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Abstract

This thesis explores some of the possibilities of demand side optimization in online
advertising, specifically how to evaluate and bid optimally in real time bidding. The-
ory for many types of optimizations is discussed. The thesis evaluates auctions from
a game theory and control theory perspective. It also discusses how big data sets can
be used in real time, and how agents can explore unknown stochastic environments.

All items are valued through an estimated action probability, and a control sys-
tem is designed to minimize the cost for these actions. The control system aims to
find the lowest possible price per item while spending the entire budget. Periodic
market changes and censored data makes this task hard and imposes low pass char-
acteristics on the closed system. Using data to evaluate items is a high dimensional
problem with very small probabilities. When data is limited the algorithm is forced
to choose between low variance and precision. The choice between exploring and
exploiting the unknown environment is crucial for long and short term results.

An optimization algorithm was implemented and run in a live environment. The
algorithm was able to control the spend optimally, but distributed it suboptimally.
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1
Introduction

This thesis is about technology in online advertising. Specifically how algorithms
can be used to improve results for advertisers. The thesis is done for and with
Emerse Sverige AB which has the technology and connections needed to run these
kind of algorithms. Some parts of the work in this thesis have been implemented,
tested, and integrated in the Emerse platform. Other parts are purely analytical, but
can give a better understanding of the possibilities and challenges of online adver-
tising, and make new algorithms possible. Table 1.1 introduces some abbreviatiosn
and terms used in the rest of this document.

Table 1.1 Terminology and abbreviations.

Term Explanation
Creative A file containing an advertisement that is ready to be put on-

line.
Ad slot An open spot for a creative on a website or app with a user.
Impression A view of a creative, which happens after an ad slot is pur-

chased.
Advertiser A company with advertisements that they want to distribute.
Publisher A company with ad slots that they can fill with advertise-

ments.
CPM Cost per mille, the cost of an impression times 1000.
CPC Cost per click, the amount of money that is spent for every

click
RTB Real time bidding, the real time auction for buying impres-

sions.
DSP Demand side platform, the bidder in RTB that purchases ad

slots for advertisers.
SSP Supply side platform, the seller in RTB that sells ad slots for

publishers.
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Chapter 1. Introduction

1.1 Online advertising

Advertising online means putting advertisement in online media. This can be on
websites or apps, on videos articles or social media. The growth of the internet
creates many new possibilities, and new ways to advertise. When advertising online
the advertiser has the ability to choose their audience.

Some of the terminology used in online advertising has been presented in Table
1.1 and will be explained here. When an advertisement has been converted to a file,
this is called a creative. The creative is some type, for example a image or video,
and a size, for example 300 times 250 pixels. Two creatives can have the same ad,
but have different sizes, and will be treated differently. When a user is on a web
page or app, the open places for ads are called ad-slots.

After the ad slots are sold they can be filled with creatives. The act of one person
viewing one creative is called an impression. Generally an impression is counted
when the ad slot has been purchased although there is no certain way to check if the
ad was actually ever viewed.

1.2 Programmatic advertising

Programmatic advertising is based on the idea of using programs in the exchange
of ad slots. The programs complete the purchases without any human to human
interaction or negotiation. Today it is the most common way to trade ad slots in
online advertising. As in any transaction of goods there exists a demand side and a
supply side. The supply side is based on a publisher with a supply of ad slots that
they want to sell to the highest bidders.

The demand side is based on an advertiser which has ads (creatives) and a de-
mand to distribute them. The transaction is performed by a demand side platform
(DSP) and a supply side platform (SSP). The platforms have the technology and
connections to make the transactions possible but generally only represent the ad-
vertisers and publisher, and do not purchase or sell their own inventory. This is
an important distinction to make in order to understand how a DSP works with
optimization. They are generally not able or allowed to change the content in the
creative and can only optimize the results by showing the creative to the correct
audience.

1.3 Real time bidding

Real time bidding is the most common way ad slots are sold through programmatic
advertising. It is a form of auction that is performed in real time over the internet.
When an SSP has an ad slot available, it will send out bid requests to several DSP’s.
If the DSP is interested in the ad slot it has around 100 ms to respond with a bid.
The DSP with the highest bid gets to put their creative on the ad slot.
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1.4 Demand side optimization

The short time period makes manual bidding performed by humans impossible,
and puts requirements on algorithms, code infrastructure and servers. Every ad slot
is sold with an individual real time auction meaning that an advertiser has the op-
portunity to be very specific about what impressions they want to purchase and for
what cost.

Table 1.2 shows an approximate time line of the real time bidding for one ad slot.
This is partly based on the RTB framwork described in [IAB, 2017]. The invitation
to bid on an ad slot is called a bid request. This is sent from the SSP to the DSP and
will contain relevant information about the ad slot. The DSP will respond with a bid
response which will contain information about the bid price and the chosen creative.
Bidding agents are the components that decide the actual bid price. A bidding agent
can represent one or more creatives and will only receive bid request for ad slots
that fit the requirements for the creatives.

Table 1.2 Timeline for real time bidding

Approximate
time (ms)

Action

t = 0 A user loads a website or app
t = 5 Bid requests are sent out to several DSP’s
t = 10 A DSP receives a bid request
t = 11 The DSP forwards the bid request to a suitable bidding agent
t = 12 The bidding agent decides a bid and creative for the ad slot
t = 30 The DSP sends a bid response containing the bid price
t = 35 The SSP receives the bid response
t = 100 The SSP chooses the creative of the highest bidder
t = 105 The creative is uploaded on the website/app
t = 110 The creative is viewed by the user

1.4 Demand side optimization

This paper will only focus on the optimization from the demand side, even though
there is possibility for optimization algorithms on both sides. The company Emerse
has a DSP in which they run algorithms to optimize the targets of their clients,
the advertisers. In some campaigns the advertiser is simply interested in getting
the advertisement seen as many times as possible, making every ad slot equally
valuable. For such purposes a normal bidding strategy is to bid an equal amount on
every ad slot. This bidding strategy is called fixed price bidding. The result of these
ads could be increased brand awareness, or increased long term sales, but these
products (or the cause of them) are generally hard to measure.

13



Chapter 1. Introduction

This thesis will focus on algorithms that put value in actions. An action is here
a general term for a viewer of an ad, doing a trackable action that will be used as
optimization target. An action can be a click, an online registration, purchase or
booking. Every ad slot is seen by one person and this person can, at most, perform
one specific action. In practice, the value of every ad slot is binary when optimizing
towards an action. Either the user will perform the action, or not. It is not currently
possible to predict precisely which impression will perform an action, so an action
probability is used instead.

Campaigns are generally dealing with large numbers, so it is fair to assume that
the advertisers are risk-neutral, meaning that they are not affected by the uncertainty
[Başar and Olsder, 1998]. Being risk neutral, the value of an item is equal to the
expectancy of the value, and so the probability can be used for evaluation. This
thesis will focus on using click as an action, but the theory can be generalized to
any action. The reason why clicks are more suitable for optimization, is that the
probability of a user clicking on an ad is in the order of 10−3, while the probability
of, for example ordering the shoes on the ad, might be in the order of 10−6. Very
small probabilities are hard to estimate, and to deal with.

1.5 RTB infrastructure

This section gives a simple description of the RTB infrastructure. Figure 1.1 shows
a simple model of real time bidding. This is from the point of view of a DSP so
the SSP is basically a black box. The DSP is also very simplified since this paper is
mostly focused on the actual bidding. The process begins with an SSP sending a bid
request which says that there is an ad slot available for bidding, and also contains
information of the ad slot. An exchange connector forwards the bid request to a
bidding agent. A bidding agent is the part of a DSP which performs the actual
bidding.

A bidding agent is a quite complicated program which should handle creative,
campaign and budget states. In this representation the bidding logic has been put
outside the bidding agent to separate the optimization part, which is new, from the
base of the DSP which has already been created. There is however no reason why
the bidding logic could not be put directly in the bidding agents. The bidding agent
sends the bidding logic a bid request, which holds information about the available
ad slot, and a creative object, which hold information about the chosen creative for
this ad slot. With the help of data collected in the servers, the bidding logic will
decide on an optimal bid price for the impression. The bid price is sent back to
the SSP in a bid response which contains the bid price and details about the chosen
creative. In order for the bidding logic to work it is essential that it has large amounts
of relevant data which should be collected continuously from the SSP and Internet
activity. The data contains sets of features of impressions that have, and have not,
received clicks.
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1.6 Thesis outline
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Figure 1.1 Overview of real time bidding

1.6 Thesis outline

The goal of the thesis is to design and implement optimization algorithms for real
time bidding. The algorithms should help advertisers increase clicks and/or decrease
budget spend. Chapter 2 will introduce the auction and theory behind it. Chapter 3
will discuss how to estimate the value of an ad slot. Chapters 4 and 5 will introduce
two possible optimization functions. Chapters 6 and 7 will discuss how these can
be implemented. Chapters 8 and 9 will describe two possible algorithms. Chapter
10 will present the results, and Chapter 11 will bring some conclusions. Generally
Chapters 1-3 presents the background of the thesis, while the rest describe new
work.
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2
Auction Theory

2.1 Background

As mentioned, the SSP handles the bids with an auction. An auction is an operation
that, given a set of bids, chooses a winner, and a price for an item. Every RTB
auction is a closed auction meaning that every bidder submits one sealed bid and
the highest bidder wins the item. The bidders do not get a chance to see any other
bids, and no chance of changing or putting multiple bids.

In RTB there is also no information given about the number of bidders, and the
winning price is only revealed to the highest bidder. A loosing bidder gets no feed-
back, except that there is at least one bid higher than theirs. This lack of information
makes algorithm design harder. Data like historical bids and number of active bid-
ders could be used to create an accurate model of the auction. This model would be
a powerful tool in optimization. The remaining part of the auction is deciding the
price that the winner pays. The two most common auctions types are first, and sec-
ond price auction. Before these are presented there will be a simple introduction to
game theory and its impact on auction theory. A lot of the game theory is presented
in [Başar and Olsder, 1998], and the details behind the auctions are discussed in
[Fernandez-Tapia, 2015]

2.2 Game theory in auctions

Game theory is a part of mathematics that studies the cooperation and conflict be-
tween decision makers. A game is here a broad term for a situation where several
partners take actions to maximize their utility. The actions of other players may af-
fect their utility and what actions are best for them. John Nash did extensive work
on Game theory including auctions. Some useful concepts from game theory will
be presented in this section.

A strategy is a set of rules that dictates what actions a player will make. It can
be, but is not necessarily, dependent on the actions of other players. A strategy can
be as simple as always making the same action, but can also be more complex. A

16



2.3 First price auction

dominant strategy is a strategy that is optimal regardless of the strategies of other
players. If a dominant strategy is found, the player does not have to worry about the
actions of other players.

A Nash equilibrium is a strategy that is optimal, given that every other player
also uses this strategy. If all players would use this strategy in a game, there would
be no reason for any player to divert from this strategy.

2.3 First price auction

A first price auction is what most people consider a standard auction. The bidder
with the highest bid pays his bid. In an auction with highest rival bid b∗ the bidder
will pay a price equal to

c(b) =

{
b, if b≥ b∗.
0, if b < b∗.

(2.1)

for bid b. Theoretically, an optimal bid in a first price auction would be b = b∗+ ε

(given that the bidder valuated the item higher than b∗), but this would require pre-
cise knowledge of the rival bidders. There is no general optimal bidding strategy
for first price auctions. John Nash showed that there exists equilibria in first price
auctions. For a first price auction with n bidders with independent valuations vi
drawn evenly from 0 to 1 there exist an equilibrium in bi =

n−1
n vi. Note that this

equilibrium is not a general dominant strategy, only a suggestion for a static equi-
librium. In practice we do not know anything about the number of rival bidders, or
the distribution of their valuations so this result can not be used directly.

2.4 Second price auction

In a second price auction the highest bidder pays the bid of the second highest
bidder. In an auction with highest rival bid b∗ the bidder will pay a price equal to

c(b) =

{
b∗, if b≥ b∗.
0, if b < b∗

(2.2)

for bid b. This auction is also called a Vickrey auction. One strength of the Vickrey
auction is that it encourages bidders to bid truthfully since there is no extra cost
for bidding very high. A truthful bidder always bids their true value which will be
denoted v.

THEOREM 2.4.1
A bidder with with a valuation v maximizes the expected profit for one second price
auction by bidding b = v. 2

17



Chapter 2. Auction Theory

Theorem 2.4.1 can be illustrated by the following three examples:

• If b > b∗, the auction is won and the truthful bidder pays b∗ which is less than
their value.

• A lower bid would result in the same cost if won, but might lose the auction.

• A higher bid would only increase the wins when b∗ > v, which results in a
larger cost than the value.

Since this proof is not dependent on the actions or number of rival bidders this
strategy is a dominant strategy. It is an important to note that this strategy is only
optimal in a true second price auction, and for only one auction.

2.5 Auction floors

Floors are set by the seller of an auction and changes the characteristics of the
auction. There are two types of floors, hard floors and soft floors. A hard floor is a
bid limit for an item. If the highest bid is lower than the hard floor the item will not
be sold to anyone. This floor introduces a abrupt discontinuity in the auction at the
floor, which affects the dynamics of the bidders. The seller sets the hard floor to a
price point, at which it is not beneficial for them to sell the item and might be used
to push up prices.

The soft floor is a limit between first and second price auction and is a bit more
complicated. If the winning bid is larger than the bid floor, the auction is a second
price auction, and if the winning bid is lower than the bid floor, the auction is a first
price auction. Let’s name the highest and second highest bids b∗ ≥ b∗∗, the soft floor
f and the winning price c. The cost for the winner will be

c =


b∗∗, if b∗∗ ≥ f
f , if b∗ ≥ f ≥ b∗∗

b∗, if f ≥ b∗.
(2.3)

It is important to note that if the bid floor is between the highest and second highest
bid, the floor will act as the second highest bid and the winner will pay the price of
the soft floor. An auction with soft floors cannot be considered a true second, or first
price auction, but will be something in between. There is no clear rules for setting
floor prices, so the seller can shape the auction into whatever they want using floors.

A seller can change the bidding floors continuously while selling their inventory.
This is called a dynamical bid floor. A dynamical bid floor can be used to make
sure the floors are set to match bids. The sellers could also use the bid floors to
optimize some utility function, like maximize total value or profit. The seller can
use optimization algorithms for dynamical floors. These algorithms will have access
to all bid data, and could be very precise.

18



2.6 RTB auction

2.6 RTB auction

From the start the auctions in RTB were supposed to be second price in order to en-
courage truthful bidding. Lately some have claimed that most second price auctions
in RTB are not true second price auctions. This could be caused by bid floors, dy-
namic bid floors, or dishonest auctions. It is hard to verify if a second price auction
is legitimate or not, therefore a lot of SSPs have made the choice to move towards
first price auctions since they are easier to verify [Sluis, 2017].

Some people claim that all auctions will be first price in the future of RTB so it
might be unwise to base optimization algorithms on the assumption of second price
auctions. Right now there might be a mix of first price auctions, second price auc-
tions, and something in between. In a "something in between" auction the winning
price is dependent of the winning bid, but it is not equal to it.

2.7 Auction theory for RTB

Most work on auction theory is based on game theory. However there are some
significant differences between this system and the ones discussed in auction theory.
The first one is that auction theory generally focuses on the full auction system,
discussing equilibria, fairness and global utility. In representing the buyer side, this
report will focus on selfish maximization of one players utility without necessarily
worrying about other players actions.

The second difference is that real time bidding auctions are very many, with
very small values. An agent might receive several bid requests per second, and so
the resource of available auctions can be well represented as a continuous flow. Most
auction theory is based on a single auction for an object with defined value. This
thesis will claim that continuous bidding with a fixed budget is inherently different
from any auction theory and so new theory is needed for the application of RTB.

2.8 Auction as a plant

The probabilistic description for an auction only has meaning if looking at a series
of auctions. The bidding algorithm will divide the available impressions into sec-
tions. The size of the sections quantizises the precision of the algorithm since all
bid request from a section will be treated equally. The bid requests for each sec-
tion can be modelled as a continuous and possibly time varying flow of available
impressions F . At the current bid level b the auction can be modelled as a plant
which outputs the flow of won impressions w(b)F with w(b) being the probability
of winning an item at bid b. Even though the section might contain impressions with
varying win rate functions, the auction can be fully described by the plant w(b)F .
By interpreting the auction process as plant, the problem formulation takes one big
leap from game theory, towards control theory.
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Chapter 2. Auction Theory

2.9 Win rate in auction

It is interesting to know the probability of winning an auction at a certain bid. This
will be denoted w(b) and will be viewed as a cumulative distribution function (cdf).
A cdf can be written as

w(b) = P(b > b∗) =
∫ b

0
f (x)dx (2.4)

with f (b) the probability density function from which b∗ is drawn. The probability
function for the auction tells us the distribution of highest rival bids. The following
limits are put on the model

0≤ w(b)≤ 1
0≤ f (b). (2.5)

For some applications, it will be important that these inequalities are strict. This can
be imposed by the application.

2.10 Auction section plant

Suppose that the flow of bid requests are divided into sections, where the impres-
sions of the bid requests all have equal, or indistinguishable value to the bidder. It
would be logical for the bidder to bid at a constant bid level b. The section has some
flow of bid request F and will receive a flow

Fimpressions(b) = Fw(b)

Fcost(b) = Fw(b)c(b) (2.6)

of impressions and cost, where w(b) is the win rate for the current bid level, and
c(b) is the average cost per impression, which is normally denoted by CPM. CPM
has a factor change of 1000.

If the bidding level is in an active region raising bid will always increase win
ratio, and dw

db will be positive, finite and non zero. Any discontinuities in w(b) can
be handled by imposing randomized bidding, which will be discussed in detail later
in this report. Making every bid price the result of a stochastic process ensures that
w(b) is continuous.

dc
db will also be positive and finite, but depending on the type of auction it might

be infinitesimal. In a true second price auction raising the bid level by db only
affects the average cost by introducing new impressions. The derivative dc

db will be
proportional to db, i.e, infinitesimal. From this we can conclude that for an auction
section plant, a very small increase of bid level db will result in a very small increase
in the flow of impression and cost. The CPM will also increase but the increase
might be very close to zero if the auction is a true second price auction.
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2.11 Logarithmic and linear scale

2.11 Logarithmic and linear scale

This section addresses the general problem of how to model bid space. This may
seem very abstract so let us consider an example: Originating at the point b = 8
dollars, we move one unit step in the negative direction and end up at the point
b = 4 dollars. What point would we reach if we, from b = 8 dollars, move two unit
steps in the negative direction? If bid space is linear we would end up in b = 0
dollars which would technically not be a valid bid. Logarithmic scale would give
us b = 2 dollars. Additional steps would give, b = −2 dollars for linear scale, and
b = 1 dollars for logarithmic. In logarithmic space, the zero is always infinitely far
away. This makes sure that bids are always strictly positive. The choice of scale
could be reflected in using the log normal distribution for bid perturbation and/or
weight function. It can also be reflected as exponential actuation instead of linear.

The first order Taylor expansion is a linear approximation of a function f (x) at
a point a and is given by

T (x) = f (a)+(x−a) f ′(a). (2.7)

From this we find that

ex ≈ 1+ x (2.8)

for small x. This fact can be used when comparing linear and logarithmic scales.

2.12 Efficient market hypothesis

The efficient market hypothesis claims that the market always reflects true value.
The theory is generally applied in finance as a claim that no investor can expect to
make consistent profit. Applying this to real time bidding could indicate that the
prices of impressions reflect their true value and that expensive impressions should
always be extra valuable.

In the case of second price bidding you would always pay the true value what
ever you would bid (given that the bid is high enough to win the auction) and no
evaluation would be needed. However RTB is different from stock markets in that
impressions for different clients have different value. The idea of true value does
not exist in RTB but you could identify that some impressions have more general
quality than others when they are, for example on a website with good reputation.

2.13 Winner’s curse

The winner’s curse is a game theoretic phenomenon in auctions that says that the
winner of an auction tends to have overestimated the value of the item. We can
model this as the value estimation for every bidder i consists of a true value and
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some error noise ei. Without making any assumptions on bidding strategies we
could set up a hypothesis that the winning bidder k tends to have a positive er-
ror ek i.e the winners tend to have overestimated the value. The error noise can also
be added by the bidder as randomized bidding. When using randomized bidding,
the bidder tends to win auctions more often when the randomized bid is higher than
the bid level.

2.14 Tragedy of the commons

Tragedy of the commons is a game theoretic problem discussing the problems of
cooperation [Hardin, 2010]. It describes a common land and some farmers. Every
farmer has the opportunity to let his cows use more of the common land. This will
increase their profit but be bad for the land. If every farmer acts rational, by a game
theoretic description, every farmer will use more of the common land and the land
will be destroyed. This theory has been applied to markets, and Zhang suggest that
the auction market that is RTB is a case of the tragedy of the commons, for the
bidder, if no cooperation is made between them [Zhang et al., 2014]. Every rational
bidder will increase their bids until the profit of every bidder is zero.
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3.1 Value

When speaking of auctions, or auction theory the most central variable is the value
of the item to be purchased. When deciding on a bid, the bidder would like to have
a well defined personal valuation of the item it is bidding on. It has already been
stated that the bidder’s actions should be risk neutral which means evaluating an
item I based on the expected value.

Value(I) = E(I) = pv. (3.1)

Here p is the probability of the action for this item and v is the value of the item,
given that the action will happen. v can be interpreted as the value that an advertiser
puts on one action, and can be a parameter, but it could also be a state in a control
system. If used in a control system, an algorithm could decide what the value for
one action is. This will be discussed in detail in Chapter 4. From now on clicks
will be used instead of actions. Then we can say that p is the probability of clicking
denoted by the click through rate (CTR). v could be a goal cost per click (CPC). The
next problem is that the CTR for one impression is unknown. It has to be estimated
through historical data which will further be discussed in this chapter. The details
of the probability estimation will be limited since this has been subject to previous
research by Emerse.

3.2 Features

A feature is something that describes an object. Features are used to define ob-
jects for computers. An object described by n features can be realized as a point in
n-dimensional feature space. It could then be desirable to calculate the distance be-
tween two points, or in some way transform the space into scalar values. Distances
could be used to evaluate if two objects are similar. The scalar could be used to
evaluate some kind of quality for objects in different parts of the feature space.
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In order to estimate the CTR of an impression, the features of the impression
need to be observed. A feature of an impression might be something that describes
the creative, like if it is a video or image. A feature might also be something that
describes the ad slot, like the site it is put on. In total an impression might have up
to 100 features. Evaluating an item with 100 features is far from trivial and could
make up a separate machine learning thesis. The full potential of the features are
outside the scope of this thesis. Using all features would create a 100 dimensional
impression space, which would be far from feasible. In this estimation, only a few
will be used. The features used is considered company confidential and will not be
covered.

3.3 Feature space

Suppose that we define every impression by n features. Every impression can be put
into an n-dimensional feature space. The problem of CTR estimation can be defined
as finding a transformation from the feature space to the scalar CTR. The problem
with the features of impressions is that they generally are categorical variables that
can not be generalized. Dealing with categorical variables is hard because they are
discrete and unordered.

Knowing that "Adam" is tall and "Bob" is short, tells us nothing about how tall
"Clint" is because we do not know if "Clint" is more equal to "Bob" or "Adam". The
features can in general not be generalized so every combination of features have to
be treated separately, instead of using regression analysis. The impression space is
divided into sets which are all evaluated separately. Every impression is placed in
a set and evaluated against impressions with the same set of features. Depending
on which features are chosen the sets can vary in size. In order to make a sufficient
CTR estimation the set must be sufficiently large so that the data is enough to create
a low variance estimation.

3.4 CTR estimator

The distribution of clicks in one section can be described with a Binomial distri-
bution since every impression is independent and with equal probability p. When
observing nc clicks, from ni impressions, the maximum likelihood estimation of the
CTR is

p̂ =
nc

ni
(3.2)

In order to derive the variance of this estimator, the number of clicks is written
as nc = ∑

ni
i=1 Yi, where every Yi is an independent Bernoulli distribution with prob-

ability p. A Bernoulli distribution is a binary distribution which returns 1 with a
probability of p, and 0 with a probability of (1− p). The variance of the Bernoulli
distribution can be calculated as
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3.5 Weighted estimation

Var(Y ) = (p ·12 +(1− p) ·02)− (p ·1+(1− p) ·0)2 = p(1− p) (3.3)

using Var(Y ) = E[Y 2]−E[Y ]2. This can be used with equation 3.2 to produce

σ
2 =Var(p̂) =Var(

1
ni

ni

∑
i=1

Yi)

=
1
n2

i

ni

∑
i=1

Var(Yi) =
p(1− p)

ni
. (3.4)

The only problem with the expression in Equation 3.4 is that it involves the
unknown p. It would be tempting to insert p = nc

ni
into 3.4 but this will not be

done. This would assume that p̂ = p and that the estimator has no variance which
defeats the purpose of estimating the variance. Instead presume that the CTR p is
close to constant through all sections. The variance of the estimator will be inverse
proportional to the number of impressions i.e Var(p̂) ∼ 1

ni
. This will not give any

value to the variance, but it can be used to compare the quality of estimations against
each other. Another measurement of the estimation is the relative standard deviation,
or coefficient of variation. It is defined as the square root of the variance divided by
the mean which gives

cv =

√
Var(p̂)

p
=

√
1− p
pni
≈ 1
√

pni
. (3.5)

Since p is always much smaller than 1, it is fine to approximate 1− p with 1.
cv shows how much the estimation will vary relatively and can be used to see how
many impressions will be needed for good estimations. If cv = 0.1 is desired when
p = 10−3, ni = 100000 impressions are needed. Equation 3.5 shows that the smaller
p is, the more impressions are needed to estimate it relatively good.

3.5 Weighted estimation

Two, or more estimations can be combined into one weighted estimation. This can
be done to reduce variance or to add more specific data. Two values x1 and x2 are
weighted according to

x =
w1x1 +w2x2

w1 +w2
(3.6)

with the weights w1 and w2. The weights could be chosen arbitrarily, but the optimal
choice, in least squares, is to choose wi = σ

−2
i i.e the inverse of the variance. For

the application of weighting CTR estimations the inverse of the variance is equal
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to the number of impressions, and the CTR estimation equal to the ratio between
clicks and impressions. The weighted CTR estimation will be given by

p =
n1

i
n1

c
n1

i
+n2

i
n2

c
n2

i

n1
i +n2

i
=

n1
c +n2

c

n1
i +n2

i
(3.7)

3.6 Exploration versus exploitation

The exploration versus exploitation problem is a classical probability theory prob-
lem which has many applications. It is sometimes referred to as the multi-armed
bandit [Steven, 2010] problem and consists of spending resources in an unknown
environment. The question is do you spend your money on bandits that have good
historical returns, or do you try new bandits to find better returns. In real time bid-
ding, you receive no information from losing an auction.

A low valued section will get low bids, which might get no wins, so a low valued
section will not get any new data and no chance to recover from a bad start. In a dy-
namic environment it is crucial that data is updated continuously. A similar problem
has been worked on in control theory called the dual control problem [Wittenmark,
1995]. Basically an adaptive controller working in an unknown environment has
dual goals. The controller should control the system as good as possible while still
keeping the system excited so that the system can be investigated for better control
in the future. In both game and control theory complicated optimal solutions have
been found but most of them are not practically implementable. It is interesting to
note that in a exploration environment a controller that minimizes the error might
not necessarily be optimal. Characteristics that are generally avoided, like oscilla-
tions, overshooting, slow convergence or random behaviour might be okay in the
application of real time bidding. Exploration can be prioritized by creating a bias
towards impressions with low data.

3.7 Heisenberg bidding

Heisenberg bidding is a strategy for real time bidding invented by Niklas Karlsson
[Karlsson, 2016]. It involves perturbing a nominal bid randomly in order to solve
two problems. The first problem is that the win probability is generally not smooth,
which gives discontinuous plant gain. A controller working on a plant with a plant
with discontinuous gain is likely to be unstable and there might not exist a stable
solution.

The second problem that Heisenberg bidding solves is the problem of explo-
ration vs exploitation. Heisenberg bidding will make sure that even low valued im-
pressions have a chance of winning which keeps up the exploration. Karlsson has
proposed the use of the Gamma function for perturbation, but almost any probabil-
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ity function can be used. Heisenberg bidding resembles the uncertainties that are
associated with particles in quantum physics. And just like a low energy particle
has a small chance of escaping a steep quantum well, a low value impression has
the chance to be purchased.

From a signal processing perspective Heisenberg bidding can be seen as adding
white noise to a signal to make sure that the system is sufficiently excited (like
in leaky LMS). This sort of artificial excitement will always limit the convergence
properties of the system. Like in most white noise applications the normal distribu-
tion will be used as bid perturbation. The reason for not using a more logarithmic
scaled distribution function like the log normal, or gamma distribution is that these
are almost always skewed and non symmetric. It is very desirable that both the mean
and median of the final bid follows the bid level. Then the expectation of the final
bid is the bid level, and we are as likely to bid over as under the bid level. One
problem with using the normal distribution is that there always is a chance to get a
negative value.

3.8 CTR estimation through set weighting

This section will illustrate how weighting can be used to improve estimation quality.
Figure 3.1 shows two copies of the same space. For CTR estimation this is the
feature space, but it can be generalized. The sets have been divided into sections
with different precision. The sections in Set 2 are more precise, and each section in
this set is a subsection of one in Set 1.

The circle illustrates the impression in the feature space, and the grey areas
are the active sections that the impression is put into. The section in Set 2 is more
precise, and data from this set would create the best estimation. However, since this
section is small there might not exist enough data to create a good estimation.

Figure 3.1 Two examples of sets and how they categorize an impression

CTR from both sets can be weighted with Equation 3.6. x1 and x2 will be the
estimations from sets 1 and 2, which leaves the choice of weights. It is desired that
the estimation from Set 2 is weighted highest when there is sufficient data, fading
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out the estimation from Set 1. This can be achieved by choosing w2 to be equal
to the number of impressions in this section, which is equivalent to the inverse of
the variance. w1 can be set to a fixed number, which will be insignificant when the
number of impressions in Set 2 is large. w1 can be interpreted as the amounts of
impressions needed for a good estimation.

In order to increase exploration rate, it might be beneficial to overestimate im-
pressions with little data a bit. This can be done by adding one or more clicks in the
CTR estimation. When there exists much data for this section the added clicks will
not have a big effect. If w1 is chosen large enough the added clicks will only affect
the final estimation moderately, since the estimation will be weighted low.
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4
Maximum value
optimization

4.1 Optimization function

The first three chapters have been focused on background. From this chapter and
on, the work is original and new.

Mathematical optimization consists of maximizing, or minimizing some objec-
tive function while operating under some constraints. After defining some optimiza-
tion function, with constraints, an optimal bidding strategy can be deduced and im-
plemented. The first optimization function that will be presented is maximize value,
while not spending over budget. The standard value that the algorithm will work to-
wards is clicks, but it could be generalized to any action. The optimization function
can be written as

max : nc

spend ≤ budget (4.1)

where nc is the number of clicks. By intuition it is already possible to tell that an
optimal solution to this optimization will always spend the entire budget, since there
is no penalty for spending if the budget is not reached.

4.2 Section distribution for maximum value

Increasing spend can only increase value, so an optimal solution will always spend
the entire budget. Since the spend is constant the optimization problem can be
rephrased into minimizing spend/value. For the application of click optimization
this means that we want to minimize CPC while spending the entire budget. How
should the bids be chosen among the sections? It is reasonable to keep the ratio
between the value and bid constant through all sections. The following conjecture
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claims that this bid strategy is indeed optimal. The conjecture and the attempt to
prove it was inspired by [Fernandez-Tapia, 2017].

CONJECTURE 1
Given a fixed budget and a set of sections, each with CTR pi, bidding bi = vpi for
every section i maximizes expected value, where the valuation v is set so that the
expected spend is equal to the budget. 2

This conjecture will be analyzed with the help of the following theorem.

THEOREM 4.2.1
Given that for every i xi, fi(x)> 0, d fi(x)

dx > 0 and that fi(x) is continuous.
The solution to the optimization problem arg min ∑

N
i=1 xi fi(xi) under the constraint

∑
N
i=1 xi = C satisfies the condition f1(x1) + x1

d f1(x)
dx = f2(x2) + x2

d f2(x)
dx = ... =

fN(xN)+ xN
d fN(x)

dx . 2

By interpreting xi as the spend and fi(bi) as the average CPC on section i, and C
as the total budget, Theorem 4.2.1 can help to analyze Conjecture 1. This uses the
fact that maximizing value is the same thing as minimizing CPC when spending a
budget and that the average CPC on a section will increase when increasing demand.
To prove the theorem the Lagrange multiplier is used. The Lagrange multiplier for
this problem is L (x,λ ) = ∑

N
i=1 xi fi(xi)−λ (∑N

i=1 xi−C). Any optimal solution to
the optimization problem must satisfy ∇L = 0. This gives

∇λ (
N

∑
i=1

xi−C) = ∇

N

∑
i=1

xi fi(xi)

fi(x)+ xi
d fi(x)

dx
= λ . (4.2)

In order to analyze this solution to the application of CPC minimization d fi(x)
dx , i.e,

the budget allocation effect on average CPC has to be analyzed. This will be done
separately under the assumption of second and first price auctions.

4.2.1 Section distribution in second price auctions
Raising bids in second price auctions only affects the bids that would previously not
have been purchased. This means that increasing demand by dx only affects CPC
on the section dx. When increasing the allocation by dx the new average CPC will
be f +d f = x f+dx f ∗

x+dx where f ∗ is the CPC of the new allocation demand and f the

old average CPC level. From this we get d f = f ∗dx− f dx
x+dx and

d f
dx

=
f ∗− f
x+dx

(4.3)
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Inserting this into 4.2 gives

f (1− x
x+dx

)+
x

x+dx
f ∗ = λ (4.4)

For small dx (which is naturally the case) this gives f ∗ = λ , i.e the limit of
the effective CPC will be constant at all sections for minimal CPC while spending
budget. When bidding bi = vpi v is identical to the limit of the effective CPC, which
proves Conjecture 1 under the assumption of second price auction.

4.2.2 Section distribution in first price auctions
When raising bids over a section in first price auctions, the expected price of all
wins will increase. By increasing demand by dx the CPC will increase over all the
section x. For a first price auction the average CPC f (x) for every section will be
identical to the valuation v.

Conjecture 1 is true for first price auction if Equation 4.2 implies fi(xi) = k for
k which is constant for all sections. The analysis becomes more complex under the
assumption of first price auction. It is possible that the term xi

d fi(x)
dx could be large in

relation to fi(xi) and so the term cannot be neglected in general. Instead one could
search for the cases when xi

d fi(x)
dx = k fi(xi) (again it is crucial that k is constant for

all sections). The solution to this is

fi(x) = cixN , (4.5)

i.e, if the CPC functions for all sections are functions from demand raised to a com-
mon power Conjecture 1 is true for first price auctions. The most interesting special
case comes from N = 1 when the CPC function is linear. It is tempting to claim
that all CPC functions could be modeled as linear and so the Conjecture is true for
all auctions. But we generally do not know how the CPC is affected by demand,
the functions could even differ between sections and so finding a solution for Equa-
tion 4.2 would be impractical or even impossible. We will settle with claiming that
bidding bi = vpi will produce a good approximation for the optimal distribution.

4.3 Time distribution for maximum value

We now consider how the budget should be distributed over time. The market de-
cides how bid levels translate into spend (and clicks) and is in general time varying.
How should budget be distributed in a market that is time varying? If there is no
specific need to keep spend even, it would be reasonable to keep the bid level inde-
pendent of market time variations. The next Conjecture will claim that this strategy
is optimal.
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CONJECTURE 2
When CPC bidding bi(t) = v(t)pi in a time varying market with a fixed budget B
for time 0 < t ≤ T , an optimal solution is found as a constant CPC level v(t) = v for
which the expected spend is equal to the budget. 2

By considering time as small discrete sections, Conjecture 2, is identical to Con-
jecture 1 which has been proven true. Keeping v static for every section can be
translated into keeping v static during all times. There is, however, a difference in
implementation, since time only moves one way. It is not feasible to keep v static at
all times and still spend the budget perfectly.

The click value, which might be time varying, should be adjusted so that the
entire budget gets spent during the campaign time (and not before the end). It is
important to understand that the resource of auctions will be time varying, both in
the flow of available auctions, and in the price required to win. For example during
night we expect less people to be on the internet and so there should be a lower flow
of available auctions.

We could also suspect that the low flow of auctions might make the auctions
more competitive and drive up prices. How should the algorithm handle such vari-
ations? If it is not specifically important to keep spend flow even at all times, it
is most profitable to ignore variations and keep v steady. By keeping v steady, the
spend will go up and down during a day, but the daily spend will be kept constant
(and optimal). The market might also change from day to day, affected by week-
days, holidays, or new campaigns.

4.4 Budget as a soft constraint

For practical implementation the budget constraint will be changed into a soft con-
straint. This can be done since there are internal blocks preventing any agent from
spending money that it does not have. If an agent would run out of budget before
the campaign was finished, it would be blocked from spending any more, causing
the campaign to end early. This result, while sub optimal, would not cause any real
harm. Proper budget spend can be set as a soft constraint while internals function
take care of the hard constraint of not spending money that you do not have.

4.5 Reference tracking solution

It is has now been concluded that the optimal solution for value maximization will
satisfy:

• All bids are proportional to CTR i.e bi(t) = v(t)pi.

• The bid level v(t) is held at a constant level that spends the entire budget.
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The second point is not possible to satisfy perfectly in a practical environment
since we cannot know what bid level corresponds to which spend beforehand. In-
stead it is proposed that v(t) is adjusted during the run to make sure that the budget
is spent correctly.

The optimization problem can be rephrased into a reference tracking problem
with optimization function

V (v) = K(Spendre f −Spend(v))2 (4.6)

The gradient of this optimization function with respect to bid level v will be

g(v) = 2K(Spendre f −Spend(v)). (4.7)

Moving in the direction of this gradient is equivalent to moving in the direction
of the error. The implementation of gradient descent for the optimization function
in Equation 4.6 would be an I controller. An I controller is a controller that sums
the error for all times.

4.6 CPC and budget error minimization

It is already concluded that minimizing CPC is equivalent to maximizing the value
under budget. The following optimization function combines low CPC and follow-
ing reference spend. The L2 norm is chosen and both CPC and reference error are
divided with reference values in order to become unitless which produces the fol-
lowing optimization which shall be minimized

V (b) =
w1

CPCnom
CPC(b)2 +

w2

Spendre f
(Spendre f −Spend(b))2. (4.8)

Equation 4.8 has desirable symmetric properties since both terms are unitless.
There is a difference in that even though we use a reference for both terms, the
CPC does not have to follow the signal CPCre f even though it is evaluated in ref-
erence to this signal. The optimization is differentiated in respect to bid to give
dV
db = 2w1CPC(b)

CPCnom
dCPC

db −
2w2(Spendre f−Spend(b))

Spendre f

dSpend
db .

Since both derivatives in the expression are hard to analyze we will once again
make the assumption that the CPC is linear with respect to spend i.e dCPC

dSpend = λ .
Using this a gradient function e is created, which is proportional to the negative
derivative of the optimization.

e =
Spendre f −Spend

Spendre f
−K

CPC
CPCnom

(4.9)

Minimizing this optimization function can be implemented as a feedback con-
troller with the gradient as an error signal. This error function will focus on min-
imizing the relative reference error when this is large, and focus on minimizing

33



Chapter 4. Maximum value optimization

CPC when the relative CPC is large. The constant K can be chosen arbitrary but
it could be set to make the parameters Spendre f and CPCnom meaningful. The
static point is given by e = 0 (presumably the controller still has integral action
for this application). At this point the relation Spendre f−Spend

Spendre f
= K CPC

CPCnom
will hold. If

CPC =CPCnom, the relative reference error will be equal to K, and so K can be set
to reflect a general relation between relative CPC and error for a solution to equation
4.8.
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5.1 Expected profit optimization function

Lets assume that our optimization goal is to maximize our profit for every impres-
sion, i.e, V = E(value−cost). We can look at a section i of all available impressions
with a relatively homogeneous CTR p and win probability function w(b) which is
only dependent on the bid b. Assuming a first price auction, the expected cost of an
impression is exactly the bid b. We define the value of the impressions through the
expected clicks it will produce and a user defined click value v. The value function
for a section with win probability w(b) and click through rate p can be written as

V = w(b)(pv−b). (5.1)

A question of interest is how V changes with our bid b. The derivative of the
value function in bid is obtained through the chain rule.

dV
db

=
dw(b)

db
(pv−b)−w(b) =

dw(b)
db

m−w(b)

dV = dw(b)m−w(b)db (5.2)

Here m stands for the difference between the value pv of the impression and our
bid b. In order to have positive profit m must always be positive. The derivative in
Equation 5.2 can be interpreted as follows: Raising the bid by db will have two
effects on the value function. The win probability function will increase by dw(b)
resulting in dw(b)m more expected value. The cost of the impression will increase
by db resulting in a decrease of the value function by w(b)db. An extreme point may
exist in dV

db = 0 which is defined by w(b) = dw(b)
db m. By proving that V is concave in

b, we prove that this extreme point exists, and that it is the global maximum. This
will also prove that this extreme point is unique and plausible to find by means of
gradient ascent.
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5.2 Is the profit optimization function concave?

A function f (x) is concave if d2 f (x)
dx2 ≤ 0. The second derivative is calculated from

Equation 5.2 by using the chain rule once again.

d2V
db2 =

d2w(b)
db2 (pv−b)−2

dw(b)
db

(5.3)

Any satisfying solution must satisfy 0 < b < pv, so it can be concluded that pv−b
is strictly positive in profit maximization. dw(b)

db should always be larger or equal to
zero since a larger bid should always be expected to win more auctions. All the
positive terms are moved to one side to create an expression for V to be concave.

d2w(b)
db2 ≤ 2

pv−b
dw(b)

db
(5.4)

The problem with proving this is that we do not have any information about the
second derivative of a generalized win probability function. It can be positive or
negative at different bids and it is not necessarily finite.

Even though the profit optimization function is never proven to be concave, it
is assumed to suitable for gradient ascent. Any algorithm can only estimate this
function, and so it would be sufficient that the estimated optimization function is
concave.

5.3 Profit gradient ascent

Gradient ascent is an iterative method for finding a maximum to a weight function,
by always moving in the direction of the gradient. This is implemented with the
update equation

b(k+1) = b(k)+µg(k)

g(k) =
dV
db

(5.5)

with µ being the step size. How should the gradient be approximated? Perhaps using
dV =V (k)−V (k−1), db = b(k)−b(k−1)? This would probably not work since V
could be time varying and unpredictable. Also g(k) could increase without bounds
for b(k+1) = b(k).
Perhaps a better solution would be to use the theory from Section 5.1. In order
to use Equation 5.2 to approximate the gradient we need to approximate the click
through rate p, the win probability w(b) at the current bid, and the derivative of the
win probability dw(b)

db at the current bid. This would require some modeling of the
auction. This will be discussed further in Chapter 7.
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5.4 Global profit maximization

Maximizing the profit for every impression can be seen as local optimization. The
global optimization will be to maximize the profit for the entire campaign. Global
maximization will produce positive profit for every impression and will satisfy
global optimization. But when there is a budget involved local maximization does
not necessarily translate into global.

The optimal global solution would make sure that the budget is spent only on
the impressions that have the best profit relative cost. With the right v the local opti-
mization might come close to that. If there is little to gain in an section of an auction
the local optimization will bid very low, which will give other sections more budget.
It is fair to say that the local optimization might produce good results globally. It
could be possible to adjust v with a controller like in maximum value optimization.

Profit maximization is difficult to implement since it requires many models.
Creating these models requires much data which can be hard to store. It would also
be hard to verify if these models are correct or not.

37



6
Dynamic Bidding

6.1 Introduction

Dynamic bidding means changing bids during time. This can be done through a
control system. The control system might be used for campaigns and agents with a
wide range of bids and budgets. It is therefore very important that the control system
is always robust and stable in every scale.

And even though the algorithms are generally designed for long campaigns they
should also be able to perform okay in short campaigns. Making the algorithm scale
invariant can be seen as removing units. A parameter set should be found, that are
unitless, and produce good results for every scale and system, without risking insta-
bility or undesired oscillations.

6.2 Moving average filter

A moving average filter (MA filter) is a low pass filter that averages the signal it
receives. The number of samples it should use in that average is determined by the
length N. The filter can be used to reduce variance and/or remove certain frequen-
cies from a signal. It will be used to remove the periodic behaviour of the market.

A MA filter of length N is defined through
y(n) = 1/N · (x(n)+ x(n− 1)+ ...+ x(n−N + 1)). Using the z transform zx(n) =
x(n+1) and geometric sums we can write a filter W (z) with length N as

W (z) =
1
N

N−1

∑
k=0

z−k =
1
N

1− z−N

1− z−1 (6.1)
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6.3 Control goals

6.3 Control goals

In this section a couple of goals for the control system will be presented. The system
is not a classical control system and neither are the control goals.

• No static error between daily spend and reference daily spend.
An integral (I) controller can be used to make sure that there is no static gain.

• The 24h oscillations from market should not affect bid level. A 24 hour MA
filter can be used to remove these oscillations.

• Low bid level overshoot from market or reference changes. In order to keep
the overshoot low, the controller gain cannot be too high.

• Reasonable fast bid level adjustment (max 3 days) from market or reference
changes. To make sure that the system is not too slow, the controller gain
cannot be too low.

• Stable system with no oscillations. A low controller gain ensures a stable
system.

The process is time varying and oscillating by nature and the output (spend)
will also be. The market oscillations are caused by different amount of people on
the internet through the day. The control design will not focus on the spend sig-
nal itself but the filtered Daily spend, and control signal (bid level). For dynamic
characteristics it is more interesting to look at bid level than daily spend. The daily
spend is a filtered signal with high latency and it is not desired to make it fast since
that would require serious overshoot in control signal. In a classical control system
where the goal is to minimize the square error the filter might have been redundant
as the integrator already possesses low pass characteristics. A P part could have
been used to handle overshoots and improve the speed of the system. Simulation
results suggested that the system worked better without the P controller so this was
never implemented. This is partly because the system needs to remain slow, and
there is also no obvious starting point to the bid level.

39



Chapter 6. Dynamic Bidding

6.4 CPC-control system

Figure 6.1 shows a general control flow diagram of the CPC controller. The regu-
lator adjusts the control signal u, which can be interpreted as the current value of
a click, in order to follow the desired daily spend. The spend is summed over 24
hours because we know that the market changes over the day and we want to limit
the variance of the signal sent to the regulator. The final bid B is drawn from a bid
distribution f (b) which depends on the nominal bid b. The distribution and its re-
lation to b could be chosen arbitrarily but it would be wise to choose f (b) so that
0 = f (b,x), for b > 0, x < 0, E( f (b)) = b and f (b,x)→ 0 when x→ ∞. There are
no real error, or disturbances in this system. The only unknown is the stochastic
behaviour of the market.

Regulator Actuator Exchange
Connector

Bid
Perturbation

Bidding Agent
b = pv

24h
Sum Filter

Campaign
Specifications Action Rate

Estimator

+ -1

u

e

daySpend

Spend

Re f erence

Data

p

v

b

B

Bid Req

Figure 6.1 Control flow diagram of the CPC-controller
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6.5 Control implementation

It is desired to find an analytical expression for controller gain that satisfies the
goals at any scale. For this analysis we can simplify the system to a I controller
connected to a static plant with gain f (u) = ku = y. The output from the plant is
filtered through a 24 h sum filter which is the same as an MA filter with length N
times a factor of N, where N is the number of periods during 24 hours. Figure 6.2
shows a flow diagram of the simplified system. The z transform of the filter is found
with the help of Equation 6.1.

I controller C
k/(z−1)

Plant P
g

Moving sum filter W
(1− z−N)/(1− z−1)

+

-1

u y

z

er

Figure 6.2 Control flow of the simplified system

The transfer function G(z) of the closed system r->y can be written as

G(z) =
CP

1+CPW
=

gk
z−1

1+ gk(1−z−N)
(z−1)(1−z−1)

=
gk(1− z−1)

(z−1)(1− z−1)+gk(1− z−N)
(6.2)

It can be observed that we are only interested in the product of plant and controller
gain which we can use as gk = c. In order to analyze the characteristics of the closed
loop system we look at the poles of G(z). These poles are found by the z that solves

(z−1)(1− z−1)+ c(1− z−N) = 0 (6.3)

which is the same as solving

1− z−1(2− c)+ z−2− cz−N−1 = 0. (6.4)
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Chapter 6. Dynamic Bidding

Intuitively, and from simulations, we find that the system is more stable and
with less oscillations when the combined gain c is small. We might expect a stable
discrete time system with no oscillations to have poles p close to the origin. Through
simulation it was found that in order to keep system characteristics, the controller
gain k had to be proportional to the inverse of the length of the sum filter squared.
The controller gain can be written as k = r/N2. r is a constant which can describe
the system well, regardless of filter length. Equation 6.4 is hard to analyze by hand.
Figure 6.3 shows the poles of the closed loop system, plotted on the complex plane
for N = 100 and different values of r.

The plot shows 100 poles evenly distributed in a circle which is only marginally
smaller than the unit circle. There are a couple of poles very close to 1 which is
added by the integrator and/or MA filter. It is these poles that make the system
unstable for large r. Smaller r makes the circle smaller, which indicates that the
system is more stable. When r is very large, the system becomes unstable, which
can be seen in the step responses in Figure 6.3. From the figures it can be seen that
r should be set close to 1 for good performance.
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6.5 Control implementation
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Figure 6.3 Poles and step responses for three different system gains
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Chapter 6. Dynamic Bidding

6.6 Actuator

The actuator converts the control signal into click value. This operation turns the
signal into the correct unit. This could be done with a linear actuator v = Ku. This
choice might not be optimal since only positive values are valid, which means that
the control signal will have to be strictly positive. A more suitable choice might be

v = v0(1+Ku) (6.5)

with v0 being a nominal starting value. This would probably work, but there is still
a chance of negative v if u is below −K. From Section 2.11 we have made the
conclusion that the bidding space is logarithmic so a more suitable actuator might
be

v = v0eKu. (6.6)

It is important that K is sufficiently small so that v does not risk getting ex-
tremely high. The first order Taylor series of Equation 6.6 is Equation 6.5 i.e
v0eKu ≈ v0(1+Ku) for small Ku. This means that the two actuators are almost iden-
tical for small control signals.

6.7 CPC and error controller

A controller minimizing the optimization function

V =
w1

CPCnom
CPC2 +

w2

Spendre f
(Spendre f −Spend)2. (6.7)

has very similar characteristics as a controller that minimizes the error squared. The
negative gradient will be

f = (Spendre f −Spend(b))/Spendre f −Kv/CPCnom. (6.8)

CPC has been exchanged with v since it should theoretically decide the effective
CPC. K can be set arbitrarily, but K = 0.1 has shown good results. Just like in the
previous control system the negative gradient will be fed into an I controller with
gain k and input into an actuator. This controller is harder to evaluate analytically,
but some parallels can be drawn to the original control system. A lower control gain
increases stability of the system but reduces speed. When v is not very large, this
control system will be very similar to reference tracking system, only differing in
the scalar 1/Spendre f which is constant.

The analytical theory in Section 6.5 can be used to show that the controller gain
k should be roughly proportional to the inverse of the MA filter length N. This gives
k = r/N, and r will have roughly the same characteristics as seen in Figure 6.3.
This is true if the gain g of the plant is equal to Spendre f /N. The simulations in
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6.7 CPC and error controller

Figure 6.3 used the assumption that g = 1, which means that the term 1/Spendre f
can be ignored in the gradient, and 1/N can be removed from the controller gain.
We cannot know the true gain of the plant but it would be reasonable to assume
that it is in the order of Spendre f /N since that would be its output at a steady state
solution. And it is fair to assume that the gain relative to its output should be close
to one.

The final control gain was adjusted by the help of simulations. It was true that it
should be inversely proportional to the length of the MA filter with k = r/N. r = 0.5
gave bests simulation results, which resembles the theoretic results.
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7
Auction modelling

7.1 Introduction

For some applications we might be interested to know what kind of auction we are
participating in. It is necessary in finding the bid that optimizes profit. This section
will show how such a model can be made. The idea of modelling an auction is pre-
sented in both [Fernandez-Tapia, 2017], [Zhang et al., 2016] and [Cui et al., 2011].
This generally leads to very complicated methods that are difficult to implement.

The bidders in RTB only have access to some data which makes the modeling
of an auction much harder. The bidder only knows at which prices they have lost an
auction and what prices they have paid for the winning auctions.

The auction is defined by one cdf w(b) which defines a probability of winning
at a certain bid, and pdf f (b) which defines the change in win probability at the bid
b. From the set of winning prices, and lost bids, the algorithm will try to estimate
w(b) and f (b) for the current bid b. Three general modeling methods are presented.

7.1.1 Maximum likelihood method
The maximum likelihood method is a commonly used method in mathematical
statistics. Before it can be used a model with some uncertain parameters has to
be proposed. The method will find the parameters that are most likely to produce
the given realizations.

One disadvantage with this method is that we do not know what kind of dis-
tribution describes the auction dynamics best, and we might lose generality when
assuming a distribution. Another disadvantage may be that we are not interested in
the entire function w(b), only the value and derivative at the current bid b. The esti-
mation of the entire function might be unnecessary expensive and may compromise
precision at current b.

7.1.2 Direct observation
Given that there is enough data around the bid b we can estimate the win probability
by w(b) = ∑W δ (pi−b)

∑W δ (pi−b)+∑L δ (Bi−b) , i.e the rate of wins and total bids at b. The deriva-
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7.2 Using the normal distribution for identification

tive could be approximated with dw(b)
db = w(b+db)−w(b−db)

2db where db is a very small
change in bid. Since bids can have almost unlimited precision there is little chance
we could ever have enough data to make this approach work. We would have to
modify the δ function to have finite precision i.e. δ (ε) = 1 for a small ε . The next
method is a version of this idea.

7.1.3 Weighted observation
This solution uses the same idea as the previous solution. In order to make it work
with limited data we look at all data points. The data points are weighted with bid
difference. The closer the bid is to the current bid, the more relevant the data is.
We exchange δ (x) with a weighting function f (x) which has its maximum at f (0),
is symmetric and is strictly decreasing for x (and minus x). f (x) is always strictly
positive. The new estimation will be w(b) = ∑wins f (pi−b)

∑wins f (pi−b)+∑losses f (Bi−b) .

7.2 Using the normal distribution for identification

The weighted observation method is chosen since it is general and does not require
a lot of data. The normal distribution is chosen for weighting. The strength in the
normal distribution is that it is well defined, smooth and differentiable. It is defined
by its mean µ and standard deviation σ . For a value x, the pdf is given by

ϕ(x,µ,σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (7.1)

The win probability estimation will be given by w(b,σ) = W (b,σ)
W (b,σ)+L(b,σ) , where

W (b,σ) =∑wins ϕ(b, pi,σ) and L(b,σ) =∑losses ϕ(b,Bi,σ). σ is now included into
the definition of the win probability estimation to highlight the fact that the estima-
tion is dependent on the width of the weight function. Ideally we want a very low
variance so that we get good local precision, but this only works if we have suf-
ficient local data. Using a small variance in a area with little data could result in
a spiky win estimation with potentially negative pdf. Using weight with very high
variance will result in a very uniform probability estimation with little details.

In order to estimate the gradient of the win probability we can use the relation

ϕ
′(x,µ,σ) =− (x−µ)

σ2 ϕ(x,µ,σ). (7.2)

Here the dot in a function f ′(x,y) is used to define the derivative of the function
in the first variable. In this case it represents the operation d/dx. Figure 7.1 shows
the pdf and derivative of the unity normal function i.e. ϕ(x,0,1).

We can define the derivatives
W ′(b,σ) = ∑wins ϕ ′(b, pi,σ) = 1

σ2 ∑wins(pi−b)ϕ(b, pi,σ) and
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Figure 7.1 The unity normal distribution and its derivative

L′(b,σ) = ∑losses ϕ ′(b,Bi,σ) = 1
σ2 ∑losses(Bi − b)ϕ(b,Bi,σ). Using the quotient

derivation rule on w(b,σ) we get

w′(b,σ) =
W ′(b,σ)(W (b,σ)+L(b,σ))−W (b,σ)(W ′(b,σ)+L′(b,σ))

(W (b,σ)+L(b,σ))2 . (7.3)

From this estimation we can estimate the gradient of the value function, and a
suitable bid change from equations 5.2 and 5.5.
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8
Max value algorithm

8.1 Introduction

This chapter presents an algorithm that maximizes the total value. This minimizes
the optimization function

V (b) =
w1

CPCnom
CPC(b)2 +

w2

Spendre f
(Spendre f −Spend(b))2. (8.1)

while distributing the spend proportionally to the estimated CTR. The optimization
function is a weighted sum of the squares of relative error and CPC. The same algo-
rithm could be used for only maximum value optimization in which the optimization
function can be reduced to relative error squared. This is achieved by setting w1 to
0.

The reason for choosing Equation 8.1 as optimization function is that it limits
the size of the CPC. Figure 8.1 shows the structure of the algorithm. Arrows indicate
functions/programs being called with the inputs/outputs named. The algorithm uti-
lizes 5 static and 3 dynamic core variables. The step size is always 0.5/96 (96 is the
number of controller calls per day), and the relative standard deviation (RSTD) is
always set to 0.1. These parameters have proven effective in simulations. nomCPC,
and reference is set for every agent to suit the goals. The bidLevel is initialized to
nomCPC and the integrator and Spend start off at 0. The agent gets a set of available
creatives for which it will buy ad slots.

The algorithm consists of two main parts. The controller part is called once
every 15 minutes. This adjusts the bid level to optimize performance. The bidding
is the second main part of the algorithm. This is called every time a bid request
is received, which happens at a rate of approximately 10 times per second. This
part calculates and returns an optimal bid for each bid request. The calculations are
generally fast, so the biggest real time problem is server communication.
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Chapter 8. Max value algorithm

Figure 8.1 Diagram of the value optimization algorithm

8.2 CPC Controller

The controller is a simple integrator with exponential actuator. The controller seeks
to minimize the Function 4.8 which is very close to a reference follow problem.
The control system can also be interpreted as exponential gradient descent for
this function. The controller uses 3 states, or dynamic variables: Spend, integra-
tor and bidLevel. Spend is total spend by agent, integrator sums up the gradient,
and bidLevel is the current level at which the bidding function will bid.

The first part of the controller calculates the spend for the last 24 hours, called
daySpend. This is calculated by Spend(k)-Spend(k-96). This is essentially a MA
filter, described in Section 6.2, times a factor. If the agent is younger than 24 hours
this operation is not possible and is replaced by (Spend(k)-Spend(k-1))*96, which
essentially removes the MA filtering for the first 24 hours. The daySpend is used to
calculate the gradient of the optimization function. The gradient is given by

e =
re f erence−daySpend

re f erence
−0.1

v
nomCPC

. (8.2)

Since the weights can be set arbitrarily, the gradient can be set to remove con-
stants and prioritize reference tracking to CPC with a factor 10 to 1. The gradient
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8.3 Bid section

is multiplied by the stepSize and added onto the integrator. The new bid level is
calculated by bidLevel = nomCPC · exp(integrator).

There are not any major real time problems in the controller part of the algo-
rithm. The controller is called once every 15 minutes and there is no time limit on
the process. The process does not require any contact with remote servers or heavy
calculations. In practical implementations it is important that the bidding agent is
not affected by any outer controllers. Many systems temporarily block agents, or
decrease traffic to them, when they spend money too fast. This is problematic since
the controller cannot identify the reason for the low traffic and the feedback is re-
moved. This might cause the controller to stay at a too high bid level, and might
introduce slow dynamics and limit cycles.

8.3 Bid section

When a bid request is received the bidding agent calls the bidding section to cal-
culate an optimal bid for the ad slot and a chosen creative. The click through rate
is estimated. This is done by placing the impression into sets, collecting data from
the servers, and weighting these. Since there are many possible sets, the data is too
large to be collected locally and has to be collected from the servers for each bid.
The estimated CTR is multiplied with the current bid level to produce a bid. This
bid is randomly perturbated by a normal distribution with fixed relative standard de-
viation for the final bid. This is done to increase exploration and controller stability.
The final bid is put into a bid response and returned. The theory behind the CTR
estimation is described in Chapter 3

This part of the algorithm is very real time reliant. The SSP expects a bid re-
sponse, no more than 100 ms after their bid request is sent. The bidding logic is
not recommended to use more than 30 ms in order to make this possible. There are
no heavy calculations in the bidding logic so that part should not take up too much
time. The server call, which is executed for every bid, might take some time though.
Depending on the location, quality and infrastructure of a server, a server call might
take between fractions of ms to several seconds. Using the servers for every bid puts
very high demands on the server infrastructure. For a global company this can be
quite challenging.

8.4 Discussion

This algorithm was implemented into the Emerse DSP and tested live. It is not
overly complicated and very stable. It does not require lot of data to run, but might
need a lot of data to produce good results.
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9
Max profit algorithm

9.1 Introduction

This algorithm maximizes the profit for every impression. This is done by maximiz-
ing

V (b) = w(b)(pv−b). (9.1)

The algorithm needs to estimate a CTR p for each section. The bid for this
section is adjusted to maximize the optimization function in Equation 9.1. In order
to do this, it needs to model the auction for each section while it is running. Figure
9.1 shows a diagram of the profit maximizing algorithm. The algorithm has 4 static
variables creative, v, stepSize and RSTD. Creatives are a list of creatives that are
available. v is the value of one click. stepSize is the step size used for gradient
ascent, and RSTD is the relative standard deviation of the bid randomizer. There
are 3 dynamic variables. Bids is a dictionary of the current bid for each section.
Wins and Losses are a list of wins and losses for each section. This algorithm also
consists of two parts. The bidding section returns the optimal bid, and the model
section adjust these bids. The calculations for this algorithm would be relatively
fast, the biggest time would be spent on server communication.

9.2 Model section

This section is called whenever one section has sufficient data. This might happen
once every 15 minutes. The algorithm uses this data to update the bid for this sec-
tion. It starts with estimating the CTR. This is performed by a server call and the
thoery from Chapter 3. The cdf and pdf of the auction is modeled from the wins
and losses for this section and uses theory from Chapter 7. The cdf, pdf, p and v are
used to estimate the gradient. This is done by

g = cd f (pv−b)− pd f . (9.2)
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9.3 Bidding section

Figure 9.1 Diagram of the profit maximizing algorithm

Here b is the bid for the current section which is found in Bids. The gradient Ascent
updates b by bnew = b ·exp(g∗stepSize), and the new b is stored in Bids. Losses and
Wins are cleared for this section after the bid is updated. Depending on how large
the data sets Wins, and Losses are this section might be slow. The auction modelling
is a rather simple method, it only sums up values from a normal distribution, but it
might not scale well for very large sets. It is also not clear how often this part of the
algorithm would be called in a live environment.

9.3 Bidding section

This section returns the bid request with an optimal bid. The algorithm classifies the
impression as part of one section. The current bid for this section is extracted from
Bids. This bid is randomly perturbed to produce a final bid. This is sent back in a
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Chapter 9. Max profit algorithm

bid response.
If a win notification is received from the SSP, the price is stored in the Wins

dictionary. Else the bid is stored in the Losses dictionary. When there is enough
data in the dictionaries, the bid gets updated by the model section. This section can
be really fast, as there is no server communication needed. However, it might be
hard to track the bids that have been sent and log these.

9.4 Discussion

This algorithm has performed well in simulations. However it becomes quite clear
that it would be very difficult to implement in a live environment. Generally there
is no limit on how many sections that an agent can bid on. Storing data for all these
sections would be inefficient and probably impossible. Even connected to a server
the amount of data would increase too fast.

The modeling of auctions might also be inefficient and hard to evaluate if there
are too many sections. Many sections would probably only have a few wins, and so
a good model could never be made or needed. The algorithm is not suited for the
general campaign. It could, however, work for a campaign with very few specific
sections. Then the data might be reasonable and the models could be evaluated.

54



10
Results

10.1 Value optimization simulation

Figure 10.1 shows a simulation for the value optimization algorithm performed in
Simulink. The model in Simulink uses the same logic and parameters that were
implemented in the DSP and should be a good representation of the dynamics that
would be expected in a live environment. The algorithm is connected to a plant that
resembles an auction.
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Figure 10.1 Simulation of value maximization in oscillating market
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The auction is decided by the market price (d) and a random stochastic pro-
cess. The market price oscillates with a frequency of 24 hours and makes two step
responses. The control signal (c) is not largely affected by the oscillations and han-
dles the step responses with minimal overshoot. It takes the control signal 2-3 days
to settle, which is to be expected when combining an integrator with an MA filter.

The spend (a) and daily spend (b) follow the reference with a very small static
error. This is to be expected from the second part of the optimization function. The
spends are only affected during 1-2 days by the step responses, and only (a) reacts
to the oscillations.

10.2 Profit maximization Matlab simulation

This section will present Simulink simulations for the profit gradient ascent algo-
rithm. The bidder sends 10 randomized bids at a bid level and receives data only
showing which of the bids are won. From this data the bidder tries to approximate
the auction, and the corresponding optimization function. The bid level is moved
along the gradient of the estimated optimization function. For every simulation the
value v of the impression is set to different values. Every simulation bids on a total
of 106 impressions.

Figure 10.2 shows results from Simulink simulations using three different mod-
els. All models are normalized so that there is a 50 % win rate at bid 1.0 and that the
optimal bid has a win rate of 2.4 %. The same parameters are used in all simulations.
The auctions are different for the three simulations, with increasingly narrower op-
timization functions.

The optimal bid for model 1 lies in 0.025. The mean bid level is 0.022 while
the mean of the won bids is 0.024. From this simulation the total profit is 90 % of
the profit that would be expected from the optimal bid. The optimization function is
shown in (a) and the bid levels are shown in (b).

The optimal bid for model 2 is 0.078, with mean of bid levels at 0.074 and mean
of wins at 0.083. The simulation for this model generates 83 % of optimal profit.

The optimal bid is given by 0.65 and the mean bid level is 0.62. It is worth noting
that the mean win is 0.87, which is quite higher than the value of the impression.
The randomized bidding makes it possible to have a higher mean win than the value
and can be categorized as the winners curse. This causes the profit to be -222 % i.e
the bidder loses money.

In general we can see that the estimations have a consistent bias of around 5 %.
Since this bias is consistent it is not a problem. In general the winners curse cancel
out the effect of low estimation since the winning bids tend to be higher than the
average.

It is interesting to see that model 1 and 2 have really good relative profit and that
model 3 has negative profit. Looking at subfigures (b), (d) and (f) we see that model
3 has a very low variance estimation while 2 and 1 are not as good. These results
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10.2 Profit maximization Matlab simulation

suggest that the current algorithm has problem with getting profit from narrow auc-
tions, but since the estimations are good, there is a lot of potential. The algorithm
needs some automatic adjustments to balance up exploration (vs exploitation) cost.
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(a) Optimization function for bid levels model 1
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(c) Optimization function for bid levels model 2

0 2 4 6 8 10

10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

(d) Bid levels model 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-4

-2

0

2

4

6

8

10

12

14

16
10

-4

(e) Optimization function for bid levels model 3
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Figure 10.2 Simulation results from 3 different models
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Chapter 10. Results

10.3 Live test 1

10.3.1 Performance
The first live test was started the 16th of May 2018. It lasted almost seven days. An
implementation of the value optimization algorithm was run alongside a fixed price
agent. Both were managed and controlled by and through the Emerse platform.
Creatives were taken from a large campaign with a lot of data, and relative good
performance. The agents were set to have identical configuration and creatives. Both
agents were set to spend 35 dollars each during the duration of the test campaign
which was 6.5 days.

Nominal CPC was set to 0.2 for the optimization agent, and the fixed price agent
was set to bid at 0.4 CPM, which translates into 400 µDollar per impression. The
average CTR is roughly 0.002 so the two agents will start bidding roughly at the
same level. The reason for running the fixed agent in parallel, is to have a bench-
mark to compare results with. Every creative and campaign and day are different,
so there is no good way to quantify performance. The only scientific evaluation is
to compare the results of two methods under identical circumstances. A low CPM
fixed price agent only buys the cheapest impressions. It can achieve low CPC with-
out any advance technology and is a good reference.

Table 10.1 shows the performance from this live test. The averages for the cre-
atives used were 0.97 CPM, 0.51 CPC 0.19 CTR. It is clear that both agents manage
to pay less per impression and per click, but have lower click probability. When
optimizing towards clicks both agents are better than average for the creatives. It
is important to note that the creatives have generally not been used to maximize
clicks. The agents spent roughly the same amount of money, but the fixed price
agent bought much more impressions. This is caused by the optimizing agent bid-
ding too high which causes CPM and CPC to be higher for the optimization agent.
The optimization agent also has a lower CTR than the fixed price agent which is
unexpected. This suggests that the CTR estimations might have been ineffective.
The fixed price agent spent the money more efficient during this test, but it had the
advantage of higher traffic.

Table 10.1 Performance for optimization agent and fixed bidder

Optimization Agent Fixed Bidding Agent
Spent (Dollar) 32.16 35.12
Impressions 64015 104839
Clicks 77 165
CPM (Dollar per mil) 0.50 0.33
CPC (Dollar per click) 0.42 0.21
CTR (percent) 0.12 0.16
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10.3 Live test 1

It is also worth noting that the agent received more than 50 % clicks from non
human sources, or bots. The DSP automatically removes them, and they have not
been included in any results. But the optimization agent will include these clicks
when estimating CTR. This could affect the performance of the agent and might
cause the agent to target impressions that are likely to be bots, since it gets awarded
for all clicks, bots or human.

10.3.2 Spend Control
Figure 10.3 shows the spend per hour of the optimization agent. Blue is the pure
data, while red is 24h average. The yellow line shows a reference of 0.21 which is
needed to spend the budget on time. The first thing to note is that the spend starts
very low. Before T=1.5 the average spend is 0.1 Dollars per hour. This indicates that
the flow of bid requests to the agent is low. The agent handles this by raising the bid
level.
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Figure 10.3 Spend flow for live test

The second thing to note is that the agent starts overspending after T=2. This
happens because of two reasons. The controller in the algorithm has a slight over-
shoot, so temporary overspend is to be expected, and desired. During this exper-
iment the reference signal was also changed automatically by the DSP. The DSP
does this to encourage the agent to spend its entire budget, but cascading controllers
like this can be dangerous so this was removed for the second live test. It can also
be seen that the spend drops rapidly at T=5.5, this was also caused by reference
changes from the DSP.

One problem with the live implementation was that the DSP automatically cut
off traffic to the agent every time that it had spent its daily budget. This causes the
spend to drop to zero at the end of days with large spend. At the end of the day the
budget resets and the agent can spend money again. This block interferes with the
agents inner controller and causes it to bid too high.
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Chapter 10. Results

10.3.3 CTR Estimation
Figure 10.4 shows a histogram of CTR estimations of all impressions that the op-
timization agent bid on during the first live test. The distribution has a mean of
0.00140 and standard deviation of 0.00090. From this we can assume that the ma-
jority of CTR estimation are in the interval 0.0005-0.0023. There is no certain way
to know if these estimations are correct. They have been weighted to slightly favour
impressions with low data to ensure good exploration. This means that they might
not represent the true CTR, but a measure of the value to the agent. The variance of
the CTR estimations give a suggestion about the possible precision of the estimator
and the potential of the optimization. The higher the variance, the better results the
optimization agent can get, given that the estimations are correct.
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Figure 10.4 Histogram of CTR estimations for live test

10.3.4 Discussion
In this experiment the fixed price bidding agent outperformed the optimization
agent. The biggest cause of this is that the flow of bid requests to the optimiza-
tion agent was much too low. The flow of bid requests dictates how picky the agent
can be, and is an important resource for successful optimization. The DSP changing
reference, and blocking traffic cause the agent to increase the bid level higher than
it had to, which caused the high CPC. The DSP blocks traffic to the optimization
agent because it is spending money to fast. But the agent experiences the lack of
traffic as a sign that it is spending money too slow. This mixed in with an integrator
controller can cause the bid level to go up very high. The second part of Equation
8.1 keeps the bid level from becoming too high.
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10.4 Live test 2

The low CTR indicates ineffective CTR estimation. This might have been
caused by bot clicks in the data set, or too high exploration rate. In general you
would expect the distribution to be smooth and resemble a gamma or log normal
distribution. There are some big peaks, maybe periodic in the distribution, and an
island at 0.0057. Some of this might be the effect of small data sets and weighting
estimations, which give periodic appearances and bumpiness. It can also be a sign
that the estimations are incorrect. It is also possible that some of the peak, espe-
cially the one at 0.0057 could caused by bot clicks, that cause unusually high CTR
estimations for some impressions.

10.4 Live test 2

10.4.1 Performance
The second live test was run on a different set of creatives, and with an increase
of traffic to the optimization agent. The averages of these creatives were 1.41 CPC,
1.84 CPM. There once again was an optimization agent at 0.2 nominal CPC run with
a fixed price agent at 0.4 CPM with a goal spend of 5 dollars per day. The results for
these agents can be seen in Table 10.2 Once again both agents are able to produce
lower CPC levels than average for the creatives. The optimization once again had
higher CPM, which was caused by DSP integration problems with the controller.
Despite this both agents had close to identical CPC and CTR, which indicates that
the optimization agent worked better in this test compared to the last one. Still this
gives no conclusive evidence that the optimization agent is more effective.

Table 10.2 Results for optimization agent and fixed bidder

Optimization Agent Fixed Bidding Agent
Spent (Dollar) 18.15 20.71
Impressions 44915 55650
Clicks 24 28
CPM (Dollar per mil) 0.40 0.37
CPC (Dollar per click) 0.76 0.74
CTR (percent) 0.05 0.05
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Chapter 10. Results

10.4.2 Spend Control
Figure 10.5 shows the spend flow for the optimization agent. During this test, the
reference signal sent to the agent was kept static at 5 dollars per day, or 0.21 per
hour. There was also an increase in traffic for the optimization agent. Still the agent
has to increase bid level slightly to increase spend. Once again the agent is being
blocked from traffic, which causes the bid level to increase when they should de-
crease, at T=2. From this experiment it could be concluded that the DSP blocks
the agent before it can reach reference signal given by the DSP. This encourages
the agents to spend their budget faster, but becomes a problem for an agent with
an I controller. Despite of this the optimization agent was better at keeping an even
spend than the fixed price agent.
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Figure 10.5 Spend flow for live test
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10.4 Live test 2

10.4.3 CTR estimation
The estimations for the live test had a mean of 0.0013 and standard deviation of
0.00077. The estimations were more centralized in one island, but there were still
periodic bumps. The performance of the optimization suggests that the CTR esti-
mations for this experiment might have been more accurate. Perhaps the data was
less polluted with bot clicks.
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Figure 10.6 Histogram of CTR estimations for live test

10.4.4 Discussion
The optimization agent was more successful in the second experiment. There was
still problems with the agent being blocked, which caused the bid level to be unnec-
essarily high. The CTR estimations might have been better, but the agent was not
able to increase CTR noticeably. It is possible that a large scale experiment could
have proven a difference between the two agents. It has to be remembered that all
live tests are performed in a high variance stochastic environment, and no results
can be deterministic. With around 25 clicks each both agents would have relative
standard deviation of around 20 % (1/

√
25) which means that no results can be

counted as conclusive.
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10.5 Live test 3

10.5.1 Performance
The last live test was run on a third set of creatives. The averages of these creatives
were 0.63 CPC, 1.23 CPM. There once again was an optimization agent at 0.2
nominal CPC run with a fixed price agent at 0.4 The results for these agents can
be seen in Table 10.3. The optimization agent was set to spend 6.4 dollars per day,
and the fixed price agent 3 dollars per day. The optimization agent was able to
lower the CPM marginally while still spending the budget. Both agents had CPM
below average. The optimization agent had very low CTR which caused it to have
very high CPC. The low CTR is a product of the CTR estimator, and causes the
optimization agent to be worse than the fixed price agent in this test.

Table 10.3 Results for optimization agent and fixed bidder

Optimization Agent Fixed Bidding Agent
Spent (Dollar) 15.05 9.49
Impressions 42323 25038
Clicks 18 20
CPM (Dollar per mil) 0.36 0.38
CPC (Dollar per click) 0.84 0.47
CTR (percent) 0.04 0.08

10.5.2 Spend Control
Figure 10.7 shows the spend flow for the optimization agent. During this test, the
reference signal was 0.28 Dollars per hour. The bid level is increased slightly to
match the reference signal and then seems to be steady. The test was too short to see
the complete dynamics of the controller but it seems to stabilize after 2 days. For
this experiment, the reference signal had been changed to avoid the agent getting
blocked. It can be seen that the agent spends the budget continuously through the
test. The bid level is kept steady through the day and all oscillations are from the
market.

10.5.3 CTR estimation
The estimations for the live test had a mean of 0.0014 and standard deviation of
0.0077. The estimations seem to be very spread out, with many sharp peaks. The
CTR estimation for this experiment was probably the worst of the experiments. The
poor CTR estimations are probably caused by the agent prioritizing exploration. On
these small tests the agent does not get any award from the exploration, so it might
have been better to use a greedy estimation algorithm.
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Figure 10.7 Spend flow for live test

0 0.002 0.004 0.006 0.008 0.01

0

0.5

1

1.5

2

2.5

3

3.5

4
10

4 Distribution of CTR Estimations

Figure 10.8 Histogram of CTR estimations for live test

10.5.4 Discussion
During this experiment the controller part of the algorithm worked good. It kept
a low CPM and a even spend. The spend was, however, distributed on impressions
with very low award. This was caused by poor CTR estimation. The CTR estimation
might be poor because of too high exploration priority, or not enough data.
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11
Conclusions

11.1 Theory

Real time bidding has proven a lot of potential for theoretical optimization and
modeling. There are many possible optimization functions that could be used and
large amounts of data that can be used to create models. There are lots of methods
that could be used to create better CTR estimations. Finding a way to generalize
features and data could improve CTR estimations and reduce the the data that need
to be stored in servers.

Many of the theoretical optimization ideas prove to be too complicated to im-
plement efficiently and practically. A lot of times there existed simple solutions that
well approximated optimal solutions.

Like in reinforcement learning, the agents had to choose between exploration vs
exploitation. It is hard to decide how these shall be valued, especially when there
are multiple agents.

11.2 Simulations

The simulations all showed promising results. All simulations showed that the al-
gorithms were stable and robust. The simulations were a good place to test that the
algorithms were truly scale invariant. In a live environment it is important that an
algorithm works exactly the same with a budget of 100 dollars as with a budget of 1
dollars. The simulations were limited since there is no way to know the true models
behind an auction, or a person clicking on an ad. These have to be tested in a real
environment.

11.3 Live experiments

The optimization agent was run in a live environment during several live experi-
ments. The experiments were successful in that the agent worked the way it was
supposed to. It estimated CTR and bid proportionally to it and adjusted the bid level
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11.4 Improvements

periodically. The agent was generally able to produce lower CPC than the average
for the creatives used. This comparison is not very scientific since the campaigns of
the creatives were generally not optimized towards minimizing CPC. For this rea-
son a fixed price agent with a low CPM was run parallel to the optimization agent
in the live tests. Since the experiments were small scale, most differences were not
significant. Larger scale experiments could possibly reveal differences between the
agents.

After some adjustments the control system worked as intended. It was able to
adjust the bid level to spend the budget evenly. This control system would outper-
form a fixed price bidding agent with poor settings. The control system assures that
the buyers do not pay more than necessary for impressions and would increase ef-
ficiency. This control system also makes sure that bid requests are handled evenly
which could increase global efficiency for a DSP.

The evaluation of impressions through CTR estimation seemed to, sometimes,
get lower value per impression than a fixed bid. This suggests that the CTR estima-
tion were ineffective at evaluating an item. Larger experiments, with more chances
to collect data might produce better results.

The current state of the algorithm cannot yet be proven to be more effective than
a well optimized fixed price bidding agent.

11.4 Improvements

One of the biggest weaknesses and trials of the algorithms was the CTR estimation.
This was never meant to be a large part of this thesis. The agents had access to data
that had only been gathered for about a month. It is possible that collecting data
for, maybe a year, could produce better results. The bot clicks would also need be
removed from the data.

The exploration rate for the agents might have been too high to produce good
results. A single agent trying to explore the all possible features of impressions
might be ambitious. If many agents were doing it for a long time, it might have
shown results. But for single experiments, it might have been better to have the
agents be fully greedy, i.e, aim for short term results.

There were some difficulties in integrating the optimization agents with the DSP.
The integral controller proves to be a problem when connected to an outer controller.
The DSP can block the agent anytime, for any duration. In this duration the integra-
tor might wind up very high. The DSP connection is good, however, since it keeps
the agent from using money that it does not have.
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