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Abstract

The goal of this master’s thesis is to detect and position sharp sounds using Axis speakers with built-
in microphones. Sharp sounds of special interest are gunshots. The system needs at least five speak-
ers to function and is designed for usage in indoor environments. The project follows a pipeline
in order to position sound sources containing recording, synchronisation, detection of gunshot in
sound data, and positioning of the sound. Detection of gunshots in recorded files is done by a bi-
nary classification with a deep neural network created in Python. The algorithms for positioning are
implemented in MATLAB. The final neural network has an accuracy of 98%. It is pretrained by VGG-
team with data from ILSVR and transfer learning is applied to fit the model for gunshot data. After
testing a few methods to synchronise the speakers and to calculate the position of the sound source,
the final system has a mean error of 0.28 m. The model’s precision is adequate for large areas.
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1 Introduction

When utilising a surveillance system, the exact positions of sound sources can provide additional
information about events. In this thesis, speakers located in an indoor environment with built-in mi-
crophones are used to detect and localise gunshots. However, as real gunshots could not be tested,
the localisation part was done on sound from two spoons hitting against each other instead.

The main goal of this thesis is to achieve adequate localisation results using microphones inside
speakers. The sound data will be less distinct and resonance may occur as the receivers are located
inside a small protective covers. An important step in positioning of sound sources are the estima-
tions of time difference of arrivals, or TDOAs, to the microphones. Four different methods to calculate
this quantity are explored in order to find a good alternative for sound from spoons hitting against
each other. A synchronisation problem is also introduced as the system records and transfers sound
data over a network. Different approaches to solve this issue will be tested and evaluated. It turns
out that this issue is crucial to solve as our sound source positioning system requires all recorded files
to be synchronised down to milliseconds.

In addition to position sound sources, the possibilities to detect gunshots in recorded sound files
are also investigated. For this task, neural networks are used. The question whether it is possible for
a machine to accurately separate gunshots from other sounds in a recorded file will be studied.

1.1 Related Work

Positioning of sound sources is a common problem approached by many scientists and engineers [2],
[16], and [14]. Mazdak Farzone and Kim Smidje analysed different method for estimation of TDOAs
in order to direct a camera and capture events in real-time [13]. They faced a network latency prob-
lem, just like us, as the recording was done with microphones connected to a joint network instead of
with audio cables. This was also a master’s thesis at Axis Communications. The difference between
their thesis and ours is the sounds analysed. Farzone and Smidje focused on continuous sounds such
as music and car engines instead of gunshots and sound from spoons hitting against each other.

In an article published by Shotspotters [26], gunshot localisation used to counter snipers are briefly
described. The environment considered is a huge outdoor area as opposed to this thesis where the
main goal is to find and localise sounds indoor. In a third related work, the TDOAs are used to esti-
mate positions of transmitters and receivers. The experiments were tested on real data; in this article
the data were claps, collected using microphones and a recorder by Kalle Åström and Yubin Kuang.
To get the TDOA measurements from the collected data, the generated sounds were matched to the
recorded sound flanks from the microphones [21]. As opposed to us, Åström and Kuang did not
assume knowledge of the positions of the receivers while we in this thesis, measure the positions of
the microphones with measuring tape.

1



2 Theory and Method

In order to detect and position a gunshot sound, a few steps are needed. These are presented in Figure
2. Firstly, the sound needs to be recorded. If any sharp sounds are detected in the recording, they are
cut out and saved in another file. If not, the recording is no longer interesting for our purposes. In
this thesis the words sharp sounds and flanky sounds is used to describe a sudden sound with high
amplitude at the beginning of the signal, as can be seen in Figure 1. Examples of sharp sounds are
claps, balloons popping, gunshots, and two spoons hitting against each other.

Figure 1: A recording of a sharp/flanky sound.

The saved file, containing the sharp sounds, is sent to be analysed in search for gunshots. If gunshots
are present, the time differences of arrival to different microphones needs to be calculated and then
the gunshot can be positioned.

Figure 2: Our pipeline with illustrated steps that leads to positioning of the sound source.
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2.1 Recording

The protocol to transport real time data over the Internet is called Real-time Transport Protocol and
is used worldwide. It transports audio and video for both media and Internet telephony. This stan-
dard is actually two protocols, RTP and RTCP. RTP is used to transport data, it supports applications
with continuous media (such as audio and video). It also has loss detection, content identification,
security and timing reconstruction. RTCP is used to control and get feedback about the quality of the
data flow, it supports real-time video-conferences of any size within the Internet and can synchronise
these calls for different medias [34]. A framework that supports RTP is Gstreamer [10] and it can be
used for recording. Another way to record is for example with Phonon, but since GStreamer is more
used at Axis Communications this method was chosen for our thesis.

When data from different devices are sent to a central unit over a network, some kind of latency will
always be introduced. Because of this latency, the speakers need to be synchronised which can be
done in various ways. In this master’s thesis, two very different approaches to solve the synchronisa-
tion problem are tested. The first method is to use the object ”AudioInterleave” in GStreamer which
uses timestamps on data chunks to sort the recorded signals (see section 2.1.1 for further knowledge
about this method). This is done continuously through a recording. The second method is to add
the latencies to the equation system acquired during the positioning task (section 2.6 covers this in
depth). In Figure 3 the pipeline has been redrawn to show where the synchronisation can take place.

Figure 3: Modified pipeline with illustrated steps that lead to positioning of the sound source. In this
image, synchronisation steps are included. The methods to synchronise are tested separately and
together.

2.1.1 GStreamer

One way to synchronise the speakers is to use the framework GStreamer, which is also used to create
streaming media applications that handles audio and video. However, it is not restricted to audio
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and videos only as GStreamer can handle any kind of data flow. The framework is a good choice
to build media players because of its many components that can support different audio types. To
define the flow of the data, pipelines are used [11]. A pipeline is the steps a media travels through
to get from the source element to the sink element. It can be described as the steps a product needs
to pass to go from producers to consumers. In between, there are numerous tasks that needs to be
done; this is a pipeline [9]. Pipelines in GStreamer can also be used when developers want to mix
and match different plugin components [11].

In this project, GStreamer was used to stream the data recorded by the speakers to the user’s com-
puter. By specifying the computer’s IP to the program every speaker know where to send the
recorded data. This way, longer recordings could be made without having problem with the size
of the storage on the speakers. The speakers are connected one by one to the port in the computer.
For the program to work, one of the speakers need to be the clock-master. This means that other
speakers will listen to one speaker when the timestamps are set.

The program starts with connecting the speakers and deciding a clock-master. All speakers and the
computer uses the clock-master in order to have the same view of current time which is necessary for
synchronisation of the audio streams. The streams are transmitted using UDP, User Datagram Pro-
tocol, which is a connectionless communication protocol widely used for time-sensitive applications
where one favours losing data instead of introducing latency. [20]. The data is sent to a jitter buffer,
which is a temporary buffer where the data is stored. Because of network latencies there might be
a risk that data is lost if it is sent too early from the jitter buffer. To avoid this, extra time is added
before the data is transported to an element called ”AudioInterleave”. This object collects the data
from the jitter buffers and uses the timestamps on the data to place them in the right order. Once the
synchronisation is done, the data is saved.

2.2 Detection of Sound

Detection of gunshots in a sound file can be done by a flank detection algorithm. Let

am =
1
m

m

∑
k=1
|s(k)|

be the average of the absolute value of the first m samples of a signal s with n samples, where m << n.
By moving this average forward in the signal, a flank (see Figure 1) can be detected very precisely
by comparing the next sample with the moving average. Let us denote this time of detection with t f
acquired from

am(i) =
1
m

m+i

∑
k=i+1

|s(k)| 0 ≤ i ≤ n−m

where t f = m + i + 1

if |s(m + i + 1)| > h · am(i).

(1)

The threshold, h, is a parameter used to check if a flank is detected. It needs to be calibrated together
with the length of the moving average, m, as these can vary for microphones in different environ-
ments. Table 1 shows the values used in this thesis. They are calibrated from tests in a quiet office.
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Table 1: Parameters for the flank detection

h 10

m 1000

In addition to gunshots, this flank detection algorithm will detect other kind of sharp sounds such as
screams, balloon pops, and hand claps. To distinguish different sharp sound types, or more specifi-
cally, detect gunshots, a deep artificial neural network is used.

2.3 Classification of Sound

Deep artificial neural networks are machine learning models gaining more and more attention [12].
Trying to mimic a human brain, they consist of neurons connected to each other in layers with
weights. By tuning these weights, a model can classify classes and predict outcomes. Unlike most
other machine learning algorithms, neural networks do not need guidance once the model is set-up.
With enough labelled data to train on, it can adjust itself without manual modification. However, this
means that a lot of data need to be presented to it. Otherwise, the model can not draw any conclusion.
In this thesis, the basics of neural networks will not be described. The curious reader is encouraged
to read chapter 5 in [5].

2.3.1 Model

Convolutional neural networks, CNN, have been successful in image classification problems and
show promise for audio as well (see [5] for more information on CNNs). By transforming wav-
files into log-mel spectrogram, sound data can be used as input to a CNN. In this thesis, the data
transformation (from wav to spectrogram) is not implemented and code from [8] are used instead.
To get more information about the method, detailed description can be found in [17]. A mel-spacing
in the spectrogram is desired as the mel-scale is judged by listeners to be equal in distance from
another. A popular formula to convert frequency into the mel-scale is

m = 2595 · log10(1 +
f

700
)

where f is the frequency [23].

A VGG16-network pretrained by the VGG-team with substituted top layers is used as a base model
[27]. Different variations of top layers can be experimented with to optimise the performance of
the network (see section 2.3.2 for these designs). Figure 4 shows the structure of a VGG16 network.
Worth to note is that this neural network is not designed in this thesis but rather by the VGG-team in
Oxford. As the task is to classify only gunshots, the output layer consists of only one node reading 1
if gunshots are detected, 0 otherwise.
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Figure 4: The structure of VGG16 network containing 13 convolutional layers, 3 fully connected
layers, and an output layer. The fully connected layers (the three blocks named ”FC 4096”) are not
used in this thesis and will be replaced, therefore the red cross. Worth to note is that this network is
not designed in this thesis but rather by the VGG-team in Oxford.

Figure 4 contains blocks each representing a layer in VGG16. 13 of the blocks are labelled ”3x3 Conv”
followed by a number. These represents the 13 convolutional layers. 3x3 means that the filters in the
layer contains 9 weights dimensioned 3x3 (see [5] for more information about filters in convolutional
layers). The numbers 64, 128, 256, and 512 after ”3x3 Conv” represents how many filters are applied.
This number is increased with the depth of the network as late layers analyses more specific data
compared to early layers which filters more generic data. ”Maxpool” is seen between some of the
layers. This is a method to decrease the dimensionality in an image as it passes through the network
resulting in less total parameters in the model. For every patch, 2x2, of an image, maxpool decreases
four pixels into one by selecting the maximum value. Figure 5 illustrates it.

Figure 5: An illustration of Maxpool. As indicated by the name, the maximum value for every 2x2
patch is used.
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The three crossed out blocks labelled ”FC 4096” in Figure 4 represents the fully connected layers at
the end of VGG16. The number 4096 shows that each layer contains 4096 nodes. An illustration of
fully connected layers can be seen in Figure 6. As mentioned before, details about neural networks
will not be introduced in this thesis and the curious readers are directed to chapter 5 in [5].

Figure 6: An illustration of fully connected layers in neural networks. Every node in one layer is
connected to every node in the next layer. The number 4096 shows how many nodes every layer
contains. This number can of course vary from model to model.

The optimisation algorithm chosen is Adam. It is a computationally efficient stochastic gradient
descent algorithm requiring little memory [18]. Gradient descent will be further described in section
2.5.2.1. Adam is short for Adaptive Moment Estimation and it, in addition to descending, adaptively
updates learning rates according to averages and standard deviations of past gradients (first and
second moment estimates). This trait makes Adam a suitable optimiser for smaller data sets as it can
adapt quicker to new features. When using Adam as optimiser, there are some parameters that need
to be chosen. These are the learning rate α, the first and second order decay rate for the moment
estimates β1 and β2, and a constant, ε, to prevent division by zero.

2.3.2 Parameters and Structure

The parameters for the training of the neural network can be seen in Table 2. These values are pro-
posed by the authors of [18], the inventors of Adam, to be used as default values. Tuning of these
parameters were tested in this thesis without improvement, and therefore, the default parameters
were kept.

Table 2: The parameters for the ADAM-optimiser and training.

α 0.0001

β1 0.9

β2 0.999

ε 0.00000001

The pretrained VGG16 has only been exposed to image data from ILSVRC and thus, all weights are
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unlocked for training in order to fit all layers to the new log-mel spectrogram data [24]. Unlocking
all weights for training means that every parameter in every layer can be tuned. Of course, this re-
sults in slower training sessions. However, every session will be more efficient as more variables can
be changed. As the top layers of the VGG16-model are removed they need to be redesigned. We
have chosen to try three different patterns of top layers. The first one is to simply put the features
extracted from the base layers directly to an output layer. Let us name this model ”Direct model”.
The second one is three fully connected layers with 2048 nodes respectively between the base layers
and output. We call this model ”FC 2048”. Lastly, five fully connected layers in decreasing sizes are
added between the base layers and output layer. The last model is named ”Diminution model” for
its decreasing sizes of fully connected layers. Figure 7 illustrates all of the designed top layers alter-
natives.

A common problem for deep neural networks is overfitting of data. This phenomenon occurs when
the same data is presented to the model session after session and results in a network that can not
predict or classify new datasets. Dropout between the fully connected layers is added in our model
as seen in Figure 7; it is a technique used to prevent overfitting. For every training session, or epoch,
all nodes go through a decision whether to be activated or not with a chance of 50% for each out-
come. The term ”dropout” refers to the nodes and their connections getting inactivated or dropped
out. As different nodes gets inactivated each time, the model will be slightly different every epoch.
This results in less co-adaptions from the nodes producing a more flexible model.

Figure 7: Three different approaches of design to the top layers for the pretrained VGG16. From left
to right they are called ”Direct model”, ”FC2048”, and ”Diminution model”. Similar to Figure 4, FC
2048 refers to a fully connected layer with 2048 nodes.
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2.4 Estimation of TDOA

When a gunshot is detected in a recorded file, the data needs to be analysed in order to position
the sound source. The first step is to estimate the Time Difference of Arrival for the signal to reach
microphone one as compared to the other microphones. This measure is later going to be used in
order to calculate the position of the sound source. The TDOA is the difference in time it takes for a
signal from the sound source to reach two microphones (or another type of receiver). Figure 8 is an
illustration of this phenomenon. Even though the TDOA is a measure in time it will sometimes be
used as a distance in our thesis (by multiplying the TDOA with the speed of sound).

Figure 8: Illustration of the difference in distance in which a sound travels to reach different micro-
phones. The direct paths s1 and s2 from the sound source to microphone one and two respectively
have been drawn out. The speed of sound is denoted v.

In this master’s thesis, four different methods to estimate the TDOA are tested and the one most
suited for sharp sounds will be chosen. The selection is based on calculations of the mean error
between estimated position and measured position of the sound source (the positioning is described
in section 2.5).

2.4.1 Cross Correlation

The TDOA of two signals can be calculated using the cross correlation. Let the received signal in
microphone one be denoted s1 and microphone two s2, with a time lag defined as τ. The cross
correlation for s1 and s2 is then defined as

[s1 ? s2](τ) =
∫ ∞

−∞
s∗1(t)s2(t + τ)dt, (2)

9



where ∗ is the complex conjugate. Since recorded signals are real and not complex, s∗1(t) is equal to
s1(t) in this thesis. In the discrete case, the integral is replaced with a sum

[s1 ? s2](τ) = ∑
k

s1(k)s2(k + τ).

The TDOA can be estimated as

TDOA = argmax
τ

([s1 ? s2](τ))

as the maximum value of [s1 ? s2](τ) is where the two signals correlates best. The τ that corresponds
to the maximum value is the time difference between the signals. A way to visualise how the TDOA
is obtained is to think of signal s1 sliding over signal s2 calculating the product at each point and then
taking the sum over that. The highest value corresponds to where the signals match the most. The
shift that corresponds to this value is the TDOA.

It is common to calculate the cross correlation in the frequency domain because there will then be
no need for time shifting. This is done by using the Discrete Fourier transform of (2) [19]. The trans-
formation Fm of a signal fk is defined as

Fm =
M−1

∑
k=0

fke−2πimk/M

where M is the number of samples in fk [31]. From (2), (3) is acquired after transforming it with the
Discrete Fourier Transform,

[s1 ? s2](τ) = S1(k) · S2(k) (3)

where S1(k) is the Fourier transform of s1(k). The calculated value from (3) is then transformed back
to the time domain by inverse Fourier transforming [19].

2.4.2 Generalised Cross Correlation with Phase Transform

Cross Correlation is not robust against noise and echo paths and therefore a weight can be added in
the Fourier transform to reduce distractions. It is called the Phat weight, or Phase Transform. The
weight is added to (2) and it preserves the phase where the information about the time difference lies
but it also normalise frequency magnitudes. The Generalised Cross Correlation (GCC) with Phase
Transform is then defined as

[s1 ? s2](τ)Phat =
∫ ∞

−∞
s1(t)s2(t + τ)ϕ(t)Phatdt. (4)

Again this is transformed to the frequency domain and the weight ϕ is defined as follows, where S1
and S2 are the Fourier transforms of s1 and s2,

ϕ( f )Phat =
1

|S1( f ) · S2( f )| . (5)

The reason why GCC-Phat is better at estimating the TDOA than Cross Correlation is because the-
oretically, the result from equation (4) is a unit impulse function and noise and echos will have less
influence in the correlation. Again the TDOA is the index of the maximum value of [s1 ? s2](τ) [7],

TDOA = argmax
τ

[s1 ? s2](τ)Phat.
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Noise can sometimes be very small and even close to zero. This will lead to division by zero in (5)
and to avoid this problem, a condition is added. The condition is that if |S1 · S2| < T then instead
|S1 · S2|+ 1 will be divided with. This can be written as

ϕ( f )Phat =
1

|S1( f ) · S2( f )|+ ε
,

where

ε =

{
1, if |S1( f ) · S2( f )| < T
0, otherwise.

A typical value on T is 5 · 10−3. The TDOA will still be the τ corresponding to the maximum value of
[s1 ? s2](τ)Phat, but with the new weight function.

2.4.3 Flank Detection

For a sharp sound, the flank detection algorithm described in section 2.2 can be used to estimate the
TDOA. For a system with two microphones receiving their signals from the same source, let t f 1 and
t f 2 be the timestamp for microphone one and two respectively acquired from (1). The TDOA can
then be estimated with

TDOA = t f 1 − t f 2.

2.4.4 Adaptive Eigenvalue Decomposition

All of the methods to estimate the TDOAs assume the signals from a sound source follows an ideal
model, this model comes from the classic time delay estimation problem and looks like

x(n) = α · s(n− τ) + b(n).

In this model only the attenuation factor, α, (how much the signal is weakened when it passes through
objects), the delay τ, and some additive noise, b around the microphone are taken into account. In a
more realistic model, the reverberation must also be included. The reverberation is reflections of the
signal that occurs when it hits walls and objects, these reflections are later absorbed by other objects.
In a typical indoor environment, because of the reverberation and background noise, the peak of a
cross correlation might not be well defined or might not correspond to the TDOA.

In the new model, the impulse response from the sound source to the microphone is analysed in-
stead. The model for the received signal is described as

xi(n) = gi ∗ s(n) + bi(n).

Here, bi(n) is the additive noise at the i:th microphone, s(n) is the signal from the sound source and
gi(n) is the acoustic impulse response between the signal to the i:th microphone [2]. In a system that
is linear, time invariant and with no noise, with only two microphones and one sound source, the
relation can be defined as

x1(n) ∗ g2 = s(n) ∗ g1 ∗ g2 = x2(n) ∗ g1.

This can be rewritten into matrix form,

xT
1 (n)g2 = xT

2 (n)g1,
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where

xi(n) = [xi(n) xi(n− 1) ... xi(n−M + 1)]T i = 1, 2

gi = [gi,0 gi,1 ... gi,M−1]
T i = 1, 2.

Here, M is the length of the impulse response vector (same as the length of the received signal) and
xi(n) is the vectors containing the samples from the signal emitted from the sound source. Once
again this can be rewritten as

xT(n)u = xT
1 (n)g2 − xT

2 (n)g1 = 0, (6)

where

x(n) = [x1(n)T x2(n)T]T

u = [gT
2 − gT

1 ]
T.

Multiplying (6) with x(n) on the left side and then calculating the expectation gives us the following
relation

Rxu = 0.

Here, Rx = E[(x(n) − E[x(n)])(xT(n) − E[xT(n)])] is the covariance matrix of the the input signal
from the microphones. Since x(n) is zero mean, Rx = E[x(n)xT(n)]. This means that u is the eigen-
vector to Rx corresponding to the eigenvalue 0.

As the rank of the covariance matrix for the signal source s(k) is full and the z-transform of the
impulse responses does not share any common zeros, it is possible to uniquely determine the im-
pulse responses g1 and g2. Since this theory is not needed to implement the algorithm the interested
reader can get more information from [33].

If noise is added to the room, the model will change and the eigenvalue for the covariance matrix
Rx will no longer be zero. An algorithm is needed to find the eigenvectors corresponding to the
smallest eigenvalue of Rx. This algorithm is adaptive and starts with computing the error signal as

e(n) = ûT(n)x(k). (7)

The notation û means that the value on u has been updated, the new values on û are calculated using

û(n + 1) =
û(n)− µe(n)x(n)
||û(n)− µe(n)x(n)|| , (8)

with the constraints

||û(n)|| = 1, (9)

and the adaptation step µ. The algorithm will update the impulse responses M times in a loop using
(7), (8) and (9). The algorithm was tested on simulations and the value on µ was decreased until
the loop converges, the final value on µ was 0.6. The time for convergence varies depending on the
length of the signal.

The impulse responses have been calculated using the algorithm above and the TDOA is then de-
fined as follows [3]

TDOA = argmax
n
|ĝ2,n| − argmax

n
|ĝ1,n|.
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Here, ĝ2 is the first half of û and ĝ1 is the second half, the notation is again that these values have
been updated using equation (8).

To implement this algorithm, the impulse responses need to be initialised. The vector u that con-
tains the responses g1 and g2 is set to zero at every position except one. At position uM/2(0) it should
be equal to 1. Because of this, the delays can now be both positive and negative. This value should
be kept dominant in the first half of vector u (that is g2) and it represents the direct path to the mi-
crophone. A mirror effect will appear in the second half of u which will be the estimate of the direct
path to the other microphone. As mentioned above the time difference of arrival matches the shift
between these two peaks [4].

2.5 Positioning of Sound

To position a sound source with the acquired TDOAs, there are different techniques. Most commonly,
multiangulation or multilateration are used depending on the setup. Multiangulation assumes that
the distances from sound source to the microphones are large and that the distances between micro-
phones are small. The receivers also need to be in pairs in order to find the position of the sound
source [13]. Multilateration does not have these requirements and it is possible to calculate the po-
sition for the sound source once the TDOAs are estimated [16]. Therefore, this method is chosen for
this master’s thesis.

2.5.1 Multilateration

The TDOAs are calculated using the methods mentioned in section 2.4. These values contain the
information of the difference in distance from a sound source to two microphones. In other words
it is the distance from sound source to the first microphones subtracted with the distance from the
sound source to the second microphone. If the sound source is located at (xs, ys, zs) and microphone
one and two at (x1, y1, z1) and (x2, y2, z2), the TDOA can be written as

TDOA12 =
√
(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2 −

√
(x2 − xs)2 + (y2 − ys)2 + (z2 − zs)2. (10)

There are three unknown variables in (10) meaning that more equations are needed in order to get an
unambiguous solution (see Figure 9 for an illustration).
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Figure 9: With only one estimated TDOA, the sound can originate from anywhere following a hy-
perbolic curve. The difference in distances between s11 and s21 is the same as between s12 and s22
for example. However, their sound sources come from very different positions. The speed of sound,
denoted v is used to convert TDOAs to difference in distances instead of time.

Four microphones are needed in order to determine the position of one sound source. With four
speakers there will be three estimated TDOAs. Lets denote them with TDOA12, TDOA13, and
TDOA14. TDOA23, TDOA24 and TDOA34 can not be used as they do not contain extra informa-
tion.

To find the position of the sound source, three equations are set-up as seen in (11). These equa-
tions are then minimised to find the (xs, ys, zs) that gives the smallest error which is estimated as the
sum of squares of

err1 = TDOA12 −
(√

(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2 −
√
(x2 + xs)2 + (y2 − ys)2 + (z2 − zs)2

)
,

err2 = TDOA13 −
(√

(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2 −
√
(x3 + xs)2 + (y3 − ys)2 + (z3 − zs)2

)
,

err3 = TDOA14 −
(√

(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2 −
√
(x4 + xs)2 + (y4 − ys)2 + (z4 − zs)2

)
. (11)

To get a clearer picture of what happens, the equations can be set up for two dimensions and (10)
will then be the definition of a hyperbola [32]. In Figure 10, the hyperbolas for microphone two and
microphone three has been drawn. These lines are calculated using possible different positions of the
sound source and in the figure, some of these possibilities are shown. One of these sound sources
have a darker colour (red) and it is the position obtained from minimising the error functions in (11)
(but for two dimensions). This position is exactly where the hyperbolas for microphone two and
microphone three intersects [16].
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Figure 10: The image shows the microphones and the hyperbolas computed by inserting different
positions for the sound source in (10) (in 2D). The red sound source is the position that minimises
(11) (in 2D).

To minimise the equations, an optimisation algorithm is needed. A popular one is Levenberg-
Marquardt used in related work such as [13] and [21]. Without further research, this algorithm is
also chosen for this master’s thesis. Also, the algorithm is never implemented, but rather MATLAB’s
built-in function ”lsqnonlin” (with Levenberg-Marquardt as an option) is used.

2.5.2 Levenberg–Marquardt

The optimisation algorithm Levenberg–Marquardt is a combination of two methods, namely the
Gauss-Newton method and the gradient descent method (for further reading on these methods see
[29] and [15]). It solves nonlinear least squares problems by computing the sum of the squared errors
between the function and the data points, the χ-function, and then minimises it. When the initial
guess is close to the optimal value, the algorithm works more like the Gauss-Newton method and
when the initial guess is further away from the optimal point, it acts more like gradient-descent. For
a sound source positioning optimisation problem, the χ-function looks like

χ2 =
n

∑
i=1

[
TDOAi − y(xs, ys, zs)

]2

where

y =
(√

(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2 −
√
(x4 − xs)2 + (y4 − ys)2 + (z4 − zs)2

)
.

2.5.2.1 Gradient Descent

Gradient descent sets the parameterised χ-squared error function and updates the parameters itera-
tively along the negative gradient until convergence. The negative gradient is calculated as
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− ∂

∂p
χ2 = 2

n

∑
i=1

[
TDOAi − y(p)

]
· ∂

∂p
y(p)

⇒ − ∂

∂p
χ2 = 2(TDOA− y)J,

where J = ∂
∂p y(p) is the Jacobian and the parameters p are all the unknown positions and latencies

(∆t, x, y, z). For every iteration, the updates will be done by

∆p = a(TDOA− y)J · p,

where a is a parameter which decides how much the unknowns will be updated every iteration.

2.5.2.2 Gauss-Newton

Gradient-descent converges for simple functions and is a good choice when there are multiple pa-
rameters involved. However, the Gauss-Newton method converges faster but it assumes the function
being approximately quadratic and the updated value on the initial point is close to the local mini-
mum. With these two requirements met, one iteration will update the parameters according to [6]

p = −(JTJ)−1JTy(p).

For the equations in (11), the Levenberg-Marquardt algorithm will detect if the error functions are
quadratic and close enough to the local minimum. At this point, Gauss-Newton will be used instead
of Gradient descent.

2.6 Synchronisation with Calculation of Latencies

The latency introduced by recording over a network can be dealt with by adding a latency parameter
for every latency in the system of equations. This can be done either as a substitution or addition
to the ”AudioInterleave” object mentioned in section 2.1.1. Assuming the offset for every device is
constant, (10) can be modified as

TDOA12 + ∆t12 =
√
(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2 −

√
(x2 − xs)2 + (y2 − ys)2 + (z2 − zs)2,

where ∆t12 is the difference of start time for microphone one and two when recording, here presented
in distance by multiplying the latency with the speed of sound. Now, four microphones will not
be enough to determine the positions of the sound source as the offset in time is also an unknown
variable. In fact, we have introduced an amount of new unknowns equal to the number of speakers
minus one (the first speaker is of course synchronised to itself). To get around this problem, more
speakers needs to be put into the system. However, for every speaker added, a new latency variable
is also introduced and thus, the number of equations will never reach the number of unknowns. For
a specific event, when a series of several sharp sounds are present (note they can not happen at the
same time), there is a solution to the problem mentioned above.

The trick is to position several sound sources at once having in mind that the offset in time for the
different devices are constant. Using more than four speakers/microphones, every sound event will
add additional equations to the system. The goal is to have the same amount of unknown variables
and equations. The dependency can be explained with the following equations
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(x− 1) · y ≥ (x− 1) + 3 · y,

⇒ y ≥ x− 1
x− 4

x > 4,

where y is the number of sound events and x is the number of microphones in the system. If the
number of sound events are less than the required amount, the method will not work. With 6 mi-
crophones for example, 3 sound events need to be present. The new equation system is a modified
version of (11). With three sound events, a, b, and c and 6 microphones, the following equations are
acquired and minimised

err1 = TDOAa12 + ∆t12 −
(√

(x1 − xa)2 + (y1 − ya)2 + (z1 − za)2 −
√
(x2 − xa)2 + (y2 − ya)2 + (z2 − za)2

)
err2 = TDOAa13 + ∆t13 −

(√
(x1 − xa)2 + (y1 − ya)2 + (z1 − za)2 −

√
(x3 − xa)2 + (y3 − ya)2 + (z3 − za)2

)
...

err6 = TDOAb12 + ∆t12 −
(√

(x1 − xb)2 + (y1 − yb)2 + (z1 − zb)2 −
√
(x2 − xb)2 + (y2 − yb)2 + (z2 − zb)2

)
err7 = TDOAb13 + ∆t13 −

(√
(x1 − xb)2 + (y1 − yb)2 + (z1 − zb)2 −

√
(x3 − xb)2 + (y3 − yb)2 + (z3 − zb)2

)
...

err15 = TDOAc16 + ∆t16 −
(√

(x1 − xc)2 + (y1 − yc)2 + (z1 − zc)2 −
√
(x4 − xc)2 + (y4 − yc)2 + (z4 − zc)2

)
.

(12)
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3 Tools and Equipment

The microphones used for this master’s thesis were the built-in microphones in Axis Communica-
tions product C1004-E Network Cabinet Speakers. These were connected to PoE Network switches
with network cables and could be connected to a main computer. The cabinet speakers are mainly
used to play background music and for live and scheduled announcements in stores. The micro-
phones are used to test if the speakers are working, it does this by playing a series of test tones that
is measured by the microphone. The microphones are placed at the back side of the speakers in a
protective cover, which makes it difficult to know how well the microphones receive sound and how
much internal vibrations and noise interferes with the recording.

Since a synchronisation problem is present with the speakers, an alternative is also used in order
to try out the algorithms in a more forgiving setup. TASCAM DR-680 with SONY ECM-VG1 micro-
phones does not introduce any synchronisation problem and are also better at receiving sound than
the built-in microphones in the speakers. In Table 3, the equipment is listed.

As mentioned before, sharp sounds are of interest in this thesis. It would not be appropriate to
do tests with guns, thus, spoons hitting against each other are used as sound source instead. The
speakers will never be used to generate sounds.

Table 3: The equipment used in the project

Equipment Image

C1004-E Network Cabinet Speakers [1]

PoE Network Switch [22]

TASCAM DR-680 [30]

SONY ECM-VG1 [28]
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4 Set-up and Results

All tests for this master’s thesis were conducted in an office environment. It consists of shelves where
the microphones/speakers were placed, tables, and chairs. Figure 11 illustrates the office viewed
from above. The width of the room is 4 m and the length is 10 m. Sound made by hitting two spoons
against each other are used to mimic gunshots. The coordinate system defined can be seen in Figure
11. The z-axis corresponds to the height of the room and the floor will therefore get value z = 0. The
x- and y-axis represents the width and length of the room respectively.

Figure 11: The office in which all tests were conducted. Note the coordinate system, z-axis represents
height.
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4.1 Performance of the Neural Network

To train a neural network, data needs to be presented to it. The ”Urban sound 8K” is a dataset con-
taining 8732 labelled sound excerpts of urban sounds with 10 different classes [25]. One of these
classes is gunshots. By gathering all gunshots samples (roughly 300) labelling them 1 and then from
the remaining data picking out an similar amount (roughly 400 samples) of sounds not containing
gunshots labelling them 0, a balanced training/test set is acquired. A small validation set containing
roughly 65 samples of the data (not used in training or test) is also used to evaluate the models. As
the data set is not very big, the number of epochs (number of times the model trains on each data
point) during training is set to 5 in order to prevent overfitting of data. A model trained with a higher
number of epochs performs very well for the training data but lacks accuracy for test and validation
data. Training this neural network takes about 15 minutes, but once it has been trained it takes almost
no time at all for the model to classify a sound.

Training all three models according to Figure 7 with parameters from Table 2 and letting them clas-
sify the validation set gives the results in Table 4. The confusion matrix for the different models can
be seen in Table 5, 6, and 7.

Table 4: Performance of the three neural network models from Figure 7 trained in the same way.

Model test accuracy validation accuracy

Direct model 0.95 1.0

FC2048 0.97 0.98

Diminution model 0.89 0.98

Table 5: A confusion matrix for ”Direct model” on the validation set.

Direct model predicted gunshot predicted non-gunshot

actual gunshot 26 0

actual non-gunshot 0 39

Table 6: A confusion matrix for ”FC2048” on the validation set.

FC2048 predicted gunshot predicted non-gunshot

actual gunshot 26 0

actual non-gunshot 1 38

Table 7: A confusion matrix for ”Diminuation model” on the validation set.

Diminuation model predicted gunshot predicted non-gunshot

actual gunshot 26 0

actual non-gunshot 1 38
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4.2 Method for Estimation of the TDOA

In order to test the different methods for estimation of the TDOA, the digital recorder TASCAM was
used with SONY microphones. Since TASCAM does not have any synchronisation problems, no la-
tencies were introduced. The SONY microphones were placed on four shelves in the office, forming a
rectangle. In Figure 11 these are the shelves at the top and bottom of the image. The test is conducted
in the following way: A person stands in the office area and makes a sharp sound by hitting two
spoons against each other during recording. The exact position of the sound source is measured with
measuring tape and written down together with the calculated positions. By repeating the experi-
ment 100 times, estimations of the performances are achieved.

The TDOAs for the recorded data are calculated using the methods from section 2.4. The position
for the sound source is calculated with the method from section 2.5 and the mean error for each
method can be seen in Table 8. A boundary on every axis is set to the office walls in the optimisation
algorithm as the sound is known to be inside a limited area. In Figure 12 the measured position of
the sound source is plotted together with the calculated positions from the 100 sounds. The image
shows the result for all mentioned methods for estimation of the TDOAs.

Table 8: The mean error for the different methods of calculating the TDOA and the runtime for the
algorithms. Note that the mean error are calculated in 2D only. The error in height is not added.

Method Mean error (m) Standard deviation (m) Time (s)

Cross Correlation 2.1 1.08 6.85

GCC-Phat 3.0 1.2 7.35

Flank Detection 0.13 0.04 3.55

AED 1.9 1.45 9640
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(a) (b)

(c) (d)

Figure 12: The plots shows the position of the sound source (the red dot), the microphones (the black
boxes) and the calculated positions for the different methods of calculating the TDOA (the blue stars).
Figure 12a shows the result using Cross correlation, Figure 12b shows the result using GCC-Phat,
Figure 12c shows the result using Flank detection and Figure 12d shows the result using Adaptive
Eigenvalue Decomposition.
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4.3 Synchronisation of the Speakers

Two methods are tested in order to solve the synchronisation problem. Sections 4.3.1 and 4.3.2 con-
tain detailed description on how these experiments were conducted. Every test is done 100 times
in order to acquire an estimation of the performances. Of course, results from recordings with no
synchronisation is also presented to show how the system performs without synchronisation.

4.3.1 Synchronisation with AudioInterleave in GStreamer

With software implemented in C code using GStreamer containing the AudioInterleave object, record-
ing is started and the speakers are synchronised. The speakers with built-in microphones are placed
on the shelves in Figure 11. One person stands somewhere in the office and hits two spoons against
each other. This position is measured with measure tape and written down. The sound files are sent
to MATLAB and analysed. The TDOAs are estimated with flank detection and the calculated position
is written down. This process is then repeated 100 times.

4.3.2 Synchronisation by Adding Latencies to the Equation System

Recording is started without synchronisation. The speakers are located in the same manner as in
section 4.3.1. One person stands in the office and hits two spoons against each other. Again, this
position is noted. However, as described in section 2.6, adding the latencies into the equation system
in (12) requires several sharp sounds in order to position all of them at once. Therefore, 9 additional
spoon hits are done after the first and important one (minimum is two). The sound files are sent to
MATLAB and analysed. The TDOAs are estimated with flank detection and the calculated position
of the first sound is written down. Worth to note is that the 9 latter spoon hits only purpose was to
estimate the latencies, they were never positioned. This process is then repeated 100 times.

4.3.3 Synchronisation Results

A performance summary of the three tests can be seen in Table 9. The mean error from the 100 tests
are listed for every synchronisation method.

Table 9: The mean error for the different methods of synchronising the speakers. The mean error are
calculated in 2D only. The error in height is not added.

Method Mean error (m) Standard deviation (m)

No synchronisation 1.0540 0.6362

AudioInterleave 0.5748 0.3472

Calculate latencies 0.2827 0.1536

In Figure 13, the sound source position is plotted with the 100 calculated positions for each sound on
top of the image of the office. This illustrates better where the speakers were located and where the
sound was made.
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(a) (b) (c)

Figure 13: The results are place on top of the image of the office and it shows the position of the sound
source (the red dot), the speakers (the black boxes) and the calculated positions (the blue stars) for
every experiment using Flank detection. Figure 13a shows the results from the system without using
synchronisation. Figure 13b shows the result using GStreamer with the object ”AudioInterleave”
and Figure 13c shows the result after calculating the latencies using 10 sounds. Note that the last
test actually contains many more sharp sounds (those 9 additional sounds made to calculate the
latencies), however, only the first and relevant calculated sound source position is plotted.
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4.4 Visualisation of the Performance

The equation system in (12) works best when the sound source is moving, see section 5.4 for further
explanations. The last experiment is carried out with only one purpose, to give a visualisation of how
well the system can follow a moving sound source which occasionally makes a sharp loud sound.
Flank detection is used combined with adding the latencies to the equation system (12).

With the speakers placed on the shelves in Figure 11 in the same manner as in section 4.3, one per-
son walks around the office between the tables and shelves. Two spoons are hit against each other
repeatedly throughout the walk. The results projected on the office can be seen in Figure 14.

Figure 14: A walk through the office with regular spoon hits. The left image with the blue stars
represent the calculated positions by the system and the black numbered boxes are the speakers. On
the right image, a red dashed line shows the actual path.
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5 Discussion and Conclusions

5.1 The Neural Networks

Looking at Table 4, all models for the classification task seems to perform quite well. However, one
has to have in mind that the requirements for this system has a very low tolerance of error when
it comes to detection of gunshots. Thus a model with close to 100% accuracy is needed. From that
viewpoint, the models might not be adequate.

The best performing model on the validation set is the ”Direct model”. With the features from the
base layers of a pretrained VGG16-network directly connected to the output node, this model has
minimum additional weights. The performance is acceptable with test and validation accuracy of
95% and 100% respectively. It is quite surprising that the simplest model has the best accuracy;
although, the VGG6-network itself is everything but simple. The base layers consists of 16 convolu-
tional layers making it a deep network with millions of weights and nodes.

”FC2048” and ”Diminution model” performed slightly worse on the validation data. Instead of an
accuracy of 100%, both models missclassified one instance of the data each and landed on an ac-
curacy of 98%. Table 5, 6, and 7 shows confusion matrices for respective models. Interestingly, all
missclassifications were false-positives. The models tend to warn for gunshots with no gunshots
presence rather than missing gunshots. The two missclassifications are classification from a running
air-condition and an idling car-engine. In our opinion, the false positive errors are preferred as a
missed gunshot can be quite devastating for users utilising the system. However, with the few data
points tested, it is hard to draw any conclusions. One would need a bigger dataset in order to evalu-
ate the models further (this is discussed in section 5.6, ”Future Work”).

The reasons for worse performance from more complex models can be due to the fact that they fit
their parameters too extensively to the training data leading to less flexibility on new data never seen
before. This is also called overfitting.

5.2 Information in z-axis Lost

All results from the positioning experiments only notes the calculated position in x- and y-axis of the
coordinate system defined in section 4. Due to the fact that these speakers will be located on the same
height in our thesis, the derivatives from (11) of the sound source position on the z-axis are always
zero. If however, the speakers were located on different height information about the z-axis could be
obtained. Let us motivate this by differentiating err1 in equation (11) with respect to zs.

err1 = TDOA12 −
(√

(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2 −
√
(x2 + xs)2 + (y2 − ys)2 + (z2 − zs)2

)
,

∂err1

∂zs
= −

( −2(z1 − zs)

2
√
(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2

− −2(z2 − zs)

2
√
(x1 − xs)2 + (y1 − ys)2 + (z2 − zs)2

)
,

⇒ ∂err1

∂zs
=

z1 − z2√
(x1 − xs)2 + (y1 − ys)2 + (z2 − zs)2

.

(13)
From (13), one can see that ∂err1

∂zs
= 0 if z1 = z2 which is the case. This means that the optimisation

algorithm Levenberg-Marquardt can not find a better position in z-axis than random guessing.

It is not very devastating to lose information about the sound source position in height as this mea-
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sure is not of interest. The final system has a goal to detect and position gunshots. One can imagine
that the height in which a person held a gun is irrelevant.

5.3 Choice of Method for Estimation of TDOA

The estimation of the TDOAs has been a major concern throughout this master’s thesis. The different
methods described in section 2.4 works for different kind of setups and sound sources, however the
position of the sound source should not affect the result of the estimated position. Cross correlation
and GCC-Phat are well established common methods to estimate TDOAs. However, looking at the
results from Table 8, one can conclude that they are not the algorithms of choice for this setup and
this can be due to several factors. Firstly, cross correlation and GCC-Phat are methods that performs
better with longer sound files the reason being that longer sound files contains more data to correlate.
Sharp sounds such as gunshots do not provide many data points to correlate, thus, returning a more
inaccurate estimation. Secondly, the two methods are sensitive to echo paths which are typically
present in an indoor environment.

It is quite obvious which method performs best. Flank detection has a mean error of 0.13 m; more
than 10 times smaller than the other algorithms and it has the smallest standard deviation with 0.04
m. Also, it is most effective looking at the time it takes to locate 100 sharp sound events. When
evaluating this method, one has to have in mind that the location of the speakers and sound source
are measured with measuring tape manually. Of course, this also introduces an error and it can be
argued that this measurement error might be greater than 0.13 m. Although flank detection shows
good results for sharp sounds, one has to have in mind that it is a method designed for only this
purpose. If continuous sounds were the sounds of interest, the flank detection algorithm would fail
miserably as there are no flanks to detect.

Adaptive eigenvalue decomposition is a totally different model from the others. Taking the room
reverberation into account in addition to time differences from source to receiver, it performs a pinch
better than cross correlation but much worse than flank detection. Another concern with this al-
gorithm is its complexity. With a conditional loop in the code, the running time for this method is
thousand times slower than the other methods making it an impractical choice.

In Figure 12 the estimated positions tend to be closer to microphone 4. The reason for this is still
unknown but it could be because of noise in that area or reverberation.

5.4 Synchronisation

Different methods of synchronising the hardware were tested and the results can be seen in Table 9.
Both of the methods (”AudioInterleave” and ”Calculate latencies”) made an improvement from the
system that was not synchronised. The numbers might be a bit off since there can be some measuring
errors for the actual sound source. By just looking at the numbers, ”Calculate latencies” seems to be
the best method. The mean error is 0.3 m while ”AudioInterleave” has a mean error of 0.6 m. ”Calcu-
late latencies” also has the smallest standard deviation. The difference in performance between them
is not huge but Figure 13 shows that the positions calculated from ”Calculate latencies” are all closer
to the actual point while the positions from ”AudioInterleave” are more spread out over the office.
Yet it is still clear from both figures where the sound source came from.

The method ”Calculating latencies” might seem better by just looking at the results. But as described
in section 2.6, it needs more than one instance of sharp sounds in order to position them all at once
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and the sounds needs to be scattered around the room. Otherwise the equation system (12) will be
dependent. Using ”AudioInterleave” to synchronise the system does not have this requirement and
this can position a single sharp sound. The question is if it is reasonable to assume that there will
be multiple gunshots during a situation. If not, ”AudioInterleave” might be the choice although it
performs slightly worse.

Another problem is that during longer recordings, the system can skip a frame containing 480 sam-
ples. This means that one of the speakers suddenly gets asynchronised with 10 milliseconds. Con-
verted to distance for the positioning, this problem provides an additional error of around 3 m. It is
hard to find the root for this problem and at present, we do not know why this phenomenon occurs.
In order to avoid this trouble, one can restart the recording every hour.

All the calculated positions from the three synchronisation methods are spread out diagonally over
the actual sound source. If the error only comes from the fact that the system is asynchronised, the
calculated dots in Figure 13 should form a shape more like a circle instead. The reason for this aber-
ration can be rooted in the speakers slightly different input gains. The algorithm for flank detection
is very vulnerable to such variations as the signal’s amplitude information is crucial (see section 2.2).
The system is even more sensitive to sounds with some specific frequencies because these can cause
standing waves inside the speakers.

5.5 The Final System

After acquiring all results from the experiments, a final system has been chosen. As both synchro-
nisation methods has their own advantages and disadvantages, the final system contains both. It
starts recording with ”AudioInterleave” regardless and if only a single gunshot is found, latency pa-
rameters will not be added to the equation system (11). However, if multiple gunshots are detected,
latencies will be added and the equation system transforms to (12). The system works best for a
series of several sharp sounds, if two or more sounds occur at the same time the TDOAs can not be
calculated since the system can not separate sounds from each other. The calculations will be done
as if the sounds are from the same sound source. Detection of sound is done by flank detection and
the classification task is sent to the neural network with output layer directly from the base layers
of VGG16. To estimate the TDOA, the flank detection algorithm is used. An illustration of the final
system can be seen in Figure 15.
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Figure 15: The final system with all chosen methods and algorithms. It is based on the results from
all tests done throughout this master’s thesis.
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5.6 Future Work

In this project, like many other, there were ideas and problems that was never tested or solved due to
lack of time and that some difficulties with the hardware were presence.

There are some changes and ideas that could make the system work even better in the future. In this
master’s thesis, only a pretrained VGG16-network is used. One can think of many different models
that might be better up for the task. A critical issue with machine learning models are the data used
for training. Generally, the more data presented to a model, the better performance is achieved. The
data set ”Urban Sounds 8k” contained 300 samples of gunshot data, 10 ms each. For a real system
that needs to detect gunshot in sound files, a lot more data should be present.

The microphones inside the speakers did not always detect all sound sources, which became a prob-
lem in some applications. There was an idea to let one of the speakers play a tone and then let the rest
of the speakers calibrate their signals after the speaker that played the tone. This would synchronise
the speakers. It worked well in smaller rooms where all speakers could hear each other, but in larger
rooms this method was not possible to test as speakers far from the speaker playing the tone could
not hear it. A part of this idea was to let the speaker play a tone that humans can not hear, partic-
ularly a tone with frequency above 20 kHz. However, the microphones could not record this tone
either. In the end, this synchronisation method was never implemented fully. In the future, when
better microphones are added, we believe that this is a method that should be looked into again.

The method that worked best for estimating the TDOA can only position sharp sounds. Continu-
ous sounds does not have a distinct flank for the flank detection algorithm and if the system should
be able to position other interesting sounds, such as angry voices or screams, the method to calculate
the TDOA needs to be changed.

The system has never been tested with background noise, instead the experiment with 100 sharp
sounds took place in an empty and quiet office environment with soft music playing in the back-
ground. To fully test the methods for calculating the TDOA and get an estimation of performance,
the experiments should be done again but with background noise. This background noise should
contain music and people talking to better resemble the environment in which the speakers will be
used.

30



References

Texts

[2] J. Benesty. “Adaptive eigenvalue decomposition algorithm for passive acoustic source localiza-
tion”. In: The Journal Of The Acoustical Society Of America (1999).

[3] J. Benesty, Y. Huang, and J. Chen. Acoustic MIMO Signal Processing (Signals and Communication
Technology). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. ISBN: 3540376305.

[4] J. Benesty, Y. Huang, and G. W. Elko. “Adaptive eigenvalue decomposition algorithm for real
time acoustic source localization system”. In: ICASSP. 1999.

[5] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin,
Heidelberg: Springer-Verlag, 2006. ISBN: 0387310738.

[6] L. Böiers. Mathematical Methods of Optimization. Studentlitteratur AB, Lund, 2015.

[7] B. Van Den Broeck et al. “Time-domain generalized cross correlation phase transform sound
source localization for small microphone arrays”. In: 2012 5th European DSP Education and Re-
search Conference (EDERC). Sept. 2012, pp. 76–80. DOI: 10.1109/EDERC.2012.6532229.

[8] A. Jansen D. Ellis S. Hershey and M. Plakal. tensorflow/models/audioset. https://github.com/
tensorflow/models/tree/master/research/audioset. (Visited on 06/11/2018).

[9] GStreamer documentation. Basic tutorial 1: Hello world! https://gstreamer.freedesktop.org/
documentation/tutorials/basic/hello-world.html. (Visited on 06/11/2018).

[10] GStreamer documentation. RTP and RTSP support. https://gstreamer.freedesktop.org/
documentation/rtp.html. (Visited on 04/26/2018).

[11] GStreamer documentation. What is GStreamer? https://gstreamer.freedesktop.org/documentation/
application-development/introduction/gstreamer.html. (Visited on 04/26/2018).

[12] G. Dreyfus. Neural networks: methodology and application. Springer, Berlin, Heidelberg, 2005.

[13] M. Farzone and K. Smidje. “Embedded sound localization using multilateration in network
camera systems”. In: Lund University (2013).

[14] G. Flood, A. Heyden, and K. Åström. “Estimating Uncertainty in Time-difference and Doppler
Estimates”. In: 7th International Conference on Pattern Recognition Applications and Methods. 2018.

[15] “Gauss–Newton Methods”. In: From MathWorld–A Wolfram Web Resource (). URL: http : / /
reference.wolfram.com/language/tutorial/UnconstrainedOptimizationGaussNewtonMethods.
html.

[16] F. Gustafsson and F. Gunnarsson. “Positioning using time-difference of arrival measurements”.
In: Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03). 2003 IEEE Interna-
tional Conference on. Vol. 6. Apr. 2003, VI-553-6 vol.6. DOI: 10.1109/ICASSP.2003.1201741.

[17] S. Hershey. “CNN Architectures for Large-Scale Audio Classification”. In: (2017).

[18] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: CoRR abs/1412.6980
(2014).

[19] C. Knapp and G. Carter. “The generalized correlation method for estimation of time delay”. In:
IEEE Transactions on Acoustics, Speech, and Signal Processing 24.4 (Aug. 1976), pp. 320–327. ISSN:
0096-3518. DOI: 10.1109/TASSP.1976.1162830.

[20] K. Krishnan. The Industrial Information Technology Handbook. SFWR 4C03: Computer Networks
and Computer Security, 2004.

31

https://doi.org/10.1109/EDERC.2012.6532229
https://github.com/tensorflow/models/tree/master/research/audioset
https://github.com/tensorflow/models/tree/master/research/audioset
https://gstreamer.freedesktop.org/documentation/tutorials/basic/hello-world.html
https://gstreamer.freedesktop.org/documentation/tutorials/basic/hello-world.html
https://gstreamer.freedesktop.org/documentation/rtp.html
https://gstreamer.freedesktop.org/documentation/rtp.html
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html
http://reference.wolfram.com/language/tutorial/UnconstrainedOptimizationGaussNewtonMethods.html
http://reference.wolfram.com/language/tutorial/UnconstrainedOptimizationGaussNewtonMethods.html
http://reference.wolfram.com/language/tutorial/UnconstrainedOptimizationGaussNewtonMethods.html
https://doi.org/10.1109/ICASSP.2003.1201741
https://doi.org/10.1109/TASSP.1976.1162830


[21] Y. Kuang and K. Åström. “Stratified Sensor Network Self-Calibration From TDOA Measure-
ments”. In: 21st European Signal Processing Conference 2013. 2013.

[23] Douglas O’Shaughnessy. Speech communication: human and machine. Addison-Wesley, 1987. ISBN:
978-0-201-16520-3.

[24] O. Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International
Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI: 10.1007/s11263-015-0816-y.

[25] J. Salamon, C. Jacoby, and J. P. Bello. “A Dataset and Taxonomy for Urban Sound Research”.
In: (Nov. 2014), pp. 1041–1044.

[26] SST ShotSpotter. “Gunshot Detection Technology”. In: 2014.

[27] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale image recog-
nition”. In: (2014).

[29] W. Sun and Y. X. Yuan. Optimization Theory and Methods: Nonlinear Programming. Springer Opti-
mization and Its Applications. Springer US, 2006. ISBN: 9780387249766. URL: https://books.
google.se/books?id=o0BYHLhhPJMC.

[31] E. W.Weisstein. “Discrete Fourier Transform”. In: From MathWorld–A Wolfram Web Resource ().
URL: http://mathworld.wolfram.com/DiscreteFourierTransform.html.

[32] E. W.Weisstein. “Hyperbola”. In: From MathWorld–A Wolfram Web Resource (). URL: http://
mathworld.wolfram.com/Hyperbola.html.

[33] Guanghan Xu et al. “A least-squares approach to blind channel identification”. In: IEEE Trans-
actions on Signal Processing 43.12 (Dec. 1995), pp. 2982–2993. ISSN: 1053-587X. DOI: 10.1109/78.
476442.

[34] R. Zurawski. User Datagram Protocol (UDP), Lecture notes. CRC Press, Florida, 2004.

Images

[1] AXIS C1004-E Network Cabinet Speaker. https://www.axis.com/sv-se/products/axis-c1004-
e. (Visited on 04/26/2018).

[22] Netgear GS108PE 8-Port Gigabit Switch - 4 PoE Ports. https://www.ipphone-warehouse.com/
Netgear-GS108PE-p/gs108pe-300nas.htm. (Visited on 04/26/2018).

[28] Sony ECM-VG1 Electret Condenser Shotgun Microphone. https://www.bhphotovideo.com/c/
product/758139- REG/Sony_ECM_VG1_ECM_VG1_Electret_Condenser_Microphone.html.
(Visited on 05/14/2018).

[30] Tascam DR680 8-track Portable Digital Field Audio Recorder. https://www.amazon.com/Tascam-
8-track-Portable-Digital-Recorder/dp/B0036VC3I2. (Visited on 05/14/2018).

32

https://doi.org/10.1007/s11263-015-0816-y
https://books.google.se/books?id=o0BYHLhhPJMC
https://books.google.se/books?id=o0BYHLhhPJMC
http://mathworld.wolfram.com/DiscreteFourierTransform.html
http://mathworld.wolfram.com/Hyperbola.html
http://mathworld.wolfram.com/Hyperbola.html
https://doi.org/10.1109/78.476442
https://doi.org/10.1109/78.476442
https://www.axis.com/sv-se/products/axis-c1004-e
https://www.axis.com/sv-se/products/axis-c1004-e
https://www.ipphone-warehouse.com/Netgear-GS108PE-p/gs108pe-300nas.htm
https://www.ipphone-warehouse.com/Netgear-GS108PE-p/gs108pe-300nas.htm
https://www.bhphotovideo.com/c/product/758139-REG/Sony_ECM_VG1_ECM_VG1_Electret_Condenser_Microphone.html
https://www.bhphotovideo.com/c/product/758139-REG/Sony_ECM_VG1_ECM_VG1_Electret_Condenser_Microphone.html
https://www.amazon.com/Tascam-8-track-Portable-Digital-Recorder/dp/B0036VC3I2
https://www.amazon.com/Tascam-8-track-Portable-Digital-Recorder/dp/B0036VC3I2


Master’s Theses in Mathematical Sciences 2018:E30
ISSN 1404-6342

LUTFMA-3350-2018

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


	Introduction
	Related Work

	Theory and Method
	Recording
	GStreamer

	Detection of Sound
	Classification of Sound
	Model
	Parameters and Structure

	Estimation of TDOA
	Cross Correlation
	Generalised Cross Correlation with Phase Transform
	Flank Detection
	Adaptive Eigenvalue Decomposition

	Positioning of Sound
	Multilateration
	Levenberg–Marquardt
	Gradient Descent
	Gauss-Newton


	Synchronisation with Calculation of Latencies

	Tools and Equipment
	Set-up and Results
	Performance of the Neural Network
	Method for Estimation of the TDOA
	Synchronisation of the Speakers
	Synchronisation with AudioInterleave in GStreamer
	Synchronisation by Adding Latencies to the Equation System
	Synchronisation Results

	Visualisation of the Performance

	Discussion and Conclusions
	The Neural Networks
	Information in z-axis Lost
	Choice of Method for Estimation of TDOA
	Synchronisation
	The Final System
	Future Work

	References

