
Classification of bird syllables in noisy environments using
multitapers

Olof Zetterqvist

1

Abstract

A method for syllable classification of the Great Reed Warbler (Acrocephalus arundinaceus) has been
studied and tested. This method uses multitapers in order to calculate the ambiguity domain and
extracting features. Inspired by this technique four new methods, that build on extracting features
from the ambiguity function using different types of multitaper kernels and noise reduction techniques,
have been developed. These methods use different kinds of kernels and multitapers in order to change
the focus of the method.

A smaller study is made of how the multitaper windows behave with different kernels and how to solve
problems that can occur. The methods are validated in different noise levels on a simulated data set,
where especially difficult cases are simulated, and on real datasets with extra noise added. From this
study, it is found that kernels which retain the cross-terms and suppress the auto-terms are harder to
adjust but may detect smaller differences in the signals. However, these methods lack robustness in
noisy environments. On the other hand, methods that focus on the auto-terms are more noise robust
but cannot detect smaller differences.

In order to make the methods more robust, different noise reduction techniques are created and vali-
dated. these techniques make the methods more robust but will lose accuracy in the classification.

2

Popular Abstract

Klassificering av fågelsång i brusiga miljöer: ett val mellan noggrannhet och robusthet

I många sammanhang är det intressant att klassificera och analysera fågelsång. I detta projekt studeras
olika automatiska klassificeringsmetoder, som lyfter fram olika viktiga aspekter för en klassificering
så som robusthet och noggrannhet. Beroende på förutsättningarna vid inspelningen, samt syftet med
studien, kommer en lämplig sorteringsmetod behöva väljas.

Att studera fågelsång är av många olika aspekter intressant och används ofta för att förstå sig på
fåglars beteende och sociala spel. I analysen studeras det bland annat hur många olika läten de
använder de sig av, hur mycket deras sång påverkas av grannfågeln och om det förekommer dialekter
mellan fåglar inom samma art. Under dessa analyser utför man ofta en sortering och klassificering av
fågelns olika läten för att få en förståelse för hur sången ser ut. Tyvärr finns det idag inga tillräckligt
bra automatiserade metoder för att göra en sådan klassificering. Att utföra ett sådant arbete för
hand innebär mycket arbetstid och resurser, inte minst på grund av att inspelningar ofta är gjorda i
fåglarnas naturliga miljöer, vilket leder till att inspelningarna kommer påverkas av brus av olika slag.
Bruset kan till exempel vara i form av störande vind eller porlande läte från vattenfall eller bäck. Att
utföra och utvärdera en sådan klassificering är därför svårt. Många experter är ofta inte överens om
när två läten bör klassificeras som lika eller olika och hur många olika sorters läten som finns i en
sång. Detta innebär att studiens resultat påverkas av noggrannheten i klassificeringen och kan variera
mycket beroende på vem som gör analysen. För att underlätta analysen studeras i detta projekt
metoder för att göra en automatiserad klassificering av läten i en sång. Detta för att göra processen
snabbare och ge ett mer konsekvent resultat. Studien har utgått från en metod publicerad 2016,
vilken har lagt grunden för ytterligare fyra metoder som utvecklats under arbetets gång. Dessa nya
metoder fokuserar på olika teoretiska principer som ger olika egenskaper vid klassificeringen. Vissa
är konstruerade för att kunna ta hand om störningar i inspelningen och bli mer robusta mot olika
nivåer av brus. Andra är konstruerade för att upptäcka mindre skillnader i signalerna och kunna få
en mer noggrannhet i klassificeringen. Studien visar att dessa nya metoder uppfyller de mål de var
konstruerade för men uppvisar vissa nackdelar. Bland annat påverkas noggrannheten i klassificeringen
mycket av brusreduceringsmetoderna. Metoderna som fokuserar på att hantera brus lyckas inte skilja
mellan mindre skillnader i lätena och kan klassificera två snarlika läten som samma. Dessa metoder
beter sig också sämre för inspelningar med låga brusnivåer och kan ge felaktiga resultat. Metoder
som fokuserar på noggrannhet däremot, påverkas lätt av brus och kan därför bli svåra att använda i
en brusig miljö. Att använda sig av en automatiserad klassificeringsteknik blir därför en avvägning
mellan robusthet och noggrannhet och valet av metod kommer att behöva bestämmas beroende på
sånginspelningen.

3

Contents
1 Introduction 5

2 Description of the data 5
2.1 Detection of a syllable in a song . 6
2.2 Modeling of a syllable . 7

3 Theory 7
3.1 The spectrogram . 8
3.2 The Wigner distribution . 8
3.3 The discrete Wigner distribution . 10
3.4 The ambiguity function . 11
3.5 The impact on noise in the Wigner distribution and the ambiguity domain 12
3.6 The filtered ambiguity function and Wigner distribution 13
3.7 Connection between the filtered Wigner distribution, the spectrogram and the multita-

per method . 14

4 The classification problem 15
4.1 Motivation and calculation of features . 16
4.2 Comparing two sets of features . 16
4.3 The classification . 17
4.4 Silhouette values and determining the number of clusters 18

5 A study of some special kernels and six different methods for feature calculation 19
5.1 Some special and interesting kernels and their corresponding windows 19
5.2 The Hermite kernel method . 22
5.3 The truncated Wigner method . 23
5.4 The principal component method . 23
5.5 The circular kernel method . 24

5.5.1 Some special problems with the circular kernel method and how they are solved 26
5.6 The line kernel method . 26
5.7 Mel-frequency cepstral coefficients method . 27

6 Methods for evaluation 27

7 Results from simulated data 30

8 Results from real data 32

9 Discussion 35
9.1 Results from simulated data . 35
9.2 Results from real data. 37

10 Conclusions 37

11 Further investigations and improvements 38

12 References 39

4

1 Introduction

Analyzing and classifying different bird songs have many great applications and is an area that is
constantly developing. Not only because of the similar behaviour to human languages but also to
analyzing bird behaviour. Many birds use their song in order to find a partner and as a competitive
tool to advertise themselves to the other sex. Here it is not the size of the repertoire or the complexity
of the song that put the bird in advantage but instead the ability to learn new phrases (Kroodsma
2017). Not only do the birds learn new phrases from year to year to expand their repertoire (Wegrzyn
2010) but also, as in the case of humans, have dialects that vary from habitat to habitat (Wayne 2017).

It is often interesting to compare different syllables in the song. In the case of comparing repertoire
size, meaning the number of different syllables existing in the song, each syllable in a song is classified
and the number of classes is counted. In order to describe and analyze the variations between bird
songs you need to have a large data set. The analyzes of these sets are often made by hand which is
very time consuming.

A natural approach is to develop methods were the classifications are made automatically. Many
different methods have been proposed, all of them have advantages as well as disadvantages. Methods
using neural networks have been showing many promising results when it comes to classification.
However, these methods require a large amount of data in order to train. Since this is not accessible,
neural networks are not an option in this thesis. Other approaches have been to use the features
evaluated from the spectrogram, to use dynamic time warping and a random forest distance between
spectrogram features (Keen et al. 2014).

When doing these type of analyzes, experts in biology disagree on how to separate between two similar
syllable classes and how large the repertoire size is. Are two syllables the same if they are identical
except one of them phrases the ending down and the other phrases the ending up? This makes it hard
to do a general automatic method and do an evaluation on real data.

The goal of this thesis is to proceed to work on the method described in Grosse Ruse et al. (2016)
and make the method more noise robust. This method makes use of the ambiguity function and the
singular value decomposition (SVD) in order to extract features for each syllable. In this thesis, four
new methods, which are variations on the original one, are developed with the goal to be accurate in
the classification and be more robust to noise. We will see how well these methods are able to separate
between signals with very small differences and determine how sensitive they are in their classification.
In order to have a method as a reference we compare these to a method based on mel-frequency cepstral
coefficients which is the most commonly used in voice recognition today.

This thesis is organized as follows: In section 2, the used data sets, simulated as well as real, are
presented. In section 3, we present the theory and define the spectrogram, Wigner distribution and
the ambiguity domain. In section 5, we will introduce six different classification methods based on
these domains. In Sections 7-8 the results are presented. We finish the thesis with a discussion and
conclusion.

2 Description of the data

In this master thesis, I have studied recordings between year 1989 and 1991 from the Great Reed
Warbler (GRW). Since these birds thrive near lakes the recordings are done from a canoe approximately
five to six meters away from the bird. In figure 1 a) we can see a song from one of these recordings.
When analyzing the bird song we will separate it into different phrases and syllables that will define
the song. A phrase is a shorter part of the song that consists of a few sound and are separated by
longer silent parts in the song. Each of these phrases consists of a series of syllables which will define

5

the phrase. A typical syllable from the GRW is seen in figure 1 b). The important components in this
syllable are the larger peaks that will define the sound of the syllable. The different syllables from the
GRW can mainly be separated into two different sounds, whistles and rattles (Wegrzyn 2010). The
whistles are often shorter and consist of few components while the rattles are often longer. However,
the song consists of many different types of whistle and rattle sounds that we want to be able to
separate. In this thesis, I have used the dataset used in Grosse Ruse et al. (2016) where the data
already was separated into syllables.

(a) Whole song. (b) One syllable in the song.

Figure 1: A typical song from the GRW.

2.1 Detection of a syllable in a song

To detect a syllable in a song we use a method described in Grosse Ruse et al. (2016) where the
authors used two mean value filters Pshort and Plong where Pshort is of length corresponding to 90 ms
and Plong corresponding to 360 ms. The syllable detection is done by solving

Pshort(t) ∗ (x(t)2) > Plong(t) ∗ (x(t)2) + (1− lsens(t)

100
)max(Plong(t) ∗ (x(t)2)) (1)

where x is the signal where we want to detect the syllables, ∗ is the convolution and lsens is a variable
which determine the sensitivity of the algorithm. In figure 2, we can see an illustration of the algorithm
where we see x(t)2 together with the signal filtered with the corresponding filters. The detection occurs
when the red line is higher than the yellow.

6

Figure 2: An illustration of the syllable detection algorithm where we see the signal squared (blue line)
and its convolution with the short filter (red line) and the long filter (yellow line). The part where the
red line is over the yellow will be considered as a syllable.

The choice of lsens could be very hard since it will be a balance between precision and robustness. By
increasing lsens the method will be able to detect syllables with a lower amplitude, since the yellow
line in figure 2 will be lower, but it will also be more sensitive to noise. This will be a choice that
depends on the signal and its noise level.

2.2 Modeling of a syllable

In order to validate different classification methods and see how they will behave for different inputs,
we will use simulated syllables that are similar to real data. As seen in figure 1 b), a syllable is often a
nonstationary signal meaning that the mean value and standard deviation change over time. It’s also
noticeable that a syllable consists of a few peaks, in this case three, all containing different frequencies.
To simulate this behavior we use simulated signals of the form

x(t) =

N∑
k=1

Ake
− (t−tk)2

αk sin(2πfkt+ θk) (2)

where N is the number of pulses in the syllable, Ak the amplitude of the pulse k, tk the location,
αk a variable that defines the width of the pulse, fk the frequency and θk the phase. θk is often
considered as a random variable that is uniformly distributed between −π and π. Since our Gaussian

function e
− (t−tk)2

αk decreases fast when t goes to ±∞ the width of a pulse is easily determined with
the parameter αk. When simulating a larger set of syllables of the same type we also shift the peaks
location and frequency in each syllable in order to get a more realistic representation of a real syllable
set.

3 Theory

In order to analyze a syllable, we mainly use three different concepts: the spectrogram, the Wigner
distribution and the ambiguity function. All these have strong connections to each other and will have
a big impact in our analyzes. In this section, we will go through these concepts and how they behave
in noise. The theory in this section (except section 3.5) could be found in Sandsten (2018).

7

3.1 The spectrogram

The spectrogram of a signal x is defined as

X(t, f) =

∣∣∣∣∫ ∞
−∞

x(s)h∗(s− t)e−i2πfsds
∣∣∣∣2 (3)

where h is a window function with compact support. Because of this, the spectrogram will be able
to tell us how the spectral content in the signal x changes over time since it is basically a Fourier
transform of a short part of the signal centered around a timepint t. The length of the window will
determine how the spectrogram will behave since it limits the integral to include the part that is local
to the time point t. In figure 3, we can see the spectrogram of a Gaussian pulse with a normalized
frequency 0.3. As we can see, we get a pulse at the corresponding frequency. The behaviour of the
spectrogram will not only depend on the length of the window h but also it shape. The shape of our
window will determine what parts and relations in our signal that will be dominant. We will later
study how to determine which windows to use for a specific application.

Figure 3: The spectrogram of a Gaussian pulse with a normalized frequency f1 = 0.3, at time point
t1 = 0.612 with α1 = 30.

3.2 The Wigner distribution

In order to analyze a signal we could use the Wigner distribution (WD). The Wigner distribution of
a continuous time signal is defined as

W (t, f) =

∫ ∞
−∞

x(t+
τ

2
)x∗(t− τ

2
)e−2iπfτdτ (4)

where x is the signal and ∗ is the complex conjugate operator. Here, we can note that this is the same
as the Fourier transform of the function

r(t, τ) = x(t+
τ

2
)x∗(t− τ

2
) (5)

8

also known as the instantaneous autocorrelation function (IAF). Note that due to the symmetry in this
expression, a time shift in the signal will cause the same time shift to the instantaneous autocorrelation
and therefore also to the Wigner distribution. Notice also that if we study the conjugate of the Wigner
distribution and use the variable change τ = −τ we can find

W ∗x (t, f) = (
∫∞
−∞ x(t+ τ

2)x∗(t− τ
2)e−2iπfτdτ)∗ =

∫∞
−∞ x∗(t+ τ

2)x(t− τ
2)e2iπfτdτ =∫∞

−∞ x(t+ τ
2)x∗(t− τ

2)e−2iπfτdτ = Wx(t, f)
(6)

which indicates that the Wigner distribution is real valued. In figure 4, we can see the the Wigner
distribution of a signal consisting of a single Gaussian pulse with normalized frequency 0.3. By com-
paring this to the spectrogram of the same pulse in figure 3, its noticeable that the Wigner distribution
has a better concentration than the spectrogram which makes the Wigner distribution easier to use
when analyzing the signal.

Figure 4: The Wigner distribution of a pulse with a normalized frequency of f1 = 0.3, at time point
t1 = 0.612 with α1 = 30.

However, the Wigner distribution has a few disadvantages that spectrogram does not have. We will
now study what happens when we use the Wigner distribution on a signal consisting of two components
x(t) = x1(t) + x2(t). The Wigner distribution becomes

Wx(t, f) =
∫∞
∞ x(t+ τ

2)x∗(t− τ
2)e−2iπfτdτ =∫∞

∞ (x1(t+ τ
2) + x2(t+ τ

2))(x∗1(t− τ
2) + x∗2(t− τ

2)e−2iπfτdτ =∫∞
∞ (x1(t+ τ

2)x∗1(t− τ
2) + x1(t+ τ

2)x∗2(t− τ
2) + x2(t+ τ

2)x∗1(t− τ
2) + x2(t+ τ

2)x∗2(t− τ
2))e−2iπfτdτ =

Wx1 +Wx2 +
∫∞
∞ (x1(t+ τ

2)x∗2(t− τ
2) + x2(t+ τ

2)x∗1(t− τ
2))e−2iπfτdτ

(7)

9

As we can see it shows up two terms Wx1
and Wx2

that are the same as the Wigner distribution of
each component. These are called the auto-terms. It also occurs a part that consists of the interaction
between the two parts of the signal. This part is called the cross-term and will be located midway
between the two auto-terms in the Wigner distribution. In figure 5, we can see the Wigner distribution
of a signal consisting of two Gaussian pulses with the normalized frequencies 0.3 and 0.2 at time points
0.7 and 0.1. As expected, it occurs a cross-term between the auto-terms that will interfere with our
interpretation of the signal. Notice the oscillation in the cross-term. Since the cross-term does not have
the same quadratic behavior as the auto-terms, the cross-term will have a lower amplitude. Cross-
terms will occur between all combinations of auto-terms. We will later look at methods filtering out
the cross-terms and auto-terms of the signal.

Figure 5: The Wigner distribution of two Gaussian pulses with a normalized frequency of 0.3 and 0.2.
As we can see there occur a cross-term between the two pulses.

3.3 The discrete Wigner distribution

When looking at a discrete signal, the Wigner distribution is defined as

W (n, l) = 2

min(n,N−1−n)∑
m=min(n,N−1−n)

x(n+m)x∗(n−m)e−2iπm
l
L (8)

where N is the number of samples in the signal x and L is the number of frequency points. This
definition will have the same properties as the continuous one in terms of cross-terms and time shift.
But due to the symmetry of our expression and the discrete Fourier transform it will occur repetition
of our signal in the frequency domain and as long we look at a real signal we will also see negative
frequencies corresponding to the positive ones. This will lead to aliasing around f = 0.25.

To come around this problem, we will transform our signal to be able to remove the negative part of
the spectrum of x. This is done with the Hilbert transform

z = x+ iH(x) (9)

10

where

H(x) = F−1(−isign(f)F(x)) (10)

Here, F is the Fourier transform and F−1 the inverse Fourier transform. This transformation of the
signal x will remove the negative frequencies that will result in aliasing.

3.4 The ambiguity function

The ambiguity function (AMF) is defined as

Ax(ν, τ) =

∫ ∞
−∞

x(t+
τ

2
)x∗(t− τ

2
)e−2iπνtdt =

∫ ∞
−∞

rx(t, τ)e−2iπνtdt (11)

where rx(t, τ) is the IAF function of the signal x. By knowing the Wigner distribution, we can calculate
the ambiguity function by

Ax(ν, τ) =

∫ ∞
−∞

∫ ∞
−∞

Wx(t, f)e−2iπtν+2iπfτdtdf (12)

The ambiguity function has some really nice properties that are useful when analyzing a signal. The
first one is that when shifting the signal in time the absolute value of the ambiguity domain will
stay the same. This is shown by calculating the ambiguity for x(t − t0) and use the variable change
t1 = t− t0. Since the integration limits is from −∞ to ∞, the integral will stay the same.

|Ax(t−t0,f)(ν, τ)| = |
∫ ∞
−∞

rx(t− t0, τ)e−2iπνtdt| = |
∫ ∞
−∞

rx(t1, τ)e−2iπνt1dt1| = |Ax(t, f)(ν, τ)| (13)

When shifting the signals frequencies only the argument of the ambiguity will change leaving the
amplitude the same. This means that the amplitude of the ambiguity function will stay the same for
a signal independently where it is located and in which frequency band its in. The amplitude of the
ambiguity function will only change if the relations in the signal changes.

For a signal with a single component, the signal will always be centered at ν = 0, τ = 0. In fact when
analyzing a multicomponent signal we will see that the auto-terms will be located at origin while the
cross-terms will be located away from the center. For two Gaussian components at time points t1 and
t2 with frequencies f1 and f2, the cross-terms will be located at ν1 = f2− f1,ν2 = f1− f2, τ1 = t2− t1
and τ2 = t1 − t2.

In figure 6, we can see the ambiguity function for a signal with components at time points t1 = −100
and t2 = 200 with frequencies f1 = 0.3 and f2 = 0.2. We get a large component in the middle and two
smaller away from the middle. These are corresponding to the cross-terms. These cross-terms will as
expected be located at ν = f1 − f2 and ν = f2 − f1 and at τ = t1 − t2 and τ = t2 − t1.

11

Figure 6: The ambiguity function of a signal with pulses at frequencies ,0.3 and 0.2 and at time points
−100 and 200.

3.5 The impact on noise in the Wigner distribution and the ambiguity
domain

This section will study how the Wigner distribution and the ambiguity domain will behave with noise.
The theory of this subsection could be found in Stankovic (2002).

In order to see how noise impacts the different domains, we model a signal and noise as

y(t) = x(t) + e(t) (14)

where x is the original signal, e is the noise, which in this case is considered white, and y is the measured
signal. In (Stancovic 2002) they discuss this more in detail by first calculating the IAF function

ry(t, τ) = y(t+ τ
2)y∗(t− τ

2) = [x(t+ τ
2) + e(t+ τ

2)][x∗(t− τ
2) + e∗(t− τ

2)]

= rx(t, τ) + re(t, τ) + x(t+ τ
2)e∗(t− τ

2) + x∗(t− τ
2)e(t+ τ

2)
(15)

Here we see that the IAF is a sum of the IAF of x, e and the cross-term between them. Since x is a
deterministic signal, the variance of ry(t, τ) will consist of two parts, i.e.,

V [ry(t, τ)] = σ2
ee + σ2

xe (16)

where σ2
ee is the variance caused by the noise and σ2

xe is the variance caused by the interaction between
the signal and the noise. This can be interpreted as that the variance increases where the IAF of the
original signal is large.

Since the noise and the signal are uncorrelated, the expected value will be

E[rX̂(t, τ)] = rX(t, τ) + re(t, τ) (17)

For white noise re(t, τ) becomes σ2
eδ(τ). This means that the expected value of the IAF of the total

signal will be as the IAF for the original signal except for τ = 0.

If we now look at the Wigner distribution, see equation (4), the expected value is

12

E[
∫∞
−∞ y(t+ τ

2)y∗(t− τ
2)e−2iπfτdτ] =

∫∞
−∞E[y(t+ τ

2)y∗(t− τ
2)]e−2iπfτdτ

=
∫∞
−∞ rx(t, τ)e−2iπfτ + σ2

eδ(τ)dτ = Wx(t, f) + σ2
e

(18)

Here, we see that the noise will be spread out equally everywhere in the domain. In practice it is
not possible to store signals of infinite length which will make our calculations hard at the edges. To
come around this, we zeropad, extending the signal with zeros, causing the IAF to exhibit a decreasing
behaviour at the edges.

Since the variance of the IAF will be larger where the original signal has its components, the same
behaviour will occur in the Wigner distribution.

We now look at the ambiguity domain. The expected value of Ay will be

E[
∫∞
−∞ y(t+ τ

2)y∗(t− τ
2)e−2iπνtdt] =

∫∞
−∞E[y(t+ τ

2)y∗(t− τ
2)]e−2iπνtdt

=
∫∞
−∞(rx(t, τ) + σ2

eδ(τ))e−2iπνtdt = Ax(ν, τ) + σ2
eδ(ν)δ(τ)

(19)

Here, we see that the main part of the noise will be located at the origin in the ambiguity domain.

In figure 7, we can compare the ambiguity domain and the Wigner distribution of a signal with and
without noise. As expected there is a large peak added in the ambiguity domain at origin due to noise.
We can also see some disturbances in the rest of the domain but not as large as at the origin. Notice
also that although we have a noise with a quite high variance it is still quite clear where the peaks
from the original signal are. When we do the same comparison with the Wigner distribution we see
that the noise is located everywhere and that we still can see the components of the signal quite well.

Figure 7: An illustration of how the noise in a signal will be located in the Wigner distribution and in
the ambiguity domain. This is calculated on a signal where t1 = 512, t2 = 712, f1 = 0.3, f2 = 0.2 and
α1 = α2 = 40. In the figures to the right we see the same signal but with noise added.

3.6 The filtered ambiguity function and Wigner distribution

We have seen that the cross-terms will be allocated away from the auto-terms in the ambiguity domain
and we know that the auto-terms will be located at the origin. This makes us believe that we could
also construct some sort of filter to separate out the different parts of the ambiguity function and
hopefully get rid of noise.

13

The filtered ambiguity function (FAMF) is defined as

AQx (ν, τ) = Q(ν, τ)Ax(ν, τ) (20)

where Q is a kernel function of ν and τ that suppresses selected parts of the ambiguity function.
The most common approach is to construct a kernel that suppresses the cross-terms and leaves the
auto-terms untouched. This could also be done directly in the Wigner distribution. By calculating the
Wigner distribution from the filtered ambiguity function we could see how this is done. The filtered
Wigner distribution (FWD) will be

WQ
x (t, f) =

∫∞
−∞

∫∞
−∞Ax(ν, τ)Q(ν, τ)e2iπνt−2iπτfdνdτ = Wx(t, f) ∗ ∗q(t, f) (21)

where

q(t, f) =

∫ ∞
−∞

∫ ∞
−∞

Q(ν, τ)e2iπνt−2iπτfdνdτ (22)

and ∗∗ is a double convolution in the two variables. This mean that one can always translate the
filter between the ambiguity, Wigner distribution and autocorrelation domains without losing any
information.

3.7 Connection between the filtered Wigner distribution, the spectrogram
and the multitaper method

In the definition of the filtered Wigner distribution Eq (21) we can see a clear quadratic behavior.
This suggest the possibility of a connection between the Wigner distribution and the spectrogram and
that this connection will tell us something about how to determine the windows in the spectrogram.
The filtered Wigner distribution can be expressed as

WQ
x (t, f) =

∫ ∞
−∞

∫ ∞
−∞

x(u+
τ

2
)x∗(u− τ

2
)ρ(t− u, τ)e−2iπfτdudτ (23)

where ρ is the filter in the instantaneous auto-correlation domain. By using the variable change
u = t1+t2

2 and τ = t1 − t2, one obtains

WQ
x (t1 + t2, f) =

∫∞
−∞

∫∞
−∞ x(t1)x∗(t2)ρ(t− t1+t2

2 , t1 − t2)e−2iπf(t1−t2)dt1dt2 =∫∞
−∞

∫∞
−∞ x(t1)x∗(t2)ρrot(t− t1, t2)e−2iπf(t1−t2)dt1dt2

(24)

.

In the last step, we have introduced a new kernel

ρrot(t1, t2) = ρ(
t1 + t2

2
, t1 − t2) (25)

.

This corresponds to a scaling and a rotation of our original kernel ρ. If we now compare this to the
spectrogram

14

Sx(t, f) = |
∫∞
−∞ x(t1)h∗(t1 − t)e−i2πft1dt1|2 =

(
∫∞
−∞ x(t1)h∗(t1 − t)e−i2πft1dt1)(

∫∞
−∞ x(t2)h∗(t2 − t)e−i2πft2dt2)∗ =∫∞

−∞
∫∞
−∞ x(t1)x∗(t2)h∗(t1 − t)h(t2 − t)ei2πft2e−i2πft1dt1dt2

(26)

we can see that the expression for the spectrogram and the filtered Wigner distribution is similar and
will become identical if we find a window that fulfills

h∗(t1)h(t2) = ρrot(t1, t2) (27)

For a kernel ρrot that’s symmetric, i.e., ρrot(t1, t2) = ρrot(t2, t1)∗, the window h can be calculated
by solving the eigenvalue problem

∫∞
−∞ ρrot(t1, t2)u(t1)dt1 = λu(t2). Since ρrot is assumed to be

symmetric, the vector set uk will fulfill

∞∑
k=1

λku
∗
k(t1)uk(t2) = ρrot(t1, t2) (28)

where λk is the eigenvalues of ρrot and uk the eigenfunctions. We can then rewrite the Wigner
distribution as

WQ
x (t, f) =

∑∞
k=1 λK

∫∞
−∞

∫∞
−∞ x(t1)x∗(t2)u∗k(t1 − t)uk(t2 − t)e2iπft2e−2iπft1dt1dt2

=
∑∞
k=1 λk|

∫∞
−∞ x(t1)uk(t1 − t)e−2iπft1dt1|2

(29)

This means that the filtered Wigner distribution can be calculated by a summation over the spec-
trograms with different windows and weights. This method is often called the multitaper method
where the windows uk is called the multitapers (MT). In theory, this means that to achieve the correct
Wigner kernel we need an infinite number of windows in our spectrograms which in practise is not
possible. Instead we use a finite number of windows and select a number that will correspond to a
good approximation of our desired kernel. The number of windows will depend on the shape of the
kernel and the length of the windows.

In comparison to calculating the ambiguity domain and apply a desired kernel, the multitaper method
will not get the same resolution and effect. Anyhow the multitaper method has another big advantage
and that is speed. In order to calculate the Wigner distribution we first need to calculate the IAF
which could be quite expensive and then use the FFT in order to get the Wigner distribution. The
multitaper method is often very fast since its based on the spectrogram which is very fast. Later on
we will study how the number of windows and the length of them will affect our final kernel.

4 The classification problem

In order to classify the syllables we calculate features for each syllable and use these features to compare
and compute some sort of distance between each syllable. In this section, we will go through calculation

15

of features, distance measures between features, classification and determining how many classes we
could find.

4.1 Motivation and calculation of features

When comparing two different syllables to each other its important that the algorithm is robust to
different aspects. The first one is that even if we have some small shifts of the signal in the time and
frequency direction we still want to classify the syllable as the same. Since the algorithm described in
chapter 2.1 sometimes will detect a syllable with some time shifts, especially in a noisy environment,
its important that the methods do not depend on these irregularities. The same holds for shifts in
their frequencies. Different birds might not be able to have the same range in their tone register and
might sing the same thing but in a different key. In order to detect this it’s important that our features
do not depend on these shifts.

As we have seen before the amplitude of the ambiguity domain is invariant to time and frequency
shifts. This domain is also quite noise robust since the largest part is the noise will be concentrated at
the origin. If we compare this to the spectrogram or the Wigner distribution they do not fulfill either
of these conditions. This makes us believe that the ambiguity domain is a good representation of our
syllables.

In order to be able to compare different signals with as little impact from noise as possible we use the
singular value decomposition (SVD) to calculate our features. From the singular value decomposition
of a matrix X we get the matrices U, S and V so X = USV T where U and V is unitary matrices
and S is a diagonal matrix with positive elements sorted in decreasing order. The U matrix in this
decomposition will form an unitary basis spanning the columns of X sorted after impact on X and the
V matrix will form a unitary basis spanning the rows of X. Since these vectors is sorted by impact
on X the vectors with lots of information will be placed in the first columns of U and V . The noise
which is assumed to be white does not have any structure and will be spread out on all vectors. By
only using the first n vectors from U and V as features we will hopefully get features that is quite
noise robust and invariant to time and frequency shifts. We can also conclude that by not including
the S matrix in our features our method will be amplitude invariant.

In figure 8, we can see the ambiguity domain of a signal with three components at frequencies 0.2, 0.2
and 0.1 at time points 300, 0 and −100 and the first three vectors from the U and V matrices. Notice
that when varying τ the ambiguity spectrum has three positions where there are peaks corresponding
to the three peaks represented in the U vectors. When varying ν, we instead have five positions where
we find peaks. This we see in the vectors from the V matrix. We can also see that the peaks will not
be represented in one vector but spread out to many different ones. This will lead to a consideration of
how many vectors to use as features since we want a good representation over the ambiguity domain
without including too much noise.

When studying very noisy signals the order of the vectors in the U and V matrix can sometime vary
if the singular values are close to each other. This could have a large impact on our methods since
we do not include all vectors and need to find the "same" vectors in all signals in order to compare
them. In our application, these shifts tend not to happen for the first vector but is more common for
the other ones, giving us no reason to worry if we only use one vector as a feature.

4.2 Comparing two sets of features

When comparing the features from two different syllables we need a measure of the distance between
the features, a so called metric. In Grosse Ruse et al. (2016), the authors use only one feature vector
from the U and V matrix and compare two different sets of features using the metric

16

Figure 8: a) The ambiguity domain of a signal with three components at frequencies 0, 2, 0, 2 and 0, 1
at time points 300, 0 and −100. (b) The first three columns from the U matrix. (c) The first three
columns from the V matrix.

d(u1, u2, v1, v2) = 1−min(|u1|T |u2|, |v1|T |v2|) (30)

where | · | is the elementwise absolute value, u1 and v1 is the first vectors from the U1 = U and V1 = V
matrices for syllable one and u2 and v2 is the first vectors from the U2 = U and V2 = V matrices for
syllable two. We call this metric the cosine metric. Since U and V from the SVD are unitary matrices,
d(u1, u2, v1, v2) will always be between zero and one. Since the u vector only tell about relationships
in the τ direction in the ambiguity domain, this will not change if something will change in the ν
direction. That’s why its important to include both u and v. To use more than one feature vector
from U and V , we propose a similar way to measure the distance

d(U1n, U2n, V1n, V2n) = 1−min
(

2||U1
T
nU2n||

||U1n||2 + ||U2n||2
,

2||V1TnV2n||
||V1n||2 + ||V2n||2

)
(31)

where || · || is the spectral matrix norm, U1n, U2n, V1n and V2n are matrices with the first n columns
from the original matrices U1, U2, V1 and V2. Since we work with unitary matrices, meant that
||U1n|| = 1 and ||V1n|| = 1, the metric can be rewritten as

d(U1n, U2n, V1n, V2n) = 1−min(||U1
T
nU2n||, ||V1TnV2n||) (32)

4.3 The classification

The following subsection can be read about in Everitt B. et al. (2011). In order to classify our different
signals into clusters we make use of the linkage method included in the statistics and machine learning
toolbox in Matlab which uses average linked clustering. This is a recursive method who starts with
each element as its own cluster and then recursively merges the two clusters with shortest distance
together into one. The distance between two clusters is measured as the average distance between
all combinations of elements in the two sets. In figure 9, we can see a dendrogram with over 300
elements. The dendrogram shows us how each element has been merged together into different classes.
At the bottom of the tree, we see each element as its own cluster and the further up we go in the tree
the elements get merged together constructing a cluster. The number of clusters produced from our

17

method will depend on where we "cut" the tree. In this case, cutting the tree at 0.025 will cut through
four branches giving us four clusters. The same reasoning will give us two clusters if we cut the tree
at 0.04.

Figure 9: Dendrogram over a set of 300 elements. The dendrogram shows us how the elements has
been merged together to construct the different clusters. In order to get a classification we cut the
dendrogram at a given height. The clusters is then given by the subtrees created by the cut.

The compactness of a tree, meaning how separated each merge point is between each other, tells us a
lot of how well our method is working and how hard it is to classify into different classes. In the case
of figure 9 we can see that to construct two clusters we can cut the tree within a large interval and
still get the same result. These two clusters is then quite well separated. If we instead construct four
clusters the cut interval is significantly smaller meaning that the clusters are not as well separated.
This will have a large impact on determine the number of clusters in our dataset.

4.4 Silhouette values and determining the number of clusters

In order to determining the number of clusters present in a dataset we make use of something called
the silhouette value. The silhouette value is calculated for each element i and is defined as

S(i) =
mink(dother cluster(i, k))− down cluster(i)

max(mink[dother cluster(i, k)] , down cluster)
(33)

where dother cluster(i, k) is the average distance between element i and element k in another cluster and
down cluster(i) is the average distance between element i and the other elements in the same cluster.
The silhouette value is always between −1 and 1 and is a measure of how well the element fits in its
own cluster. A silhouette value close to one will mean than the element is correctly classified and a
value close to minus one means that the element is classified into the wrong class.

We can now get a measure of how the classification performs by calculating the average of each
elements silhouette value. If a classification problem should be treated as a successful classification,
each element should have a high silhouette value leading to a high average. By varying the number of
clusters, meaning cutting the dendrogram tree at different levels, we could see how the score for each
classification behaves. The number of clusters in the dataset is set to the number giving the best score.

Note that this method will encounter some problems when trying to check the silhouette score for a
large number of clusters. When we use the same number of clusters as elements the distance between

18

an element and its own class will be set to zero giving its silhouette value to one. This means that the
total score for that classification also will be set to one. In order to get around this problem we make
the assumption that the number of clusters is significantly smaller than the number of syllables.

5 A study of some special kernels and six different methods for
feature calculation

In this section, we will go through some interesting kernels and their behaviour. Inspired from this
study, six different methods for feature extraction and noise reduction are designed. The first five
methods are all built on calculating the filtered ambiguity function using multitapers with different
windows and then extracting features using the SVD.

5.1 Some special and interesting kernels and their corresponding windows

One common approach when analyzing a signal is to try get rid of the cross-terms and only look at
the auto-terms. This could be done with a filter of the form

Θ(ν, τ) = e−
(ν2+τ2)

α (34)

where α is a scaling parameter that determines how wide the kernel will be. In the top image in
figure 10, we can see the Wigner distribution of a signal with frequencies 0.1 , 0.2 and 0.4 at time
points 321, 821 and 521. Notice the cross-terms located between every combination of the auto-terms.
In the lower image we have calculated the corresponding windows of length 256 and weights to the
kernel above and used the first eight windows to calculate the Wigner distribution with the multitapers
method. As expected, the cross-terms reduced and only the auto-terms remain. However, the auto-
terms are smoothed. This can be explained by the numbers of windows. Since we use a window length
of 256 samples we need the same amount of windows in order to get a correct representation of our
kernel. Instead we only used eight windows which will correspond to an approximation of our desired
kernel.

Figure 10: In the upper image we see the Wigner distribution of a simulated signal with three Gaussian
components with frequencies 0.1, 0.2 and 0.4 at time points 321, 821 and 521, respectively. In the
lower image, we see the same signal but filtered with 8 windows of length 256 samples corresponding
to a Gaussian kernel in the ambiguity domain.

19

In figure 11, we can see the corresponding kernel for eight windows and for all 256. As expected, the
kernels are very different from each other. By using only eight windows, the kernel will get smaller and
we can also see some oscillation in the kernel. This gives us the smoothing we saw earlier. However,
the kernel will still remove cross-terms since the kernel is only located at the origin.

(a) (b)

Figure 11: a) The Gaussian kernel with α = 0.16 when represented with the first eight windows from
the multitaper method. b) The original Gaussian kernel with α = 0.16.

In figure 12, we see the first four windows from the Gaussian kernel. They seem to be close to sinusoidal
functions of different order.

Figure 12: The first four windows from the Gaussian kernel.

If we now instead look at a kernel that suppresses the auto-terms and retain the cross-terms it could
look like

Θ(ν, τ) = e−
(
√
ν2+τ2−R)

α (35)

20

which will reach its maximum at a distance R away from the origin and is approximately zero at
the origin. This kernel will suppress the auto-terms and keep the cross-terms at the distance R. In
figure 13, we can see how this kernel performs when we represent it with 30 or all 256 windows. Here
we see that when scaling down the kernel to 30 windows we will get a quite different result. We find
large oscillations in the "hole" in the middle which will interfere with our auto-terms and not suppress
them as we expect. We can also see that the width of the circle changes, giving a better resolution for
the ν variable. This means that in order to get a good approximation of our kernel and get rid of the
auto-terms, we need a lot of windows which will make it a consideration if multitapers is worth the
effort.

(a) (b)

Figure 13: a) The representation of the circular kernel when using the first 30 multitaper windows
when α = 0.16 and R = 0.6. b) The representation of the circular kernel when using all 256 multitaper
windows when α = 0.16 and R = 0.6.

In figure 14, we can see the first four windows of the circular kernel. Unlike the windows for the
Gaussian windows, these are not centered around the middle but consists of two sinusoidal functions.
However, this is since the windows want to measure the interplay between signal components. This
way when the windows is centred between two auto-terms the sinusoids will align with those terms
and detect the crossterm. Windows of this kernel tend to come in pairs. In figure 14, the red and the
blue windows are the same on the left part and shifted to the right. The same behaviour is for the
yellow and the purple windows.

21

Figure 14: The first four windows of a circular kernel.

Notice that when using a circular kernel its important to have a suitable radius. Since the length of
the sinusoids in the windows is determined by the radius and that the windows only detect cross-terms
between auto-terms with a corresponding distance between each other.

5.2 The Hermite kernel method

The first method we call the Hermite kernel method (HKM) and is the one described and used in
Grosse Ruse et al. (2016). It makes use of the Hermite functions defined as

hn(x) =
(−1)ne

x2

2
dn

dxn (e−x
2

)

2nn!
√
π

(36)

and uses them as windows in the MT method with weights one. In figure 15, we can see the first eight
Hermite functions and the corresponding kernel these windows produce. As seen this kernel is centered
at the origin meaning that it focus on the auto-terms. Earlier we saw that white noise in a signal will
be spread out over the AMF and give us a large peak at the origin. The goal with this kernel is to
remove the noise away from the origin and keep as much from the auto-terms as possible. The size of
the kernel is determined by the number of windows used. By increasing the number of windows, the
resulting kernel gets more narrow and smaller. In this thesis, the number of windows for the HKM is
set to eight.

22

(a)
(b)

Figure 15: (a) The first eight Hermite functions. (b) The corresponding kernel for the first eight
Hermite functions with weights one.

After calculated the FAMF we use the SVD of the absolute value in order to get the U and V matrices.
The first column of these matrices are used as features.

5.3 The truncated Wigner method

The idea behind the truncated Wigner method (TWM) is as for the HKM to use the Hermite functions
to filter out noise from the signal and get a FAMF to extract features. The difference is an extra step
in the process that hopefully removes more noise. Similar to the HKM, we use the first eight Hermite
functions as windows for the multitaper method and calculate the WD. We calculate the truncated
Wigner distribution and uses it to calculate the FAMF. The truncated Wigner distribution WT is
defined as

WT (t, f) =

{
W (t, f) if W (t, f) ≥ α

0 if W (t, f) < α
(37)

where W is the WD, and α is a precalculated constant. The parameter α is set to be so that approxi-
mately 95 percent of WD:s amplitude is below α. By removing noise in the Wigner domain its easier
to remove noise that otherwise will be located near the origin in the ambiguity domain.

When calculating the features we use the double Fourier transform of WT to calculate the AMF. We
calculate the SVD and use the first vectors from the U and V matrices as features for the signal.

5.4 The principal component method

The principal component method (PCM) uses the same idea as the TWM and calculates the WD using
the MT method with the Hermite windows and try to reduce noise in the Wigner domain. This is
done with the SVD. Since the U matrix from the SVD spans the columns in WD we can reduce noise
by calculating the U matrix and then project our WD on to the first d columns in U . Since the noise
will typically be spread out on all columns of U the projection on a subset of U will hopefully contain
less noise. The projected Wigner distribution is calculated as

23

Wp = Ud(U
T
d Ud)

−1UTd W = UdU
T
d W (38)

where Ud is a matrix with the first d columns from the U matrix. In this thesis d = 5. In figure 16 a)
we can see the FWD of a signal at frequencies 0.3 and 0.4 at time points 0.3 and 0.7 when using the
first eight Hermite functions as windows. In figure 16 b) we see the same FWD after we have used
the noise reduction method. We see here that the FWD becomes more smooth and that the signal
components are more square than the original one. Since we have reduced the rank of our domain to
five that is a quite reasonable result.

(a) (b)

Figure 16: (a) The FWD of a signal with two simulated components at frequencies 0.3 and 0.4 at time
points 0.3 and 0.7. b) The result after using the noise reduction in PCM using the first 5 columns in
the U matrix.

As in the TWM we use the noise reduced Wigner distribution to calculate the FAMF and then the
first vectors from the U and V matrices of the SVD as features.

5.5 The circular kernel method

The idea behind the circular kernel method (CKM) is inspired from Sandsten (2017) and is not to
study the auto-terms of the signal but instead calculate features based on the cross-terms. In order
to do so we need a kernel that removes the auto-terms and keep the cross-terms in the AMD. This is
done with a kernel defined as

Θ(ν, θ) = e−
(
√
ν2+θ2−R)

α (39)

where R is a constant defining the radius of our kernel and α the width. In this thesis, R is set to 0.45
and α to 1. As discussed before the multitaper method may have some problems with representing a
circular kernel with a reasonable number of windows without including the auto-terms located at the
origin. This problem can be solve in two ways. We either include enough windows so that the kernel
is represented in such a good way that the corresponding kernel will be zero at the origin. We can also
include only a few windows giving us less disturbances at the origin but also a worse representation
of the kernel. Since we do not want a method that is too slow it could be convenient to use as few

24

windows as possible. In figure 17, we can see how the kernel will be represented with the first 20
windows. This representation is not near to represent a circular kernel but since we have assumed
that our signals do not consist of two frequencies at the same time point, we can also assume that
the cross-terms will not be located at the line ν = 0. There is there for no need to represent a kernel
covering that area.

Figure 17: The circular kernel with R = 0.45, α = 1 represented with the first 20 multitapers.

When calculating the feature vectors from the FAMF it is important to be careful. Since our FAMF
consist of at least two separated components it will be hard to represent this with only one vector
from the U and V matrices. In figure 18 we can see the FAMF of a simulated signal with components
at time points 0 and 150 with frequencies 0.1 and 0.2 and how the representation of this FAMF will
look for different number of feature vectors. When using only one feature vector it is not clear due to
symmetry where the components is located. But by including more vectors there is enough information
in order to separate the two cases.

(a) (b) (c)

Figure 18: a) The filtered ambiguity function of a simulated signal at sample components 0 and 150
with frequencies 0.1 and 0.2 using a circular kernel with 20 windows. b) The representation of the
signal with the first vector from the U and the V matrix from the SVD. c) The representation of the
signal with the first two vector from the U and the V matrix from the SVD.

When using the CKM it is important to have a few things in mind. Since the location of the cross-
terms depend on the structure of the signal and can vary much it is hard to find a kernel that covers
the location of all cross-terms. A syllable with three components will for example have six cross-terms
which two corresponds to a difference between component one and two. Two cross-terms corresponding
to component one and three and two cross-terms corresponding to component two and tree. This leads
to a lot to take into account when finding the right parameters for the kernel. When dealing with a
syllable where the components have a large time interval between each other the radius R of the kernel
must be set accordingly in order to include the cross-terms matching that time difference. Since the
spread of the cross-terms of a syllable can be quite large, it is desirable to make the kernels width
larger with a higher α. A larger kernel will however require more multitapers in order to get a good

25

representation of the kernel. Since more windows will make the method slower it is not practical to
try to include all the cross-terms for the syllable. When R and α are set to R = 0.45 and α = 1
the kernel will cover the cross-terms corresponding to a time difference of around 220 samples. This
will hopefully give us the cross-terms corresponding to two syllable parts located next to each other.
Cross-terms between other syllable parts are not included with this kernel.

5.5.1 Some special problems with the circular kernel method and how they are solved

As discussed before, it can occur some problems when including more than one feature vector from U
and V matrices when studying noisy signals due to some shifts in the vector order. In order to solve
this problem and be able to compare the correct vectors to each other, we need to find which vectors
that match. When comparing two signals, we pick out the first N vectors from the first signal. Lets
call these vectors u11,... , u1N , v11,... ,v1N−1 and v1N . We then find the matching vectors from signal
two by solving

[k1, ..., kN] = argmin
ki,ki 6=kj∀i,j

[N −
N∑
i=1

|u1Ti u2ki |+ |v1Ti v2ki |
2

] (40)

where u2k and v2k is the k:th feature vector from the U and V matrices from the second signal and kn
is the index of the vector from signal two that best correspond to the vector n from signal one. With
this method, we will find the best match for our N first features from our first signal. N is often set
to be 2 or 3.

Another problem occurs when calculating the U and V matrices with the SVD. Then the columns
in the U and V matrices are only defined up to sign. This means that when comparing two similar
signals their feature vectors could have changed sign. When this happens it occurs in both the U and
the V matrices. As long as the change occurs in both the U and V they will still represent the same
AMF. However, if a sign change only occurs in either U or V the features will no longer represent the
same signal. This is something that the cosine metric can not separate since it do not care about sign
changes. Instead, we use a metric defined as

d(U1n, V1n, U2n, V2n) = 1−min[
∑N
i=1 |u1

T
i u2ki

|
N ,

∑N
i1
|v1

T
i v2ki

|
N ,

∑N
i=1 |u1

T
i u2ki

v1
T
i v2ki

|
N]

(41)

where ki is the optimized index calculated to find the optimum pair. This function will solve the
problem since a sign change in both u1i and v1i will not change the function value. However, if the
sign change occurs in only u1i or v1i the two first components of the function will stay the same but
the last component will change significantly.

5.6 The line kernel method

The idea behind the line kernel method (LKM) is to get a kernel that only includes a very small part
of the auto-terms located at the origin. This is done with the kernel

Θ(ν, θ) = δ(ν + θ) (42)

where δ is the dirac delta function. With this kernel we will include a small part of the auto-term since
the kernel is one on the line ν + θ = 0 and zero otherwise. A big advantage of using a kernel forming

26

a line this way is that it is easy to represent with few multitaper windows. In figure 19. we can see a
comparison between the original kernel and the one represented with the first multitaper window. As
we can see they are similar which indicates that we only need the first window in our method. Notice
that since our kernel is not represented perfectly the line is wider, which will make it include more of
the signal.

(a) (b)

Figure 19: a) The line kernel. b) The line kernel represented with one multitaper window.

As in the HKM we calculate the filtered ambiguity function but now with our new window and then
use the SVD to calculate our features for our signal. Notice that with this kernel it is possible that
we will include cross-terms lying on the diagonal. But since the auto-term always is larger than the
cross-terms the first vector from the U and V matrices will correspond to the auto-terms. So by using
the first two vector as features the feature will not represent any cross-terms that happened to be
included.

5.7 Mel-frequency cepstral coefficients method

The Mel-frequency cepstral coefficients method (MFCC), which is a method that often is used in speech
recognition, is not based on the ambiguity domain and features from the SVD. MFCC is instead based
on cepstral coefficients of a signal. The cepstral coefficients are briefly calculated the following way.
First, the windowed spectrogram of the signal is calculated. The result is then passed to a mel-spaced
frequenzy bank. The first half of the features are then calculated with the cosine transform. The
second half is then the delta coefficients of the cosine transformed data (Jancovic P. 2011).

The implementation of this method is the same implementation as Grosse Ruse et al. (2016). This
method is included in this project as a reference since it is very popular in similar applications.

6 Methods for evaluation

In order to validate and see how well the methods work as classifiers and how well they take care of
noise we will look at some different factors. This is done applying all methods for classification of a
simulated dataset containing five different classes and with 60 signals in each class. In figure 20, we can
see the spectrogram of a typical signal from each class in our simulated dataset. By including class one
and two, we will simulate how well the methods are able to separate different phrasings. Class three is

27

quite similar to class two but contains a few more small components. Class four and five are supposed
to be quite different from the other classes but contain some similarities. We can for example find the
same frequency leaps in class three and class five that’s similar even if the signal is quite different in
many other ways.

In order to get a more realistic representation of a real bird recording, we shift each signal randomly in
time and frequency so that no signal is identical to another. The same is done with the time variable.
Each signal is produced according to the form

x(t) =

N∑
k=1

Ake
− (t−(tk−∆tk))2

αk sin((2πfk −∆fk)t+ θk) (43)

which is a extension of equation (2). The new variables ∆tk and ∆fk are uniformly distributed random
variables that corresponds to the shifts.

(a) (b) (c)

(d) (e)

Figure 20: Typical spectrograms of the classes in the simulated data set. Each fk, tk, Ak and αk can
be seen in table 1. Class 1 can be seen in image a), class 2 in b), class 3 in c), class 4 in d) and class
5 in e).

Class fk tk Ak αk
1 0.2, 0.1 618, 768 4, 1 30, 20
2 0.2, 0.4 618, 768 4, 1 30, 20
3 0.2, 0.4, 0.35, 0.2 618, 768, 918, 968 4, 2, 1, 1 40, 20, 20, 20
4 0.2, 0.2, 0.3, 0.3 468, 668, 868, 1068 4, 3, 3, 4 20, 30, 30, 20
5 0.4, 0.2, 0.4, 0.2 468, 668, 868, 1068 4, 3, 3, 4 20, 30, 30, 20

Table 1: Table over how each class in the simulated data set is constructed.

By varying the signal to noise ratio (SNR) on the dataset, we are able to see how well our methods
handle noise without breaking apart and how well they can classify the signals into their corresponding

28

class. The SNR is defined as

SNRX = 10 log(

∑N−1
t=0 X(t)2

Nσ2
e

) (44)

where N is the number of samples in the signal and σ2
e is the variance of the noise. The SNR is a

measure of how much noise we can find in the signal. When studying real bird recordings the main
noise source is often caused by wind which can be assumed to behave as white noise. Because of this
we will limit our investigations to see how our methods work when handling white noise. The results
is demonstrated in two ways. The first one is to study the dendrogram each method produces and see
how they change with SNR. By study how the branches in the dendrogram tree changes with SNR
we will get a feeling of how much the methods are affected by noise and how likely the method will
classify into a fix number of classes.

Another way to illustrate our results for our methods is to let them classify our simulated data set and
see which classes that are confused with each other for different SNRs. This is interesting in two cases.
The first one is when we tell the methods the correct number of classes in the set. The second one is
when the methods themselves determine the number of classes with help of the silhouette values.

In order to see how well the methods work on real recordings from the GRW, we validate them on
two different datasets. In order to get a ground truth the signals are first classified by hand. The first
dataset contains two classes that are very different from each other. In figure 21, we can see one signal
from each class. The first class is a so-called whistle sound and contains only a few peaks. The second
class is a so-called rattle sound and contains a lot more components than the first class does.

(a) (b)

Figure 21: A typical syllable from each class in the first real dataset. In the top left image we see a plot
of a typical signal from the first class and to the bottom right the see the corresponding spectrogram.
The images to the right show the corresponding images for a typical signal from class two.

The second real dataset contains of three classes seen in figure 22. These are all rattle sounds and
consist of quite a few components.

29

(a) (b) (c)

Figure 22: A typical syllable from each class in the second real dataset.

In both datasets, we will vary the SNR level between −10 and 10 and see how each method is able
to classify these signals into their corresponding class. Since in practice we do not know how many
classes there is in a recording we let the methods determine the number of classes themselves with the
silhouette values. In this way, we get a feeling of how trustworthy the methods are.

When determine the SNR of a signal from real recordings, the original signal is treated as noise free
when no extra noise is added. This is of course not a realistic assumption since there will always be
noise in the recording from wind and other sources. These noise levels are however quite low and hard
to remove so for simplicity we do not take them into account.

7 Results from simulated data

In figure 23, we see how the branches of the dendrograms changes with SNR. We have picked the
branches that separates our dataset into 3, 4, 5 and 6 classes.

Figure 23: Plot of how the height of the branches in the dendrogram changes with SNR. Each curve
shows where to cut the dendrogram in order to get a fix number of classes in different SNR. This in
done with 3, 4, 5 and 6 classes. In a) we see the results for the HKM; b), TWM; c), PCM; d), CKM
with two feature vectors from the U and V matrices; e), LKM; f), MFCC.

In figure 24, we can see how each signal in our simulated dataset has been classified in different SNR
levels. Along the x axes, we have all our 300 signals and along the y axes we see the SNR level.

30

The colour of each pixel shows what class the corresponding signal has been classified into. In order
to easier validate the methods the signals are sorted after the correct classification, meaning that all
signals that should be classified as equal is located next to each other.

(a) (b)

(c) (d)

(e) (f)

Figure 24: An image of how each signal has been classified at different SNR. Each pixel in the image
corresponds to what class that signal has been classified into. For each SNR level the methods have
classified the signals into the correct number of classes (five). The red lines show where the signals are
supposed to change class; a), HKM; b), TWM; c), PCM; d), CKM with two feature vectors from the
U and V matrices; e), LKM; f), MFCC.

In figure 25, we see the same 300 signals for different SNR. However, now the number of classes is
determined with the silhouette value method.

31

(a) (b)

(c) (d)

(e) (f)

Figure 25: An image of how each signal has been classified at different SNR. Each pixel in the image
corresponds to what class that signal has been classified into. For each SNR level the number of classes
have been determined with silhouette values based on features from each method. The red lines show
where the signals are supposed to change class; a), HKM; b), TWM; c), PCM; d), CKM with two
feature vectors from the U and V matrices; e), LKM; f), MFCC.

8 Results from real data

In figure 26, we see how each signal from the first real dataset has been classified in different SNR
levels. On the x axes, we have all 39 signals from our set and on the y axes we can see how it has been
classified. The number of classes is determined using the silhouette values.

32

(a) (b)

(c) (d)

(e) (f)

Figure 26: Figures of how each signal from the first real dataset has been classified with the different
methods in different SNR.The color of the pixel correspond to what class the signal has been classified
into. The number of classes is determined using the silhouette values and the red line shows where
the signals is supposed to change class; a), HKM; b), TWM; c), PCM; d), CKM with three feature
vectors from the U and V matrices; e), LKM; f), MFCC.

In figure 27, we see how each of the 27 signal from the second real dataset has been classified with the
different methods when the number of classes is determined with the silhouette values.

33

(a) (b)

(c) (d)

(e) (f)

Figure 27: Figures of how each signal from the second real dataset has been classified with the different
methods in different SNR.The color of the pixel correspond to what class the signal has been classified
into. The number of classes is determined using the silhouette values and the red line shows where
the signals is supposed to change class; a), HKM; b), TWM; c), PCM; d), CKM with three feature
vectors from the U and V matrices; e), LKM; f), MFCC.

34

9 Discussion

9.1 Results from simulated data

The HKM is a method that is user friendly and give robust results. In figure 23 a), we see that the top
branches of the dendrogram tree do not change considerably for a SNR higher than −2 dB. During this
interval, we can also see that there is a large distance between the branches separating the set into three
respectively four clusters, in comparison to the distance between the other branches. This indicates
that it is likely that the method would classify into three classes. This is confirmed by figure 25 a)
where the HKM has classified each signal and determined the number of classes with the silhouette
values. The HKM classifies the data set into three classes when the SNR is higher than −5 dB. This
indicates, as we later on will see for some other methods, that the distance between the branches in
the dendrogram has a high impact on the number of classes found by the method. Also shown in figure
25 a) the HKM classifies classes one, two and three as the same. However, class four and five are well
separated from the other classes when the SNR is higher than −5. Recall that the structure in classes
one, two and three are very similar, namely a large component with a high amplitude followed by one
or several smaller components at different frequencies. The HKM finds these very similar to each other
which makes it harder for the method to separate the first three classes. Classes four and five both
consist of relative large components and are then easier to separate. If we force the method to classify
into five classes, seen in figure 24 a), we can see that it still can not separate classes one and two but
are able to classify class three as a separate class. The extra components in class three makes it easier
to separate them from the others.

The PCM method is very similar to the HKM except for an extra noise reduction step in the process.
We will also see that the results from the two methods is very simular. In figure 23 c) we see as,
for the HKM, that the distance between branches three and four is quite large, much larger than the
distances between the other branches. This is true even for lower SNR indicating that the method is
less affected by noise. In figure 25 c), we have a very similar result as for the HKM but more consistent
in different SNR. However, this comes to a price when we force the method to classify into five classes.
In figure 24 c), we see that the PCM, as the HKM, is able to distinguish class three from class one and
two. However, there is more misclassifications in class five for higher SNR and less misclassifications
on lower SNR. It seems that when there is lower noise levels the PCM will destroy more of the original
signal and remove important information. However, on lower SNR it produces a lot more robust result
since the noise reduction technique is focused on the noise. We see this in class one, two and three
where the HKM changes its classifications considerably while the PCM do not. The sensitivity of the
PCM is determined by the number of columns from the U matrix we use in the projection, that is
how many dimensions we project on. The lower number of dimensions the WD is projected on, the
more noise, as well as information from the original signal, will disappear. When using this method
on a signal with little noise its therefore convenient to increase the number of dimensions. This will of
course be a consideration between noise robustness and misclassification.

A method similar to the PCM is the TWM. In figure 23 b), we see that the dendrogram behaves very
similar to the HKM’s dendrogram. The branches giving four, five, and six classes are very close to
each other while the branch giving three classes is much larger. Notice that the branch curve for three
classes increases slower than for the HKM and PCM indicating that this method is less affected by
noise. The gap between branches three and four indicates that the method will classify the set into
three classes which also is confirmed in figure 25 b). Here, we see that the TWM performs very similar
to the PCM. When we force the method to classify into five classes the result is not very different, see
figure 24 b). In comparison to the PCM, the TWM has less misclassifications for all SNR levels. If we
compare to the HKM, the TWM performs better in lower SNR, but worse in higher SNR where it is
more misclassifications. The reason for this is that even when there is almost no noise in the signal,
these methods will still try to reduce noise. However, when there is no noise to remove the TWM will

35

rather remove important information from the signal. Since the signals are not identical within a class,
they will be destroyed in different ways which lead to different representations. On the other hand, in
lower SNR the TWM will rather remove noise and not the original signal.

There are further disadvantages with the TWM method. The first one is that when truncating a
function in the Wigner domain, the probability of losing important components from the original
signal is quite high. If we study the different classes we use in figure 20 we see that class one, two
and three all consist of one large component and several smaller ones. When truncating the FWD,
those smaller components could disappear and leave the large one as the only remaining. This will
make it even harder to separate between classes like one and two where the only difference consists
of a small component. These components will probably will be lost in the process. Another factor
that could lead to degraded results come from the fact that when truncating the FWD, we introduce
discontinuities in the function. These discontinuities will introduce new frequencies that will be shown
in the FAMD and interfere with the features. The PCM on the other hand uses the vectors from the
U matrix which will be continuous, resulting in that the filtered result also will be continuous.

The last method with focus on the auto-terms is the LKM. One big advantage with this method is
that its kernel is easily represented with few windows. This makes the method fast. The LKM also
performs very similar to the HKM in higher SNR. In figure 25 e) we can see that with a SNR = 10
dB the method is able to separate each class. This is the only method able to do so when determining
the number of classes with the silhouette values. On the other hand, in lower SNR the LKM encounter
problems with classes one, two and three.

The method that performs quite differently from the other is the CKM. In figure 23 d), we can see
that the dendrogram for the CKM is more spread between branches in higher SNR. This indicates
that it is easier to find more classes and separate between them in the data set. For lower SNR, on
the other hand, the branches come closer to each other indicating that the method will have troubles
to differ the classes. This is confirmed in figure 25 d). When determining the number of classes by
silhouette values for high values on SNR, the CKM is able to separate into more classes than the other
methods. The method separates between class one, two and three very well as long the SNR is higher
than 2 dB. As the other methods, it can also separate between four and five. However, unlike the
other methods the CKM fails to separate between class three and five. This is explained, considering
what the CKM actually does. Unlike the other methods, this method focuses on the cross-terms which
are determined be the differences between each component in the signal. As seen in figure 20, both
signals in class three and five contain very similar frequency jumps. Both classes have two components
with a frequency difference of size 0.2 and with a similar time difference. This will result in similar
cross-terms for the two classes, making them hard to separate.

Since the circular kernel has a fix radius corresponding to cross-terms between components located
nearby each other, lots of information will be lost in the analysis. For example, in the case of class
five this kernel will include cross-terms between component two and three but not between component
two and four. If we compare this to the other methods, none of them have the same problem. Class
two and four both contain a frequency difference of size 0.1 but since class four also have jump of size
0 this is not a problem.

For the CKM it is harder to get an optimal result due to the number of parameters to determine. The
risk is that we end up with a kernel that needs to many windows in order to be represented in a correct
way. As discussed before, it is crucial not to include the auto-terms which is forcing us to use many
windows if we want the whole kernels area. In our case, we have chosen only to use a small part of
the original kernel as seen in figure 17. This will restrict us to only compare components located with
a fix time interval between each other.

When exposed to signals with low SNR the performance of the CKM becomes worse. At a SNR of 0
dB, the method break down completely and at a SNR = −2 dB it can not separate anything. Since
the cross-terms come with a lower amplitude than the auto-terms they are more affected by white

36

noise and will easily be overshadowed.

The MFCC method does not perform as well as the other methods on our simulated dataset. As we
see in figure 23, the dendrogram is quite compact for all SNR with a trend of being lower with a lower
SNR. These higher gradients in the branch curves indicate that the method is not very noise robust.
When the number of classes is set with the silhouette values it can anyhow separate between some
important classes. Class three is very well separated from the other classes. As many other methods
it can not separate between class one and two but unfortunately it has also problems with separating
between class four and five which almost every other method could do.

9.2 Results from real data.

If we study the first real data set, we can notice that the two different type of signals are very different
from each other. The first signal consists of relative few components in comparison to the second one,
see figure 21. The first one is a whistle sound while the second is a rattle sound which makes this
somewhat a minimum criteria for that the methods should be able to separate. In figure 26 we can see
how each method has classified the data set for different SNR. Here, the HKM, TWM, PCM, CKM and
the LKM classify the set very well for high SNR where almost none have any misclassifications. The
MFCCmethod on the other hand classifies the set into to many classes and have more misclassifications.
For lower SNR, the PCM and the TWM are unchanged and perform better than the HKM. This
indicates that the noise reduction techniques works well. The CKM has more misclassifications but is
not much affected by the SNR.

The results are quite different when the methods classify the signals from data set number two. This
data set contains signals with only rattle sounds, which makes them harder to separate, see figure 22.
The results from this is seen in figure 27. For high values on SNR, the CKM is the only method that
are able to find three different classes in the set and separates them quite well. The HKM, TWM and
PCM can only separate the first class from the others. Notice in figure 22 that the differences between
class two and three are the length of the last component and a small change in the first component.
The CKM specializes at the relationship between components with a fixed time interval between each
other; in this case a distance of approximately 230 samples in the signal. This means that the CKM will
detect cross-terms between component one and two in class three. In class two on the other hand is the
two components to far away from each other. When extracting features from the auto-terms, as in the
case of the HKM, TWM and the PCM, these differences will still be present in the ambiguity domain
but not give as large impact as for the CKM. The reason is that the auto-terms in the ambiguity
domain will be located at the same place and not move as in the case of the cross-terms.

The LKM performs very poorly on this dataset. It can almost separate class one from the others for
high SNR but give more misclassifications than HKM, TWM and PCM. For lower SNR it breaks down
completely. The MFCC method can not separate between the classes at all.

10 Conclusions

When comparing different methods we can conclude that the performance of a method depends on
the signal and SNR. Methods such as the TWM and the PCM, which focus on using the Hermite
windows and reducing noise in the Wigner domain, improve the robustness of classification. However,
these methods needs to be selected with care since they behave worse for low levels of noise. These
methods along with the HKM work well when used in a dataset that have clear separate classes, like
in the case of the first real dataset. However, when looking on a dataset where the different classes
are more similar to each other, these methods lack accuracy. This is illustrated in the case of the
second real dataset and between class one and two of the simulated dataset. Here, a method like the

37

CKM perform better since small variations between signals lead to bigger differences in the ambiguity
domain. The CKM is the only method that can separate all sets fairly good. This comes to the cost of
robustness since this method can not handle very noisy environments. This method also has problems
when it comes to implementation. Since the location of the cross-terms could vary between each signal
it is important to have a kernel covering all possible locations. This on the other hand is not a simple
task since a large kernel will make the method computationally slower.

The LKM gives quite promising results when used on the simulated data where it finds all five classes
for high SNR. On real data on the other hand this method degrades and is worse than the HKM.
In comparison to the other ambiguity based methods the LKM is not good enough in order to be a
reliable method. The other methods are better in almost every other way.

We can conclude that when these methods classify datasets it is important to check the results by hand.
The main reason for this is that many methods have problems to determine how many classes present
in the dataset. We see this clearly in the results from the simulated dataset where many methods
perform better when we force them to classify into the correct number of classes. For example, the
CKM classifies this dataset perfectly for higher SNR when we force the method to classify into the
correct number of classes.

11 Further investigations and improvements

From this thesis, there are many things that would be interesting to further investigate and that I think
will improve the methods. When it comes to CKM, one of its disadvantages is that the parameters is
very dependent of the signal and can be hard to determine. There is however a possibility to make an
adaptive method that estimates the optimal parameters in order to include the cross-terms. This can
for example be done with a method that find each peak in the syllable, in a similar way to the method
described in chapter 2.1. From this we can calculate for which τ there will be a cross-term located.
The same can be done with ν if we estimate the frequencies of each peak. After estimating where each
cross-term will be located it’s possible to estimate R and α in order to cover these areas. This method
has been tested on simulated data and was able to estimate the location of the cross-terms quite well
for higher SNR. However, I was never able to get these methods robust enough to be used in practice.
Problems also occur when determining the number of multitaper windows to use in order to get a good
representation of the kernel. However, the solution of this problem is outside of this project.

The results for the CKM also depend very much on how many and what feature vectors we use when
representing our signals. My way of solving this is to assume that when comparing two signals the two
most important vectors are the first two in the U and V matrices. We then find the corresponding
ones from the other signal. There is however no guarantee that the first two vectors will be the most
representative, especially not for low SNR where the vectors have a tendency to shift places. A method
that find the optimum vectors from each signal could improve this method even more.

38

12 References

Everitt B., Landau S., Leese M. & Stahl D. (2011). Cluster Analysis. Wiley.

Grosse Ruse M., Hasselquist D., Hansson B., Tarka M. & Sandsten M. (2016). Automated analysis of
song in complex birdsong. Animal Behaviour. Nr. 112, p 39-51.

Jancovic P. & Köküer M. (2011). Automatic Detection and Recognition of Tonal Bird Sounds in Noisy
Environments. EURASIP Journal on Advances in Signal Processing. Vol. 2011, Article ID 982936,
10 pages.

Keen S., Ross J., Griffiths E., Lanzone M. & Farnswoth A. (2014). A comparison of similarity-
based approaches in the classification of flight calls of four species of North American wood-warblers
(Parulidae). Ecological Informatics. Vol. 21, p 25-33.

Kroodsma D. (2017). Birdsong performance studies: a contrary view. Animal Behaviour. Nr 125, 16
pages. MS. number: AF-16-00107R.

Sandsten M. & Brynolfsson J. (2017). Classification of Bird Song Syllables Using Wigner-Ville Ambigu-
ity Function Cross-Terms. Proceedings of the 25th European Signal Processing Conference (EUSIPCO),
p 1739-1743.

Sandsten M. (2018). Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes.
An introduction. Centre for Mathematical Sciences, Lund University.

Stankovic L. (2002). Analysis of Noise in Time-Frequenzy Distributions. IEEE signal processing
letters, vol 9, nr 9, p 286-289.

Janes S., Ryker L. & Ryan R. (2017). Geographic variation in type 1 dialects of Hermite Warblers:
does fragmented habitat promote variation in song? J Ornithol. Vol. 158, p. 421-430.

Wegrzyn E., Leniowski K. (2010). Syllable sharing and changes in syllable repertoire size and com-
position within and between years in the great reed warbler, Acrocephalus arundinaceus. J Ornithol.
Vol. 151, p 255-267.

39

	Introduction
	Description of the data
	Detection of a syllable in a song
	Modeling of a syllable

	Theory
	The spectrogram
	The Wigner distribution
	The discrete Wigner distribution
	The ambiguity function
	The impact on noise in the Wigner distribution and the ambiguity domain
	The filtered ambiguity function and Wigner distribution
	Connection between the filtered Wigner distribution, the spectrogram and the multitaper method

	The classification problem
	Motivation and calculation of features
	Comparing two sets of features
	The classification
	Silhouette values and determining the number of clusters

	A study of some special kernels and six different methods for feature calculation
	Some special and interesting kernels and their corresponding windows
	The Hermite kernel method
	The truncated Wigner method
	The principal component method
	The circular kernel method
	Some special problems with the circular kernel method and how they are solved

	The line kernel method
	Mel-frequency cepstral coefficients method

	Methods for evaluation
	Results from simulated data
	Results from real data
	Discussion
	Results from simulated data
	Results from real data.

	Conclusions
	Further investigations and improvements
	References

