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Abstract

Very little is known about the remarkable ability of humans to separate a single sound source
from a dense mixture of sound sources in a crowded background, known as the cocktail-party
scenario. Better understanding could lead to a breakthrough for the next-generation of
hearing aids to have the ability to be cognitively controlled. A key finding in the field is that
human cortical activity has been shown to follow the speech envelope. However, in these
experimental results, the correlation coefficients between the EEG and speech envelope are
very low, on the order of r = 0.1-0.2. Also, classification rates are not yet 100%.

The aim of this project is to investigate whether cepstral analysis can be used as a more
robust mapping between speech and EEG. Our preliminary results show correlations on the
order of r > 0.5. This thesis will give a insight into the method we are developing, our current
results, and the expected future results and applications in hearing aids.

Keywords; signal processing, hearing care, cocktail-party problem, neuroscience, speech
processing, spectral analysis, cepstral analysis, cepstrum, stimulus-reconstruction.





Popular Summary

Very little is known about the remarkable ability of humans to separate a single sound source
from a dense mixture of sound sources in a crowded background, known as the cocktail-party
scenario. In these situations, those of us fortunate enough to have normal hearing are usually
able to tune into a particular speaker with little effort. However if there is background noise,
or the listener has a hearing impairment, this can be extremely difficult.

Most people with hearing impairments find it far more difficult to understand speech in
noisy environments compared to speech in quiet environments and standard hearing aids are
of little help to those with this type of hearing impairment as they amplify both speech and
noise. Directional hearing aids provide increases in the signal-to-noise ratio (SNR) which
improves comprehension. However, listeners need to face the signal of interest and be within
a certain distance to obtain directional benefit.

One of the goals of current research is to create a system that can decide which sound
source a listener is attending to, and then steer the directional microphones and/or suppress
noise. One method being attempted is to use electroencephalogram (EEG) signals to create a
brain-computer interface (BCI) system.

A key finding in the field is that human cortical activity has been shown to follow the
speech envelope. Revealing this connection between the envelope of speech and the neural
response has opened up the possibility of applying other speech processing techniques to
the problem of determining listening attention. Originally developed in the early 1960s as
a method of detecting echoes in a signal, cepstral analysis was soon found to be useful for
speech processing due to the characteristics of human speech.

The utility of cepstral analysis in speech processing meant it was natural for it to be
considered in this problem. There is currently no published research on the application of
cepstral analysis to find connections between speech and the neural response. This project
was intended as a preliminary investigation into the possibility of using cepstral processing
to determine listening attention.

This is a preliminary investigation into the possibilities of using a BCI system to de-
termine listening attention for use in future hearing technology, thus the data used is from
an experimental setup with a very abstract scenario. Real-life scenarios are likely to bring
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a multitude of other complexities to this problem, however, at this early stage of research
simplistic scenarios are essential in order to break the problem into more manageable steps.

Building on the research of O’Sullivan (2014), cepstral coefficients were incorporated
into a stimulus-reconstruction model to see if those results could be replicated or even
improved using cepstral analysis. The results showed classification rates of over 90% which
is an improvement, suggesting that cepstral analysis may be a more effective method than
using the speech envelope although further investigation using other data sets is required to
confirm this.

In summary, having developed a method of determining listening attention by incorporat-
ing cepstral processing techniques into a stimulus-reconstruction model, we have been able
to achieve good classification rates. This suggests that cepstral analysis, a technique that has
proved useful in speech analysis, can be used to distinguish between attended and unattended
speech, potentially adding a new tool for future attempts at determining listening attention
in multi-speaker environments. It should be noted however, that further investigation and
application of the model to other datasets is required before firm conclusions can be drawn.
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Chapter 1

Introduction

We communicate through speech so often and so effortlessly that it makes it hard to appreciate
how complicated the act of listening is. We become more aware of the limitations of our
hearing when we are in environments where many people are talking simultaneously [7].

People’s ability to separate multiple speech streams was first investigated in the 1950’s.
In 1953 Colin Cherry published a paper titled "Some experiments on the recognition of
speech, in one and two ears", which describes a number of experiments on speech recognition.
Included were experiments relating to the separation of two simultaneously spoken messages,
looking at the behavior of a listener when presented with two speech signals simultaneously.
This was the first attempt to address the question "how do we recognise what one person
is saying when others are speaking at the same time?", which Cherry called the "cocktail
party problem". Cherry’s paper inspired research in a wide range of areas related to selective
listening.

In "cocktail party" situations, as demonstrated in Cherry’s paper, those of us fortunate
enough to have normal hearing are usually able to tune into a particular speaker with little
effort. However if there is background noise, or the listener has a hearing impairment, this
can be extremely difficult [6]. Most people with hearing impairments find it far more difficult
to understand speech in noisy environments compared to speech in quiet environments [6].
Standard hearing aids are of little help to those with this type of hearing impairment as they
amplify both speech and noise.

Directional hearing aids provide increases in the signal-to-noise ratio (SNR) which
improves comprehension. However, in general directional hearing aids are designed to
reduce sounds that are not directly in front of the listener, which creates limitations. Data has
shown that listeners need to face the signal of interest and be within a certain distance to obtain
directional benefit. Also, noise should either surround, or be directly behind, the listener [25].
One of the goals of current research is to create a system that can decide which sound source
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a listener is attending to, and then steer the directional microphones and/or suppress noise
Wöstmann et al. [32]. One method being attempted is to use electroencephalogram (EEG)
signals to create a brain-computer interface (BCI) system.

A key finding is that there is a connection between the neural response and the envelope
of the speech stimulus. This finding has been used to show that the M/EEG response shows a
stronger correlation with the envelope of attended speech compared to unattended speech
[9, 21, 16]

Previous work by O’Sullivan et al. [21], Mirkovic et al. [16] used an approach called
stimulus-reconstruction, which creates a linear mapping from the neural response to the
speech stimulus. This takes into account delays between the speech stimulus and the neural
response [8, 21, 16]. This approach is used in this study.

Revealing this connection between the envelope of speech and the neural response has
opened up the possibility of applying other speech processing techniques to the problem of
determining listening attention. Cepstral analysis is very useful for speech processing and
so it is natural that it would be considered for this problem. There is currently no published
research on the application of cepstral analysis to find connections between speech and the
neural response. Therefore this project was intended as a preliminary investigation into
whether or not cepstral processing could be used to determine listening attention.

Cepstral processing was first described in a paper published in 1963 by Bogert et al. [3],
where it was observed that the logarithm of the power spectrum of a signal with an echo
consisted of the power spectrum of the signal plus a periodic component due to the echo.
Thus the cepstrum was put forward as a way of detecting echoes in a signal.

The significance of cepstral analysis in speech processing is a result of the way in which
speech is produced. Humans and most other mammals vocalise in the same way, by pushing
air through their larynx causing their vocal folds to vibrate. The sound produced is then
filtered through the vocal tract giving the sound a characteristic "formant" structure [27].
When the vocal folds vibrate, voiced speech is created, otherwise it is unvoiced. The opening
between the vocal folds is called the glottis. Vibrations created as air is pushed through
the glottis is known as the glottal impulse. Thus, over short-time intervals, speech can be
described as a convolution of a vocal tract response (determined by the shape of the vocal
tract), and the glottal impulse (a train of impulses occuring at the frequency of oscillations of
the vocal folds, know as the pitch period). That is, over short-time intervals, voiced speech
can be described as an a series of echoes of the vocal tract response occurring at the rate of,
and in response to, the glottal impulses.
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This distinction between voiced and unvoiced speech led Michael Noll,in 1964, to apply
cepstral analysis techniques to speech signals to short-time segments of speech to determine
whether speech was voiced or unvoiced, and to detect the pitch period [18, 17].

In the early 1960s, at the same time as this early research into cepstral analysis, Al
Oppenheim was researching a theory in non-linear systems theory called homomorphic sys-
tems. This theory proposed the idea that certain operations of signal combination, including
convolution and multiplication, could be converted into a linear system, where conventional
analysis techniques are well understood [28]. Similarities between the cepstrum and homo-
morphic systems led Oppenheim, Schafer, and Stockham to unite the two in a paper in 1968
[20] where the cepstrum was defined more clearly in the context of homomorphic systems.

The uniting of the theories of cepstral analysis and homomorphic systems was of great
significance to speech processing. Now, as well as distinguishing between voiced and
unvoiced speech and detecting pitch period, it was shown that it was possible to filter, or lifter,
the cepstrum and then, using the inverse of the cepstrum, convert these separated parts of the
cepstrum back into the original domain, giving the separated vocal tract impulse response
and the glottal impulse train respectively. Thus, refining the definition of the cepstrum in
the context of homomorphic systems led to the use of cepstral analysis in speech modelling
and reconstruction. In this project we are interested in cepstral processing not for speech
reconstruction purposes, but for finding connections between speech and EEG signals. Thus,
it is not necessary for us to reconstruct speech but only to look for similarities between
the cepstrums of the speech and EEG signals respectively, and so we work exclusively
with the cepstrum and not with its inverse. The cepstrum is defined here in the context of
homomorphic systems to provide the broader context for the reader.

This is a preliminary investigation into the possibilities of using a BCI system to determine
listening attention for use in future hearing technology. Therefore the experiment conducted
to collect the data used in this study is a very abstract scenario. Real-life scenarios are likely
to bring a multitude of other complexities to this problem, however, at this early stage of
research simplistic scenarios are essential in order to break the problem into more manageable
steps. The data used in this study is described in detail in Appendix A. This data was also
used in studies by O’Sullivan et al. [21], Power et al. [23]. Subjects undertook 30 trials, each
of approximately 1 minute in length, where they were presented with 2 classic works of
fiction: one to the left ear, and the other to the right ear. Each story was read by a different
male speaker. Subjects were divided into two groups of 20 with each group instructed to
attend to the story in either the left or right ear throughout all 30 trials.



4 Introduction

As mentioned above, having found a connection between the envelope of speech and the
EEG response, researchers are now considering other speech processing techniques for this
challenge of determining listener attention using EEG. The usefulness of the cepstrum in
relation to speech processing suggests that this could be a viable method. In this project we
build upon the work of O’Sullivan et al. [21] who, as described above, were able to determine
listener attention using the relationship between the respective attended and unattended
speech signal envelopes, and the EEG response. Our research incorporates cepstral analysis
into the stimulus-reconstruction model, comparing the cepstral coefficients of the respective
attended and unattended speech streams and the EEG signal. Our intention was to see if the
O’Sullivan et al. [21] results could be replicated or even improved using cepstral analysis.

The model developed in this project involved breaking corresponding speech and EEG
signals into short-time segments over which cepstral coefficients were calculated. These
coefficients were then used as stimuli in a stimulus-reconstruction model to predict the
cepstral coefficients of an attended speech stream using the EEG signal. This prediction was
then compared to the sets of cepstral coefficients for two respective speech streams and the
set which most closely matched the predictions were determined to belong to the attended
speech stream. With this method we were able to obtain high classification rates of over 90%
suggesting that the method is effective at distinguishing between attended and unattended
speech. However, since the model was trained and tested on only one dataset, it follows that
the results are not conclusive at this stage. Although further tests on different datasets will be
needed to confirm the validity of the model, the results obtained here suggest that the model
has potential.

This thesis is divided into three sections: theory and methods, results, and conclusions.
In chapters 2 to 4 we cover the theory and methods used in the project, in chapters 5 and 6
we present our results, and in chapter 7 we give conclusions and suggest possible further
developments.

In chapter 2 we introduce speech and EEG signals and outline the fundamental digital
signals processing techniques used. Cepstral processing is covered in chapter 3 and includes
a short background of the cepstrum and its development in terms of homomorphic systems.
Chapter 3 also explains in more detail how speech is produced and the relevance of the
cepstrum in speech processing. Chapter 4 outlines the stimulus-reconstruction model. In
the stimulus-reconstruction model the stimuli and responses can be determined arbitrarily.
In our case the cepstral coefficients of the speech are taken as the stimulus and the cepstral
coefficients of the EEG are taken as the response. Therefore it seemed appropriate to define
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the stimulus-reconstruction model in the context of the model used here. A more general
definition can be found in [8].

Chapters 5 and 6 present the results obtained in our investigation. To keep our analysis
simple to begin with, we started by creating simulations of the problem with varying levels of
complexity. Chapter 5 gives an account of these first experiments where cepstral analysis was
applied to simulations of the cocktail party problem. Following the simulations we moved
on to real data. The results obtained when applying the stimulus-reconstruction model to real
data are described in chapter 6. Matlab version R2017b was used throughout the project.

Chapter 7 concludes the project with an overview of the methods used and the results
obtained. Some suggestions for future validations and improvements of the model are
provided.





Chapter 2

Digital Signals Processing

This chapter introduces the signals and digital signals processing techniques that we worked
with in this project, and provides definitions of mathematical concepts required to understand
the chapters that follow. We begin with an outline of speech and EEG signals and their relation
with respect to the research question we are considering. We then proceed to give a summary
of methods used extensively throughout digital signals processing, including definitions of
stationary stochastic processes, spectral densities, and non-parametric estimation methods of
spectral densities.

2.1 Speech and EEG Signals

Sound is a pressure wave that passes through gases or liquids. With the application of
sound energy, molecules alternate between compression and rarefaction along the path of
the energy source. This is often represented by the graph of a sine wave, as shown in
Figure 2.1. Huang et al. [11] and this representation of sound as an acoustic wave is how
speech is usually represented. Although this description is entirely accurate, as Jan Schnupp
eloquently explains in his book Auditory Neuroscience, Making Sense of Sound, sounds
are so much more to us than this. Sounds provide us with valuable information about the
physical properties of objects and events around us. In Schnupps words "things make sounds,
and different things make different sounds". This is what we make use of, and capture what
listening is truly about; learning about the objects and events that surround us. Schnupp also
gives an interesting perspective on speech as effectively a form of telepathy in the sense that
we beam our thoughts into another persons head using invisible vibrations [27].
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Figure 2.1 Sounds are alternating compressions and rarefactions in air molecules. A simple
sound wave can be described by a sine wave. The blue colouring highlights the moments of
greatest compression, and the white represents the moments of greatest rarefaction [11].

Even though speech and sounds mean more to us than a measure of vibrations in air
molecules, this is what we measure when making sound recordings. To be useful in modern
signal processing we need discrete rather than continuous recordings as they can be easily
stored and manipulated by computers.

Mathematically, we can define an analog signal as a function that varies in continuous
time, x(t). Sampling this continuous signal, x, with a sampling period T , we obtain a discrete-
time signal, or digital signal, which can be defined as x[n] = x(nT ). Note the use of square
brackets and the time-index n for the digital signal, as opposed to the curved brackets and
t used for the analog signal. This convention is used throughout this text to distinguish
between discrete and continuous signals. The sampling frequency can be defined as F = 1/T .
Throughout this text we will be working with Hertz (Hz), where 1Hz corresponds to a
sampling frequency of 1 sample per second, and a sampling period of 1 second.

An EEG signal is a measurement of electrical currents that flow during synaptic excita-
tions in the cerebral cortex. These electrical currents generate an electric field over the scalp
that can be measured using EEG systems. EEG signals are recorded using multiple-electrodes
placed either inside the brain (electrocorticogram (ECoG)), over the cortex under the skull
(intracranial (iEEG) signals), or certain locations over the scalp (EEG) [26]. Scalp EEG
is non-invasive and is the type of EEG signal used in this study. Any further reference to
EEG is referring to scalp EEG signals. The non-invasive nature of EEG makes it particularly
well suited to this problem as the BCI system that is the goal of this research will be most
effective if it can be worn easily and with minimal effort.

Neural signals effectively range from 0.5-50Hz. Based on their frequency ranges, they
have been grouped into five major categories: Delta (0.5-4Hz), Theta (4-8Hz), Alpha (8-
12Hz), Beta (12-30Hz), and Gamma (above 30Hz, mainly up to 45Hz). In some studies the
neural signal is filtered to consider only specific ranges [26]. However in this study we retain
all frequencies of the EEG.

Similarly to speech, digital signals processing plays a fundamental role in EEG signals
processing. However, EEG signals have lower frequencies than speech and so it follows that
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the sampling rate used can be lower whilst retaining the information of the signal. Therefore
EEG is commonly recorded with a sampling rate of around 512Hz, whereas speech recorders
commonly sample at a rate of 8-11kHz. This creates a challenge when working with speech
and EEG as that they are most often sampled at different frequencies so adjustments have
to be made before the signals can be compared. The sampling frequency of a signal can
be reduced by a factor of k by taking every k-th value of a signal, a technique known as
downsampling. The sampling frequency can be increased by a factor of k by interpolating
between points in a signal with k−1 values.

2.2 Stationary Stochastic Processes

Let x(t) denote a continuous-time signal (an analog signal). By sampling this signal x with a
sampling time interval Ts, that is t = nTs, we obtain a discrete-time data sequence defined as
{x[n];n = 0,±1,±2, ...}, also known as a digital signal. Let this discrete-time data sequence
be a stochastic process. From the definition given by Lindgren et al. [13] this stochastic
process has first and second moments defined as

m(n) = E[x[n]] mean value f unction

v(n) = V[x[n]] variance f unction

r(m,n) = C[x[m]x[n]] covariance f unction

b(m,n) = E[x[m]x[n]] second −moment f unction

ρ(m,n) = ρ[x[m]x[n]] correlation f unction

In this project, we will be working with stationary stochastic processes, in specific with weakly
stationary processes. Such processes are those that even after a change or displacement of
the time scale their statistical properties (first and second order moments) remain the same
[13]. A discrete-time data sequence, {x[n]}, is a weakly stationary process if it has constant
mean m(n) and its covariance function r(m,n)< ∞ is finite and is dependent only in the time
changes τ = n−m [13].

Let Es denote the energy of the discrete signal x[n], if this sequence x[n] has finite energy,
i.e.

Es =
∞

∑
n=−∞

|x[n]|2 < ∞, (2.1)
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then the sequence x[n] has a discrete-time Fourier Transform (DTFT) defined as

X( f ) =
∞

∑
n=−∞

x[n]e−i2π f n, (2.2)

for frequency f with period 2π [29]. For this project, we will be working in the frequency
domain, f . Note for reference that in some text notation can be found as ω = 2π f .

The original sequence x[n] is then obtained through the corresponding inverse discrete-
time Fourier Transform (IDTFT)

x[n] =
∫ 1

2

− 1
2

X( f )ei2π f nd f , (2.3)

and the Energy Spectral Density is defined as

S( f ) = X( f )X∗( f ) = |X( f )|2, (2.4)

where (·)∗ denotes the complex-conjugate of a scalar variable or the conjugate transpose of a
vector or matrix [29].

Speech and EEG signals are generally non-stationary, however, they are quasi-stationary,
that is, they can be considered stationary within short time intervals [26]. One of the
fundamental assumptions made in speech processing is that, when considered over short time
intervals (generally 20-25ms), speech signals can be considered stationary [2].

2.3 Digital Systems

Huang et al. [11], refer to digital systems as those that, given an input digital signal x[n], can
generate an output signal y[n]:

y[n] = T{x[n]}. (2.5)

In general, a digital system T is defined to be linear if and only if

T{α1x1[n]+α2x2[n]}= α1T{x1[n]}+α2T{x2[n]} ∀α1, α2 ∈ R, (2.6)

for any signals x1(t) and x2(t). T is defined to be time-invariant if the output is not affected
by the particular point in time at which the input is applied to the system. According to
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Huang et al. [11], linear time-invariant systems can be described by

x[n] =
∞

∑
k=−∞

x[k]h[n− k] = x[n]∗h[n].

By substituting x[n] = ei2π f n in the previous equation we have

y[n] =
∞

∑
k=−∞

h[k]ei2π f [n−k],

and using the commutative property of the convolution we obtain the following expression

y[n] =
∞

∑
k=−∞

h[k]ei2π f [n−k]

=
∞

∑
k=−∞

h[k]ei2π f ne−i2π f k

= ei2π f n
∞

∑
k=−∞

h[n]e−i2π f k

= ei2π f nH( f ),

where H( f ) is the discrete-time Fourier Transform of h[n] and is expressed as a function
of the frequency with period 2π . It is called the system’s frequency response or transfer
function [11]. The impulse response is accordingly defined by,

h[n] =
∫ 1

2

− 1
2

H( f )ei2π f nd f ,

the corresponding inverse discrete-time Fourier transform [11].

2.4 Power Spectral Density

According to Stoica and Moses [29], if a signal has finite average power, then it can be
described by the average power spectral density. Throughout this project we will refer to the
average spectral density of a signal as the Power Spectral Density (PSD). The PSD is a way
to characterize and provide details about how this power is spread among frequencies.
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We will use the definition of covariance function given by Lindgren et al. [13]. For m < n,
let τ be the time lag given by τ = n−m, then the covariance function is given by

r(τ) = r(m,n) =C[x[m],x[n]] = E(x[m]x[n])−mx(n)mx(m), (2.7)

where mx(n) and mx(m) are the mean value functions of x[n] and x[m] respectively. For a
discrete-time signal x[n] with zero mean it follows that

r(τ) = E(x[n]x[n− τ]). (2.8)

We can find an asymptotically unbiased estimator for the covariance function using its
corresponding sample covariance and assuming that the mean of the process m(n) = m is
known [13]. The following theorem formulates such an estimator. Its proof can be found in
[13].

Theorem 1 The estimator r̂(τ) of the covariance function r(τ) is given by

r̂(τ) =
1
N

N−|τ|

∑
n=1

(x[n]−m)(x[n+ |τ|]−m), (2.9)

and it is asymptotically unbiased if

lim
N→∞

E[r̂(τ)]→ r(τ).

Stoica and Moses [29] used eq. (2.8) to define the PSD (viewed as a function of frequency)
as the DTFT of the covariance function:

R( f ) =
∞

∑
τ=−∞

r(τ)e−i2π f τ . (2.10)

We can obtain back the covariance function r(τ) via the Inverse DTFT of R( f ) [29]:

IDFT{R( f )}=
∫ 1/2

−1/2
R( f )ei2π f τd f (2.11)

=
∫ 1/2

−1/2

∞

∑
k=−∞

r(k)e−i2π f kei2π f τd f (2.12)

=
∞

∑
k=−∞

r(k)
∫ 1/2

−1/2
e−i2π f (k−τ)d f (2.13)

=r(τ). (2.14)



2.5 Non-parametric Methods of Spectral Estimation 13

Now that we introduced the previous definitions for PSD, we can now mention the
nonparametric methods used in this project to obtain an estimate of the PSD, ˆR( f ).

2.5 Non-parametric Methods of Spectral Estimation

In this section, we introduce the non-parametric methods of spectral estimation that were
considered throughout this project, as well as some of their properties. When working with
non-parametric methods no assumptions are made about the underlying distribution of the
data. When PSD is estimated using non-parametric methods, there is a trade-off between
resolution in the spectrum and high variance. The periodogram is known for providing
a good resolution in the peaks of the spectrum, but it has high variance [29]. Numerous
modified methods, for example the ones introduced by Bartlett [1] and Welch [31], have
been created with the aim of reducing this high variance (characteristic of the periodogram),
but this variance reduction comes with a loss of resolution at the peaks [29]. For this project,
we will limit ourselves to using the periodogram, the periodogram with Hanning windowing,
the Welch method, and multitaper methods.

2.5.1 Periodogram

Suppose we are interested in estimating the spectral density of a stationary process Xn;n ∈ Z,
which has been sampled to obtain a real value data sequence {x([n];n = 0,±1,±2, ...}
and fulfils eq. (2.14). We can make a spectral estimation of this data sequence using the
periodogram, defined as

R̂( f ) =
1
N

∣∣∣∣∣N−1

∑
n=0

x[n]e−i2π f n

∣∣∣∣∣
2

, (2.15)

we can use the conjugate of the term inside the absolute value to separate the power and
expressed eq. (2.15) as

R̂( f ) =
1
N

[
M−1

∑
m=0

x[m]e−i2π f m

][
N−1

∑
n=0

x[n]ei2π f n

]
(2.16)

=
1
N

N−1

∑
n=0

M−1

∑
m=0

x[m]x[n]e−i2π f (m−n). (2.17)
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Let τ = m−n. If we first sum over all possible M values and collect all terms x[m]x[n], we
can see that for τ = 0 ⇐⇒ m = n, we will end up with N possible terms

x[0]x[0], x[1]x[1], ..., x[N −1]x[N −1].

For τ = 1 ⇐⇒ m = n+1, we will end up with N −1 possible terms

x[0]x[1], x[1]x[2], ..., x[N −1]x[N],

and so on for values of m up to N −1−|τ| as τ ∈ [−N +1,N +1]. We see that all possible
combinations can be expressed as x[n]x[n−|τ|] and therefore write eq. (2.15) as

R̂( f ) =
1
N

N−1

∑
τ=−N+1

N−1−|τ|

∑
n=0

x[n]x[n+ |τ|]e−i2π f τ . (2.18)

Assuming that the mean of the process m(n)=m is known and equal to zero, we can recognize
the expression for the estimator r̂(τ) from eq. (2.9) in order to express the periodogram in
terms of the covariance function as

R̂( f ) =
N−1

∑
τ=−N+1

r̂(τ)e−i2π f τ . (2.19)

We can compute the expected value of the periodogram from this eq. (2.19) using the
expression from eq. (2.18) for r̂(τ), as it is shown in [13].

E[R̂( f )] =
N−1

∑
τ=−N+1

E[r̂(τ)]e−i2π f τ (2.20)

here, if we expand the term E[r̂(τ)] by letting N → ∞ we obtain the asymptotically
unbiased estimator for r(τ) yielding the next expression

E[r̂(τ)] =
1
N

N−|τ|

∑
n=1

E[(x[n]−m)(x[n+ |τ|]−m)] (2.21)

=
1
N

N−|τ|

∑
n=1

r(τ) (2.22)

=

(
N −|τ|

N

)
r(τ) (2.23)

=

(
1− |τ|

N

)
r(τ). (2.24)
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Substituting eq. (2.24) in eq. (2.20) we can express the expected value of the periodogram as

E[R̂( f )] =
N−1

∑
τ=−N+1

E[r̂(τ)]e−i2π f τ (2.25)

=
N−1

∑
τ=−N+1

(
1− |τ|

N

)
r(τ)e−i2π f τ . (2.26)

From this expression we obtain the so-called lag window w[n] =
(

1− |τ|
N

)
. When

N → ∞, R̂( f ) yields an estimate of the PSD which is asymptotically unbiased [13]. But
when dealing with values of N < ∞, i.e., when working with finite length sequences of
data that were obtained from infinite length sequence of data; we will run into spectrum
bias, B( f ) = E[R̂( f )]−R( f ). Figure 2.2 shows an example of an estimate of the PSD using
periodogram for a signal, x[n] with main frequency located at 200 Hz. We can note the
presence of side-lobes located next to main peak corresponding to the main frequency.

Figure 2.2 Periodogram of a sinusoidal sequence with main frequency of 200 Hz. The main
peak at 200 Hz correspond to this main frequency. The side-lobes are inconsistencies that
occur when using the periodogram for PSD estimation.

On the one hand, we have this bias that arises when working with finite length sequences
of data. On the other hand, we have the characteristic variability in PSD estimations which is
not reduced even for large values of N. These two reasons make from the periodogram an
inconsistent estimator of the PSD [13]. As an alternative to deal with this situation, one can
try different types of lag window. The windows that were used within this project will be
presented in the next section.
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2.5.2 Windowing

When computing the periodogram of a signal, one might notice the presence of some side-
lobes next to the peaks that are present at the main frequencies in the spectrum. If the power
that corresponds to main frequencies is leaked to this side-lobes, it is possible to misinterpret
where the main frequencies of the signal are located. In order to gain a better resolution in
the peaks and reduce the side-lobes and reduce this bias a common practice is to window
data. The use of lag window functions w lead to a modified version of the periodogram [13],
which can be derived from eq. (2.26)

R̂w( f ) =
1
n

∣∣∣∣∣N−1

∑
n=0

x[n]w[n]e−i2π f n

∣∣∣∣∣
2

. (2.27)

Multiple windows have been developed for PSD estimation. One of the most relevant
and widely used is the Hanning window [13],

h(t) =
1
2
− 1

2
cos

2πt
n−1

, t = 0, ...,n−1. (2.28)

This was the selected window used in this project. For a sequence x[n], if we use a
Hanning window in the periodogram, the side-lobes will drop more rapidly, stopping the
power from leaking to the sides and instead remaining around the main lobes. The downside
of this is that the main-lobe in the Hanning windowed periodogram is wider than the standard
periodogram. This wider main-lobe reduces the resolution and means that if, for example,
two frequency peaks are close together, they may appear as a single peak [13]. This is
illustrated in Figure 2.3 where we can see an estimate of the PSD for the same sequence x[n]
used for the example in the previous section 2.5.1. Figure 2.3(a) shows the periodogram using
a Hanning window and Figure 2.3(b) shows both periodograms using a Hanning window and
without any window function (red dashed line). In Figure 2.3(b) we can see the effect of the
side-lobes.
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(a) (b)

Figure 2.3 Figure (a) shows the PSD estimate of the signal x[n] estimated with a modified
version of the periodogram using a Hanning window. Figure (b) shows this same PSD
estimate and the red dashed line corresponds to the PSD estimate using periodogram without
any window function.

2.5.3 The Welch Method

This method is also known as the weighted overlap segmented averaging (WOSA) method
and was first introduced by P. Welch in 1967 [31]. It is a nonparametric method for estimating
the PSD, modified from a method introduced by Bartlett [1] in 1948. Both methods were
developed with the aim of reducing the variance in the periodogram. In order to describe the
Welch method, we need first to present the Bartlett method which can be summarized in 3
steps [24]. For a given finite sequence. x[n]:

1. Divide n data points into K non-overlapping segments of length M with the n−th point
of the j−th segment denoted by

x j[n] = x[n+ jM], for j = 0,1, ..., K −1 and n = 0,1, ..., M−1. (2.29)

2. Compute the periodogram using eq. (2.15) for each j−th segment. This means that we
will obtain K periodograms

R̂( f ) =
1
M

∣∣∣∣∣M−1

∑
n=0

x j[n]e−i2π f n

∣∣∣∣∣
2

, for j = 0,1, ..., K −1. (2.30)
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3. The Bartlett PSD estimate is given by the average of the periodograms for the K
segments

R̂(B)( f ) =
1
K

K−1

∑
j=0

R j( f ) (2.31)

Now that we have given an outline of the Bartlett method we can describe the Welch
method. The Welch [31] method consists of averaging modified periodograms using overlap-
ping segments. Let now the K segments to overlap

x j[n] = x[n+ jD], for j = 0,1, ...,L−1 and n = 0,1, ..., M−1, (2.32)

where jD is the point where the j−th sequence begins. The Welch method applies the
window function w (see eq. (2.27)) to the sequence x[n] before computing the periodogram.
The result of this windowing is a modified periodogram

R̂( j)( f ) =
1

MU

∣∣∣∣∣M−1

∑
n=0

x j[n]w[n]e−i2π f n

∣∣∣∣∣
2

, for j = 0,1, ..., L−1. (2.33)

This modified periodogram needs to be normalized [24]. This is done using a normalizing
factor U for the power in the function window w

U =
1
M

M−1

∑
n=0

w2[n]. (2.34)

The PSD estimate method using the Welch [31] method is given by the average of these
modified periodograms

R̂(W )( f ) =
1
L

L−1

∑
j=0

R( j)( f ). (2.35)

For the same sequence x[n] used in section 2.5.1, an illustration of the PSD estimate using
the Welch method is shown in Figure 2.4. Figure 2.4(a) shows the PSD using Welch method
and Figure 2.4(b) shows the previous PSD estimations found in this chapter superimposed
over the one obtained using the Welch method. We see the reduction of the side-lobes but the
main peak is wider.
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(a) (b)

Figure 2.4 Figure (a) shows the PSD estimate of the signal x[n] estimated using Welch method.
Figure (b) shows the same PSD estimate with the previous PSD estimations found in this
chapter. The red dashed line corresponds to the PSD estimate using periodogram without any
window function. The yellow dashed line corresponds to the modified periodogram using a
Hanning window.

2.5.4 Multitapers

As discussed in the previous section 2.5.3, a reduction of the variance and the side-lobes in
the periodogram is accomplished when averaging over a certain number of periodograms.
The inconvenience of this method is that the number of data points that are actually used
for computing each periodogram is small compared to the total length of the sequence
[24]. An alternative to this was introduced by Thomson [30]. His method consists of using
multiple windows, obtaining multiple windowed PSD estimates and taking the average of
these multiple estimates

R̂(M)( f ) =
1
K

K−1

∑
k=0

R̂(k)( f ) =
1
K

∣∣∣∣∣K−1

∑
k=0

N−1

∑
n=0

x[n]w[n]e−i2π f n

∣∣∣∣∣
2

. (2.36)

An illustration of this PSD estimation method is shown in Figure 2.5(a). Figure 2.5(b)
gives a comparison of the multitaper method with the other methods discussed in this chapter.
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(a) (b)

Figure 2.5 PSD estimation using multitapers is shown in Figure (a). In Figure (b) A compari-
son of this estimate with the other estimates obtained using the methods described throughout
this chapter.



Chapter 3

Cepstral Processing

3.1 Cepstral Processing

In 1963, Bogert et al. [3] observed that the logarithm of the power spectrum of a signal plus
it’s echo (i.e. a signal followed by a delayed and scaled replica) consists of the logarithm of
the signal spectrum and a periodic component due to the echo. With further spectral analysis
they found that they could identify the periodic component in the log spectrum and therefore
had a new indicator for the occurrence of an echo [2].

Applying spectral analysis techniques on the spectrum of a signal, Bogert et al. [3] came
up with a new vocabulary to reflect this. They chose to rearrange the first syllable of words
taken from spectral analysis in order to highlight the connections between the two, while also
making clear the difference between the methods. Hence, working in the quefrency domain,
the spectrum of the log spectrum of a time waveform came to be know as the cepstrum,
and filtering of this cepstrum was named liftering. Harmonics are named rahmonics in the
quefrency domain [19].

The original definition of the cepstrum was based on the power spectrum of an analog
signal. However, the application of the cepstrum using modern computing techniques requires
digital processing and thus a clear definition of the cepstrum in terms of discrete-time signal
theory was required [2]. For discrete-time signals, the cepstrum is defined as the IDTFT of
the natural logarithm of the DTFT of the signal. That is, for a discrete-time signal, x[n], the
discrete-time cepstrum is given by

c[n] =
∫ 1

2

− 1
2

log |X( f )|ei2π f nd f , (3.1)
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3.2 Homomorphic Systems

In the early 1960s, at the same time as Bogert et al. were working on the theory of the
cepstrum, Al Oppenheim was researching a new theory in nonlinear signals processing
referred to as homomorphic systems. Oppenheims work was based on applying linear vector
space theory to signals processing. The idea was that certain operations of signal combination
(particularly convolution and multiplication) satisfy the same axioms as vector addition in
linear vector space theory [2].

Of interest here is the class of homomorphic systems for convolution. This is represented
through the diagram in Figure 3.1

D∗{}x[n] L{} D−1
∗ y[n]

∗ + + + + ∗
x̂[n] ŷ[n]

H{}

Figure 3.1 Homomorphic system for convolution

D∗{ } represents the characteristic system for convolution and transforms a combination
by convolution into a corresponding combination by addition. D∗{ } is therefore defined by
the property that when x[n] = x1[n]∗ x2[n], the corresponding output is

x̂[n] = D∗{x1[n]∗ x2[n]}
= D∗{x1[n]}+D∗{x2[n]}
= x̂1[n]+ x̂2[n]

(3.2)

L{ } is an ordinary linear system that satisfies the principle of superposition with addition
as the input and output operation for signal combination. The inverse characteristic system,
D−1
∗ { }, must transform a sum into a convolution. The operations that apply at each stage are

written at the top corners of each block [2].
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The calculation of the cepstrum gives a sequence of mathematical operations that satisfy
the property of eq. (3.2). That is, we can represent x̂[n] by the equations

X̂( f ) = log[X( f )] (3.3)

x̂[n] =
∫ 1

2

− 1
2

X̂( f )ei2π f nd f (3.4)

where X( f ) is the DTFT, eq. (3.3) is the complex logarithm, and eq. (3.4) is the IDTFT
of the complex function X( f ). Note that in eq. (3.3), the complex logarithm is used, which is
defined as

log{X( f )}= log |X( f )|+ i · arg
[
X( f )

]
. (3.5)

This sequence is illustrated using the diagram in Figure 3.2. The inverse of the characteristic
system for convolution is shown in Figure 3.3, and inverts the effect of the logarithm by
applying an exponential function [2].

The cepstrum is the real part of the complex cepstrum, and differs from the complex
cepstrum only in the fact that the log of the magnitude of the spectrum is taken rather than
the complex logarithm. The real cepstrum is the most widely used in speech technology [11]
and as such we only consider the cepstrum in this project. Further references to the cepstrum
are referring to the real cepstrum.

DTFTx[n]
log | |

or
log{ }

IDTFT

∗ • • + + + ĉ[n]

x̂[n]

X( f ) X̂( f )

D∗

Figure 3.2 Characteristic system for convolution
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DTFTŷ[n] exp{} IDTFT y[n]

+ + + • • ∗
Ŷ ( f ) Y ( f )

D−1
∗

Figure 3.3 Inverse characteristic system for convolution

The connection between the characteristic system for convolution and the cepstrum was
first made in 1965, during a discussion between Oppenheimer and Jim Flanagan, of Bell
Telephone Laboratories. Flanagan remarked that the homomorphic system for convolution
reminded him of the cepstrum proposed by Bogert et al. [3]. The characteristic systems
for convolution given in Figures 3.2 and 3.3 were developed by Oppenheim, Schafer, and
Stockham, and were first published by Oppenheim et al. [20]. Due to the similarities with the
cepstrum described by Bogert et al. [3], when Oppenheim, Schafer, and Stockham published
their work in 1968, they called the output of the characteristic system for convolution that
uses the complex logarithm, ( eqs. (3.3) and (3.4)) the complex cepstrum.

Homomorphic filtering, or liftering, is achieved by multiplying the complex cepstrum or
cepstrum of a signal by a sequence l[n], that is

y[n] = l[n]x̂[n]. (3.6)

This is one of the choices for the linear system, L{} shown in Figure 3.1 [2]. It is
using liftering that we can separate the convolution x1[n]∗ x2[n], given in eq. (3.2), into the
two respective components x1[n] and x2[n]. This can be seen more clearly in the following
example.

3.3 Cepstral Processing Example

Here we provide a example as an illustration of the cepstral processing techniques outlined
above. Consider a signal with a simple echo, x[n]. We can write this as

x[n] = s[n]+αs[n− τ], (3.7)

where τ and α represent the delay and scaling of the echo respectively.
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The spectral density of eq. (3.7) is given by

|X( f )|2 = |S( f )|2
[
1+α

2 +2α cos(2π f τ)
]

(3.8)

Therefore, eq. (3.8) shows that the spectral density of a signal with an echo consists of
the spectrum of the original signal modulating a periodic function of the frequency, f . Taking
the logarithm of the spectrum, this product is converted to the sum of two components, that is

log |X( f )|2 = log |S( f )|2 + log[1+α
2 +2α cos(2π f τ)] (3.9)

As a waveform, eq. (3.9) has an additive periodic component with τ , the echo delay, as
its "fundamental frequency". Taking the spectrum of this log spectrum would therefore show
a peak where the original signal contained an echo [19].

Let τ = 100, α = 0.8, and x1[n] be the signal of length N = 26 shown in Figure 3.4. The
signal first occurs at n = 50 and its echo occurs at n = 150. This can be considered in relation
to eq. (3.2), where x[n] is a convolution of x1[n] with x2[n]. In this case, x2[n] is a signal with
an impulse of amplitude 1 at time n = 50, and an impulse of amplitude α at time n = 150.

Figure 3.4 Signal x1[n], an impulse response of length N=26.
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Figure 3.5 x[n]. This is signal x1[n] plus its echo (i.e. the impulse response x1[n] followed by
a delayed and scaled replica). The signal occurs at n = 50 and its echo occurs at n = 150.

The PSD and the logarithm of the PSD of x[n] are shown respectively in Figure 3.6.
For this example the PSD of x[n] was obtained using the periodogram method. Observing
the spectral density and the log spectral density of x[n] we can see that the spectrum peaks
f = 0.2, indicating that this is the dominant frequency in the signal. We can also see that the
spectrum appears to have a high frequency and a low frequency component to it. There is
the slowly varying envelope which peaks at f = 0.2, and also a fast varying fluctuation with
visible periodicity.
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(a) (b)

Figure 3.6 Figure (a) shows the Power Spectral Density of the signal x[n] estimated using
the periodogram. Figure (b) shows the logarithm of the absolute value of the Power Spectral
Density estimate.

Applying the IDTFT to the log spectral density we obtain the cepstrum, shown in
Figure 3.7. The sharp peak at n = 50 is the first rahmonic peak, and is followed by other
rahmonics at multiples of 100. This corresponds to the delay of the echo in x[n] being
τ = 100 time points after the initial signal.

Figure 3.7 x̂[n], the cepstrum of x[n]
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Figure 3.8 Low quefrency range of the cepstrum x̂[n].

The low quefrency region of the cepstrum corresponds to the slowly varying components
of the log magnitude spectrum, while the high quefrency region corresponds to the rapidly
varying components [2]. Making use of the concept introduced by Bogert et al. [3] we can
separate these different components of the cepstrum.

Applying a low-pass lifter to the cepstrum we obtain the low-quefrency component which
is shown in Figure 3.9 with the original impulse response, x1[n].
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Figure 3.9 The impulse response, x1[n], and the reconstruction, y[n], obtained by deconvolving
x[n] using cepstral analysis.

Figure 3.10 The spectral density of x[n] (red) plotted together with the spectral density of the
spectral density of y[n], obtained by deconvolving x[n] using cepstral analysis.

3.4 Cepstral Processing of Speech

Humans create speech signals through a series of controlled movements of their lungs, vocal
cords, tongue, and lips [2]. Speech can be separated into two sound types, voiced and
unvoiced. Voiced speech has a roughly regular pattern in its time-frequency structure whereas
unvoiced speech does not. Voiced sounds also typically have more energy. Voiced speech is
created when the vocal folds vibrate as a phoneme is articulated, otherwise the speech is
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unvoiced. To oscillate, the vocal folds are brought close enough together so that air pressure
builds up beneath the larynx. As air pressure builds eventually the folds are forced apart
but, due to the elasticity of the muscles and tissues of the vocal folds and larynx, they soon
come together again when the air pressure equalises. These successive bursts of air create
voiced sounds. The size and stiffness of the vocal folds, and the amount of air pressure below
the vocal folds determines the rate at which they open and close. A speaker can raise and
lower the pitch of a voiced sound by altering these factors. The rate of cycling (opening and
closing) of the vocal folds is known as the fundamental frequency, or pitch period (P0). Pitch
periods vary from around 60 Hz for a large man, to 300 Hz or higher for a small woman or
child [11].

A simple discrete-time model for a speech signal which mimics the way voiced and
unvoiced speech is produced is given in Figure 3.11. The impulse train generator models the
glottal pulse excitation (corresponding to voiced speech), and the Random noise generator
models the fricative excitation (corresponding to unvoiced speech) of the vocal tract. The
time-varying digital filter is a linear system with a slowly time-varying impulse response
which models the frequency resonances (formants) of the human vocal tract, the vocal tract
response [2].

Impulse
train

generator

Random
noise

generator

Time-
varying
digital
filter
(h[n])

Pitch period
P0

•
u[n]

p[n]

e[n]

s[n]

Figure 3.11 Discrete-time model for a speech signal

One of the main assumptions in speech processing is that, taken over short-time intervals,
or frames (most commonly 20-30ms), speech signals are stationary (see section 2.2). A
further assumption is that speech properties such as pitch period and vocal tract response are
constant over these frames [2].

As such, over a frame of length L, we assume that a speech signal x[n] can be modeled as
a convolution of the excitation u[n] (voiced (p[n]), or unvoiced (e[n])) and the filter h[n]
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x[n] = u[n]∗h[n], 0 ≤ n ≤ L−1, (3.10)

where h[n] is the vocal tract response.
Here the significance of cepstral analysis becomes apparent since eq. (3.10) can be

converted into a sum via a homomorphic transformation

ĉ[n] = D∗(x[n]) = û[n]+ ĥ[n].

Cepstral analysis was first applied to speech by Michael Noll. In 1964 in published two
papers in the Journal of Acoustical Society of America ([18, 17]) in which he applied cepstral
processing techniques to short-time segments of speech signals to successfully perform pitch
detection [19]. Nolls pitch detection algorithm computes a sequence of short-time cepstra
and searches each cepstrum for a peak in the region of the expected pitch period. A strong
peak suggests voiced speech and the location gives an estimate of the pitch period. In this
way Noll was able to distinguish between voiced and unvoiced speech [2].

This success suggested to Oppenheim, Schafer, and Stockham that homomorphic decon-
volution could be used to deconvolve speech. That is, by applying the inverse characteristic
system for convolution to the liftered cepstrum, they would be able to separate the periodic
glottal pulse excitation and the vocal tract impulse response [19].

This application of homomorphic deconvolution led to the development of the homomor-
phic vocoder, an analysis/synthesis speech coding system. Considering short-time segments
of speech, this system combines a cepstral pitch detector with a homomorphic deconvolu-
tion to estimate the pitch period and the time varying vocal tract impulse response. These
parameters can then be used to synthesize the speech signal, using the speech model shown
in Figure 3.11.

In this project we are looking for connections between an attended speech signal and
an EEG signal. As such, it is unnecessary for us to find the vocal tract impulse response
explicitly. Instead, we are able to make comparisons between the low-quefrency regions
of the cepstrums of the respective signals directly and so do not need to apply the inverse
characteristic system for convolution (Figure 3.3). In the following chapters we describe in
more detail the way we used these cepstral processing techniques to address our question,
which involves both speech and EEG signals. In chapter 5 we describe a simulation of the
cocktail party problem and our first approach to applying cepstral processing techniques to
find connections between an attended speech signal and an EEG signal. In chapter 6 we
describe the techniques used when handling real data.





Chapter 4

Stimulus-Reconstruction

While listening to speech, the cortical activity of a subject changes in response to the speech
signal. Since the response occurs after the stimulus it is clear that there will be some kind
of delay between the time that the speech stimulus and the neural response occurs. The
stimulus-reconstruction approach addresses this and attempts to reconstruct an estimate of an
input stimulus, s, using a response, R, through a linear reconstruction model, g [21]. This
is a type of LTI system [8] (see section 2.3), and although the human brain is not a linear
system, certain assumptions can be made which allow it to be modelled as one [4, 5].

In early studies investigating neural responses to auditory stimuli focused on brief,
isolated stimuli such as individual phonemes or syllables. Stimulus-reconstruction was
developed as a more direct way to investigate neural entrainment to continuous stimuli and
has been used in a number of studies to model speech processing with intercranial and
non-invasive electrophysiology [15, 22, 8, 10, 9]. Stimulus-reconstruction has also been used
specifically to model and predict selective attention in a multispeaker environment [21].

The stimulus-reconstruction model considers a linear mapping, g, from the neural re-
sponse, r, to the speech stimulus, s [8, 21]. Since g is simply a linear mapping from the
stimulus to the response, these can be chosen arbitrarily. Previous applications of the stimulus-
reconstruction method have used the speech envelope as the stimulus and the EEG signal as
the response. However, of interest here is the connection between the cepstral coefficients of
the attended speech and those of the EEG. As such, we take the cepstral coefficients of the
attended speech signal as the stimulus, and the cepstral coefficients of the EEG signal as the
response.

This is done by breaking the speech and EEG signals into non-overlapping time frames
and calculating cepstral coefficients for each of these frames. Having calculated the cepstrum
for a given sequence, the first coefficient m0 is discarded as it corresponds to an impulse.
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From the remaining cepstral coefficients, let M be the number of cepstral coefficients that
were kept from each sequence. The frames were then considered as time points, with each
frame giving M cepstral coefficients.

In our model, we take the stimulus, s, to be the cepstral coefficients of the attended speech
signal. Therefore we let s(k) indicate the set of M cepstral coefficients for the k-th frame of
the speech signal, and write

s(k) =



s(k,1)
...

s(k,m)
...

s(k,M)


. (4.1)

The cepstral coefficients of the EEG signal corresponding to the speech signal are
considered as the response. Here we need to take into account the fact that there are N
channels. Thus we break the EEG signal into non-overlapping time frames, as we did for
the speech signal, but in this case we do it for each respective channel. For each frame of
each channel, we calculate the cepstral coefficients, discard the very first, m0, and save the
next M coefficients. Therefore, we let r(k,m,n) indicate the m-th cepstral coefficient of the
k-th frame of the n-th EEG channel, and use r(k) (note that this is bold face) to indicate the
collection of all M cepstral coefficients for all N channels for frame k. That is, we have

r(k) =



r(k,1,1) r(k,1,2) · · · r(k,1,n) · · · r(k,1,N)
...

... . . . ... . . . ...
r(k,m,1) r(k,m,2) · · · r(k,m,n) · · · r(k,m,N)

...
... . . . ... . . . ...

r(k,M,1) r(k,M,2) · · · r(k,M,n) · · · r(k,M,N)


. (4.2)

We then consider the reconstruction model, g(τ ,n), which represents a linear mapping
from the neural response, r(t,m,n), to the speech stimulus, s(k,m). This is written as:

ŝ(k,m) = ∑
τ

∑
n

r(k− τ,m,n) ·g(τ,n) = Rg, (4.3)

where ŝ is the reconstructed stimulus. R is the lag matrix which is written as
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R =



r(1− τmin) r(−τmin) · · · r(1)
...

... · · · ...
...

... · · · ...
...

... · · · ...

r(K)
... · · · ...

0 r(K) · · · ...
...

... · · · ...
0 0 · · · r(K)


, (4.4)

where K is the total number of frames. Thus, in matrix form, we write

r(1− τmin) r(−τmin) · · · r(1)
...

... . . . ...

r(K)
... · · · ...

0 r(K) · · · ...
...

... · · · ...
0 0 · · · r(K)


·


g(τmin)

g(τmin +1)
...

g(τmax)

=


s(1)
s(2)

...
s(K)

 ,

where,

g(τ) =



g(τ,1)
...

g(τ,n)
...

g(τ,N)


.

By including the lags, the model takes into account the fact that the response to the
stimulus may occur after some delay. Since we have broken the signals into frames, we
consider the frames as our time points. As a result, our lags represent lags in frames. Negative
lags correspond to the number of frames after the given time point. So a lag of τ =−2 would
represent a frame in the response two time frames after the time frame of the considered
stimulus frame. We assume that the neural signal occurs as as response to the speech and not
the other was round and therefore only consider negative lags in this model. The range over
which we chose to consider the lags was from 0 to 450ms based on the range typically used
to capture the cortical response. [8] This was calculated based on the length of frame being
considered. For example, if the frame length is 25ms, our range of lags was {−19 : 0}. In
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this example, a lag of τ =−2 would represent a frame in the EEG response, 50ms after the
speech stimulus being considered.

The function g is estimated by minimising the MSE between s(k,m) and ŝ(k,m):

min e = min ∑
k

∑
m

[
s(k,m)− ŝ(k,m)

]2
. (4.5)

This is found using the following equation:

g =
(
RTR

)−1RTs (4.6)

where R is the lagged time series of the response matrix, r.

4.1 Classification

Now we have the reconstruction model, g, we can take an EEG signal and make a prediction,
ŝ, of the cepstral coefficients of the speech signal, x[n], that led to that neural response. In
this way we can obtain our prediction ŝ using eq. (4.3).

Assume that we have two speech signals, x1[n] and x2[n] of which we will only attend
one of them. This will be our ground truth that will be defined as

attentiontruth =

1, if subject is attending to speech stream 1

2, if subject is attending to speech stream 2.
(4.7)

In this way, the attending speech stream will be referred as attended and the other one
as unattended. Let sA and sU denote the set of cepstral coefficients for the attended and
unattended speech signal respectively, obtained as in eq. (4.1) (stimulus). Assume that we
also have an EEG signal from a subject listening to both speech signals, x1[n] and x2[n]
simultaneously. Then we can obtain the set of cepstral coefficients for these EEG data
(response). The reconstruction model, g can be accomplished by means of eq. (4.6). Using
this transference function, g and the EEG data a prediction ŝ can be made using eq. (4.3).

Prediction ŝ can be compared with the two different speech streams sA and sU respectively.
This comparison can be made by computing the normalised mean square error (NMSE) and
Pearson correlation coefficient (ρ).

The NMSE is defined as

NMSE = 1− |s− ŝ|2

|s− s̄|
(4.8)
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where
s̄ =

1
N ∑

i
si, (4.9)

and ŝ is the approximation of s. It therefore provides a measure of how close the prediction,
ŝ (eq. (4.3)), is from the attended or unattended stimulus respectively. The NMSE takes
values in the interval (−∞,1], the value 1 being a perfect match and 0 meaning there is no
difference between the fitted sequence and a straight line [14]. In order to measure the linear
correlation between the prediction ŝ and the attended or unattended stimulus, the Pearson
correlation coefficient ρ was used.

We will obtain two values for the NMSE. The first one denoted as NMSEattended for
the attended speech stream, sA, compared to the prediction, ŝ. The second one denoted as
NMSEunattended for the unattended speech stream, sU compared to the prediction, ŝ

NMSEattended = NMSE(sA, ŝ) (4.10)

NMSEunattended = NMSE(sU , ŝ). (4.11)

In a similar way, we will obtain two values for the Pearson ρ . The first one denoted as
ρattended for the attended speech stream, sA, compared to the prediction, ŝ. The second one
denoted as ρunattended for the unattended speech stream, sA compared to the prediction, ŝ

ρattended = corr(sA, ŝ) (4.12)

ρunattended = corr(sU , ŝ). (4.13)

The NMSE and ρ values give us a prediction (indication) of which speech stream the
listener was attending to. The speech stream with the highest NMSE and ρ values is deemed
to be the ̂attention speech stream,

̂attentionNMSE =

1, if NMSEattended > NMSEunattended

2, if NMSEattended < NMSEunattended

(4.14)

̂attentionρ =

1, if ρattended > ρunattended

2, if ρattended < ρunattended

(4.15)

Each of these indications of ̂attention speech stream is then compared with the true result
of which speech stream was actually being attended (attentiontruth). This comparison will
give a classification outcome correct (=1) or incorrect (=0),
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classi f ication =

1, if attentiontruth = ̂attention

0, otherwise .
(4.16)

For this project, we applied this stimulus-reconstruction using cepstral coefficients method
to real data. These data contained information from different subjects. Each subject with 30
trials that consisted of two speech streams and EEG recordings for 128 channels. Subjects
were asked to attend one of the two recordings that were played simultaneously to their right
and left ears respectively. A classification was possible for each trial of each subject. The
classification rates were then based on the number of these 30 results that were correct. These
results will be discussed in further detail in chapter 6.



Chapter 5

Simulation of the Cocktail Party
Problem

In this chapter we outline our preliminary investigation into the connection between the
cepstral coefficients of an EEG signal and those of an attended speech signal. We began our
analysis by considering the fundamentals of the problem being considered. Our aim was to
use cepstral processing to identify listener attention in a scenario where multiple speakers are
competing at the same time. We began by creating simulations of the problem with varying
levels of complexity in order to get a better understanding of how cepstral analysis could be
applied to this problem and to test the limitations of different spectral estimation methods.

In our first simulations we simulated speech, which will be referred to as the attended
speech, based on the idea of speech being a convolution of a glottal impulse train and a vocal
tract response (see section 3.4). Based on the assumption that the EEG response follows the
speech stimulus, we simulated EEG by adding noise to the simulated speech signal. This
simulated EEG signal will be referred to as EEGsim. This was done a number of times with
increasing amounts of added noise. Two types of noise were considered separately, white
noise, and EEG noise which we simulated using a resting EEG recording. Then, calculating
the cepstral coefficients of the simulated speech and EEG signals over short-time intervals
(frames), we compared them to see how closely they matched. Clearly, with no added noise
the simulated EEG is simply the speech signal, and as such we would obtain a perfect match
between the cepstral coefficients of the attended speech and the EEGsim. We then proceeded
to add more noise to find the point at which the cepstral coefficients no longer matched well,
and to compare different spectral estimation methods used in the calculation of the cepstrum.

To do this, the cepstral coefficients of the attended speech, and the EEGsim, were ob-
tained and compared using normalised mean square error (NMSE) and Pearson correlation
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coefficient (ρ). The NMSE provides a measure of how close the cepstral coefficients from
the attended speechsim were to the cepstral coefficients of EEGsim. In order to measure the
linear correlation between the cepstral coefficients of the two signals, the Pearson correlation
coefficient ρ was used. These NMSE and ρ values (defined in section 4.1) were found for
different levels of added noise in EEGsim to give an idea of the noise level at which the
cepstral coefficients of the EEGsim no longer matched those of the attended speech.

Two different types of attended speech were used. For the first stage of the simulations,
a simulated signal, which will be denoted as attended speechsim, was obtained using an
impulse train and an impulse response. For the second stage, a recording of a female voice
saying the word in spanish "Hola" was used; it will be denoted as attended speechreal .

Two types of EEGsim were considered. The first was obtained by adding a realization
of white noise to each attended speech, we will refer to this sequence as EEGsim1 . The
second, EEGsim2 , was obtained by adding a realization of simulated background EEG to each
attended speech. In the first stage of this chapter we used a single 20ms frame for each of the
signals. Later on, we extended the analysis and considered all the 20ms frames in the whole
length of the signals.

These simulation experiments were a preliminary investigation into how we would
approach the problem of determining listening attention using cepstral analysis. Although
they are basic, and perhaps very simplistic in comparison to the real data, these simulations
helped us to gain insight into how we would build our model and allowed us to start writing
Matlab scripts in more easily handled stages. They also suggested the best frame lengths and
spectral estimation methods to use when modelling using real data.

5.1 Simulated Speech and Simulated EEG - Single 20ms
Frame

In chapter 3 we discussed in more detail the reasoning of why speech signals can be modelled
as an impulse train and impulse response. With this idea in mind for the first experiment,
we considered simulated speech and EEG signals with different types and levels of noise.
The simulated speech signals were created using the impulse response of a linear filter h[n],
which was convolved with an impulse train e[n] (see Figure 5.1). attended speechsim was
simulated with 10,000 data points. Since for this exercise we are simulating signals that are
1-second long, it follows that the sampling frequency for attended speechsim is 10,000Hz.
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Figure 5.1 Simulation of 1 second of attended speechsim obtained from the convolution of an
impulse response h(t) with the impulse train e(t)

Two types of simulated noise were considered: white noise, and simulated background
EEG. The white noise sequence was obtained by generating 1,000 random numbers from a
N(0,1) distribution. The simulated background EEG was obtained from fitting an AR(15)
model to EEG recordings taken from a single channel close to the left ear. Figure 5.2(a) shows
a simulation of white noise and Figure 5.2(b) shows the simulated sequence attended speechsim.
For this exercise we simulated signals that were considered to be 1-second long. The 1,000
noise points correspond to a sampling frequency of 1000Hz, in order to match this frequency
with the one from the attended speechsim (10kHz), up-sampling using interpolation was
performed on the noise signals by re-sampling the noise sequence at 10 times the original
sampling rate. Once the two signals had the same number of points and the same sampling
frequency, the two noise signals were added to the attended speech signal respectively giving

EEGsim1 = attended speechsim +white noise

EEGsim2 = attended speechsim + simulated background EEG.

The two types of noise were scaled up to different levels of signal-to-noise ratio (SNR)
to identify up to which point it was still possible to identify the cepstrum coefficients as
described above. For a clearer measure of the different levels of noise, a scaling factor σ was
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derived from the Signal-to-Noise Ratio

SNR = 10log10
Psignal

σ ∗PNoise
, (5.1)

that is,

σ =
Psignal

PNoise ∗10
SNR
10

. (5.2)

The σ corresponding for different levels of SNR was obtained. Figure 5.2 (c) includes a
visualization of the noise scaled by the factor that corresponds to an SNR of -10.

(a)

(b)

(c)

Figure 5.2 Figure (a) shows a realization of the up-sampled noise, Figure (b) is the
attended speechsim, and Figure (c) is the EEGsim obtained by adding together these two
signals from (a) and (b) using SNR = -10.

Following the procedure detailed in section 3.1, a 20ms frame was taken from the signals,
and the cepstral coefficients were obtained for the attended speechsim and EEGsim using the
following PSD estimation methods:

• FFT using a Gaussian window
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• Periodogram

• Periodogram with a Hanning window

• Welch method

• Multitaper

Having calculated the cepstrum for a given sequence, the first coefficient m0 is discarded
as it corresponds to an impulse. From the remaining cepstral coefficients, let M be the number
of cepstral coefficients that were kept from each sequence. For this exercise we used M = 13,
i.e. the first 13 cepstral coefficients of each sequence (after coefficient m0) from these 20ms
frames were kept and then compared with each other using the NMSE and Pearson ρ value
as described above. The following tables show the mean of the NMSEs and the ρ for the
10,000 realizations.
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Figure 5.3 Mean of NMSE and ρ of the fit from the attended speechsim cepstral coefficients
and the EEGsim1 (white noise) cepstral coefficients, using different PSDE methods. The
x−axis shows the SNR ranging from -40 to 0.

Table 5.1 Mean of NMSE for 10,000 realizations of attended speechsim and EEGsim1

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0.0085 0.0199 0.1595 0.4584 0.7452
Periodogram 0.0257 0.0266 0.0738 0.3624 0.7284
Hanning 0.0008 0.0258 0.2006 0.4804 0.7516
Welch 0.0059 0.0128 0.1149 0.4239 0.7625
Multitaper 0.0016 0.0450 0.2475 0.5218 0.7665

Table 5.2 Mean of ρ for 10,000 realizations of attended speechsim and EEGsim1

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT - 0.0155 0.0757 0.4492 0.7879 0.9333
Periodogram - 0.0141 - 0.0079 0.1930 0.7289 0.9323
Hanning 0.1336 0.3156 0.5764 0.8113 0.9370
Welch 0.0008 0.0875 0.3673 0.6999 0.9413
Multitaper 0.0697 0.3099 0.6037 0.8226 0.9435
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Figure 5.4 Mean of NMSE and ρ of the fit from the attended speechsim cepstral coefficients
and the EEGsim2 (simulated background EEG) cepstral coefficients, using different PSDE
methods. The x−axis shows SNR from -40 to 0.

Table 5.3 Mean of NMSE for 10,000 realizations of attended speechsim and EEGsim2

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0.0218 0.1828 0.5007 0.7689 0.9252
Periodogram 0.0218 0.0658 0.3511 0.7280 0.9193
Hanning 0.0760 0.2735 0.5375 0.7760 0.9251
Welch 0.0178 0.1120 0.3705 0.7058 0.9335
Multitaper 0.0848 0.3032 0.5540 0.7768 0.9189

Table 5.4 Mean of ρ for 10,000 realizations of attended speechsim and EEGsim2

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0.1299 0.6188 0.8967 0.9761 0.9962
Periodogram 0.0197 0.2477 0.8038 0.9642 0.9940
Hanning 0.4853 0.7597 0.9138 0.9771 0.9961
Welch 0.2015 0.4660 0.7626 0.9528 0.9938
Multitaper 0.4552 0.7670 0.9125 0.9764 0.9960
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(a) (b)

Figure 5.5 First 13 cepstral coefficients of a realization from the sequences:
attended speechsim and EEGsim1 . Figure (a) corresponds to one realization using white
noise and figure (b) corresponds to one realization using simulated background EEG. From
these graphs we can see how the coefficients from the attended speechsim closely match the
coefficients from EEGsim1 and EEGsim2

Looking at the NSMEs from Tables 5.1 and 5.3, we can say that among the selected
PSD estimation methods, the periodogram with a Hanning window gives the best fit for the
coefficients of the two frames. This is also confirmed by the ρ values shown in Tables 5.2
and 5.4. It can also be seen from Figure 5.5 that once the SNR levels are between -30 and
-40, it becomes complicated to assess the goodness of fit.

5.2 Real Speech and Simulated EEG - single 20ms frame

For this second set-up, a real speech sequence was considered instead of simulated speech.
We will refer to to this real speech sequence as attended speechreal . Two different types of
noise were also simulated and added to the speech stream at various SNR levels in order
to obtain simulated EEG. These noise simulations were generated assuming a sampling
frequency of 10,000Hz. For the attended speechreal we considered a recording of a female
voice saying the Spanish word "Hola". Two types of noise were added to the real speech
signal to obtain two EEG simulations

EEGsim1 = attended speechreal +white noise (5.3)

EEGsim2 = attended speechreal + simulated background EEG. (5.4)



5.2 Real Speech and Simulated EEG - single 20ms frame 47

Figure 5.6(a) shows a simulation of white noise and Figure 5.6(b) shows the simulated
sequence attended speechreal . Figure 5.6 (c) includes a visualization of the noise scaled by
the factor that corresponds to an SNR of -20.

(a)

(b)

(c)

Figure 5.6 Figure (a) shows a realization of the noise, Figure (b) shows the attended speechsim,
and Figure (c) is the EEGsim obtained by adding together the two signals from (a) and (b)
using SNR = -20.
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From these signals a frame of 20ms length was extracted. The same procedure detailed
in section 3.1 was followed, for each frame the PSD was estimated using the following
methods:

• FFT using a Gaussian window

• Periodogram

• Periodogram with a Hanning window

• Welch method

• Multitaper

In a similar way as done in the previous section, the first 13 cepstral coefficients for each
sequence were kept and then compared with each other using the NMSE and correlation ρ .
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Figure 5.7 Mean of NMSE and ρ of the fit from the attended speechreal cepstral coefficients
and the EEGsim1 (white noise) cepstral coefficients, using different PSDE methods. The
x−axis shows SNR from -40 to 0.

Table 5.5 Mean of NMSE for attended speechreal and 10,000 realizations of EEGsim1

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0.5149 0.8303 0.9808 0.9993 1.0000
Periodogram 0.5704 0.7598 0.9733 0.9993 1.0000
Hanning 0.5476 0.8672 0.9816 0.9993 1.0000
Welch 0.5204 0.8755 0.9943 1.0000 1.0000
Multitaper 0.5379 0.8787 0.9895 0.9999 1.0000

Table 5.6 Mean of ρ for attended speechreal and 10,000 realizations of EEGsim1

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0.8736 0.9725 0.9992 1.0000 1.0000
Periodogram 0.9045 0.9593 0.9947 0.9998 1.0000
Hanning 0.9644 0.9973 0.9999 1.0000 1.0000
Welch 0.9309 0.9923 0.9999 1.0000 1.0000
Multitaper 0.9551 0.9972 1.0000 1.0000 1.0000
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Figure 5.8 Mean of NMSE and ρ of the fit from the attended speechreal cepstral coefficients
and the EEGsim2 (white noise) cepstral coefficients, using different PSDE methods. The
x−axis shows SNR from -40 to 0.

Table 5.7 Mean of NMSE for attended speechreal and 10,000 realizations of EEGsim2

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0.5165 0.8301 0.9813 0.9992 1.0000
Periodogram 0.5699 0.7540 0.9728 0.9993 1.0000
Hanning 0.5503 0.8687 0.9821 0.9991 1.0000
Welch 0.5221 0.8764 0.9944 1.0000 1.0000
Multitaper 0.5393 0.8795 0.9896 0.9999 1.0000

Table 5.8 Mean of ρ for attended speechreal and 10,000 realizations of EEGsim2

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0.8720 0.9716 0.9992 1.0000 1.0000
Periodogram 0.9049 0.9587 0.9945 0.9998 1.0000
Hanning 0.9642 0.9973 0.9999 1.0000 1.0000
Welch 0.9312 0.9924 0.9999 1.0000 1.0000
Multitaper 0.9550 0.9972 1.0000 1.0000 1.0000
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(a) (b)

Figure 5.9 First 13 cepstral coefficients of the sequences: attended speechsim and EEGsim1 .
Figure (a) corresponds to one realization using white noise and figure (b) to one realization
using simulated background EEG.

We can see from Tables 5.5 to 5.8, that when using real speech both the NMSE and the
ρ values were higher compared to those obtained using simulated speech streams. Even
for SNR levels of -30 (for both white noise and simulated background EEG) the NMSE
values were above 0.8 (except for the periodogram). For all the SNR levels considered in this
exercise, the obtained ρ values were above 0.85.

5.3 Real Speeches and Simulated EEG - whole sequence

In order to have a similar scenario to the one described as the cocktail party problem two real
speech streams were considered for this section. One speech stream was the recording of a
female voice saying the Spanish word "Hola" used in the previous section, we will refer to
this stream as the attended speech. A second speech stream consisted of the recording of a
male voice saying the Spanish word "Hola", we will refer to this stream as the unattended
speech (see Figure 5.10). We added simulated noise to the attended speech to obtain a
simulated EEG recording, EEGsim. In this way we obtained the next 3 sequences:

1. attended speech

2. unattended speech

3. EEGsim = attended speech + noise
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We computed the cepstral coefficients from a frame length 20ms of the sequence EEGsim

and compared them with the cepstral coefficients from frame length 20ms of the sequence
attended speech and unattended speech respectively.

The idea behind this exercise was to see how well for different levels of SNR the cepstral
coefficients from EEGsim would fit the cepstral coefficients of the attended speech rather than
those of the unattended speech.

Similarly, as in the previous section, two types of noise were considered:

EEGsim1 = attended speech+white noise (5.5)

EEGsim2 = attended speech+ simulated background EEG (5.6)

Figure 5.10 Recordings of voices saying the Spanish word "Hola". The line in blue corre-
sponds to the attended speech and the line in red to the unattended speech.

The speech and EEG signals were broken into non-overlapping frames and the cepstral
coefficients were calculated for each of these frames. At this stage in the investigation we
were not considering lags between the speech stimulus and the EEG response. However,
we use part of the method outlined in chapter 4. Using eqs. (4.1) and (4.2) we let sA(k) ,
sU(k), and r(k) indicate the set of M cepstral coefficients for the k-th frame of the attended,
unattended speech, and EEGsim signals respectively. That is
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sA(k) =



sA(k,1)
...

sA(k,m)
...

sA(k,M)


, (5.7)

sU(k) =



sU(k,1)
...

sU(k,m)
...

s(k,M)


, (5.8)

and

r(k) =



r(k,1,1)
...

r(k,m,1)
...

r(k,M,1)


. (5.9)

Note that since we are not simulating a multi-channel EEG signal, there is only one EEG
channel, thus N = 1. Each of these sets of M = 13 cepstral coefficients were then stacked
into column vectors of length K ×M.
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sA =



sA(1,1)
...

sA(1,m)
...

sA(1,M)

sA(2,1)
...

sA(2,m)
...

sA(2,M)
...

sA(K,1)
...

sA(K,m)
...

sA(K,M)



, sU =



sU(1,1)
...

sU(1,m)
...

sU(1,M)

sU(2,1)
...

sU(2,m)
...

sU(2,M)
...

sU(K,1)
...

sU(K,m)
...

sU(K,M)



, and r =



r(1,1,1)
...

r(1,m,1)
...

r(1,M,1)
r(2,1,1)

...
r(2,m,1)

...
r(2,M,1)

...
r(K,1,1)

...
r(K,m,1)

...
r(k,M,1)



(5.10)

The NMSE and Pearson’s ρ values were calculated between the simulated EEG and the
attended and unattended speech streams respectively, for each of the cepstral coefficients of
each respective frame. These NMSE and ρ values were used to determine if the sequence
r was a better fit to sequence sA or to sequence sU. If the NMSE and ρ between r and sA

were higher than the NMSE and ρ between r and sU, then we could conclude that EEGsim

was closer to the attended speech. This procedure was carried our with 10,000 respective
realizations of EEGsim1 and EEGsim2 to determine how well the simulated EEG was following
the attended speech.

Comparing the NMSE and ρ values obtained for each type of noise, we obtained a
classification based on counting the number of times that NMSEattended was greater than
NMSEunattended . Similarly, we obtained a classification based on counting the number of
times that ρattended was greater than ρunattended . Using these classifications we obtained the
decoding accuracy (%) based on each measure NMSE and ρ respectively and for these
two types of EEGsim. These decoding accuracies (%) are shown in the next Tables 5.9
to 5.12. From these tables we can see that a suitable PSD estimation method might be the
periodogram using a Hanning window or the Welch method. For this project, we decided to
use the Welch method using a Hanning window. The multitaper also performed well but it
was decided not to include it because of long computation times.
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Table 5.9 Decoding accuracy based on NMSE. Real speech and type of noise EEGsim1

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0 0 0 100 100
Periodogram 0 0.1 3.8 100 100
Hanning 0 0 0 100 100
Welch 0 0 0 100 100
Multitaper 0 0 0 100 100

Table 5.10 Decoding accuracy based on ρ . Real speech and type of noise EEGsim1

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0 0 54 100 100
Periodogram 0 0 1.5 100 100
Hanning 0 100 100 100 100
Welch 100 100 100 100 100
Multitaper 1.5 100 100 100 100

Table 5.11 Decoding accuracy based on NMSE. Real speech and type of noise EEGsim2

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0 4.4 100 100 100
Periodogram 0 1.6 100 100 100
Hanning 0 0 100 100 100
Welch 0 0 100 100 100
Multitaper 0 0 100 100 100

Table 5.12 Decoding accuracy based on ρ . Real speech and type of noise EEGsim2

PSDE SNR = -40 SNR = -30 SNR = -20 SNR = -10 SNR = 0

FFT 0 94.5 100 100 100
Periodogram 0 2.7 100 100 100
Hanning 100 100 100 100 100
Welch 23.2 100 100 100 100
Multitaper 99.9 100 100 100 100
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In this chapter we presented the results of our preliminary investigation into the connection
between the cepstral coefficients of an EEG signal and those of an attended speech signal.
Various simulations of the problem with different levels of complexity were carried out in
order to get a clearer idea of how cepstral analysis could be applied to this problem and to
test the limitations of different spectral estimation methods. Although the simulations are
simplistic in comparison to the real data, they helped us to gain an insight into the methods we
would use to approach the problem and meant we could begin writing Matlab scripts in more
easily handled stages. They also suggested the optimal frame lengths and spectral estimation
methods to use when working with real data. We attempted to use the method described in

this chapter on real data, where cepstral coefficients calculated for frames corresponding
to the same time-point of the speech and EEG signals were compared. i.e. comparisons
were made that do not assume any delay in the response between the speech stimulus and
the EEG response. Although this appeared to work for some of the subjects, it was not
consistent and did not agree with results from previous studies that show a delay between the
speech stimulus and the EEG response [21, 16]. Therefore, considering the success of the
stimulus-reconstruction method in the context of this cocktail-party problem, our next step
was to build a stimulus-reconstruction model that used cepstral coefficients. The results of
this stimulus-reconstruction model are covered in the next chapter.



Chapter 6

Results

This chapter includes a description and a summary of the obtained results when we tried
stimulus-reconstruction using cepstral coefficients on real data. The utilized data were
published previously by O’Sullivan et al. [21]. More details about these data can be found
in appendix A. The data contain information for each subject. Each subject, (30 in total)
performed 30 trials. Each trial was 1-minute and consisted in storytelling of two speech
streams that were played through headphones to each subject: one was played to their left
ear, and the other to their right ear. Subjects were instructed to attend to one speech stream
obtaining two groups

attentiontruth =

1, if subject attended to speech stream on left ear

2, if subject attended to speech stream on right ear.
(6.1)

Equation (6.1) was used as an indicator containing the ground truth for assessing predic-
tions made by the model. In order to assess if each subject attended correctly to the indicated
speech, they had to answer some questions related to the attended story [21, 23]. Results
reported by O’Sullivan et al. [21] shown that 80.4± 7.3% of the answers related to the
attended speech were correct, while 27.1±7.0% of the questions related to the unattended
speech were correctly answered.

Electroencephalography data was recorded for each subject using 128 electrode positions
at a sampling rate of 512Hz using a BioSemi Active Two system [21]. More details about
these data can be found in appendix A. Speech streams for the 30 trials were recorded using
a sampling frequency of 44100 Hz. These speech signals were downsampled to 1024Hz,
while EEG data was upsampled to give an equivalent sampling rate of 1024Hz. This was
made in order to match both sampling frequencies of EEG data and speech signals as well to
decrease computation time.
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Let xi,le f t [n] and xi,right [n] denote the speech signal of the i−th of the 30 trials that was
played to the left and right ear of the subjects respectively. Let EEGi, j[n] denote the EEG
recorded for the i−th of the 30 trials corresponding to the j−th subject. As it was described
in chapter 4, a set of cepstral coefficients was obtained for each speech stream xi,le f t [n] and
xi,right [n] yielding matrices sA and sU (stimulus) according to each case. Cepstral coefficients
were also obtained for the sequence EEGi, j[n] (response) and, using the lag matrix with these
cepstral coefficients, matrix R was obtained as in eq. (4.4). The reconstructed stimulus ŝ was
accomplish using eq. (4.3) and function g was estimated as in eq. (4.5). This function g was
trained on 29 of the 30 trials and then tested on the 30th trial (for each subject independently).
Taking each of the trials as a testing set respectively, and training using the remaining 29
trials, we were able to obtain 30 classification results for each subject. The classification
rates were then based on the number of these 30 results that were correct.

Because of the demand in computational time and power, a first setup using certain
specifications was needed. In order to assess which combination of length frame, channels,
and number of cepstral coefficients might be the optimal one. By running the model with
this initial setup we tried to see which combination yielded the highest classification rates
using the least amount of data in the most efficient possible way. Classification rates were
obtained following the process described in chapter 4. From simulations shown in chapter 5
we found that the Welch method might be a suitable first option for PSD estimation. This
method was used for the first setup.

6.1 Initial Setup

Because computation times were long making it complicated to run the model for all possible
combination, an initial setup needed to be chosen. The first setup that was used consisted of
estimating the PSD using the Welch method for different length frames: 25, 50, and 75ms.
EEG recordings from a set of 9 channels were considered: A1, A19, A23, B22, B26, C17,
C21, D18, D23, (see fig. 6.1). Cesptral coefficients were obtained for these different lengths
frames. As we did for the simulations in chapter 3, the first coefficient m0 was discarded
keeping different number of coefficients up to m5, m7, m11, and m13.
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Figure 6.1 Highlighted in red channels A1, A19, A23, B22, B26, C17, C21, D18, and D23.
These channels were selected as a first set for the initial setup.

As described at the beginning of this chapter, for each trial of each subject we first obtained
the corresponding sets of cepstral coefficients, sA and sU , as well as the corresponding
lag matrix using cepstral coefficients R. Applying stimulus-reconstruction using cepstral
coefficients ( eq. (4.3)) we obtained the function g. Using this function g we obtained our
prediction ŝ. This was done for each subject and for each trial. NMSE and Pearson ρ were
obtained as shown in eqs. (4.10) to (4.10). These values were then compared as in eqs. (4.14)
and (4.15) to predict which speech the listener was attending to. For each subject a total of
30 classification rates were achieved based on how many of these classification were correct
when compared to attentiontruth from eq. (6.1).

The following Table 6.1 shows the decoding accuracy (%) for all 30 trials of all 30
subjects based on NMSE. The maximum classification rates using NMSE were achieved
when using frames with 25ms length and for all the selected values of M cepstral coefficients
in this initial setup. These decoding accuracies were above 90%. For this 25ms frame length,
the maximum decoding accuracy (96.34%) was achieved when M = 13, i.e. Having discarded
the first coefficient m0 as it corresponds to an impulse at zero, the first 13 cepstral coefficients
of each frame were kept. This agrees with Huang et al. [11], they mention that in most cases
the first 13 cepstral coefficients are kept when dealing with speech recognition. Table 6.1
also shows the mean of NMSE (attended and unattended) and its standard deviation (in
parentheses). A Kruskal-Wallis test [12] was performed in order to determine if the obtained
values for NMSEattended and NMSEunattended for all trails of all subjects with frames 25ms
length were significantly different. The results of this test indicate that NMSE values for the
attended and unattended speeches are significantly different (χ2 = 45.76, p<0.001). Box
plots of NMSE for all trails of all subjects using frames with 25ms length and for each value
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of M are shown in Figure 6.2. Box plots of NMSE for each subject’s 30 trials are shown in
Figure 6.3.

In a similar way, Table 6.2 shows the decoding accuracy (%) for all 30 trials of all
subjects based on ρ . Results obtained using this measure were similar to those obtained
using NMSE; the maximum classification rates using ρ were also given when using frames
with 25ms length and for all the selected values of M cepstral coefficients in this initial setup.
These decoding accuracies were above 90%. For this 25ms frame length, the maximum
decoding accuracy (94.73%) was achieved when M = 5, i.e. when keeping the first 5 cepstral
coefficients (after coefficient m0) of each frame. The highest mean correlation (ρ = 0.701)
was obtained when using this same frame length and M = 13, i.e. keeping the first 13 cepstral
coefficients (after coefficient m0) of each frame. Table 6.1 shows the mean of ρ (attended
and unattended) and its standard deviation (in parentheses). A Kruskal-Wallis test [12] was
performed in order to determine if the obtained values for ρattended and ρunattended for all
trails of all subjects with frames 25ms length were significantly different. The results of this
test indicate that ρ values for the attended and unattended speeches are significantly different
(χ2 = 45.76, p<0.001). Box plots of ρ for all trails of all subjects using frames with 25ms
length and for each value of M are shown in Figure 6.2. Box plots of ρ for each subject’s 30
trials are shown in Figure 6.3.
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Table 6.1 Decoding accuracy using NMSE, mean of NMSE and standard deviation (in
parentheses) for both attended and unattended speeches.

Frame length cm Decoding
Accuracy (%)

NMSEattended NMSEunattended

25

c5 94.52 0.362 (0.009) 0.2561 (0.015)
c7 92.47 0.4190 (0.01) 0.3152 (0.016)
c10 95.48 0.4544 (0.003) 0.3560 (0.008)
c13 96.34 0.4893 (0.005) 0.3993 (0.002)

50

c5 93.55 0.3513 (0.015) 0.2331 (0.021)
c7 91.61 0.3935 (0.016) 0.2838 (0.023)
c10 94.52 0.4157 (0.012) 0.3052 (0.018)
c13 53.66 0.3673 (0.049) 0.3318 (0.047)

75

c5 94.09 0.3515 (0.015) 0.2276 (0.02)
c7 91.94 0.3910 (0.016) 0.2771 (0.021)
c10 54.62 0.3181 (0.054) 0.2824 (0.051)
c13 53.66 0.3504 (0.047) 0.3262 (0.047)

Table 6.2 Decoding accuracy using ρ , mean of ρ and standard deviation (in parentheses) for
both attended and unattended speeches.

Frame length cm Decoding
Accuracy (%)

ρattended ρunattended

25

c5 94.73 0.6078 (0.006) 0.5267 (0.006)
c7 91.94 0.6494 (0.007) 0.5841 (0.007)
c10 93.12 0.6759 (0.002) 0.6161 (0.002)
c13 92.80 0.7010 (0.003) 0.6475 (0.003)

50

c5 94.52 0.5946 (0.01) 0.5008 (0.01)
c7 91.83 0.6288 (0.011) 0.5516 (0.011)
c10 93.44 0.6461 (0.008) 0.5713 (0.008)
c13 53.66 0.6061 (0.039) 0.5896 (0.039)

75

c5 95.05 0.5946 (0.01) 0.4952 (0.01)
c7 91.94 0.6266 (0.01) 0.5441 (0.01)
c10 53.66 0.5635 (0.044) 0.5426 (0.044)
c13 53.66 0.5917 (0.04) 0.5834 (0.04)
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(a) m5 (b) m7 (c) m10 (d) m13

(e) m5 (f) m7 (g) m10 (h) m13

Figure 6.2 Box plots of NMSE (Figures a,b,c, and d) and ρ (Figures e, f, g, and h) for frames
with length 25ms. All means between attended and unattended were significantly different
(p<0.001).

Of the various parameters that were used for the stimulus-reconstruction model using
cepstral coefficients, the setup that performed the best was the one using a frame of 25ms
length and keeping the first 13 cepstral coefficients (m1 to m13, excluding the first coefficient
m0). This frame size yielded the highest decoding accuracy based on NMSE and the highest
mean of correlations ρ , which agrees with with the common practice within speech analysis
of working with frame sizes of 20 to 30ms [11]. The choice of this length comes with a
trade-off between having more resolution in the frequency domain but with the cost of not
meeting assumption for stationarity. The number of cepstral coefficients that were kept (13)
that was found to give the best results has been used for experimental purposes and research.

6.2 Using 25ms Frames and 13 Cepstral Coefficients

The next step after deciding the setup for the stimulus-reconstruction using the cepstral
coefficients model was to verify if decoding accuracy results and/or NAME or ρ could be
improved. This was done by running the model using EEG data from all 128 channels.
Results obtained using 128 channels were not significantly different from the ones obtained
using 9 channels (see Tables 6.3 and 6.4). The next step was then to run the model with a
further reduced number of channels, namely 3 channels. Results and selection of channels
are discussed in this section.
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EEG data from 128 channels were used as response for the stimulus-reconstruction using
cepstral coefficients model. The decoding accuracy based on NMSE for all trials of all
subjects was 96.13%. The mean of NMSE for attended was 0.4901, and for unattended was
0.4002. The decoding accuracy based on ρ was 93.12%. The mean of ρ for attended was
0.7013 and 0.6479 for the unattended speech. These results are shown in Table 6.4.

The heat-maps shown in figures Figures 6.4 and 6.5 provide a visualization of the activity
of the decoder, g, for subjects that attended to speech played to their left and their right ear
respectively. From these heat-maps, it is possible to see how the different channels were
contributed to the model. For most subjects, the main contribution was given by channels
located on top of the head (A1) and the ones located at the sides. In this way, a selection of 3
channels was made: A1, B26, and D23. These channels are highlighted in Figure 6.7.
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(a) BM (b) CB (c) CM

(d) CN (e) DC (f) EK

(g) FW (h) GC (i) GG

(j) GL (k) HN (l) JS

(m) KM (n) NC (o) SD

Figure 6.4 Heat-maps of activity of the decoder, normalizzed values of g, for subjects who
attended to their left ear.
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(a) AP (b) AS (c) BR

(d) BWM (e) DM (f) DW

(g) EL (h) GB (i) GK

(j) JB (k) MK (l) RC

(m) RoC (n) RW (o) ToD

Figure 6.5 Heat-maps of activity of the decoder, normalized values of g, for subjects who
attended to their right ear.
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(a) (b)

Figure 6.6 Heat-maps of the mean activity decoder, g (normalized weights) for subjects who
attended to the speech played to their left ear (a) and to the speech attended to their right ear
(b).

Figure 6.7 Highlighted in red channels A1, B26, and D23.

Table 6.3 Decoding accuracy using NMSE, mean of NMSE and standard deviation (in
parentheses) for both attended and unattended speeches. Result for selected setup using
different sets of channels.

Channels Decoding
Accuracy (%)

NMSEattended NMSEunattended

128 channels 96.13 0.4901 (0.005) 0.4002 (0.002)
9 channels 96.34 0.4893 (0.005) 0.3993 (0.002)
3 channels 96.13 0.4870 (0.006) 0.3968 (0.003)
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Table 6.4 Decoding accuracy using ρ , mean of ρ and standard deviation (in parentheses)
for both attended and unattended speeches. Result for selected setup using different sets of
channels.

Channels Decoding
Accuracy (%)

ρattended ρunattended

128 channels 93.12 0.7013 (0.003) 0.6479 (0.003)
9 channels 92.80 0.7010 (0.003) 0.6475 (0.003)
3 channels 92.26 0.6996 (0.004) 0.6462 (0.003)

From Figure 6.8 we can see scatter plots for both NMSE and ρ obtained from the model
using 3 channels for all subjects and all trials. In the x−axis the attended and in the y−axis
the unattended. From these plots we can see that the most of the obtained values for both
measures, NMSE and ρ using the attended speech, are greater than the ones using unattended
speech. Table 6.5 contains the medians for both attended and unattended speeches using
these 3 channels and the mentioned set up.

(a) (b)

Figure 6.8 Scatter plots for NMSE (a) and ρ (b). In both cases the obtained measures for
attended were plotted against the unattended.

Table 6.5 Median values of NMSE and ρ for both attended and unattended speeches.

Measure attended unattended

NMSE 0.4855 0.3968
ρ 0.6976 0.6440
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6.3 Envelope Vs Cepstral Coefficients as Stimulus

Previous research performed by O’Sullivan et al. [21] was carried out using the envelope
of the speech as stimulus and the EEG as the response. This was made using the stimulus-
reconstruction model. The obtained mean of the decoding accuracy for all trials for all
subjects was 89.69% achieving correlations between −0.1 and 0.15 [21]. Our results are dif-
ferent from the ones obtained by O’Sullivan et al. [21]. For comparison purposes, Figure 6.9
displays the mean of decoding accuracies of 30 trials for each subject based on NMSE, ρ ,
and ρ values from that previous study using envelope as stimulus. The mean of the decoding
accuracy for all trials for all subjects obtained using the stimulus-reconstruction model was
96.13% based on NMSE and 92.25% based on ρ . Though the mean decoding accuracies
from both models are high, the ρ values obtained using the envelope as stimulus (median
ρ = 0.0054 [21]) were lower compared to the ones obtained using cepstral coefficients as
stimulus (median ρ = 0.6976).

Figure 6.10 Mean of decoding accuracy of 30 trials for each subject based on NMSE (blue
line), based on ρ (red line), and based on ρ using the envelope for stimulus-reconstruction
(dashed line).

6.4 Preliminary Model Validation

Results obtained showed that under the specifications and conditions of how this experiment
was carried out, it is possible to identify to which of the recordings the subjects were trying
to attend. The obtained correlations coefficients ρ achieved with the stimulus-reconstruction
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model using cepstral coefficients were considerably higher compared to the ones obtained
in previous reports, as the one performed by O’Sullivan et al. [21]. In order to illustrate
these reconstructions obtained from the stimulus-reconstruction model using cepstral coef-
ficients; Figure 6.11(a) shows a segment of the cepstral coefficients, sattended obtained for
one of the trials from one of the subjects (shown in blue line). In this same graph, the red
line corresponds to the reconstruction ŝ. Figure 6.11(b) shows a segment of the cepstral
coefficients, sunattended obtained for this same trial from the same subject (shown in blue
line) and the red line corresponds to the reconstruction ŝ. In order to test the validity of
the stimulus-reconstruction model using cepstral coefficients, an exercise was performed
using a sequence of random noise as unattended speech. Let srandom be the set of cepstral
coefficients from this random sequence. This srandom was compared to the reconstruction ŝ
using NMSE and ρ values. The results showed that there was no correlation between ŝ and
srandom. Figure 6.11(c) shows a segment of the cepstral coefficients srandom obtained from
this random sequence, (shown in blue line) and the red line corresponds to the reconstruction
ŝ.

Figure 6.12 shows the NMSE and ρ values for the first 10 trials from this exercise,
Figure 6.12(a) and (b) correspond to the NMSE and ρ respectively that were obtained when
using the original unattended speech. Figure 6.12(c) and (d) correspond to the NMSE and ρ

respectively that were obtained when using a random sequence as unattended speech. Similar
results were obtained when this same exercise was replicated using data from other subjects.
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(a)

(b)

(c)

Figure 6.11 Cepstral coefficients sattended (Figure a), sunattended (Figure b), and srandom (Figure
c) shown in blue. The red line corresponds to the reconstruction ŝ.
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(a) (b)

(c) (d)

Figure 6.12 Figures (a) and (b) show the NSME and ρ values respectively for the first 10
trials from the described exercise when using the original speech streams. Figures (c) and (d)
show the NSME and ρ values respectively for the first 10 trials from this same exercise but
using a random sequence as the unattended speech. In all 4 figures the blue line corresponds
to the NMSE and ρ values for the attended speech and the red line corresponds to these
values for the unattended speech.

Following a similar approach we tried using a completely unrelated speech signal as
the unattended speech. This external speech was a recording of a different story, and read
by a different speaker, to those the subjects listened to. For this exercise the results were
inconsistent as some trials showed correlation between the cepstral coefficients of the external
speech and the reconstruction ŝ, and some did not. This makes it difficult to draw conclusions
from this exercise, as the outcomes do not always agree. Considering signals outside the
context of the experiment appears to cause problems for the model in some circumstances.
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The best way to test the validity of the model would be to apply it on other data sets from
similar experimental setups.

6.5 Further Work

The stimulus-reconstruction model using cepstral coefficients described in this project was
only tested on one data set. This dataset was obtained under ideal conditions (the subjects
were wearing headphones and attending to "clean" speeches with no background noise).
As mentioned at the end of section 6.4, the stimulus-reconstruction model using cepstral
coefficients needs to be tested on more datasets in order to determine the validity of its
performance in identifying an attended speech stream. One test could be to apply the model
to a dataset where subjects change attention from one speaker to another part-way through
the trail. This would give an idea of the ability of the model to adapt to changes in listener
attention. A further extension would be to introduce a third speaker into the experiment and
ask the subject to periodically switch attention between the three speakers.

The results obtained for this dataset seem to show potential for cepstral analysis to
be applied to this task of determining listening attention in a multi-speaker environment.
Considering the data in this dataset, when training the models on attended speech streams
for each subject and then testing through comparing the predicted speech stream with the
attended and unattended speech streams, we were able to obtain high correct classification
rates. Also, using white noise as the unattended speech stream to test the validity of the
model, we found that classification rates were still high. However, when some unrelated
speech signals were taken as the unattended speech stream, the classification rates were not
always consistently high. Therefore further investigation is required to find out more about
how well this model is performing. Perhaps the most useful next step will be to see how well
the model performs when applied to other datasets collected from similar experiments.
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Conclusion

The aim of this project was to investigate whether cepstral processing techniques could be
used to identifying listening attention in a multi-speaker environment. Building on the work
of O’Sullivan et al. [21], who used the connection between the envelope of speech and the
EEG response to determine listening attention, cepstral coefficients were incorporated into a
stimulus-reconstruction model to see if the O’Sullivan et al. [21] results could be replicated or
even improved using cepstral analysis. Following standard speech processing practices, based
on the assumption that speech is stationary over short-time intervals, this model involved
breaking corresponding speech and EEG signals into short-time segments over which cepstral
coefficients were calculated. These coefficients were used in a stimulus-reconstruction model
which, after training a decoder, allowed us to predict the attended speech stream from the
EEG signal. This prediction was then compared to the two respective speech streams and the
signal which most closely matched the prediction was determined to be the attended speech
stream. Using this method we were able to obtain high classification rates of over 90%,
suggesting that the method is effective at distinguishing between attended and unattended
speech. However, this model was only tested on a single dataset which means that firm
conclusions cannot be drawn at this stage. To investigate the validity of the model further, it
would need to be tested on other datasets from similar experiments.

Improvements to the model could have been made by including additional features. This
model used cepstral coefficients from the low-quefrency region of the cepstrum but it may
also be that higher-quefrency regions of the cepstrum could be used, particularly spikes in
the cepstrum that indicate voiced speech. Derivatives of the cepstrum are another feature that
could improve performance if included in the model.

In summary, having developed a method of determining listening attention by incorporat-
ing cepstral processing techniques into a stimulus-reconstruction model, we have shown that,
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training and testing the model on the O’Sullivan et al. [21] dataset, classification rates of 90%
and above can be achieved. Previous research has shown that there is a connection between
speech stimuli and the neural response. The results obtained from this project suggest that
cepstral analysis, a technique that has proved useful in speech analysis, can be used to find
connections between speech and EEG. This potentially adds a new tool for future attempts at
determining listening attention in multi-speaker environments. It should be noted however,
that although these preliminary findings suggest that cepstral analysis can be used in this
problem, further investigation and application of the model to other datasets is required
before firm conclusions can be drawn.



Bibliography

[1] Bartlett, M. S. (1948). Smoothing Periodograms from Time-Series with Continuous
Spectra. Nature, 161(4096):686–687.

[2] Benesty, J., Sondhi, M. M., Huang, Y., and Greenberg, S. (2008). Springer Handbook of
Speech Processing.

[3] Bogert, B., Healy, M., and Tukey, J. (1963). The quefrency analysis of time series
for echos: cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe cracking. In
Rosenblatt, M., editor, Proceedings of the Symposium on Time Series Analysis. Wiley,
New York.

[4] Boynton, G. M., Engel, S. A., Glover, G. H., and Heeger, D. J. (1996). Linear systems
analysis of functional magnetic resonance imaging in human V1. Journal of Neuroscience,
16(13):4207–21.

[5] Boynton, G. M., Engel, S. A., and Heeger, D. J. (2012). Linear systems analysis of the
fMRI signal. NeuroImage, 62(2):975–984.

[6] Bronkhorst, A. W. (2000). BronkhorstCocktail_partyActa_acustica_2000.pdf.

[7] Bronkhorst, A. W. (2015). The cocktail-party problem revisited: early processing and
selection of multi-talker speech. Attention, Perception, and Psychophysics, 77(5):1465–
1487.

[8] Crosse, M. J., Di Liberto, G. M., Bednar, A., and Lalor, E. C. (2016). The Multivariate
Temporal Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural
Signals to Continuous Stimuli. Frontiers in Human Neuroscience, 10(November):1–14.

[9] Ding, N. and Simon, J. Z. (2012a). Emergence of neural encoding of auditory objects
while listening to competing speakers. Proceedings of the National Academy of Sciences,
109(29):11854–11859.

[10] Ding, N. and Simon, J. Z. (2012b). Neural coding of continuous speech in auditory
cortex during monaural and dichotic listening. Journal of Neurophysiology, 107(1):78–89.

[11] Huang, X., Alex, A., and Hsiao-Wuen, H. (2001). Spoken Language Processing.

[12] Kruskal, W. H. and Wallis, W. A. (2016). Use of Ranks in One-Criterion Variance
Analysis. 47(260):583–621.

[13] Lindgren, G., Rootzén, H., and Sandsten, M. (2014). Stationary stochastic processes
for scientists and engineers.



78 Bibliography

[14] Matlab reference page (2018). https://www.mathworks.com/help/ident/ref/goodnessoffit.html.

[15] Mesgarani, N., David, S., Fritz, J., and Shamma, S. (2009). Influence of context
and behavior on stimulus reconstruction from neural activity in primary auditory cortex.
Journal of neurophysiology, 102(6):3329.

[16] Mirkovic, B., Debener, S., Jaeger, M., and De Vos, M. (2015). Decoding the attended
speech stream with multi-channel EEG: Implications for online, daily-life applications.
Journal of Neural Engineering, 12(4).

[17] Noll, A. M. (1964). Short-Time Spectrum and “Cepstrum” Techniques for Vocal-Pitch
Detection. The Journal of the Acoustical Society of America, 36(2):296–302.

[18] Noll, A. M. and Schroeder, M. R. (1964). Short-Time Cepstrum Pitch Detection. The
Journal of the Acoustical Society of America, 36(5):1030.

[19] Oppenheim, A. V. and Schafer, R. W. (2004). From frequency to quefrency: A history
of the cepstrum. IEEE Signal Processing Magazine, 21(5):95–100.

[20] Oppenheim, A. V., Schafer, R. W., and Stockham, T. G. (1968). Nonlinear Filtering of
Multiplied and Convolved Signals. Proceedings of the IEEE, 56(8):1264–1291.

[21] O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-
Cunningham, B. G., Slaney, M., Shamma, S. A., and Lalor, E. C. (2014). Attentional
Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG.
Cerebral Cortex, 25(7):1697–1706.

[22] Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S. A., Crone, N. E.,
Knight, R. T., and Chang, E. F. (2012). Reconstructing speech from human auditory
cortex. PLoS Biology, 10(1).

[23] Power, A. J., Foxe, J. J., Forde, E. J., Reilly, R. B., and Lalor, E. C. (2012). At what
time is the cocktail party? A late locus of selective attention to natural speech. European
Journal of Neuroscience, 35(9):1497–1503.

[24] Proakis, J. G. and Manolakis, D. G. (1996). Digital Signal Processing.

[25] Ricketts, T. A. (2005). Directional hearing aids: Then and now. The Journal of
Rehabilitation Research and Development, 42(4s):113.

[26] Sanei, S. (2013). Adaptive Processing of Brain Signals. John Wiley & Sons Ltd.

[27] Schnupp, J., Nelken, I., and King, A. (2011). Auditory Neuroscience: Making Sense of
Sound, volume 53.

[28] Smith, S. W. (2003). The Scientist and Engineer’s Guide to Digital Signal Processing.

[29] Stoica, P. and Moses, R. (2009). Spectral Analysis of Signals.

[30] Thomson, D. (1982). Spectrum estimation and harmonic analysis. Proceedings of the
IEEE, 70(9):1055–1096.



Bibliography 79

[31] Welch, P. (1967). The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEE
Transaction on Audio and Electroacoustics, AU-15(2):70–73.

[32] Wöstmann, M., Fiedler, L., and Obleser, J. (2017). Tracking the signal, cracking
the code: speech and speech comprehension in non-invasive human electrophysiology.
Language, Cognition and Neuroscience, 32(7):855–869.





Appendix A

Data Set

Participants
Forty human subjects took part (mean ± standard deviation (SD) age, 27.3 ± 3.2 years; 32

male; 7 left-handed). The experiment was undertaken in accordance with the Declaration of
Helsinki. The Ethics Committees of the Nathan Kline Institute and the school of Psychology
at Trinity College Dublin approved the experimental proceedures and each subject provided
written informed consent. Subjects reported no history of hearing impairment or neurological
disorder. These data have been published previously using a different analysis approach
(Power et al. [23], O’Sullivan et al. [21]).

Stimuli and Procedures
Subjects undertook 30 trials, each of approximately 1 minute in length, where they

were presented with 2 classic works of fiction: one to the left ear, and the other to the
right ear. Each story was read by a different male speaker. Subjects were divided into two
groups of 20 with each group instructed to attend to the story in either the left or right ear
throughout all 30 trials. After each trial, subjects were required to answer between 4 and 6
multiple-choice questions on both stories. Each question had 4 possible answers. We used
a between-subjects design as we wanted each subject to follow just one story to make the
experiment as natural as possible and because we wished to avoid any repeated presentation
of stimuli. For both stories, each trial began where the story ended on the previous trial.
Stimulus amplitudes in each audio stream within each trial were normalised to have the same
root mean squared (RMS) intensity. In order to minimise the possibility of the unattended
stream capturing the subjects’ attention during the silent periods in the attended stream,
silent gaps exceeding 0.5 s were truncated to 0.5 s in duration. Stimuli were presented using
Sennheiser HD650 headphones and Presentation software from Neurobehavioral Systems
(http://www.neurobs.com). Subjects were instructed to maintain visual fixation for the
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duration of each trial on a crosshair centred on the screen, and to minimise eye blinking and
all other motor activities.

Data Acquisition and Preprocessing
Electroencephalography data were recorded for 34 of the subjects (17 of these subjects

attended to the speech on the left and the remaining 17 to the right) using 128 electrode
positions (shown in fig. A.1). Data for the remaining 6 participants were collected using 160
electrode positions (3 of these subjects attended to the left and the remaining 3 to the right).
These data were then remapped to an equivalent 128 electrode positions using an interpolated
spline function. The data were filtered over the range 0-134 Hz and digitised at the rate of
512Hz using a BioSemi Active Two system. Data were referenced tot he average of all scalp
channels.

Figure A.1 EEG electrode layout known as "biosemi layout 128". This was the layout used
to collect the data considered in this study.
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