifacts often appears as ghosts in the image, which are partial or full copies of the object being
scanned along the phase encoding direction. If the motion affects the k-space in a way so that the lines
are affected periodically, coherent ghosts will form in the image. If every fourth line is altered, four
ghosts will appear in the image. If the lines are affected more randomly, the artifacts will look more
like incoherent stripes.

In Figure 2.2, two examples of MR images containing motion artifacts are given. The images depict
transverse slices in the area around the pelvis. The artifacts, which appears as thin stripes in the Y-
direction is likely to have been caused by breathing.

¹Original MRI courtesy of Gentle Radiotherapy.
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Figure 2.2: Two examples of breathing artifacts in MR images¹.

2.2 Machine learning and deep learning

A machine learning algorithm is an algorithm that is able to learn from the available data and use
this ”knowledge” to become better at its task. One such task is classification, in which the computer
program is asked to specify which of k categories some input belongs to [10]. A common classification
problem is object recognition in images, where the task is to identify which of several classes an object
belongs to. Another sort of classification is pixel-wise segmentation of images, where the algorithm is
asked to assign a category to every pixel in an image.

When conducting machine learning experiments, it is common to partition your data set into three
parts; training, validation and test set. The training set is the data set which the algorithm experiences
and uses to build its model, while the test set is the actual data of interest, which the model is supposed
to perform well on. The validation set is used to optimize the model during training and to tune the
hyperparameters of the algorithm, something that will be discussed further in section 2.2.5.

There are two types of learning processes: Unsupervised and Supervised. In unsupervised learning, the
algorithm is fed data and is expected to find useful patterns and properties of the data set. In supervised
learning, each data point in the training set is associated with a ground truth or label. For example,
in a image segmentation task, the ground truth is an image containing the different segments. By
observing the connection between data point and ground truth, the algorithm can learn to predict
labels for previously unseen data.

2.2.1 Neural networks

A kind of machine learning algorithm that has shown itself to be proficient in many tasks is the feedfor-
ward neural network. These algorithms consist of several different functions connected to each other,
where each function is referred to as a node. The nodes are structured in different layers, as can be seen
in Figure 2.3. The first layer is called the input layer, the last an output layer and the layers in between
are referred to as hidden layers. An input x goes from the input layer, through different computations
in the hidden layers which delivers an output through the output layer. During training, the neural
network learns how to use the nodes to in way that minimizes a cost function The learnable parameters
are called weights and biases, which are updated in each step of the algorithm. Fully connected layers,

¹Original MRI courtesy of Gentle Radiotherapy.
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like the one presented in Figure 2.3, have limitations when it comes to processing high-dimensional
data like images due to something often referred to as the curse of dimensionality [21]. In an image
with for example 1024 pixels, the input layer would have to treat 1024 individual parameters. This
number becomes unmanageable as the image data scales up. A breakthrough in the processing of image
data using neural networks have come with the convolutional neural network, described in more detail
below.

Figure 2.3: Example of the architecture of a fully connected neural network with only one hidden
layer [31].

2.2.2 Convolutional neural networks

Convolutional neural networks, or CNNs, are a special kind of feedforward neural networks that is
widely used with data sets consisting of images. This kind of network uses convolutional layers as
their main component, which are essentially sets of convolutional filters or kernels. Each kernel only
processes a subsample of the input data and creates so called feature maps which detects features in the
image. The features detected could for example be edges and curves in the image. In Figure 2.4 the
structure of a typical CNN network is presented. CNNs usually also contains pooling layers, which
are layers that are used to reduce the number of parameters and spatial resolution in the network, and
therefore to also control overfitting.

The performance of CNNs on classification of image data has been shown in a number of studies [14],
[28], [26], and is currently considered state-of-the-art for image classification.

Figure 2.4: Example of the architecture of a typical convolutional network [29].
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2.2.3 Gradient descent

Most machine learning algorithms are based on an optimization problem, for example to minimize a
certain function f(x). In machine learning context, this function is referred to as the cost function or
loss function. A common cost function used in neural networks is the negative log-likelihood, which is
referred to as the cross-entropy between the distributions of the model and the training data [10].

Gradient descent starts with a set of parameters and then iteratively moves towards values of the pa-
rameters that minimizes that cost function. The minimization is done by moving small steps in the
opposite direction of the derivative of f(x). How big of a step that is made is called the learning rate,
and will be discussed further in section 2.2.5. Before a step can be made and the weights of the model
can be updated, the cost and gradient of the entire training set must be evaluated.

Stochastic gradient descent

In most practical cases, it is too computationally demanding and ineffective to evaluate the entire
training before updating the model. A solution to this problem is the stochastic gradient descent, which
uniformly draws a mini batch from the training set for each step and determines the next step by
evaluation of the batch. The mini batch can be as small as one data point.

2.2.4 Regularization

Machine learning algorithms need to be regularized so they can generalize to data other than what it has
trained on. Goodfellow et.al [10] provides the following definition of regularization in the context of
learning algorithms: ”Regularization is any modification we make to a learning algorithm that is intended
to reduce its generalization error but not its training error.”. A common regularization approach is to
add a norm penalty to the cost function, called L2 parameter regularization. In neural networks this
regularization is implemented by decaying the weights of the network.

Another regularization technique commonly used for neural networks is called dropout. This method
aims to stop overfitting by randomly deactivating, or dropping out, units in the network [27].

2.2.5 Hyperparameters

Parameters that are set prior to training and that is not learned by the machine learning algorithm are
called hyperparameters. hyperparameters [10]. Hyperparameters need to be tuned depending on the
network and the data it is training on. This process is called hyperparameter optimization and should be
done as a first step when using a machine learning algorithm for a task. This process involves setting
the parameters to different values, training the network with them and evaluating the created model on
the validation set. The correct values are searched for either manually, through a grid search or through
random search [6].

One of the most important hyperparameter is the learning rate [5]. This parameter tells the optimizer
how far to move the weights in the direction of the gradient. Smaller steps lowers the risk of missing
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the global minima but also increases the time it takes to converge. A common practice is to take
large steps in the beginning of the training and then smaller as the learning process evolves. This
is called learning rate decay and is often a hyperparameter. Another hyperparameter related to the
learning rate is momentum, which is used to prevent the algorithm getting stuck in a local minima.
A higher momentum means a larger fraction of the current weights will be used to update the new
weights.

Parameters that are used for regularization of the network, such as weight decay and dropout, are also
often used as hyperparameters.

2.2.6 Inference

Inference is the process of using the trained model on new data to perform the task it was trained for.
For example, in an image object classification task the model would be fed new data and predict which
class each object belongs to.

2.2.7 Overfitting and underfitting

The idea of machine learning is that the algorithm should learn from a training set and then perform
well on a test set of unseed data. Performing well on the training set but much worse on the test set
is referred to as overfitting. The algorithm have then tuned itself to fit the training set to a degree that
it has lost its ability to generalize. Underfitting is a term used for when the learning algorithm is not
performing well enough on the training set. Usually overfitting is the bigger challenge of the two and
is combated with regularization and data augmentation.

2.2.8 Imbalanced data

In classification tasks there is often different amount of data points belonging to each class. This can
lead to a model that is optimized in a way so it will work best on the dominating class while ignoring
small classes. This is called imbalanced data, and is a problem that can be countered by weighting each
class by a factor. This will make all the classes important to the decision making of the network and
ensure that smaller classes will not be ignored.

2.2.9 Performance metrics

Several different performance metrics can be used to calculate performance of a neural network and
varies greatly depending on the specified task of the network. TheDice coefficient gives a measure of the
overlap between two segments, which makes is a popular metric to compare a networks segmentation
with the ground truth. It is calculated by using formula 2.1.

Dice =
2|X ∩ Y |
|X|+ |Y |

(2.1)
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X and Y denotes the prediction and the ground truth respectively. In the case of segmentation, one
can see it as dividing the overlapping area between the prediction and ground truth with the sum of
their total area. This value is then multiplied with 2 to give a measure between 0 and 1.

The segmentations can also be evaluated visually to estimate the performance of the model. While this
method is subjective, it gives more insight into the segmentations made and eventual problems with it
than a simple numerical value.

2.2.10 Cross validation

Machine learning algorithms generally builds better models if trained on more data. However, the
model has to be validated on data that is has not trained on. Partitioning the data set into fixed sets for
training and testing might not be a good idea if the data set is small. This would give a high uncertainty
regarding the result since it would only have been tested on a small test set. Another solution would be
to train multiple models with the same settings but with different training and test sets. Then more or
even all of the data can be used for training and an average error can be calculated. One common way
is to use the k-fold cross validation. This divides the data set into k subsets and using one such subset
for testing, and the rest for training. This is then repeated for all subsets. Other types of cross validation
also exist like repeated random sub-sampling, where the training and test set are randomly drawn from
the data set, and then repeated for as many times necessary. The drawback of cross validation is the
additional cost of resources [10].

2.3 Data augmentation

One of the key aspects in convolutional neural networks is data. Having access to large data sets gives
the network a better chance of becoming better at whatever task it is supposed to do [15]. Everything
the network learns will come from the available training data, and it is therefore important that it
contains all major aspects needed to make a decision. Having too little data results in overfitting [15].
For example: if you want to create a network that can detect a cat in an image, it is important to know
that a cat can be seen in almost every environment. This means that the cat can be seen in snow, on
grass, on the road, on a wooden floor and so on. If all the training data would come from pictures
made in a studio environment with a white background, this would prevent the network from learning
all the necessary parameters that exist in the real-world application. Therefore, it is in general better
to have bigger data sets, which will contain more versions of the same type of object [24], [10]. Apart
from the different backgrounds of the cat, it may contain different angles, lightning, or colors.

Image data is especially suitable for augmentation since many of the variations are easily simulated.
Several works have been presented were performance of a machine learning algorithm has increased
after the image data was augmented [25], [3], [20]. There are some augmentations that are widely
used in many types of image applications, and some that are more specialized for a particular problem.
Some of the more general augmentations are rotation, flipping, cropping and adding noise.

Rotation is very simple and is suitable for most applications. If you rotate an image of a cat, the image
would still contain a cat. This can generate many new images from one original. Flipping or mirroring
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is in many ways similar to rotation. It preserves the information and label but is limited in how many
new images it can create.

If much of the training data is in some way standardized so that the object of interest is always in the
same position, it might be a good idea to augment using translation to move the object to different
places in the image. Otherwise the network might favor one position over another, which might not
be desirable.

Scaling is another way to augment images. It can be useful when the desired object can appear in
different sizes, but still with the same characteristics.

The rotation, translation and scaling all belong to a group of transformations called affine transfor-
mations. One way of distinguishing an affine transformation is that it preserves parallel lines in an
image. To mathematically perform these affine transformations, one can multiple a vector of the old
coordinates with a 3x3 matrix, A, as seen in equation 2.2. Depending on how the matrix A looks, the
transformation can become for example translation or rotation. Other affine transformations can be
seen in Figure 2.5.

x′y′
1

 = A

xy
1

 (2.2)

Figure 2.5: Summary of some affine transformations [30].

Another type of data augmentation is elastic deformation. This is more specialized and might not be
a good idea for all applications. This augmentation involves deforming the image in ways that may
destroy lines, meaning that it is not an affine transformation. It can be seen as dividing an image into a
grid of squares and then transform each square in some way. One way is to randomly move the corners
of the small squares while stretching the image inside, as seen in Figure 2.6. The local deformation
of each small square can be made in different ways. If the deformation of each small square is made
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by an affine transformation, such as a combination of shearing and rotation seen in Figure 2.5, the
transformation as a whole can be called piecewise affine [7].

Figure 2.6: Example of elastic deformation on a grid.

It is important that the data augmentation chosen is fitting for the specific type of task. For example,
rotating might not be a good idea if the network should be able to differentiate between a 6 and a 9,
or if it should know left from right on street signs [15]. Similar things can be said about many types of
augmentation, for example when the object to be recognized have many straight lines it may be unwise
to use elastic deformation.

2.3.1 Online vs Offline augmentation

Augmentations can be made either online, meaning that it is made during training and that the aug-
mented data does not exist afterwards, or offline meaning that a new complete data set is created before
the training starts. They both have different advantages. For example, offline training requires more
storage available beforehand, but it also makes the training process faster. Offline augmentation has a
fixed number of possible augmented images, whereas the online training can generate a larger number
of unique images if training set is iterated over multiple times.
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Chapter 3

Related work

It is worth mentioning that while many of the ideas behind neural networks and data augmentation
are not new, much of the research is very recent. Many articles have been written the past year and the
field is evolving quickly. This section describes some of the work that is related to the subject of this
thesis.

3.1 Networks

Two different neural networks available open-source were used in this thesis. The networks are de-
scribed briefly below, but the interested reader should see the full articles corresponding to each net-
work for more detail.

3.1.1 U-Net and tf_unet

U-Net is a neural network architecture created by Olaf Ronneberger, Philipp Fischer, and Thomas
Brox, designed for the purpose of segmenting biomedical images [23]. The network has been shown
to perform very well in segmentations tasks of electron microscopic stacks using a limited amount of
training samples.

The network consists of a contractive path together with a symmetric expansive path which gives the
network a U-shape as can be seen in Figure 3.1. The contractive part applies convolutions and max
pooling operations at each step, which downsamples the input and feature maps that are created. At
each step in the expansive path the feature maps is upsampled and then convolved. To map each feature
vector to the desired number of classes a final convolutional layer is applied.

A generic version of U-Net, called tf_unet, has been implemented in Tensorflow by Joel Akeret, and
the entirety of the implementation has been published on the code-sharing platform github.com. Joel
Akeret et.al used this implementation to classify clean signals and RFI signatures acquired from a radio
telescope [2]. However, the network is designed to be generic and can be used for any segmentation
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Figure 3.1: Architecture of U-Net [23].

task.

The network takes 2D matrices as input. In this project, this implementation has been altered to fit
the data and resources worked with. For example, the network was adjusted to take whole images as
input instead of working with smaller patches of the image. The cost function used with this network
implementation was cross-entropy.

3.1.2 NiftyNet and HighRes3DNet

NiftyNet is an open source convolutional neural networks platform for medical image analysis and
image-guided therapy [9]. The platform is built for use with Tensorflow. Several different network
structures has been implemented in NiftyNet that can be used to segment medical images.

One such network is HighRes3DNet, which is a NiftyNet implementation of a neural network solution
proposed for volumetric image segmentation in [16]. Li, W. et al.. used this network to segment
neuroanatomical structures from MR images of the brain and achieved results that could be compared
to state-of-the-art segmentation networks.

The network consists of 20 convolutional layers that uses dilated convolutions which create feature
maps of different scales. Residual connections between each pair of convolutional layers enables fu-
sion of features from different scales. See Figure 3.2 for a full illustration of the network’s architec-
ture.
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Figure 3.2: Architecture of HighRes3DNet [16].

3.1.3 Data augmentation

In their article [25] , J. Shijie et al. describes the impact of different data augmentations on an im-
age classification task. Their experiments are made using a number of different sized data sets with
small images, of varying sizes down to 32 x 32 pixels, with a number of different augmentation tech-
niques. These include flipping, cropping, color shifts and adding noise. Their result is that almost all
augmentations had a positive effect on the classification accuracy.

Biomedical data augmentation

Many articles that involve medical images and neural networks shortly discuss the special challenges
that arise in this area compared to many other non-medical fields. The main problem is lack of data,
which result in very small training sets and contribute to overfitting.

In GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion
Classification by Frid-Adar et al. [8] it is discussed that most researchers try to solve the problem of
small data sets using data augmentation. This is usually made by using geometrical transformations
such as rotation, scaling, translation and flipping. Aside from discussing this, the authors suggest a
method called Generative Adversial Networks. This can be described as one network that generates fake
images, and one that evaluates them to see if they are good or bad. The article shows that this approach
could improve the performance when using a small training set.

Due to the lack of sufficient data, the work by Ronneberger et al. [23] also use excessive data aug-
mentation as a way to increase the network’s invariance and robustness properties. Rotation, shift and
deformation augmentations are used on the training samples for this purpose. The authors argue that
elastic deformation augmentations are particularly important in biomedical segmentation tasks, since
the most common variations in tissue is deformations.

Another article by Asperti et al. [3] use similar data augmentations as the previous articles. Rotation,
translation, shearing and scaling are used in their experiments. Like in many other articles about
medical uses for neural networks, they conclude that the data augmentation helped to increase the
performance when using a small data set.

Havaei et al. [11] tried data augmentation on brain tumor segmentation on MR images with a con-
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volutional neural network. In contrast to many others they state that the data augmentation did not
improve the overall accuracy of their model.

3.2 Modeling of motion artifacts

Modeling of artifacts in MR images is relevant for several reasons. Knowing how artifacts occur makes
it easier to prevent them from being created and can also aid in the removal of them in the post
processing of the acquired image.

Since motion artifacts occur due to inconsistencies in the acquired k-space, it is also possible to simulate
motion artifacts by introducing inconsistencies in an image’s k-space representation. A simple example
of this is done by Moratal et al. [17], where phase encoding lines along the y-axis is canceled out. A
self-produced example of this type of artifact simulation can be seen in Figure 3.3. Here, every fourth
line along the y-axis has been set to zero. Because of this periodicity, four ghosts are present in the
simulated image.

Figure 3.3: Simulated ghosting artifact in MR image ¹.

Motion of an object can mathematically be modeled as a translation. This produces the possibility to
simulate motion in an MR image simply by translating the imaged object a certain distance. If the
acquisition time and trajectory of lines in k-space is known, it would be possible to exactly simulate
the motion artifacts produced by a certain motion.

An often more desirable goal is to correct images with artifacts rather than introducing them [13]. In
their paper Matrix Description of General Motion Correction Applied to Multishot Images [4], Batchelor
et al. proposes a method to correct images with motion artifacts by assuming a motion model and
make alterations to k-space according to that model. The authors simulate motion by random affine
transformations. Motions in MR images are also simulated with affine rotations and translations on a
digital phantom by M. Zaitsev et al. in their article where the origin of motion artifacts is discussed
[32].

¹Original MRI courtesy of Gentle Radiotherapy.
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Chapter 4

Method

4.1 Software and hardware

4.1.1 Python

All code was written in the python programming language, version 2.7. Some open source libraries for
python that were used extensively during the project is described below.

TensorFlow

TensorFlow is an open source framework implemented in Python for machine learning algorithms
[1]. It allows execution of algorithms such as neural networks and an interface for visualization of the
training process.

imgaug

imgaug is a python library created by Alexander Jung for augmenting data and is designed especially for
machine learning experiments [12]. The library provides a range of different augmentation techniques
on both 2D and 3D matrices.

4.1.2 Hardware

The main hardware that has been used for implementation of code and for training the tf_unet net-
work has been two laptops equipped with one NVIDIA GeForce GTX 1050 graphic card each. The
High3DResNet was trained on a computer equipped with a NVIDIA GeForce GTX 1080 Ti graphic
card.
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4.2 General methodology

The bulk of the experiments conducted was done using the Tensorflow implementation of U-net,
tf_unet, but HighRes3DNet implemented in Niftynet was also used in experiments regarding motion
artifacts.

Execution of training

Since the training process took much of the computers resources, the training was made during nights
and weekends. Scripts were therefore written to easily allow multiple trainings with different settings
to execute from one script. The same was done for scripts that used the trained models to predict
on new images and calculate various performance metrics. Most of the code written for this project
has been for scripts aiming to create an efficient pipeline to conduct the experiments and extract the
results.

Continuously during the project data logs were created to document the training and inference. These
logs were helpful when looking at the data after training to see what parameters and settings were
used.

Training length

The first models trained was done so with an excessive amount of iterations to ensure that the models
were fully trained. The learning curves, see figures 4.1 and 4.2, of these models were then studied to
decide after what point in time the model did not improve. Mainly the accuracy and the loss curves
were examined to make this decision.

For the U-Net the number of iterations was set to 40 000, which took approximately 8 hours to run.
For the HighRes3DNet network the number of iterations was set to 10 000, which took approximately
3 hours to run.

Downsampled data

Because of the lengthy training time of 8 hours for the U-Net, it was decided that the data set used
should be downsampled to allow for more experiments. The 2D images used were scaled from 454 x
466 pixels to 254 x 266 pixels. The exact number was chosen because it fitted the size requirements
for U-net architecture and were approximately half of the original size in each direction. This reduced
training time to approximately 3 hours.
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4.3 Hyperparameter optimization

The specific hyperparameters for the U-Net implementation were studied and the following parameters
were tuned:

• learning rate

• momentum

• learning decay rate

• regularizer

• dropout

To save time, a fully random search for parameters was not conducted, but rather a more structured
grid search. The interval of values to search was limited by educated guesses and a reasonable amount of
values in this interval was used to create different models. Because of the importance of the learning rate
[5], this parameter was the first to be investigated and set. Thereafter several models were trained with
different values and combination of the hyperparameters and then compared against each other.

One way to compare the effect of different hyperparameters was to use Tensorboard, which is a visu-
alization tool built into TensorFlow. Figure 4.1 and Figure 4.2 show information from two different
training runs. The top three plots in the figures display the dice coefficient for the different labels, and
the left bottom plot displays the overall accuracy. Note the top right plot, which shows that the dice
coefficient for bone, is much lower in Figure 4.1 than in Figure 4.2. One can also see that the loss
function, in the down right corner of both figures, has stagnated at a non-zero value for the training
run in 4.2 already after 15 000 iterations. This indicates that the network stopped learning at that
point of time. The loss function in Figure 4.1 is continuously decreasing towards zero, indicating a
better training run.

Figure 4.1: Training information for a training run that resulted in a bad model. The blue line repre-
sents training data and the orange validation data.

21



Figure 4.2: Training information for a training run that resulted in a good model. The blue line
represents training data and the red validation data.

The hyperparameters that were set for the first experiment can be seen in Table 4.1. After the first
experiment, hyperparameter optimization was continued and the final hyperparameters, that were
used for all other experiments, were set to the ones in Table 4.2.

Hyperparameter Value
learning rate 0.0050
momentum 0.9500

learning decay rate 0.9930
regularizer 0.0001
dropout 0.9000

Table 4.1: Early hyperparameters.

Hyperparameter Value
learning rate 0.0050
momentum 0.9900

learning decay rate 0.9930
regularizer 0.0001
dropout 1.0000

Table 4.2: Final hyperparameters.

4.4 Data augmentation

4.4.1 Geometric data augmentation

For the geometric augmentations of the MR images, both existing python libraries have been used
and new algorithms have been developed. The library imgaug [12] created by Alexander Jung, which
consists of augmentation methods especially designed for machine learning experiments, has been
particularly useful.

By investigating earlier work, it was decided that the standard augmentations to be tested in this project
would be rotation, scaling, translation and elastic deformation. These were made online during training
and implemented as a function that was called during the pre-processing of data during training. The
function takes an image and ground truth labels as input and outputs augmented versions of them. A
stochastic parameter determines whether or not to perform the augmentation.

The augmentations were mostly made by using functions from the imgaug library, with some additional
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code added to make sure that the data structures of the input images and the provided functions
matched.

Geometric augmentations were used separately to train several models whose performance was eval-
uated. However, the geometric transformations were later split into two groups. One group, named
affine augmentations, consisted of rotation, scaling and translation. The affine augmentations were used
in such a way that one, two, or all three of them were applied to the input data. A simple description of
this augmentation can be seen in Algorithm 1. The other augmentation was elastic deformation, which
was investigated separately since the article that presents U-Net [23] claims that it was a particularly
important augmentation.

Algorithm 1 Affine augmentation
Input: Image to be augmented I , ground truth to be augmented GT and chance for aug-

mentation p
1: Generate random number r in range (0,1)
2: if r < p then
3: Generate random number rand in range (1,7) and apply one of the following trans-

formations to I and GT .
4: if rand == 1 then
5: Translation
6: if rand == 2 then
7: Rotation
8: if rand == 3 then
9: Scaling

10: if rand == 4 then
11: Translation and rotation
12: if rand == 5 then
13: Translation and scaling
14: if rand == 6 then
15: Rotation and scaling
16: if rand == 7 then
17: Translation, rotation, and scaling
18: return Augmented I and GT
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To decide on reasonable parameters, such as rotation angle and scaling percentage, images were aug-
mented and visually evaluated. Two conditions were set: all anatomical structures had to be preserved
inside the borders of the image and the anatomical structures should not be deformed unrealistically.
The ranges of the parameters are summarized below.

• The image was translated randomly in both x-axis and y-axis in the ranges limited by the image
borders.

• The rotation angle was randomly set to a value in the continuous range of (-15,15) degrees.

• Scaling was randomly set to a value from 0.9 to the maximum scaling that could be conducted
without breaking the border condition, but never exceeded 1.2.

• The elastic deformation was made randomly to a degree that the anatomical structures still
remained realistically intact.

Example of all the geometric augmentations can be seen in Figure 4.3.

Figure 4.3: MR image¹ and augmented version of it. Original image to the left, augmented versions
to the right.

¹Original MRI courtesy of Gentle Radiotherapy.
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4.4.2 Simulation of motion artifacts

A literature review was conducted to investigate how breathing could affect the acquisition of MR image
to the degree that motion artifacts appeared. A number of different methods to simulate breathing were
tested to gain an understanding of the consequences of altering k-space.

Finally, a process was developed that was based on the Fourier transformation of an image to k-space,
alteration av k-space lines in the phase encoding direction, and transformation of the k-space back to
an augmented image. In this case the phase encoding direction was set along the y-axis in a transverse
slice.

This process was developed into a simulation program with three different modes of complexity. These
modes were named Simple, Advanced, and Very advanced. The least advanced mode simply replaces
certain lines in the image’s k-space with zeros [17], either periodically or randomly. The mode Advanced
simulates the breathing movement using scaling and translation of the input image in the Y-direction,
and then replaces lines in the original image’s k-space with the simulated image’s k-space. This is
supposed to imitate the vertical movement of the stomach during image acquisition. To make sure
the position of the patient’s back stays in the same place in the simulated image as in the original, the
image is translated in the negative y-direction after scaling.

The Advanced mode treats all slices in the image volume the same and will therefore create motion
artifacts at the legs as well as as the stomach. The Very advanced mode includes a more complex
scaling. It is not done uniformly in the Y-direction of the transversal plane as in the Advanced mode,
but it varies depending on the X and Z-direction of the transversal plane. The variability of the scaling
depending on the Z-direction is made so that the simulated breathing artifacts does not affect the legs
and makes a smooth transition into the body located above the bladder. The scaling also depends
on the position in the X-direction so that the center of the body is scaled more than the sides. This
correspond to the center of the stomach moving further out than the sides during a breath. The scaling
in the X-direction is modeled by a full period of a sinus wave, whereas the scaling in the Z-direction
is modeled by connecting two scaling levels by half a sinus wave. This creates a 3D scaling map that is
visualized in Figure 4.4 below.

Figure 4.4: Example of a scaling map for simulation of breathing artifacts in the Very advanced mode.
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The maximum scaling of the image and the width of the sinus wave used for scaling in the X-direction
was set as input parameters to the program. A number of scaling maps are generated and used on each
template, corresponding to the variable number of copies. Another parameter related to this scaling map
is a parameter to adjust where in the X-direction the scaling will start.

Altering lines in the middle of k-space often resulted in very drastic changes of the image, such as a
great loss in detail and high blurriness. The simulation program therefore includes the option to avoid
altering the center of k-space with a certain number of lines.

Since most modern MR cameras collects several k-space at a time, the k-space lines are replaced in
chunks, which is another changeable parameter in the program. They can be replaced either periodi-
cally, as to say every n:th chunk, or randomly with a certain probability.

Below two of the different algorithms are presented in a simplified form, Simple mode and the Very
advanced mode. For full descriptions of the algorithms see appendix A.

Algorithm 2 Simple mode - short
Input: Image volume = Vin and parameters deciding size of chunks, number of lines at middle

to avoid and how to alter lines.
Output: Image volume augmented with motion artifacts, Vout

1: Fourier transform each slice in Vin to get K.
2: In K, set certain chunks of lines in the phase encoding direction to zero, either periodi-

cally or randomly depending on input. Avoid a certain area around the middle of k-space
depending on input.

3: Let Vout be the inverse Fourier transform of K

Algorithm 3 Very advanced mode - short
Input: Image volume = Vin and parameters deciding size of chunks, number of lines at middle

to avoid, how to alter lines and scaling limitations.
Output: Image volume augmented with motion artifacts, Vout

1: Fourier transform each slice in Vin to get K.
2: Create a number of copies depending on input.
3: Scale each copy in all directions to simulate breathing, according to parameters deciding

X, Y and Z limitations.
4: Translate the copies so that the back of the body is at the same position as the original.
5: Fourier transform each copy.
6: In K, replace chunks of lines in the phase encoding direction with the same lines in the

copies, either periodically or randomly depending on input. Avoid altering certain area
around the middle of k-space depending input.

7: Let Vout be the inverse Fourier transform of K
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Augmentation of data set

A graphical user interface (GUI) was developed to create and evaluate motion artifacts. For a detailed
description of this GUI, see appendix B.

Since the algorithms for artifact simulation contained many different parameters, a large number of
different models for creating the artifacts were possible. Educated guesses relying on previous articles
about k-space and motion artifacts was aided in deciding values for these parameters. Using the de-
veloped GUI, simulations with different parameters could be created swiftly and different values for
the parameters could be evaluated. The chosen combination was the one that gave the most similar
artifacts compared to the images with actual breathing artifacts. The data sets used for the experiments
was augmented offline.

Examples of simulated artifacts can be seen in Figure 4.5. For comparison, two examples of how the
actual breathing artifacts can look like are seen in Figure 2.2.

Figure 4.5: Two examples of motion artifacts simulations on two different MR slices ¹. The slices to
the left are unaltered, and the augmented versions of them are shown to the right.

¹Original MRI courtesy of Gentle Radiotherapy.
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4.5 Experiments

4.5.1 Geometric augmentations

The first experiment involved using the previously mentioned geometric augmentations on our full
data set. The network used for this experiment was U-Net. All the data set was randomly divided into
nine groups of five templates, and one group of four templates (the smaller group was due to the fact
that one of the templates was at a late time discovered to be unusable). The group with four templates
plus eight of the nine groups of five were used as training data, while the ninth group of five was used
as validation. This resulted in a training set that always had 44 templates, and a validation set that had
five templates. This was repeated for all of the nine groups of five templates to make a total of nine
cross validations. These nine cross validations were made once without augmentation, referred to as
the baseline, once with affine augmentations, and once with elastic deformation. Affine augmentation
and elastic deformation were applied online 50% of the times the training data was iterated over. This
means a total of 27 models of the network were made.

The results from the first experiment raised a number of questions, such as why many articles seemed
so confident that their augmentations improved their results. To answer these, a longer experiment
was conducted. This time, the test was done using downsampled versions of the templates. This was
due to time constraints and the fact that the time consumption scales with the template size. This
time however, a new list of hyperparameters were used, see Table 4.2. A number of short preliminary
trainings were conducted to verify that there was no abnormal behavior when using the downsampled
templates. After that, a large number of test were conducted using cross validation on several differ-
ent sizes of data sets. The data set sizes were 5, 10, 20 and 45 templates and the number of cross
validations per data set size was five. The cross validations here were made by using repeated random
sub-sampling, where the desired number of templates for training and validation are chosen randomly.
Each cross validation contained one baseline, one training with affine transformations and one with
elastic deformation, giving 60 trained models in total. This tested how the difference in performance
changed depending on the size of the data set.

All models were also used to predict on training data to get a measure of overfitting. The resulting dice
coefficients from the predictions were put in spreadsheets and mean values and standard deviations
were calculated.
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4.5.2 Motion artifacts

This experiment investigated the effect of simulated motion artifacts for training of models in neural
networks. Experiments were carried out on two networks, U-Net and HighRes3DNet. Three classes
were used in the training of U-Net: body, air, bone. Eight classes were used in the training of High-
Res3DNet: body, air, bone bladder, colon, left femur, right femur, pelvis.

First, a test set for the evaluation of the models were determined. This was done simple by visually
investigating the available templates and looking for images with obvious motion artifacts. Five tem-
plates were found that suited the criteria. None of these were a part of the data set used for training
and validation.

For both networks, five pairs of models were trained; five baseline models and five augmented models.
A data set of 50 templates were used for training and validation. The baseline models were trained on
a data set that was unaltered while the augmented models trained on the same data set that had been
augmented with motion artifacts.

Two augmented data sets were created from the original data set of 50 templates, one for each network.
The augmentations were done offline, prior to training. The augmentations were created with the
developed algorithm seen in Algorithm 3 with two different sets of parameters. The settings used
for the U-Net experiments are presented in Table 4.3, and the settings used for the HighRes3DNet
experiments are presented in Table 4.4.

Using the fully augmented data set and the original data set, a new data set was put together for each of
the five pairs of training runs. The data set was randomly partitioned into a training set of 45 templates
and a validation set of 5 templates. For an augmented training, 80% of the templates in the training
set was drawn from the augmented data set. In a baseline training, all were drawn from the original
data set. For both the augmented and the baseline runs the validation set was drawn from the original
data set.

This procedure led to a cross validation process which yielded 10 different models. All models were
used to predict the labels of the test set containing actual motion artifacts. These segmentations were
evaluated visually due to lack of ground truth data. All models were also evaluated on their respective
validation set to determine performance on data not containing motion artifacts. This evaluation was
done both visually and by computing the Dice coefficient for the different classes.

Parameter Value
Chunk size 16

Random or periodical 0.80
Avoid middle with 30

Max scale 1.15
Number of copies 3
Width adjustment 0

Table 4.3: Settings used to simulate breathing
artifacts for training of U-Net.

Parameter Value
Chunk size 2

Random or periodical 20
Avoid middle with 30

Max scale 1.10
Number of copies 2
Width adjustment 0

Table 4.4: Settings used to simulate breathing
artifacts for training of HighRes3DNet.
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Chapter 5

Result

5.1 Geometric augmentations

In this section the results for the two experiments investigating geometric augmentations using U-Net
will be presented.

5.1.1 First experiment

Below in Table 5.1 the computed Dice coefficients for the four different classes from nine cross validated
models are shown. Tables 5.2 and 5.3 show the difference from the baseline when augmenting with
elastic deformation and affine transformations respectively.

In 5.4 the mean values and their standard deviations for the results in tables 5.2 and 5.3 are presented.
Table 5.4 show a slight improvement on all predicted classes for the models using data augmenta-
tion.

The p values for a two tailed t test on the bone segmentation results are presented in Table 5.5. This
shows that the slight improvements in Table 5.4 cannot be said to be a significant difference between
the Dice coefficients of the baseline and augmented models.
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Model Dice air Dice body Dice bone Total
1 0.9944 0.9651 0.8245 0.9740
2 0.9937 0.9548 0.8005 0.9658
3 0.9962 0.9701 0.8362 0.9741
4 0.9961 0.9690 0.8269 0.9723
5 0.9934 0.9685 0.8129 0.9696
6 0.9962 0.9722 0.8131 0.9755
7 0.9972 0.9726 0.8512 0.9794
8 0.9965 0.9727 0.8529 0.9766
9 0.9953 0.9702 0.8314 0.9743

Mean 0.9954 0.9684 0.8277 0.9735

Table 5.1: Dice coefficients of the nine cross validated baselines.

Model Dice air Dice body Dice bone Total
1 0.0001 0.0057 0.0290 0.0040
2 0.0009 0.0021 0.0071 0.0014
3 -0.0004 -0.0020 -0.0085 -0.0018
4 -0.0008 0.0027 0.0175 0.0023
5 0.0009 -0.0009 -0.0093 -0.0008
6 0.0008 0.0030 0.0126 0.0025
7 0.0000 -0.0026 -0.0133 -0.0020
8 -0.0006 -0.0054 -0.0237 -0.0045
9 0.0010 0.0039 0.0181 0.0034

Table 5.2: The difference of Dice coefficients between elastic deformation and baseline models.

Model Dice air Dice body Dice bone Total
1 0.0013 0.0089 0.0385 0.0067
2 0.0015 0.0087 0.0280 0.0058
3 0.0002 0.0050 0.0261 0.0043
4 0.0002 0.0031 0.0151 0.0028
5 0.0014 -0.0024 -0.0201 -0.0023
6 0.0002 0.0062 0.0385 0.0053
7 -0.0005 -0.0034 -0.0113 -0.0023
8 -0.0006 -0.0040 -0.0171 -0.0033
9 0.0007 -0.0021 -0.0145 -0.0018

Table 5.3: The difference of Dice coefficients between affine transformations and baseline models.
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Augmentation Air Body Bone Total
Elastic deformation

Mean 0.0002 0.0007 0.0033 0.0005
Std(m) 0.0002 0.0011 0.0055 0.0009

Affine transformations
Mean 0.0005 0.0022 0.0092 0.0017
Std(m) 0.0002 0.0017 0.0078 0.0013

Table 5.4: The mean differences in Dice coefficients between the baseline and the models trained with
elastic deformation and affine transformations, as well as the standard deviation.

Augmentation result P value
Elastic deformation 0.6956

Affine transformations 0.3433

Table 5.5: P values from a two tailed t test for Dice coefficients for bone in tables 5.1-5.3. Significance
level = 0.05.
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5.1.2 Second experiment

Here the results from the second experiment regarding geometric augmentations are presented. Table
5.6 shows the mean Dice coefficients for the baselines for the different training set sizes. It can be
seen that the performance increases with the amount of training data. The tables 5.7 - 5.10 show the
mean difference between the baseline and the augmented models and standard deviation of the mean
for the models trained on smaller data sets containing 5, 10, 20 and 45 templates. It can be seen that
augmentations on both 5 and 10 templates improve the performance of the model to different degrees,
whereas it on 20 and 45 templates in general decreased the performance.

Figures 5.1 and 5.2 show graphically the results of bone from tables 5.6-5.10. They show the difference
between the performance of the baselines and the performance with augmentation and how it changes
for different sizes of the data set. Table 5.11 show the results from a statistical t test on the bone class.
It shows that in the results from tables 5.7 - 5.10, the improvement is significant on the smallest data
set of 5 templates and that there are in general no significant results for the larger data sets of 10 or
more templates. Figures 5.3 - 5.5 show the results when predicting on the bone class on the validation
data versus the training data, in order to measure overfitting.

Number of templates Air Body Bone Total
5 0.9840 0.9626 0.8278 0.9664
10 0.9915 0.9751 0.8801 0.9780
20 0.9935 0.9811 0.9040 0.9829
45 0.9947 0.9829 0.9104 0.9847

Table 5.6: Mean Dice coefficients for the cross validations of the baseline models of 5, 10, 20 and 45
templates.

Augmentation Air Body Bone Total
Elastic deformation

Mean 0.0023 0.0088 0.0533 0.0077
Std(m) 0.0024 0.0020 0.0065 0.0020

Affine transformations
Mean 0.0030 0.0098 0.0549 0.0086
Std(m) 0.0023 0.0021 0.0073 0.0021

Table 5.7: The mean differences in Dice coefficients between the baseline and the models trained with
elastic deformation and affine transformations, as well as the standard deviation when 5 templates are
used for training data.
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Augmentation Air Body Bone Total
Elastic deformation

Mean 0.0017 0.0038 0.0170 0.0035
Std(m) 0.0006 0.0011 0.0054 0.0010

Affine transformations
Mean 0.0028 0.0036 0.0085 0.0034
Std(m) 0.0007 0.0013 0.0056 0.0012

Table 5.8: The mean differences in Dice coefficients between the baseline and the models trained with
elastic deformation and affine transformations, as well as the standard deviation when 10 templates are
used for training data.

Augmentation Air Body Bone Total
Elastic deformation

Mean -0.0011 -0.0028 -0.0098 -0.0024
Std(m) 0.0010 0.0008 0.0012 0.0008

Affine transformations
Mean 0.0007 -0.0007 -0.0056 -0.0004
Std(m) 0.0010 0.0018 0.0074 0.0016

Table 5.9: The mean differences in Dice coefficients between the baseline and the models trained with
elastic deformation and affine transformations, as well as the standard deviation when 20 templates are
used for training data.

Augmentation Air Body Bone Total
Elastic deformation

Mean 0.0006 -0.0012 -0.0110 -0.0011
Std(m) 0.0005 0.0017 0.0078 0.0015

Affine transformations
Mean 0.0010 -0.0038 -0.0261 -0.0029
Std(m) 0.0007 0.0015 0.0087 0.0013

Table 5.10: The mean differences in Dice coefficients between the baseline and the models trained with
elastic deformation and affine transformations, as well as the standard deviation when 45 templates are
used for training data.
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Figure 5.1: Mean Dice coefficients and standard
deviations for the bone class for 5, 10, 20 and 45
templates with elastic deformation and baseline
models.

Figure 5.2: Mean Dice coefficients and standard
deviations for the bone class for 5, 10, 20 and 45
templates with affine transformations and base-
line models.

Augmentation 5 10 20 45
Elastic deformation 0.0008 0.1215 0.0059 0.1740

Affine transformations 0.0005 0.4497 0.5535 0.0875

Table 5.11: The p values from a two tailed t test for Dice coefficients for bone for 5, 10, 20 and 45
templates. Significance level = 0.05. Significant values are boldfaced.
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Figure 5.3: Mean Dice coefficient for bone with standard deviations for 5, 10, 20 and 45 baseline
templates when predicting with validation data vs training data.

Figure 5.4: Mean Dice coefficient for bone with
standard deviations for 5, 10, 20 and 45 tem-
plates with elastic transformation, when predict-
ing with validation data vs training data.

Figure 5.5: Mean Dice coefficient for bone with
standard deviations for 5, 10, 20 and 45 tem-
plates with affine transformations, when pre-
dicting with validation data vs training data.
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5.2 Motion artifact augmentations

In this section the result from training models with the simulated motion artifacts are presented. First
the result from using the U-Net network is presented and then the results from using HighRes3DNet
are presented.

5.2.1 U-Net

It was found that the models trained with augmentation either performed better than the baseline
model or did not improve results. Below in Figure 5.6 - 5.8, predicted segmentations on three different
problematic templates where the improvement is the most prevalent are presented. The segmentations
have been made from three different pairs of models. The baseline segmentation is shown to the left
whereas the segmentation made from the model that was augmented is shown to the right. Slices from
all three different anatomical views are shown.

Generally, both segmentation of the body as well as segmentation of bone structures improved with
the model trained on augmented data. Figure 5.6 shows a clear example of better segmentation of the
body where motion artifacts are present. Cases were improvement of bone segmentation is obvious
can be seen in figures 5.7 and 5.8.

The ten models were also evaluated on their validation data to evaluate performance on training data
without severe motion artifacts. These results are presented as Dice coefficients for the different classes
below in Table 5.12 and 5.13. P values resulting from a t test conducted to test for significant differences
in the results are presented in 5.14. A decrease performance in body segmentation was detected for the
augmented models.

Figure 5.6: Comparison of predictions from two models. To the left, predictions from models trained
on baseline data. To the right, predictions from models trained on data with simulated breathing
artifacts. Top images are from transverse view, bottom are from sagittal view. Red marks for body class
and green for bone class.
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Figure 5.7: Comparison of predictions from two models. To the left, predictions from models trained
on baseline data. To the right, predictions from models trained on data with simulated breathing
artifacts. Top images are from transverse view, bottom are from sagittal view. Red marks for body class
and green for bone class.

Figure 5.8: Comparison of predictions from two models. To the left, predictions from models trained
on baseline data. To the right, predictions from models trained on data with simulated breathing
artifacts. Top images are from transverse view, bottom are from coronal view. Red marks for body class
and green for bone class.
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Model Air Body Bone Total
Baseline

1 0.9955 0.9862 0.9159 0.9863
2 0.9963 0.9868 0.9163 0.9870
3 0.9950 0.9851 0.9086 0.9851
4 0.9950 0.9840 0.9014 0.9841
5 0.9961 0.9855 0.9068 0.9856

Augmented
1 0.9963 0.9847 0.9125 0.9870
2 0.9960 0.9828 0.9052 0.9852
3 0.9954 0.9843 0.8998 0.9844
4 0.9962 0.9787 0.9057 0.9841
5 0.9962 0.9798 0.8783 0.9819

Table 5.12: Dice coefficient for all classes on baseline and augmented models on non-problematic
templates.

Model Air Body Bone Total
Baseline
Mean 0.9956 0.9855 0.9098 0.9856
Std(m) 0.0002 0.0004 0.0025 0.0004

Augmented
Mean 0.9960 0.9821 0.9003 0.9845
Std(m) 0.0001 0.0011 0.0052 0.0007

Table 5.13: Mean Dice coefficient and standard deviation of the mean for all classes on baseline and
augmented models on non-problematic templates.

Class Air Body Bone Total
P value 0,2785 0,0282 0,1824 0,2872

Table 5.14: P values from a two tailed t test comparing difference in Dice coefficients for baseline
models and augmented models. Significance level = 0.05. Significant values are boldfaced.
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5.2.2 HighRes3DNet

Ten models were trained using the network HighRes3DNet. Five were used as baseline and trained on
normal data while the other five was trained on data that had been augmented prior to training.

The baseline models and the augmented models were evaluated on the same problematic test set as
in the 2D U-Net case. However, significant visual differences in performance was only found for one
particular template. Comparison of segmentations on this template with three different models are
presented below. The segmentations made with the baseline model are shown to the left while the
segmentation made with the augmented model is shown to the right.

As can be seen in the images below in figures 5.9 - 5.11, the augmented model greatly outperforms
the baseline model in these slices. Improvements are made especially in the left femur, marked by the
color turquoise, and in the pelvis bone, marked by the color green. The images are taken from three
different models from the cross validation.

The ten models were also evaluated on their validation set to evaluate performance on training data
without severe motion artifacts. These results are presented as Dice coefficients for the different classes
below in Table 5.15. P values resulting from a two tailed t test conducted to test for significant differ-
ences in the results are presented in 5.17. No significant change in performance was detected.

Figure 5.9: Comparison of predictions from two models. Left - baseline model. Right - augmented
model. The two upper rows of images are from the transversal view. The bottom images are from a
coronal view. Bladder marked in purple, spine in blue, pelvis in green and femur bones in yellow and
turquoise.
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Figure 5.10: Comparison of predictions from two models. Left - baseline model. Right - augmented
model. The two upper rows of images are from the transversal view. The bottom images are from a
sagittal view. Bladder marked in purple, spine in blue, pelvis in green and femur bones in yellow and
turquoise.

Figure 5.11: Comparison of predictions from two models. Left - baseline model. Right - augmented
model. The two upper rows of images are from the transversal view. The bottom images are from a
coronal view. Bladder marked in purple, spine in blue, pelvis in green, colon in gray and femur bones
in yellow and turquoise.
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Model Air Body Pelvis Spine Left femur Right femur Bladder Colon Total
Baseline

1 0.9812 0.9602 0.8874 0.9260 0.9292 0.9363 0.8689 0.8554 0.9706
2 0.9828 0.9673 0.9042 0.9024 0.9393 0.9312 0.9469 0.8144 0.9735
3 0.9801 0.9701 0.8838 0.9200 0.9308 0.9341 0.9143 0.8786 0.9717
4 0.9859 0.9649 0.9010 0.9303 0.9381 0.9388 0.9371 0.8798 0.9750
5 0.9817 0.9681 0.8926 0.9137 0.9326 0.9230 0.8946 0.8460 0.9727

Augmented
1 0.9739 0.9476 0.8906 0.9187 0.8997 0.9321 0.8445 0.8098 0.9613
2 0.9770 0.9599 0.8990 0.8960 0.9381 0.9344 0.9421 0.8487 0.9673
3 0.9802 0.9691 0.8637 0.9206 0.9274 0.9177 0.8996 0.8148 0.9706
4 0.9931 0.9734 0.8804 0.9193 0.9280 0.9275 0.8759 0.8450 0.9810
5 0.9867 0.9695 0.8762 0.8945 0.9215 0.9162 0.9151 0.8459 0.9757

Table 5.15: Dice coefficient for baseline model from HighRes3DNet on non-problematic templates.

Model Air Body Pelvis Spine Left femur Right femur Bladder Colon Total
Baseline
Mean 0.9823 0.9661 0.8938 0.9185 0.9340 0.9327 0.9124 0.8548 0.9727
Std(m) 0.0009 0.0015 0.0035 0.0044 0.0018 0.0024 0.0127 0.0108 0.0007

Augmented
Mean 0.9822 0.9639 0.8820 0.9098 0.9229 0.9256 0.8954 0.8328 0.9712
Std(m) 0.0031 0.0041 0.0054 0.0053 0.0057 0.0033 0.0149 0.0076 0.0030

Table 5.16: Mean Dice coefficient and standard deviation of the mean for the baseline and augmented
model from HighRes3DNet on non-problematic templates.

Class Air Body Pelvis Spine Left femur Right femur Bladder Colon Total
P value 0,9656 0,6651 0,1392 0,2942 0,1374 0,1610 0,4615 0,1731 0,6732

Table 5.17: P values from a two tailed t test comparing difference in Dice coefficients for baseline
models and augmented models. Significance level = 0.05.
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Chapter 6

Discussion

6.1 Discussion of methodology

6.1.1 Geometric data augmentation

The choice of which geometric transformations to use was done based on previous practices for aug-
mentation of neural networks [8], [23], [3]. However, the specific parameters of the augmentations,
like the rotation angle and the scaling and translation percentage seems to have been chosen arbitrarily
in many works and was also done so here. The choice was made based on what seemed reasonable
considering the physiological appearance of the image. However, it is very possible that other geomet-
ric transformations would have achieved different results. The amount of training data that should be
augmented with each transformation and combination of transformation can also be discussed. Per-
haps one could conduct a random search of the parameters for the geometric transformations and how
often they should be applied. However, because of the great number of parameters and combination
of parameters, this would require training of an unfeasible number of models. This was outside the
scope of this project and probably many others. As seems to be the case in many areas within machine
learning, one has to rely on educated guesses.

As mentioned, geometric augmentations were divided into two different groups: affine transformations
and elastic deformation. The affine augmentations were used several different articles and is very com-
monly used in deep learning, which is why it was a representative choice. It could have been divided
into its different components, but that would also have led to many more trainings of models. There
simply was no time for that, and since all the affine augmentations are closely related, it was a simple
choice to put them all together. It was also thought to be a better augmentation than any individual
one, since it presents more different possible variations. The elastic deformation is not as common in
general deep learning, but sometimes appear in medical applications. Especially since Ronnerberg et
al. [23] claimed that it was a very important augmentation for their use of U-Net, it early became a
good candidate. As is explained in the U-Net article, elastic deformations are common in the body,
especially in soft tissue, and is therefore a logical choice of augmentation.
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6.1.2 Simulation of motion artifacts

The simulation of motion artifacts came with a number of assumptions, estimations and guesses. For
example, it was not known exactly how k-space was sampled for the acquisition of the MR images
used. With this said, the basis of these simulations, the alteration of k-space in the phase encoding
direction, is well grounded from theory and has been reproduced several times before.

It was found that altering chunks of k-space rather than single lines at a time yielded better results. This
probably corresponds to multi-shot sampling where the echo train length is simulated with our chunk
size parameter. It also seems like creating more than one scaled copy of the image and joining their
k-space with the original image’s k-space yielded better results than with one copy. This could model
for gradual movement of the patient, something that could be closer to reality. Other parameters that
were used were set completely to mimic the visual appearance of artifacts and are harder to connect
with physical and physiological properties. It was noticed that altering the center of k-space resulted
in unrealistically severe artifacts, and an option to avoid altering the center was therefore added. It is
possible that this corresponds to a acquisition strategy where the center of k-space is more resistant to
inconsistencies.

Compared to other methods that have simulated motion using one dimensional transformation, our
method considers all dimensions. It also uses scaling as the main transformation instead of translation,
although translation is used to compensate for the movement of the back. This simulated movement
of the back was the reason scaling was chosen in the first place. Experiments with translation of the
whole body gave large artifacts originating from the change in position of the lower border of the body.
Using scaling in two directions also made it possible to simulate movement concentrated to middle of
the body, rather than using the same transformation over all elements in the x-axis. Finally, by using
the whole volume and taking advantage of anatomical data, such as the position of the bladder, artifacts
were simulated in places were breathing is anatomically relevant.

Scaling does of course have its disadvantages, since it creates unrealistic deformations of the anatomical
structures. Unlike translation, scaling actually deforms the image and stretches it out. While this might
somewhat simulate the stretching of the soft tissue during a breath, parts like the pelvis bones and spine
will also deform and change size, which is obviously not realistic.

With this said, the aim of the simulations was not to make a realistic physiological model of the
breathing, but to simulate the visual artifact in the MR images. To this end, the simulations were very
much successful. Considering how to make the model itself physiologically realistic was however a way
to reach the goal of simulating the artifacts.

For the purpose of this thesis, neither the physiological correctness nor the visual appearance is what
actually matters. The network only cares about the information in the image, not how it was created
or its appearance. What is important is the neural networks’ response to the artifacts. The aim should
be that it uses the simulations, together with the untampered ground truths, to realize that the artifacts
are only noise and not important data. It is therefore possible that simulations of a simpler kind than
the one presented could yield similar results.

It should also be noted that there was many different parameters that could be altered to change the
appearance of the breathing artifacts. Only a few combinations were tested due to time constraints,
but the result may have improved if more combinations of parameter values had been tested.

46



6.2 Discussion of results

6.2.1 Geometric augmentations

First experiment

The results of the first experiment made on the full data set are shown in tables 5.1-5.5. They show
that there are no significant improvements when using any of the augmentations. The mean Dice
coefficient of bone is slightly higher with the affine augmentations, but it is in no way statistically
significant. There is not much more to say about the actual result, other than it raised questions about
data set size that later led to the second experiment. As mentioned, the set of hyperparameters changed
after the first experiment, yielding in better performance for later models. This means that the results
of this experiment cannot be directly compared to the other experiments, but instead it acted like a
stepping stone into later experiments.

The results are however great for showing why cross validation and multiple models of the network is
necessary for a good result. The first models showed an improvement with the affine augmentations,
while the later ones showed the opposite. A shorter experiment might have concluded that the aug-
mentations had an effect, which would contradict the final results. Some might argue that some models
do show an increased performance when using augmentations, but the idea of the cross validation is
to show whether or not it can be said to be a general rule and not just a coincidence.

Second experiment

A number of articles state that data augmentation is an important part of their work with images in
neural networks, including the paper by Ronneberger et al. [23]. Many of these articles have a lot
smaller training sets than in this project, which might imply that the improvement is greater when the
amount of data is lower. Many articles state clearly that augmentation improve their models, but also
add that it works well on ”small data sets”[3], [8], without discussing it further. This is why different
sizes of training sets were tested as seen in tables 5.6 - 5.10 and figures 5.1-5.2. This might give a
better insight to whether there is an improvement at all, and if it might depend on the amount of
training data. The graphs 5.1 and 5.2 show that the improvement was the greatest for the smallest
data set. These graphs only show the performance on bone as an example, because they had the lowest
performance on the baseline and appeared to be affected the most by the augmentations. All the results
can however be seen from the tables 5.6 - 5.10 if one wants to do the same comparison for the other
classes.

These results might indicate that these types of data augmentations work best when the training set is
small. This can also be seen in 5.11, which show that the improvement on bone from the augmentations
is significant for the smallest data set, but not in general for the bigger ones. One explanation could be
that the augmented, but still similar, images reduce the overfitting of the models. It is shown in figures
5.3-5.5 that smaller data sets suffer more from overfitting, just like the literature says. It can also be
seen that the overfitting is reduced for the small data sets when augmentations were made, which may
strengthen this hypothesis. One obvious question here is ”What is a small data set?”. That is not an
easy question to answer and will depend on what type of data is available, what network and parameters
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that are chosen, etc.

It can be seen in 5.1 and 5.2 that the performance decreases somewhat when augmenting the larger data
sets, although 5.11 show that it is not in general significant. It could be a sign that the augmentations
are not good enough to add any information to the network. Instead it might be that it dilutes the
overall quality of the training set. Where this breaking point between improving and not improving
occurs will probably depend on what network structure that is used, and what type the data is.

These results can be seen as both agreeing and disagreeing with some of the related work mentioned
earlier in this paper. On one hand, most papers agreed that data augmentation improved their result.
This is not true for the larger data sets tested here. Although, the related articles also state that their
augmentation worked well on their small data set. This present the possibility that their data set were
small enough to be compared to our smallest set of training data. It all depend on what is a small data
set. If the question is reversed, then maybe one can say that a large data set is a set that is big enough
to require no augmentation to achieve its best result?

6.2.2 Motion artifact augmentations

For segmentation of images containing motion artifacts, the networks’ performance increased signifi-
cantly if trained on data containing simulated motion artifacts. This shows that the simulations served
its purpose – to make the networks robust against actual artifacts. It is also very satisfactory that the
augmented models performed as well as baseline models on images without motion artifacts. The de-
crease in Dice coefficient for body segmentation using U-Net can likely be contributed to excessive
augmentation. Perhaps the number of augmented images can be decreased so that the network is able
to train on a sufficient amount of ”normal” data but is still able to become robust to artifacts.

It should be noted that the most problematic template contained an excessive amount of noise com-
pared to other templates. It would therefore be interesting to see if similar results could be achieved
using an augmentation that simulates noise in the training data.

Much of the improvement was seen in the contour of the body, which is reasonable since motion
artifacts create distortions outside of the body where there should only be air as seen in Figure 5.6. A
model that has not trained on these kind of images will not learn that these lines are to be treated as
noise and will instead treat the lines as part of the contour of the body.

More interesting for practical uses is the improvement of bone segmentation, noticeable in experiments
using both networks. As seen in figures 5.9 - 5.11, the segmentation of the femoral head was of very low
quality for baseline models, and was in one case completely ignored. The augmented models succeeded
much better at this segmentation. This anatomical structure is especially vulnerable to radiation and
needs to be protected during radiation therapy. It is therefore of great importance that it is segmented
correctly. If a system for segmenting these structures were to be fully automated, it would have to be
incredibly robust to a large range of variations appearing in the images. Artifacts is something that will
always exist as long as an image capturing system is used. It is therefore pleasing to see these variations
can be easily simulated and used to make an algorithm robust towards real artifacts.

Although all eight classes were used with the HighRes3DNet experiments, the greatest improvement
was still found in bone segmentation. By inspecting images with motion artifacts visually, is can be
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seen that the artifacts distort the borders of the bone structures to a degree that they blend in to the
surrounding tissue. Other classes such as the bladder generally have stronger borders and a different
gray scale than the surrounding soft tissue, which could explain why it was easier for the network to
predict their segment even with the distortions created by artifacts. However, there are likely several
other segments in MR images not used in these experiments whose segmentation would be as prob-
lematic for neural networks as bone structures. Hopefully the work in this thesis can inspire others
to investigate augmentation with simulated motion artifacts in their own deep learning applications
using MR data.

6.3 General discussion

6.3.1 Generalization to other networks and data sets

Although the results have been cross validated it is important to know that one cannot necessarily
generalize this to every network type and every kind of data. Only two different networks have been
tested in this project: U-Net and HighRes3DNet. Even from only those two networks it became
clear that they had different advantages and different problems. Only MR images from two different
producers were used, and all images were collected for the same specific purpose. It is not known how
the networks would perform on other MR images created with different settings and purpose.

The exact point where the geometric transformations start to improve the model is with all likelihood
specific for this data set and network. Using other images, like for example MR images of the brain,
or using another network architecture, will likely change this. It will probably also depend on the
difficulty of the specific task. The main conclusion to draw from this is that there probably is a similar
breaking point for other networks and data sets but finding where it is will have to be made in every
individual case. This means that one cannot blindly use data augmentation and think it will improve
the results.

6.3.2 Performance metrics

Another topic that can be discussed at length is the choice of performance metric. During this project
two main ways of evaluating the segmentation results has been used: numerically, using the Dice coef-
ficient, and visually, by investigating the MR images and its segmentations with a 3D visualization tool.
The first method was used mainly for the experiments aiming to increase performance of the network
with geometric augmentations, while the latter method was used mostly evaluating the experiments
aiming to increase the network’s robustness against motion artifacts.

While the Dice coefficient is a very common metric used to evaluate biomedical segmentation tasks,
one must be careful when using it as a strictly numerical performance metric. It is always important
to look at the results visually as well. The error from a given Dice coefficient might be the result of
a segment that is overall slightly to big, or a segment that is perfect, but also has small miss classified
outliers without physiological meaning. Visually large differences in the images used in this project
could yield a very small change in the Dice coefficient. If the images had not been inspected visually,
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these results would be misleading. Also, a model trained with a certain augmentation might improve
the segmentation task in some areas while making it worse in others, making the net improvement
zero. This would not be discovered only using the Dice coefficient.

If this project were to be continued, a good next step could be to develop a customized performance
metric that would fit the problem at hand for this specific data. This metric should be able to de-
tect subtle but relevant changes in segmentation performance, which would make automation of the
experiment process easier and therefore greatly increase the rate at which they could be done.

6.4 Future work

There is still much more to be investigated regarding data augmentation in neural networks, especially
in the case of medical data. First of all, it would be interesting to investigate whether the results from
this report could be replicated using other networks or using a different data set of MR images.

Several variations of the augmentations used in this thesis that has not been investigated. The dif-
ferent parameters for the geometric augmentations and motion artifact augmentations could also be
investigated further.

Several other augmentations were only investigated briefly in the project but not more extensively due
to time constraints. Noise augmentations are for example something that seems to have potential,
as do gray scale augmentation to give the network an invariability towards different gray scale values.
Only one kind of MR artifact was investigated in this thesis. However, there is a great range of artifacts
that could be simulated in a similar manner to augment data. Building a model that is robust against
several types of MR artifacts would of course be very beneficial for many applications.
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Chapter 7

Conclusion

The results showed that commonly used affine augmentations of the training data increased the models’
performance on test data when the amount of training data was below a certain level. However, above
a certain amount of training data, in this specific case around 10 templates, the affine augmentations
of the data did not increase the performance of the model. The same result was found when using
elastic deformations as augmentation method.

Using information of how the raw k-space data is acquired and why motion artifacts appears, motion
artifacts in MR images could be simulated by Fourier transforming the image, altering the k-space
matrix and transforming it back to image space. The most realistic simulations were reached when
breathing was simulated with scaled and translated copies of the original image, to simulate breathing
during image acquirement.

By simulating images with motion artifacts and then using these images as training data for two differ-
ent neural networks, the performance of the models produced by the network increased for segmenting
problematic images containing actual motion artifacts. The performance on non-problematic images
did not notably decrease.

51





Appendix A

Algorithms
Algorithm 4 Simple mode - complete
Input: Image volume = V with dimensions (X,Y,Z) and parameters chunk_size,

per_or_prob and avoid_middle
Output: Image volume augmented with motion artifacts

1: Create matrix K with dimensions (X,Y,Z)
2: for each slice i in dimension Z in V do
3: k = Fourier transform of i
4: Shift zero-frequency components of k to center
5: Put k into K
6: mid = round(Y /2)
7: middle_area = (mid-avoid_middle,mid+avoid_middle),)
8: if per_or_prob > 1 then
9: for y = 0 to nmbr_chunks do

10: if y%per_or_prob= 0 and y is not within middle_area then
11: Set chunk y in K to zero in all slices z
12: else
13: Do nothing
14: else
15: for y = 0 to nmbr_chunks do
16: if y is not within middle_area then
17: Generate r, a random number between 0 and 1
18: if r < per_or_prob then
19: Set chunk y in K to zero in all slices z
20: else
21: Do nothing
22: for each slice z in dimension Z in K do
23: Shift zero-frequency components back to original spectrum
24: Inverse Fourier transform of z
25: returnK
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Algorithm 5 Very advanced mode - complete
Input: Image volume = V with dimensions (X,Y,Z) and parameters chunk_size,

per_or_prob, avoid_middle, max_scale, nmbr_cop and width_adjustment
Output: Image volume augmented with motion artifacts

1: Create matrix K with dimensions (X,Y,Z)
2: for each slice i in dimension Z in V do
3: k = Fourier transform of i
4: Shift zero-frequency components of k to center
5: Put k into K
6: Create nmbr_cop number of copies of V
7: for i = 1 to nmbr_cop do
8: Create 3D scaling matrix according to maxscale in the Y-direction,

widthadjustment in the X-direction and position of the bladder in the Z-direction, if
data is available. Else use middle of volume as starting position in the Z-direction.

9: Scale V _copy_i in all three dimensions according to scaling matrix.
10: Translate the body in V _copy_i back to its original position
11: for each slice z_c in dimension Z in V _copy_i do
12: K_copy = Fourier transform of z_c
13: Shift zero-frequency components of k to center
14: Put z_c into K_copy
15: mid = round(Y /2)
16: middle_area = (mid-avoid_middle,mid+avoid_middle),)
17: nmbr_chunks = round(Y /chunk_size)
18: if per_or_prob > 1 then
19: for y = 0 to nmbr_chunks do
20: if y % per_or_prob = 0 and not within middle_area then
21: Replace chunk y in K with chunk y in Kcopy.
22: else
23: for y = 0 to nmbr_chunks do
24: if y is not within middle_area then
25: Generate r, a random number between 0 and 1
26: if r < per_or_prob then
27: Replace chunk y in K with chunk y in Kcopy.
28: for each slice z in dimension Z in K do
29: Shift zero-frequency components back to original spectrum
30: Inverse Fourier transform of z
31: returnK
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Appendix B

GUI for simulating motion
artifacts

The graphical user interface that has been used to simulate motion artifacts was developed in Python
using native packages. The GUI allows the user to upload a MR image volume in the file format .nrrd
and simulate motion artifacts using a set of adjustable parameters. Using the scroll function the user
can go through the image volume one slice at a time. Three different modes of simulation are available:
Simple, Advanced, and Very advanced. Seven different parameters can be adjusted:

Below, the different parameters are described.

• Chunk size: the number of lines in k-space to be replaced for each replacement step.

• Random or periodical: Determines whether the lines should be replaced periodically or ran-
domly. If the input is an integer N that is larger than 1, the lines will be replaced periodically
with period 1/N. If the input is a number X between 0 and 1, the lines will be replaced randomly
with the probability X

• Avoid middle with: The number of lines from the center of k-space not to alter.

• Multiply with: Used with the mode Simply Determines what the lines should be multiplied
with, can either be an integer or the string ’random’ which multiplies the lines with a random
scalar.

• Max scale: Used with the advance modes. The maximal percentage that the original image
should be scaled in the Y-direction.

• Number of copies: Used with the advanced modes. The number of scaled copies of the original
image to create.

• Width adjustment: Used with the mode Very advanced. The number of pixels to make the
scaling map in Figure 4.4 wider or narrower in the X-direction. 0 means that the scaling starts
at the sides of the body.
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The GUI uses a simple graphical layout with text fields where the user can set the parameters by writing
a string, and buttons to activate the different functions of the program. Wrong inputs are handled with
error messages. The top half part of the window is dominated by the original image volume and its
corresponding augmented version.

Two different options to save the augmented images are implemented in the GUI. The first option is
to save a 2D image of the current augmented slice that is visible in the file format .png. The second
option is to save the whole of the augmented image volume in the file format .nrrd.

Below in Figure B.1, a screenshot of the GUI can be seen with default parameters set and with an
artifact simulation made.

Figure B.1: Screenshot of the graphical user interface developed to simulate motion artifacts in MR
images.
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