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Abstract

This thesis concerns the evaluation of cost functionals on H2 when designing op-
timal controllers using finite Youla parameterizations and convex optimization. We
propose to compute inner products of stable, strictly proper systems via solving
Sylvester equations. The properties of different state space realizations of Laguerre
filters, when performing Ritz expansions of the optimal controller are discussed, and
a closed form expression of the output orthogonal realization is presented. An algo-
rithm to exploit Toeplitz substructure when solving Lyapunov equations is discussed,
and a method to extend SISO results to MIMO systems using the vectorization op-
erator is proposed. Finally the methods are evaluated on example systems from the
industry, where it is shown that properly selecting the cutoff frequency of the filters
is an important problem that should be discussed when Laguerre bases are used to
parametrize the optimal controller.
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1
Introduction

1.1 Background

Linear-controller design is a fundamental part of automatic control, both in terms
of research and industrial applications. It is thus of great interest to find the best
possible linear regulator. The unconstrained case with Gaussian disturbance and
quadratic cost has an analytical finite-dimensional solution, but might not be a good
representation of the constraints we would like to place on a system.

Through the works of [Youla et al., 1976a; Youla et al., 1976b; Boyd and Barratt,
1991] we know that the linear regulator problem has an affine representation and
that several of the most common design criteria and cost functionals are convex, or
have convex approximations. Convexity of cost and constraints implies that we can
construct a convex optimization problem. Solving the convex optimization problem
would then give us either the best possible linear controller, or the information that
the problem has no feasible solution. In order to use the readily available solvers for
convex optimization problems it is required to findfinite-dimensional representations
of the originally infinite-dimensional problem. [Megritski, 1994] showed that in
general the mixed H2/H∞ problem has a solution of infinite order, and that order
constraints needs to be considered in junction to the original problem. [Sznaier, 1994;
Wernrud, 2008] covers to some extend discrete-time problems, and [Sznaier, 2000]
covers continuous systems by projecting onto Laguerre filters and transforming into
discrete-time domain by use of bilinear transform. One of the main difficulties when
performing Youla-Parametrized controller design are numerical issues, which is the
topic of this thesis. The aim of this thesis is to propose numerically robust and
computationally efficient algorithms to transform quadratic cost-functionals on the
subspace of H2 spanned by a truncated Ritz expansion to equivalent cost functions
on the finite-dimensional space of coefficient vectors.
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Chapter 1. Introduction
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Figure 1.1 Block diagram of a 1-DOF system, with 0 reference input

1.2 An introductory example

The following example is intended to provide a quick overview of what is to be
treated in this thesis. Themain purpose is to illustrate that even simple, unconstrained
problems might give rise to numerical issues, which motivates the aim of this thesis.

Example 1.1—Resonant system
The system considered is illustrated in Figure 1.1. The plant transfer function as
well as the spectral factors of the measurement noise and load disturbance are given
in (1.1).

P (s) =
1

(s+ 1)(s2 + 2 · 0.01s+ 1)

D(s) =
1

s/0.1 + 1

N(s) = 1

(1.1)

where P (s) is the open-loop transfer function of the plant, D(s) is the spectral
factor of the process disturbance (such that D(−s)D(s) = Φd(s) where Φd(s) is
the spectral density of the process disturbance), and N(s) is a spectral factor of the
measurement noise. The intensity of the process disturbance isW 2

proc = 202 and the
intensity of the measurement noise disturbance isW 2

sensor = (10−5)2.
Problem formulation

minimize
Q

Jlqg =

∫ ∞
0

|yout(t)|2 + ρ|u(t)|2dt

where ρ = 0.3.

Analytical solution This problem is an LQG problem and has a closed form
solution resulting in J∗lqg = 4.8.

Through convex optimization In order to use convex optimization techniques
we need to reduce the problem from infinite-dimensional, to a finite-dimensional
problem, so that the problem is changed fromfinding a function, to finding a vector of
coefficients. We do this by expanding Q(s) in a complete basis, and then truncating
to get

10



1.3 Aim of thesis

Q(s) =

N∑
i=1

qi(s)βi

We consider the following basis functions: qi(s) =
(

1
s+a

)i
where a is a positive

real constant. Jlqg can be rewritten in frequency domain as:

Jlqg =
1

2π

∫ ∞
−∞
|Hyoutd(iω)|2 + |Hyoutn(iω)|2

+ ρ
(
|Hud(iω)|2 + |Hun(iω)|2

)
dω (1.2)

The resulting convex optimization problem becomes

minimize
β

Jlqg
2

The results of solving the problem1 for different cutoff frequencies and 15 elements
in the basis expansion is shown in Figure 1.2. We will focus on two issues visible in
this figure: The spikes in the range a ∈ (1, 5), this types of numerical issues will be
resolved in Chapter 3; the solution does not converge to optimum for certain ranges
of a. This will be discussed in Chapter 6.

1.3 Aim of thesis

Example 1.1 illustrates and motivates the questions that this thesis aims to answer.

1. Why does numerical issues occur when constructing the cost function?

2. Can we develop algorithms which are more robust?

3. How does the cutoff frequency of the elements in the Ritz expansion influence
convergence to optimality?

One way to gain a better understanding of how the cutoff frequency influences
the rate of convergence is to solve several problems using different cutoff frequencies
and numbers of basis elements. In order for this to be a tractable approach we need
to find computationally efficient algorithms which allows for a wide range of cutoff
frequencies and a sufficient number of elements in the basis expansion.

1 The frequency integral (1.2) was numerically computed by use of the trapezoidal rule, and 2000 log-
arithmically spaced points in [10−8, 106]. SettingN = 15, sweeping for values of a ∈ [0.1, 1000].
The resulting convex optimization problems were solved by performing Cholesky decomposition on
the Hessians, and solving equivalent second order cone programs. All of which will be covered in
Chapter 2

11



Chapter 1. Introduction
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Figure 1.2 Cost plotted against the cutoff frequency (a), using 15 elements in the
basis expansion. Note the spikes, and that convergence seems dependent on the cutoff
frequency.

1.4 Outline

Chapter 2 covers the theory necessary to comfortably follow the reasoning in the
following chapters.We start by coveringYoula parametrization, convex optimization,
linear algebra, and some interesting results of Pascal matrices which are used in
Chapter 3. Inner products, system norms, basis functions, LQG and some convex
constraints are briefly covered.

Chapter 3 concerns analysis and computation of finite-dimensional approxima-
tions of the cost functional, especially using Laguerre bases for the Ritz expansion.
We start by analyzing the Hessian, which is proven to be Toeplitz if Laguerre bases
are used. Thereafter we propose to compute inner products via solving Sylvester
equations in Theorem 3.4. In Section 3.3 we demonstrate how to apply said theorem
to construct quadratic-program approximations ofH2 cost functionals. Sections 3.4–
3.6 concerns the properties and effects of applying different state-space realizations,
culminating in a closed form expression of the output-orthogonal realization. In
Section 3.7 we construct an algorithm to exploit Toeplitz structure when solving
Lyapunov equations.

Extension to MIMO systems are covered in Chapter 4 which also covers how to
reduce the number of Lyapunov equations one needs to solve in order to construct
the quadratic program.

In Chapter 5 we evaluate four algorithms based on the theory presented in
Chapters 3 and 4 on some problems present in earlier research. The focus lies on
recovering LQG controllers, and presenting exact solutions to finite-dimensional
approximations of LQG type cost functionals for systems with time delay.

Finally present our conclusions and suggestions for further research in Chapter 6.

12



1.5 Scientific contribution

1.5 Scientific contribution

The scientific contribution can be divided into two parts, analysis and algorithm
development. In Chapter 3 we show that the simplified Laguerre bases leads to ill-
conditioned cost functionals, that a Jordan realization of Laguerre Filters will have
ill-conditioned B matrices, and that the output-orthogonal realization of Laguerre
Filters exhibits satisfactory matrix properties. Furthermore we derive how to calcu-
late inner products on H2 using state-space methods, which is used in Chapter 4 to
derive a quick and efficient algorithm to construct a quadratic program equivalent
to a quadratic cost-functional onH2 for MIMO systems.
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2
Background

2.1 Youla parametrization

This thesis is based on what in control literature is known as Youla parametrization,
or Q-parametrization. Youla parametrization is a method to parametrize all closed-
loop stable transfer functions for an LTI system obtainable by a LTI controller. Let
C be the controller and Q be the Youla parameter. The set of all rational stabilizing
controllers for the stable plant P (s) can then be defined as{

Q(s)

1− P (s)Q(s)
, Q(s) ∈ Ω

}
where Ω is the set of proper stable rational transfer functions.

Gang of four
Using Youla parameterization all internal closed-loop transfer functions for a stable
system (gang of four) becomes affine in Q(s). Consider again the system depicted
in Figure 1.1. The transfer function from process disturbance to output is given by
Hyoutd(s) = P (s)(1 − P (s)Q(s)), from measurement noise to output Hyoutn(s) =
P (s)Q(s), from process disturbance to actuator signal Hud = P (s)Q(s), from
measurement noise to control signal Hun = Q(s), and the sensitivity function is
given by S(s) = 1− P (s)Q(s).

2.2 Generalized plant

This subsection briefly covers the input-output feedback model known as the gener-
alized plant. Collect all exogenous inputs into w, and the actuator signals in u, the
regularized output in z and the measured signals in y. The structure is depicted in
Figure 2.1 where

P̃ (s) =

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

]
14



2.2 Generalized plant

P̃
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Figure 2.1 Generalized plant
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Figure 2.2 Standard 1-DOF system.

where Pab is the open loop transfer function from b to a and assumed stable. The
transfer function matrix of the closed-loop system is [Boyd and Barratt, 1991]

Hzw(s) = Pzw(s)− PzuC(I − Pyu(s)C)−1Pyw

which using Youla parametrization becomes

Hzw(s) = Pzw(s)− PzuQ(s)Pyw

where Q(s) = C(I − Pyu(s)C)−1. The next example is intended to clarify the
concept

Example 2.1—Generalized plant

Consider the feedback system shown in Figure 2.2. Transforming to the general
plant model can be done by collecting the exogenous inputs and placing them in
w = [d n r]T , collecting the regulated outputs and placing them in z = [yout u]T ,
and collecting the measurement signals and placing them in e = r − ysensor − n.
Thus

P̃ (s) =

[
Pzw Pzu
Pyw Pyu

]
=

 P 0 0 P
0 0 0 I

− P −I I −P


2
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Chapter 2. Background

Figure 2.3 The graph of a convex function
(
f(x) = x2

)
. Note that a line segment

between two points of the graph lies above the graph of the function.

Note that all the interal closed-loop transfer functions, except of the sensitivity
function are present inHzw. The post multiplication of a transfer matrix is somewhat
inconvenient, and it is possible to show that all internal transfer functions can be
written on the form [Wernrud, 2008; Sznaier, 2000]

S(s) = S0(s) + S1(s)Q(s)

A slightly different approach to extend into the realm of MIMO systems than that of
[Wernrud, 2008; Sznaier, 2000], which is more closely tied to the methods discussed
in this thesis is presented in Chapter 4.

2.3 Convex optimization

Convex optimization has been, and continues to be a hot topic of research. The main
reason is that convexity guarantees global solutions of minimization problems. This
section is intended to provide the reader with a quick overview of two standard
problem formulations frequently encountered in convex optimization, which are
used heavily in the later chapters of this thesis. The following definition is taken
from [Boyd and Vandenberge, 2009].

Definition 2.1—Convex function
A function f : Rn → R is convex if domf is a convex set and if ∀x, y ∈ domf ,
and θ ∈ [0, 1]

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) 2

In essence, this means that the line segment between two points of the function
should lie above the function itself, see Figure 2.3

QP - quadratic program
One of the standard problems, which are readily solved by most solvers is the
quadratic program

16



2.4 Linear algebra

Definition 2.2—QP

minimize (1/2)xTP0x+ qT0 x+ r0

subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b

(2.1)

where Pi, i = 0, 1 . . . , m are positive semidefinite matrices. 2

SOCP - second order cone program
A more general problem than the quadratic program is the second order cone pro-
gram.

Definition 2.3—SOCP

minimize fTx

subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(2.2)
2

Solvers
There exists several solvers for QP and SOCP on the market. Throughout this
thesis we use [MOSEK, 2018]. Some alternative solvers are [Gurobi, 2018], which
can solve quadratically constrained quadratic programs (QP), [CPLEX, 2018] which
solves both QP and SOCP, and the [MathWorks, 2018]. Directly calling these solvers
can be complicated. A convenient alternative is to use an interface such as [CVX,
2018] which simplifies the process. However, in order to track and analyze every
step of the process we have called MOSEK directly.

2.4 Linear algebra

This subsection is intended to familiarize the reader with some of the definitions,
and common results frequently used in this thesis.

Definition 2.4—Positive (semi)definiteness
A matrix A is positive (semi)definite if and only if

• xTAx > (≥)0, ∀x 6= 0

• λi(A) > (≥)0, ∀i, where λi denotes the i:th eigenvalue of A 2

17



Chapter 2. Background

Definition 2.5—Frobenius Norm
The Frobenius norm, denoted ‖·‖fro is given by

‖A‖fro =
√

trATA =

√√√√ N∑
i=1

N∑
j=1

ai,j

where tr is the trace operator, and ai,j is the element on the ith row and jth column
of A. 2

Definition 2.6—Toeplitz
A Toeplitz matrix (T ) of dimension n× n is a square matrix which can be written
on the form

T =


t0 t1 · · · tn

t−1 t0
. . . tn−1

...
. . . . . .

...
t−n t−(n−1) · · · t0


2

A symmetric Toeplitz matrix, is a Toeplitz matrix where t−k = tk.

Definition 2.7—Condition number
The condition number of a matrix A, denoted ρ(·) is defined as

ρ(A) =
maxi(σi(A))

mini(σi(A)

where σi(A) is the i:th singular value of A. 2

To see the relevance of condition numbers consider a linear system on the form

Ax = b

and let δ be the error in b, i.e. b = b0 + δ. Then an upper bound on the norm of the
relative error becomes

‖e‖2 ≤ maxδ,b6=0

(∥∥A−1δ∥∥
2

‖δ‖2

)
/

(∥∥A−1b∥∥
2

‖b‖2

)
= ρ(A)

Pascal matrices
It will be helpful to briefly discuss the properties of Pascal matrices, as they occur
frequently in this thesis. The definitions, theorems and corresponding proofs can
be found in [Brawer and Pirovino, 1992]. We will start by defining the triangular
Pascal matrix and the symmetric Pascal matrix, followed by a quick summary of the
properties most relevant to this thesis.

18



2.4 Linear algebra

Definition 2.8—Triangular Pascal matrix
The n× n lower triangular Pascal matrix PL is defined by

PL(i, j) =

{(
i
j

)
, i, j = 0, . . . , n− 1, j < i

0, j > i 2

Example 2.2—PL
The lower-triangular Pascal matrix of dimension 4 × 4 becomes

PL =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1


2

Note that the lower-triangular Pascal matrix has binomial expansion coefficients as
rows.

Definition 2.9—Symmetric Pascal matrix
The symmetric Pascal matrix PS of dimension n× n is defined by

PS(i, j) =

(
i+ j

j

)
, i, j = 0, . . . , n− 1

2

Example 2.3—PS
The symmetric Pascal matrix PS of dimension 4 × 4 is

PS =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20


2

Note that the symmetric Pascal matrix has binomial expansion coefficients as anti-
diagonals.

Properties The following theorem will be used in Chapter 3 to analyze the numer-
ical properties of state-space realizations of Laguerre filters.

Theorem 2.1—Inverse of lower triangular Pascal matrix
The inverse of PL is

D−1PLD−1

where D−1 = diag[1 − 1 . . . (−1)n−1]

Proof See [Brawer and Pirovino, 1992]. 2

19



Chapter 2. Background

The following theorem is not necesseary to understand this thesis but given for
completeness sake.

Theorem 2.2—Cholesky factorization of PS
The Cholesky factorization of PS is given by

PS = PLP
T
L 2

Proof See [Brawer and Pirovino, 1992]. 2

2.5 Inner products on L2 space

Throughout this section lower case letters will be used for functions in time domain
whereas upper case letters will be used for functions in frequency domain.

Time domain
LetL2(R+) denote the Hilbert space of square integrable functions onR+, equipped
with the inner product

〈f, g〉 =

∫ ∞
0

f(t)∗g(t)dt

Frequency domain
Let L2(iR) denote the Hilbert space of square integrable functions on iR, equipped
with the inner product

〈F,G〉 =
1

2π

∫ ∞
−∞

F ∗(iω)G(iω)dω

If F and G are analytic, and vanish at infinity this can be calculated using calculus
of residues

〈F,G〉 =
1

2π

∫ ∞
−∞

F ∗(iω)G(iω)dω

=
1

2πi

∮
C
F ∗(−s∗)G(s)ds

=

k∑
i=1

Res [F ∗(−s∗)G(s); pi]

(2.3)

where {pi}ki=1 is the set of poles encircled by C, and C is chosen such that the
entire imaginary axis is included, see Figure 2.4. Since F, G vanish at infinity the
contribution there is zero.

20



2.5 Inner products on L2 space

−R

−R

R

Re

Im

Curve C−

R

−R

R

Re

Im

Curve C+

Figure 2.4 Illustration of the extension of integrating over the imaginary line to a
curve integral, where R→ ∞.

Calculating the residues
Through partial fraction expansion Since the residue at a pole is the coefficient
associated with the first term in the Laurent series expansion around that pole we
can do a partial fraction expansion of F ∗(−s∗)G(s). Consider

F ∗(−s∗)G(s) =
c
(1)
1

s+ p1
+

c
(2)
1

(s+ p1)2
+ · · ·+ c

(n1)
1

(s+ p1)n1
+

c
(1)
2

1 + p2
+ · · ·

Then 〈F,G〉 =
∑

(c
(1)
i )

Using the Limit theorem The residue at a simple pole p the residue of F is given
by

Res[F ; p] = lim
s→p

(s− p)F (s)

For higher order poles we can use the corresponding limit formula. Let p be a pole
of order n, then the residue around p can be calculated from

Res[F ; p] =
1

(n− 1)!
lim
s→p

dn−1

dsn−1
((s− p)nF (s)) (2.4)

Differentiating rational functions Let

F (s) =

∏Nz

i=1(s− zi)∏Np

i=1(s− pi)

21



Chapter 2. Background

where Nz and Np are the number of zeros and poles respectively. Poles and zeros
of higher multiplicity are treated as multiplication of separate poles, i.e. (s− p)2 =
(s−p1)(s−p2) with p1 = p2 = p. Differentiating once with respect to s gives [Ma
et al., 2014]

F (1)(s) =

∑Nz

i=1

(∏
j 6=i(s− zj)

)∏Np

k=1(s− pk)

−∏Ns

i=1(s− zi)
∑Np

j=1

(∏
k 6=j(s− pk)

)
(∏Np

i=1(s− pi)
)2

=

∑Nz

i=1

(
(s− zi)−1

)∏Ni

i=1(s− zi)−
∑Np

i=1

(
(s− pi)−1

)∏Nz

i=1(s− zi)∏Np

i=1(s− pi)

=

∏Nz

i=1(s− zi)∏Np

i=1(s− pi)︸ ︷︷ ︸
F (s)

 Nz∑
i=1

1

s− zi
−

Np∑
i=1

1

s− pi


︸ ︷︷ ︸

R(s)

Repeatedly applying the product rule gives

F (k)(s) =

k−1∑
j=1

(
k

j

)
F (k−j)(s)R(j)(s) (2.5)

where

R(k)(s) = (−1)kk!

 Nz∑
i=1

1

(s+ zi)k+1
−

Np∑
j=1

1

(s+ pj)k+1


and F (k)(s) denotes the kth derivative of F with respect to s.

2.6 System norms

H2 norm
Let a stable SISO system

ẋ = Ax+B

y = Cx

have transfer function H(s) and impulse response h(t) = CeAtB. The H2 norm is
then given by

‖H‖2 =

(
1

2π

∫ ∞
−∞
|H(iω)|2dω

)1/2

22



2.7 Basis functions

which is conveniently written in terms of inner products as ‖H‖2 =
√
〈H,H〉 =√

〈h, h〉. The norm can be calculated through contour integration and calculus of
residues, but if H is a stable system the preferred method of calculation is by using
the impulse response in the following manner

〈h, h〉 =

∫ ∞
0

(
CeAtB

)T (
CeAtB

)
dt

= BT
∫ ∞
0

eA
T tCTCeAtdt︸ ︷︷ ︸
Wo

B

Assuming A to be stable, it is easy to verify that

ATWo + WoA+ CTC = 0

where Wo is the Observability Gramian, thus ‖H‖2 =
√
BTWoB. The H2 norm

can be interpreted as the energy of the impulse response.

H∞ norm
For a linear system H(s) we have [Zhou and Doyle, 1997]

‖H‖∞ = sup
Re(s)>0

σ̄[H(s)] = sup
ω∈R

σ̄[H(iω)]

where σ̄ is the maximum singular value. The H∞ norm is best understood as the
maximum possible amplification of signals. For SISO systems it translates to the
largest possible amplification over all frequencies, for MIMO systems we need to
consider the input configurations which gives the largest possible amplifications,
which motivates the usage of the largest singular value.

2.7 Basis functions

Definition 2.10—Laguerre filter
A Laguerre filter of order k is given by

qk(s) =

√
2a

a+ s

(
a− s
a+ s

)k
2

where a > 0.

Theorem 2.3—Completeness
The Laguerre filters constitute a complete basis

Proof see [Heuberger et al., 2005]. 2
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Chapter 2. Background

Lemma 2.4—Orthonormality
The Laguerre filters defined in Definition 2.10 constitute an orthonormal set of
functions in Laplace domain.

Proof

qj(−s)qk(s) = 2a
(a− s)k−j−1
(a+ s)k−j+1

(2.6)

〈qj , qk〉 =
1

2πi

∮
qj(−s)qk(s)ds

=

m∑
i=1

Res[qj(−s)qk(s); pi]

where {pi}mi=1 is the set of poles encircled by the contour, and the contour is taken
around either complex half plane. By inspecting (2.6) it is clear that for j < k the
integrand has no poles i the right half plane, whether as for j > k the integrand has
no poles in the left half plane. Thus the integral must be zero, the only remaining
non-zero possibility is j = k which results in

〈qj , qj〉 = Res

[
2a

(a− s)(a+ s)

]
= 2a lim

s→a
a− s

(a− s)(a+ s)
= 1

which concludes the proof. 2

Simplified Laguerre basis
Removing all the zeros from the Laguerre filters leaves us with a series of poles.
These filters will be defined as the simplified Laguerre filters, and were mentioned as
a candidate for Youla-parameterization based methods in [Boyd and Barratt, 1991].

Definition 2.11—Simplified Laguerre filters
A simplified Laguerre filter of order k is given by

qk(s) =
1

(s+ a)k 2

where a > 0.

Even though the simplified Laguerre filters are not orthonormal, they constitute a
complete basis. A sequence of the N first simplified Laguerre filters span the same
space as the sequence of theN first Laguerre filters. This can be seen by performing
a partial fraction expansion of the Laguerre filter, which becomes a projection onto
the simplified Laguerre filters.
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2.8 LQG

2.8 LQG

In this section we will assume that the system, along with load disturbance d and
sensor noise n has a realization on the form

ẋ = Ax+Buu+Bdv1

yout = Coutx

ysensor = Csensorx+ v2

(2.7)

where v1, v2 are white noise, yout is the regulated output and ysensor are the sensor
signals. The importance of the following theorem lies in that it is the optimal linear
controller for the unconstrained case, thus we are going to evaluate our algorithms as
to whether we are able to recover the LQG controller, or not. LQG design also works
as a simple method to stabilize an unstable plant so that we may use Youla-parameter
design methods on all stabilizable and detectable systems.

Theorem 2.5—LQG
Consider the system (2.7) where

[
vT1 vT2

]T is white noise with intensity

R =

[
R1 R12

RT12 R2

]
The goal is to find the linear feedback law u(s) = −Fy(s)ysensor(s)whichminimizes

Jlqg =

∫ ∞
0

zT (t)Q1(t)z(t) + 2xT (t)Q12u(t) + uT (t)Q2u(t)dt

where Q2 is positive definite, [
CToutQ1Cout Q12

QT12 Q2

]
is positive semidefinite, (A,Bu) is a stabilizable pair, and (A,CToutQ1Cout) is a
detectable pair. R2 is positive definite and R is positive semidefinite. Assume
(A,Csensor) are detectable and (A − R12R

−1
2 Csensor, R1 − R12R

−1
2 RT12) are sta-

bilizable. The optimal linear controller is then given by

u(t) = −Lx̂(t)

x̂(t) = Ax̂(t) +Buu(t) +K(y(t)− Csensorx̂(t)

where L can be obtained using lqr andK using kalman commands in MATLAB. For
proofs and explicit expressions of L andK, see [Glad and Ljung, 2016]. 2
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Chapter 2. Background

Norm representation
The purpose of this subsection is to explain how to cast an LQG-criteria as a convex
optimization problem. We sacrifice generality to focus on the criteria mostly used in
this thesis. Let z = [u yout]

T , where yout is the regulated output. The cost considered
is

Jlqg =

∫ ∞
0

|yout(t)|2 + ρ|u(t)|2dt

Taking

V =

[
1 0
0 ρ

]
lets us write Jlqg as

Jlqg = tr

{
V

∫ ∞
0

z(t)z∗(t)

}
=

1

2π
tr

{
V

∫ ∞
−∞

Z(iω)Z∗(iω)dω

}
=

1

2π
tr

{
V

∫ ∞
−∞

Hzw(iω)ΦwH
∗(iω)

}
where Z(iω) denotes the frequency domain transform of z(t), Φw denotes the
power spectral density of w = [d n]T where d is the process disturbance and n is
the measurement noise (seen as a stationary stochastic processes), and Hzw(iω) is
the transfer function matrix from w to z. Assuming uncorrelated noises, factor Φw
in the following manner

Φw(iω) =

[
D(iω)D∗(iω) 0

0 N(iω)N∗(iω)

]
where D(iω) and N(iω) are spectral factors of the process disturbance spectral
density and the measurement noise spectral density respectively. Expanding the
trace of the matrix results in

Jlqg = ‖HyoutdD‖22 + ‖HyoutnN‖22 + ρ
(
‖HudD‖22 + ‖HunN‖22

)
(2.8)

2.9 Constraints on the step response

Rise time, settling time, overshoot and undershoot can all be addressed by creating
time dependent upper and lower limits for the step response (or any other response
for that matter). The idea is to view the system as a multi input single output system

T (s)r = P (s)[q1(s) q2(s) . . . qN (s)](βr)
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2.10 Constraints on the control signal

the system is then realizable on the form

ẋ = Ax+Bβr

z = Cx

with the response to a given input r(t)

z(t) = C

∫ t

0

r(t)eA(t−τ)dτBβ

and constraints on the form

zmin(t) ≤ z(t) ≤ zmax(t)

Rise time
Let z be the controlled output, and r(t) be a step function. Also define the rise time
as the time from t = 0 to z(t) = γrt. Setting a maximum rise time to trt could be
specified as zmin(t) = γrt for t ≥ trt.

Overshoot
Letting r be the unity step input, requiring the maximum overshoot to be less the
γOS can be translated to choosing zmax = γOS, ∀t.

Undershoot
Once again let r be the unity step input. A maximum undershoot of γUS corresponds
to setting zmin(t) = −γUS, ∀t.

Settling time
A γsettle% settling time of less than tsettle can be constructed from

zmin(t) = 1− γsettle
zmax(t) = 1 + γsettle

}
∀ t ≥ tsettle

2.10 Constraints on the control signal

It is fairly straight forward to calculate the actuator response to different types of
input, using the following relations

• Process disturbance to control signal: Hud(s) = P (s)Q(s)

• Measurement noise and reference signal to control signal: Hun(s) = Q(s)
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Chapter 2. Background

The key idea is to do a state-space realization on a form

ẋ = Ax+Bβr

u = Cx

This would allow you to simulate for a given input or disturbance

u(t) =

(
C

∫ t

0

r(t)eA(t−τ)dτB

)
β

2.11 Design criteria

Whenworkingwith convex optimizationwe are presentedwith a common framework
to deal with several cost criteria and constraints. In this thesis the main focus is in
recovering the LQG controller presented in Section 2.8. The reason for this is that
it is a fairly simple problem, with a true optimal solution, and that numerical issues
are apparent. Before exploring more exotic cost functionals, it would make sense
to find methods which allows us to consistently handle simple cost functionals.
Design specifications which can be handled by use of Youla parametrization and
convex optimization can be represented as a convex optimization problem [Boyd
and Barratt, 1991]

minimize
β

J(β)︸︷︷︸
convex

subject to Gi(β)︸ ︷︷ ︸
convex

≤ 0

Aβ + b = 0

where A is a matrix and b is a vector. In this paper we mainly focus on the uncon-
strained case.

Cost functionals
Other thanH2 minimization, other common cost functionals are integrated absolute
error,H∞ norm of inner closed-loop transfer functions.

28



3
Analysis and computation
of the cost functional

This chapter covers the analysis of cost functions on the finite-dimensional space
of coefficient vectors, equivalent to cost functionals on the subspace ofH2 spanned
by a truncated Ritz expansion. Consider the SISO 1-DOF case in Figure 1.1. The
interesting transfer functions for a stable system are affine in the Youla parameterQ
as introduced in Chapter 2. The purpose of this chapter is to introduce algorithms
that reduce (3.1) to (3.2)

J = a‖Hyoutd‖22 + b‖Hyoutn‖22 + c‖Hud‖22 + d‖Hun‖22 (3.1)
J = βTMβ + qT0 β + r0 (3.2)

The main result is the state-space based construction of the quadratic program (3.2)
described in Section 3.3, which builds on Theorem 3.4 that states that inner products
between two stable systems can be calculated via solving a Sylvester equation. The
state-space based construction is then applied to show that the Simplified Laguerre
filters leads to ill-conditioned cost functions, and that a potentially good approach is
to use the Output Orthogonal Realization of Laguerre filters.

3.1 Hessian structure

By parameterizing Q using a Ritz expansion as in (3.3), the infinite-dimensional
problem of selectingQ is reduced to the finite-dimensional problem of selecting the
coefficient vector β

Q(s) =

N∑
i=1

βiqi(s) = qTβ (3.3)
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Chapter 3. Analysis and computation of the cost functional

Dealing with the Ritz approximation Hyoutn, Hud andHun can be handled in sim-
ilar ways, whereas the cross terms in Hyoutd requires some extra attention. Consider

‖GQ‖22 = 〈GqTβ,GqTβ〉

= βT


〈Gq1, Gq1〉 〈Gq1, Gq2〉 · · · 〈Gq1, GqN 〉
〈Gq2, Gq1〉 〈Gq2, Gq2〉

...
. . .

...
〈GqN , Gq1〉 〈GqN , Gq2〉 · · · 〈GqN , GqN 〉


︸ ︷︷ ︸

M

β

Using calculus of residues the elements ofM can be calculated from

Mj,k = 〈Gqj , Gqk〉 =
∑
i

Res
[
q∗j (−s∗)G∗(−s∗)G(s)qk(s); pi

]
where the sum is taken over all poles {pi} encircled by either C− or C+.
Dealing with Hyoutd Remembering Hyoutd(s) = P (s)(1− P (s)Q(s)) we get

‖Hyoutd‖22 = 〈P (1− PQ), P (1− PQ)〉
= 〈P, P 〉+− (〈P, PPQ〉+ 〈PPQ,P 〉)︸ ︷︷ ︸

Jlin

+〈PPQ,PPQ〉

the part linear in Q can then be expressed as Jlin = q0β with

q
(j)
0 = −

(∑
i

Res[P ∗(−s∗)P (s)qj(s); pi]

+
∑
i

Res
[
q∗j (−s∗)P ∗(−s∗)P (s); pi

])
(3.4)

where ‖PPQ‖22 can be put on the form βTMβ using the method described earlier.
To handle Jlin note that the two terms in the integral give equal contributions since
taking the contour integral over C+ is equivalent to taking the contour over C−
replacing s by −s.

Lemma 3.1—Hermitian
M is Hermitian (M∗ = M ).
Proof

Mj,k = 〈Gqj , Gqk〉 = 〈Gqk, Gqj〉∗ = M∗k,j 2
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3.2 Inner products using state-space methods

Lemma 3.2—Positive semidefinite
M is positive semidefinite.

Proof From the definition of norms we have that ‖GQ‖2 ≥ 0. Since ‖QG‖22 =
βTMβ,M is positive semidefinite. 2

The Laguerre filters, see Definition 2.10 has an attractive property

Lemma 3.3—M is Toeplitz
For the Ritz expansion where

qi(s) =

√
2a

a+ s

(
a− s
a+ s

)i−1
M is Toeplitz.

Proof The only part ofMj,k which is dependent on the indices is the cross product
between the basis elements which for the Laguerre filters becomes

q∗j (−s∗)qk(s) = 2a
(a− s)k−j−1
(a+ s)k−j+1

Note that this is only dependent on k − j, thusM is Toeplitz. 2

3.2 Inner products using state-space methods

The idea to calculate ‖H‖2 using state-space methods is well accepted; the purpose
of this section is to introduce state-space methods of calculating the inner product of
any two stable, strictly proper and realizable transfer functions. This method handles
input and output delays with little extra effort. Let H1 and H2 be transfer functions
with impulse responses h1(t), h2(t) with realizations

Si :
ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t− τi)
(3.5)

where Ai are asymptotically stable matrices and τi is the time delay of the system
(here presented as output delay, but could also be input delay). Let ĥi(t) be the
impulse response of the undelayed system, i.e. ĥi(t − τi) = hi(t), assume without
loss of generality that τ2 ≥ τ1. The scalar product betweenH1 andH2 is then given
by
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Chapter 3. Analysis and computation of the cost functional

〈H1, H2〉 = 〈h1, h2〉

=

∫ ∞
0

h∗1(t)h2(t)dt

=

∫ ∞
0

ĥ∗1(t− τ1)ĥ2(t− τ2)dt

=

∫ ∞
τ2

ĥ∗1(t− τ1)ĥ2(t− τ2)dt

=

∫ ∞
0

BT1 e
(t+τ2−τ1)AT

1 CT1 Ce
A2tB2dt (3.6)

A word of caution is required here. Generally eXeY = eX+Y does not hold in the
case that X and Y are matrices. However if X, Y commutes the equality holds
[Wahlén, 2014]. Since a matrix always commutes with itself we can factor the time
invariant part outside of the integration.

〈H1, H2〉 = BT1 e
(τ2−τ1)AT

1

∫ ∞
0

etA
T
1 CT1 C2e

tA2dt︸ ︷︷ ︸
M1,2

B2

Applying integration by parts results in∫ ∞
0

d

dt

(
etA

T
1 CT1 C2e

tA2

)
dt = AT1

∫ ∞
0

etA1CT1 C2e
tA2dt

+

∫ ∞
0

etA1CT1 C2e
tA2dtA2

−CT1 C2 = AT1M1,2 +M1,2A2

This is summarized in Theorem 3.4.

Theorem 3.4—Inner product using State Space methods
Given two transfer functions H1 and H2, realizable on the form given in (3.5) the
inner product can be calculated as

〈H1, H2〉 =

{
BT1 e

(τ2−τ1)AT
1 M1,2B2, τ2 ≥ τ1

BT1 M1,2e
(τ1−τ2)A2B2, τ1 ≥ τ2

whereM1,2 is the solution to the Sylvester equation

AT1M1,2 +M1,2A2 + CT1 C2 = 0 2

note that ifH1 = H2 Theorem 3.4 reduces to solving for the Observability Gramian
of S1 and pre/post multiplying with B1, which gives the standard result for calcu-
lating theH2 norm.
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3.3 State-space based construction of the quadratic program

3.3 State-space based construction of the quadratic
program

The purpose of this section is to introduce a method to construct a quadratic pro-
gram by using Theorem 3.4. Consider ‖GQ‖2, where Q is parametrized by a Ritz
expansion realized on the form

ẋQ(t) = AQxQ(t) +BQβr(t)

u(t) = CQxQ(t)
(3.7)

and that the system is stable, with the realization

ẋG(t) = AGxG(t) +BGu(t)

z(t) = CGxG(t− τ)
(3.8)

then a realization for GQ is given by Theorem 3.5.

Theorem 3.5—State-space realization of GQ
Let Q, and G be given by (3.7) and (3.8). Then a state-space realization of GQ is
given by

ẋ(t) = Ax(t) +Bβr(t)

z(t) = Cx(t− τ)

where

A =

[
AG BGCQ
0 AQ

]
B =

[
0
BQ

]
, C =

[
CG
0

]T
for a more complete discussion, less restrictive formulation and proof, con-
sult [Heuberger et al., 2005]. 2

We are now equipped to handle all internal closed loop transfer functions.

Transfer functions Hzn and Hud

Take G(s) as P (s)D(s) or P (s)N(s) where D, N are spectral factors of the
load disturbance andmeasurement disturbance spectral densities respectively. Apply
Theorem 3.4 to get

‖GQ‖22 = βTBTMBβ

whereM is the solution to

ATM +MA+ CTC = 0
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Chapter 3. Analysis and computation of the cost functional

Transfer function Hzd

‖Hzd‖22 = 〈P (1− PQ), P (1− PQ)〉
= 〈P, P 〉 − 〈P, PPQ〉 − 〈PPQ,P 〉+ 〈PPQ,PPQ〉 (3.9)

‖P‖22 and ‖PPQ‖22 can be handled by a state-space realization of PPQ using
Theorem3.5, and solving for theObservabilityGramian. The cross terms are handled
in the following way: Apply Theorem 3.5, perform a state-space realization ofPPQ,
then

〈P, PPQ〉 = BP e
τAT

PMP,PPQBPPQβ

〈PPQ,P 〉 = 〈P, PPQ〉

which combined with the previous results for squared norms gives the complete
solution.

3.4 State-space realization of the simplified Laguerre
filters

This section covers analysis of the simplified Laguerre filters. Expanding Q in the
simplified Laguerre filters gives

Q(s) =

N∑
i=1

βi
(a+ s)i

which can be realized on Jordan canonical form

AQ =


−a 1 0 · · · 0

0 −a 1
. . . 0

...
. . . . . . . . .

...
0 · · · 0 −a 1
0 0 · · · 0 −a

 , CQ =


1
0
...
0


T

BQ = IN

where IN is the identity matrix of order N .

Observability Gramian
The Observability Gramian is given by the solution Wo characterized by

Wo : ATWo + WoA = −CTC

which in the case of A only consisting of one Jordan block, andC = [1, 0 . . .] takes
the form
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3.4 State-space realization of the simplified Laguerre filters

(1, 1)

1/
2a

1/2a
(2, 1) (2, 2)

(3, 1)
(3, 2)

(3, 3)

Figure 3.1 A graph representation of the recursion equation (3.11)

−a1 −a
. . . . . .


w11 w12 · · ·
w21 w22

...
. . .



+

w11 w12 · · ·
w21 w22

...
. . .



−a 1

−a . . .
. . .

 =

−1 0 · · ·
0 0
...

. . .

 (3.10)

This can be expressed as a two-dimensional recursion equation. Let wjk = 0 for
j = 0 or k = 0 and the upper left entry of the resulting matrix equation reads
−2aw11 = −1 =⇒ w11 = 1/2a. The Observability Gramian can then be
generated from

wk,j =
wk−1,j + wk,j−1

2a
(3.11)

(3.11) is illustrated in Figure 3.1 where the weight of each edge is 1/2a which is
a weighted Pascal’s triangle. The closed form solution of the Observability Gramian
is given by

wj,k =
(j + k − 2)!

(j − 1)!(k − 1)!

(
1

2a

)j+k−1
(3.12)

which we can write on matrix form as

Wo = diag
[
1 (1/2a)1/2 (1/2a)3/2 · · ·

]
· PS · diag

[
1 (1/2a)1/2 (1/2a)3/2 · · ·

]
(3.13)

where PS is a symmetric Pascal matrix of order N . The Pascal matrix has scaling
issues; the condition number of the Pascalmatrix grows exponentially andMATLAB
has difficulties treating such a matrix, see Figure 3.2.
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Figure 3.2 Condition number and minimum eigenvalue of the symmetric Pascal
matrix computed using cond and eig in MATLAB.

As we can see in Figure 3.2 MATLAB cannot handle the simplest of costs
(‖Hun‖22 = ‖Q‖22) properly. Motivates the use of other basis functions.

3.5 State-space realization of the Laguerre filters

One basis that should not have the inherent poor scaling of the simplified Laguerre
filters are the orthonormal Laguerre filters. Since all cross terms are zero, we know
that ‖Q‖22 = βTβ. Since

Q =

N−1∑
k=0

qk(s)βk

36



3.5 State-space realization of the Laguerre filters

consider

qk(s) =

√
2a

a+ s

(
a− s
a+ s

)k
= (−1)k

(
1− 2a

s+ a

)k √
2a

s+ a

=
(−1)k

√
2a

s+ a

((
k

0

)
+

(
k

1

) −2a

s+ a
+ · · ·

+

(
k

k − 1

)( −2a

s+ a

)k−1
+

(
k

k

)( −2a

s+ a

)k)
thus we get

N−1∑
k=0

qk(s)bk =
√

2a

(
1

s+ a

N−1∑
k=0

(
k

0

)
(−1)kbk

+
1

(s+ a)2

N−1∑
k=1

(
k

1

)
(−1)k(−2a)bk

)
+ · · ·

+
√

2a

(
1

(s+ a)N−1

N−1∑
k=N−2

(
k

N − 2

)
(−1)k(−2a)N−2bk

)

+
√

2a

(
1

(s+ a)N

N−1∑
k=N−1

(
k

N − 1

)
(−1)k(−2a)N−1bk

)

which, by collecting all the terms associated with each pole, is realizable on a Jordan
form as

A =


−a 1 0 · · · 0

0 −a 1
. . . 0

...
. . . . . . . . .

...
0 · · · 0 −a 1
0 0 · · · 0 −a



B =
√

2aMa


1 −1 1 −1 1 · · ·
0 1 −2 3 −4 · · ·
0 0 1 −3 6 · · ·
0 0 0 1 −4 · · ·
...

...
...

...
. . . · · ·


︸ ︷︷ ︸

P−1
U

C =
[
1 0 · · · 0

]
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Figure 3.3 Condition number of the inverted upper triangular Pascal matrix, cal-
culated using MATLAB’s cond.

where
Ma = diag

[
1 2a (2a)2 · · · (2a)N−1

]
and PU = PTL . This realization has poor numerical properties when it comes to
calculating norms. The reason for this is that

‖P (s)Q(s)‖ = βTBTWoBβ

requires right and left multiplication by B = [0 BTq ]T . The elements grow quickly
and the condition number grows exponentially, see Figure 3.3.

3.6 Output-orthogonal realization of the Laguerre filters

Wewill now explore what happens if we apply the transform T x̂ = x, where T = B.
This leads to the system

˙̂x = Âx̂+ B̂βu

y = Ĉx̂

where
Â = T−1AT

B̂ = T−1B = I
Ĉ = CT

Since the aim is to avoid poorly conditioned matrix multiplications we need to
solve for Â, Ĉ analytically. Matrix multiplications yields

X = M−1a AMa =


−a 2a 0 · · ·
0 −a 2a

. . .

0 0 −a . . .
...

. . . . . . . . .
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3.6 Output-orthogonal realization of the Laguerre filters

partition X as X = −aI + 2aI+1, where I+1 is a matrix with ones on the super
diagonal, zeros elsewhere. Then

PUI+1P
−1
U =



0 1 −1 1 · · ·
0 0 1 −1

. . .

0 0 0 1
. . .

0 0 0 0
. . .

...
. . . . . . . . . . . .


This is an upper-triangular Toeplitz matrix with zeros on the diagonal and 1 on the
odd diagonals and −1 on the even diagonals (starting at 0).

Combining this gives

Â =



−a 2a −2a 2a · · ·
0 −a 2a −2a

. . .

0 0 −a 2a
. . .

0 0 0 −a . . .

· · · . . . . . . . . . . . .


and

Ĉ = CT =
√

2a[1 − 1 1 · · · ]
These results are summarized in Definition 3.1.

Definition 3.1—Output-orthogonal realization of Laguerre basis
Let Q(s) =

∑N
i=1 βiqi(s) where qi(s) are the Laguerre filters of order i defined in

2.10. Then the output-orthogonal state-space realization is given by

A =


−a 2a −2a

−a 2a
. . .

−a . . .
. . .

 , C =
√

2a


1
−1
1
...


T

, B = I (3.14)
2

Measures of accuracy We know from Lemma 3.3 that the resulting Hessians will
be Toeplitz. State-space methods does not enforce the Toeplitz structure, thus it is
possible to introduce a measure to get a lower bound on the magnitude of the error.

Definition 3.2—Distance to Toeplitz structure
The distance from a square matrix M to Toeplitz structure, in Frobienius norm is
given by

dtoeplitz(M) = ‖M − TM‖F
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Chapter 3. Analysis and computation of the cost functional

where TM is the Toeplitz matrix that minimizes ‖M − TM‖F , and ‖·‖F is the
Frobenius norm. 2

The distance to Toeplitz structure has a closed form expression and is presented in
the following Theorem.

Theorem 3.6—Distance to Toeplitz structure
The distance to Toeplitz structure as defined in Definition 3.2 is given by

dtoeplitz(M) =

N∑
i=1

(mi,i − t0)2 +

N−1∑
s=1

N−s∑
p=1

(
(mp,p+s − ts)2 + (mp+s,p − t−s)2

)
where mi,j is the element on the ith row and the jth column ofM , and ts is given
by

ts =



N−s∑
p=1

mp,p+s

N − s , s > 0

N−s∑
p=1

mp+s,p

N − s , s < 0

Proof Let T be the set of Toeplitz matrices, and TM ∈ T be of equal size to a give
matrixM then

dtoeplitz(M) = min
TM∈T

‖M − TM‖F

‖M − TM‖2F =

N∑
i=1

N∑
j=1

(mi,j − tj−i)2

=

N∑
i=1

(mi,i − t0)2

+

N−1∑
s=1

N−s∑
p=1

(
(mp,p+s − ts)2 + (mp+s,p − t−s)2

)
where ts is the element associatedwith the sth diagonal ofTM . Note that the problem
is separable in s (we can solve for each s separately)

N∑
i=1

(mi,i − t0)2 =

N∑
i=1

m2
i,i −

(
N∑
i=1

mi,i

)2

+

(
Nt0 −

N∑
i=1

mi,i

)2

which has it’s minimum when

t0 =

∑N
i=1mi,i

N
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3.7 Lyapunov equations exploiting Toeplitz structure

Similarly we can solve for s = −N, . . . , N

ts =



N−s∑
p=1

mp,p+s

N − s , s > 0

N−s∑
p=1

mp+s,p

N − s , s < 0
2

Theorem 3.6 is can be used to debug code, and to compare algorithms. An intuitive
interpretation is that the closest Toeplitz matrix, in Frobenius norm, is constructed
by averaging each diagonal.

3.7 Lyapunov equations exploiting Toeplitz structure

In this section we explore whether we can exploit the Toeplitz structure to arrive at
an improved algorithm for solving the Lyapunov equations.

Partitioning
Consider the Lyapunov equation[

ATp 0
(BpCq)

T ATq

] [
X1 X2

XT
2 X3

]
+

[
X1 X2

XT
2 X3

] [
Ap BpCq
0 Aq

]
= −

[
CTp Cp 0

0 0

]
whereX3 is known to be Toeplitz from lemma 3.3, and Aq, Cq are given by (3.14).
Partition X to get three equations

ATpX1 +X1Ap = −CTp Cp (3.15a)

ATpX2 +X2Aq = −X1BpCq (3.15b)

ATq X3 +X3Aq = −(BpCq)
TX2 −XT

2 (BpCq)

= Y (3.15c)

where (3.15a) gives the Observability Gramian of the plant, (3.15b) is a Sylvester
equation. If the output-orthogonal realization of the Laguerre filters are used (3.15c)
gives the Hessian of the QP. X3 is the Hessian of the QP. This can be seen from

M =
[
0 IN

] [X0 X2

XT
2 X3

] [
0
IN

]
= X3

Consider (3.15c), where Aq is given by (3.14)
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−a
2a −a
−2a −2a −a

. . . . . . . . .


x11 x12 · · ·
x12 x22
...

. . .



+

x11 x12 · · ·
x12 x22
...

. . .



−a 2a −2a

−a 2a
. . .

−a . . .
. . .

 =

y11 y12 · · ·
y12 y22
...

. . .

 (3.16)

Since X3 is Toeplitz it’s enough to solve the first column (or row) of X3. Note that
x11 = −y11

2a
. Then

x12 − x11 = −y12
2a

x13 − x12 + x11 = −y13
2a

· · ·
x1N − x1(N−1) + · · · = −y1N

2a
By adding the previous row from the current row this relation can be rewritten as

x1k = −y1k + y1(k−1)
2a

which gives us an expression for the first row (column) of X3 and therefore, as X3

is a symmetric Toeplitz matrix, an expression for the whole matrix.

3.8 Comparison — numerical example

The aim of this section is to compare three algorithms of computing the Hessian
(M ) when Q has been expanded using Laguerre filters. The system is the same as
in Example 1.1

P (s) =
1

(s+ 1)(s2 + 2 · 0.01s+ 1)

D(s) =
1

s/0.1 + 1

N(s) = 1

where M ∈ {M | βTMβ = ‖HudD‖ = ‖PDQ‖, ∀β} is to be calculated. The
algorithms used are:
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Figure 3.4 Value of the smallest eigenvalue, calculated using eig of the different
algorithms for different values of a
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Figure 3.5 Value of the smallest eigenvalue, calculated using eig of the different
algorithms for different values ofN when a = 100, forN > 150 Residues explodes
and some elements inM approach infinity.

1. Residues: Based on calculus of residues, using the limit theorem and (2.5).

2. Lyap: Based on the output-orthogonal realization of the Laguerre filters using
lyap to calculateM .

3. Toep: Based on the output-orthogonal realization of the Laguerre filters, cal-
culatingM using the method described in section 3.7.

Sweeping for different values of a and N results in the following The results
of sweeping for different values of a and N are shown in Figures 3.4, 3.5 and 3.6.
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Figure 3.6 Execution time of the three different algorithms run on a Dell Latitude
E7240

Observe that by exploiting the Toeplitz substructure we are able to get faster and
in this case more accurate algorithms. The algorithm based on calculus of residues
fails to produce solutions for N > 150 where some elements become infinite. The
figures also highlight the issue thatM becomes indefinite for all algorithms. But by
Lemma 3.2, it must be positive semidefinite, thus there has been numerical errors.
Secondly the problem is a convex optimization problem only ifM is positive (semi)
definite. The last issue can be handled by using the HessianM + γIN , where γ is
a positive real scalar larger in absolute value than the smallest eigenvalue ofM . A
larger in magnitude, negative eigenvalue requires a larger modification of the cost
function, thus decreasing accuracy of the solution.
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4
Extension to MIMO systems

This chapter explores closed loop transfer function matrices of stable systems on the
form

Hzw(iω) = Pzw(iω)− Pzu(iω)Q(iω)Pyw(iω) (4.1)

Where dim(Pzw) = nz × nw, dim(Pzu) = nz × nu, dim(Q) = nu × ny , and
dim(Pyw) = ny × nw. Section 4.1 show that by representing the transfer function
in vector form, we can avoid the post multiplication of the matrix Pyw and store
all the coefficients in a vector. Section 4.2 shows how to transform quadratic cost
functionals on the subspace of H2 spanned by the Ritz approximation of Q to the
finite-dimension space of coefficient vectors.

4.1 Vectorizing the transfer Matrix

Preliminaries
Before diving into the transfer matrix we will explore the vector operator and related
algebra. We will start by defining the vector operator and the Kronecker product,
followed by the necessary relations.

Definition 4.1—Vector operator
Let A be anm× n matrix, then vec(A) is given by

vec(A) =
[
a11 a21 · · · am1 a12 · · · amn

]T
2

Vectorizing a matrix can be thought of as stacking the columns on top of each other,
such that the leftmost column is on top, and the rightmost column is at the bottom
of the vector.

Definition 4.2—Kronecker product
LetA andB bematrices of dimensionsm×n and p×q respectively. The Kronecker

45



Chapter 4. Extension to MIMO systems

product between A and B are then given by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


2

Some important properties of the vector operator are

vec(αD + βE) = αvec(D) + βvec(E) (4.2a)
a⊗ b = vec(baT ) (4.2b)

vec(AB) = (BT ⊗ Im)vec(A) (4.2c)
vec(ABC) = (CT ⊗A)vec(B) (4.2d)

tr
(
ATB

)
= vec(A)T vec(B) (4.2e)

whereA, B, C, D, E are matrices of appropriate sizes. a and b are column vectors,
α and β are scalars.

The transfer matrix
So far we have assumed Q to be scalar. For MIMO systems Q is a matrix, of
dimension nu × ny where nu is the dimension of the control signal and ny is the
dimension of the sensor signal. By using the same set of basis functions for each
element in Q we get

Q(iω) =

 Q11(iω) · · · Q1ny (iω)
...

. . .
...

Qnu1(iω) · · · Qnuny
(iω)


where Qij =

∑
k β

k
ijqk. Writing Q in vector form gives

vec(Q) =



β1
11 · · · βN11
...

...
...

β1
nu1 · · · βNnu1
...

...
...

β1
nuny

· · · βNnuny


︸ ︷︷ ︸

B

 q1...
qN


︸ ︷︷ ︸

q

= (qT ⊗ Inynu
) vec(B)︸ ︷︷ ︸

β
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4.2 Constructing the cost function

where the last line was gotten by applying (4.2c). Applying (4.2d) and (4.2a) to (4.1)
gives

vec(Hzw) = vec(Pzw)− (PTyw ⊗ Pzu)vec(Q)

= vec(Hzw) = vec(Pzw)︸ ︷︷ ︸
T0

− (PTyw ⊗ Pzu)(qT ⊗ Inynu)︸ ︷︷ ︸
T1

β (4.3)

4.2 Constructing the cost function

Consider again the cost functional (3.1). This can be written i terms of inner products
as

Jlqg = 〈vec(Hzw), V vec(Hzw)〉 (4.4)

where V is a positive semidefinite weight matrix. To recover (3.1) we may pick

V =


a

b
c

d


To represent a larger class of cost functionals V may be chosen arbitrarily among
the set of nznw × nznw positive semidefinite matrices. Let T0 and T1 have the
state-space realizations.

T0 ẋ = A0x+B0u

y = C0x

T1 ẋ = A1x+B1u

y = C1x

Inserting (4.3) into (4.4)

J = 〈T0 − T1β, V (T0 − T1β)〉
= 〈T0, V T0〉 − 2〈T0, V T1β〉+ 〈T1β, V T1β〉

Applying Theorem 3.4 to the equation results in

J = (1/2)βTMβ + qT0 β + r0

whereM = 2BT1 XB1, q0 = −2B0Y B1 and r0 = BT0 ZB0.X , Y and Z are given
by the solutions to the following Sylvester and two Lyapunov equations

AT1X +XA1 + CT1 V C1 = 0 (4.5a)
AT0 Y + Y A1 + CT0 V C1 = 0 (4.5b)
AT0 Z + ZA0 + CT0 V C0 = 0 (4.5c)
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Chapter 4. Extension to MIMO systems

A word of caution, we recommend solving (4.5b) using lyap and not sylv in
MATLAB. The reason is that sylv is poorly implemented. The next example is
intended to clarify how T0 and T1 can be constructed.

Example 4.1—Recover LQG using General Plant description
Consider the 1-DOF case illustrated in Figure 1.1. Take z =

[
yout u

]T , y =
−ysensor−n andw =

[
d n

]
. LetN(s), D(s) be the spectral factors ofmeasurement

noise and process disturbance and Wn, Wd be their respective intensities. Taking
Q = qTβ we get

vec(Hzw) =


Hyoutd

Hud

Hyoutn

Hun

 =


P (s)D(s)

0
0
0


︸ ︷︷ ︸

T0

−


WdP (s)D(s)P (s)qT (s)
−WdD(s)P (s)qT (s)
−WnN(s)P (s)qT (s)
−WnN(s)qT (s)


︸ ︷︷ ︸

T1

β

T1 can then be realized as

T1 :

A1 =


Ap BpCp 0 0 0 0
0 Ap 0 BpCd 0 0
0 0 Ap 0 BpCn 0
0 0 0 Ad 0 BdCq
0 0 0 0 An BnCq
0 0 0 0 0 Aq

 , B1 =


0
0
0
0
0
Bq



C1 =


WdCp 0 0 0 0 0

0 −WdCp 0 0 0 0
0 0 −WnCp 0 0 0
0 0 0 0 −WnCn 0


and T0 as

T0 : A0 = Apd, B0 = Bpd, C0 =


WdCpd

0
0
0


2
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5
Results

5.1 MIGO test-batch

In this section we present the results of applying four algorithms to recover an LQG
controller with the cost functional (2.8) on the MIGO test-batch benchmark systems.
The algorithms considered all use the output orthogonal realization, see Section 3.6.

• 4lyap: Theorem 3.4 is applied to (2.8).M is obtained by solving 4 Lyapunov
equations, q0 is obtained by solving a Sylvester equation, and r0 is obtained by
solving a Lyapunov equation, all using lyap.M is then factored using chol
and the problem is rewritten as a SOCP and solved using MOSEK.

• toep: Similar to 4lyap, with the exception that the 4 Lyapunov equations
used to obtainM are solved using the method described in Section 3.7.

• 1lyap: Based on Chapter 4. The Sylvester and two Lyapunov equations are
solved using lyap. The resulting QP is solved directly using MOSEK.

• chol: Also based on Chapter 4 but differs from 1lyap in that lyapchol is
used to solve the Lyapunov equation to obtain R such that R is a Cholesky
factor ofM and that a SOCP was solved using MOSEK.

System description
This is a subset of a large set of systems often encountered in the Process industry.
The set of systems first appeared in [Hägglund and Åström, 2004]. We consider the
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following systems

P1(s) =
e−s

1 + sT
,

P2(s) =
e−s

(1 + sT )2
,

P3(s) =
1

(s+ 1)n

P4(s) =
s− α

(s+ 1)3

Recover LQG
Problem 1 Recover the LQG for the system.

P1(s) =

(
s2 − 6s+ 12

s2 + 6s+ 12

)
1

1 + 0.05s

D(s) =
1

1 + 0.5s

N(s) = 1

where the intensity of the process disturbance, and measurement noise are given by
Wprocess = 200 and Wsensor = 10−3 respectively and ρ = 0.3. Note that the time
delay of P1 in the MIGO test-batch has been approximated using a second-order
Padé approximant.

Note in Figure 5.1 that we are able to recover the LQG cost using 4lyap, 1lyap
and toep but that chol gives numerical issues for higher frequencies. Also note that
the convergence rate is highly dependent on a.

Problem 2 Recover the LQG for the system

P2(s) =

(
s2 − 6s+ 12

s2 + 6s+ 12

)
1

(1 + sT )2

D(s) =
1

1 + 10sT

N(s) = 1

where T = [0.02, 1000]. A lower value of T results in a fast system, whereas a
increasing the value of T results in a slower system. The intensities of the process
disturbance and measurement noise are given byWprocess = 200 andWsensor = 10−3

respectively, and ρ = 0.3. Just as in the previous problem the time delay of P2 in the
MIGO test-batch has been approximated using a second-order Padé approximant.

Note from Figures 5.2 and 5.3 that the rate of convergence with respect to N is
highly dependent on the cutoff frequency a of the filters. The range of a for which
the rate of convergence is satisfactory seems to be dependent on the bandwidth of
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Figure 5.1 The results of solving P1 for different values of a and N using four
different algorithms.N ranges from 10 (blue) to 100 (red) in steps of 10. The dashed
line represent the true minimum, obtained by calculating the cost of using the LQG
controller.

the system. Also note that 4lyap and 1lyap are the only algorithms that gives a
satisfactory result for the faster system, and that chol works poorly for the faster
system. toep also fails to deliver reasonable results as the cost in Figure 5.2 is lower
than optimum.

Problem 3 Recreate the LQG for the system

P3(s) =
1

(s+ 1)n

D(s) =
1

s+ 10s

N(s) = 1

for n = 6, 8. The process disturbance and measurement noise intensities are given
byWprocess = 200 andWsensor = 10−3 respectively, and ρ = 0.3.
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Figure 5.2 The results of solving P2 where T = 0.02 for different values of a and
N using four different algorithms. N ranges from 10 (blue) to 100 (red) in steps of
10. The dashed line represent the true minimum, obtained by calculating the cost of
using the LQG controller.

From Figures 5.4 and 5.5 we conclude that the increased multiplicity of the pole
leads to a smaller range of a where optimum is achieved and an increase in plateaus.
We can’t observe any difference between 1lyap and 4lyap. We experience a small
amount of numerical difficulties using cholwhenn = 6, but not forn = 8. However
toep does not provide a satisfactory result.

Problem 4 Recreate the LQG for the system:

P4(s) =
s− 0.1

(s+ 1)3

D(s) =
1

1 + 10s

N(s) = 1
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Figure 5.3 The results of solving P2 where T = 1000 for different values of a and
N using four different algorithms. N ranges from 10 (blue) to 100 (red) in steps of
10. The dashed line represent the true minimum, obtained by calculating the cost of
using the LQG controller.

where the intensities of the process disturbance and measurement noise are
Wprocess = 200 andWsensor = 10−3 respectively, and ρ = 0.3.

This problem was solved only using 4lyap and 1lyap. Especially note the slow
convergence, the importance of selecting the cutoff frequency properly and that the
a which leads to the lowest cost for N = 10 does not equal the a which leads to the
lowest cost for N ≥ 20.
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Figure 5.4 The results of solving P3 where n = 6 for different values of a and
N using four different algorithms. N ranges from 10 (blue) to 100 (red) in steps of
10. The dashed line represent the true minimum, obtained by calculating the cost of
using the LQG controller.

Exact solution for systems with time delay
An interesting implication of Theorem 3.4 is that time delay only appears in the
Sylvester equation used to obtain q0. Using expm to calculate the matrix exponential
in algorithm 4lyap allows us to solve for optimal regulators of systems with time-
delay exactly.

Problem 1 revisited Consider again the same problem as problem one but without
Padé approximant:

P1(s) =
e−s

1 + 0.05s

D(s) =
1

1 + 0.5s

N(s) = 1
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Figure 5.5 The results of solving P2 where n = 8 for different values of a and
N using four different algorithms. N ranges from 10 (blue) to 100 (red) in steps of
10. The dashed line represent the true minimum, obtained by calculating the cost of
using the LQG controller.

where the intensities of the process disturbance and measurement noise are
Wprocess = 200 and Wsensor = 10−3 respectively, and ρ = 0.3. The LQG has been
calculated by replacing the time-delay in P1 by a first-order Padé approximant. The
results of solving P1 using 4lyap is plotted together with the cost of using the LQG
controller in Figure 5.7. Observe that the cost is lower using 4lyap than benchmark
LQG and that the maximum sensitivity is much lower, even though no constraint on
maximum sensitivity was imposed. Also note the importance of properly selecting
a.

The minimum in Figure 5.7 can be reached by designing an LQG regulator and
approximating the time-delay by a 6th-order Padé approximant. The cost does not
decrease with approximants of higher order.
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Figure 5.6 The results of solving P4 for different values of a and N using four
different algorithms.N ranges from 10 (blue) to 100 (red) in steps of 10. The dashed
line represent the true minimum, obtained by calculating the cost of using the LQG
controller.

5.2 Effects of regularization

Consider the following system which was deliberately constructed to make 4lyap
fail

Pf (s) =

2∏
i=1

(
s− ai
s+ ai

)
(ωpi )2

s2 + 2ζωpi s+ (ωpi )2

D(s) =
1

100s+ 1

2∏
i=1

(ωdi )2

s2 + 2ζωdi s+ (ωdi )2

N(s) = 1

where a = [0.1, 1], ωp = [0.2, 7], ωd = [0.1, 0.2]. The process and noise intensity
are given byWprocess = 200 andWsensor = 10−3 respectively. The result of running
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Figure 5.7 Solving P1 exactly for different values of a and N , where N ranges
from 10 (blue) to 100 red.

4lyap can be seen in the left plot of Figure 5.8. This result is not satisfactory and it
comes from the Hessian becoming indefinite for frequencies higher than a ≈ 0.05.
For example settingN = 70, a = 1 gives theminimum eigenvalue λmin = −0.5 and
the condition number ρ(M) = 3.4 · 1017. This means that the minimum eigenvalue
is zero within working precision, so we might try to force the Hessian to become
positive definite, such that the minimum eigenvalue is still zero within working
precision. We can do this by using M̂ = M − γmin(λ)IN , where γ = 2 if the
minimum eigenvalue is negative, else 0. The results are shown in the right plot of
Figure 5.8. Note that we do reach optimum, and that the numerical issues seems to
be somewhat suppressed, but that the relation between cost and a is less smooth.

5.3 Flatbed test-case

The plant is a flexible structure used as a damage mitigation flatbed [Sznaier, 2000].
The structure consists of two masses, whose position are y1 and y2, supported by
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Figure 5.8 Minimal cost when solving Pf for different values of a andN with, and
without regulation. To obtain the result in the right plot a robustness factor γ = 4
was used.

cantilever beams, excited by the vibratory motion of a shaker table. The system has
a slightly dampened resonance at 110Hz. The goal is to find a controller so that the
massM1 tracks reference signals up to 10Hz, while minimizing the displacement of
M2 at resonant frequency. In [Sznaier, 2000] the authors provide a 7th-order model
with seven significant digits. We present the system, rounded to five significant
digits in (5.1). The reason for lowering the number of significant digits is because
of improved readability, and that we found no difference between using the original
system and the rounded system in the context of control design.

A =



−0.22 110.27 −1.07 −0.42 −1.20 0 −0.08
−110.28 −0.99 3.73 2.15 1.88 −0.08 0.16
−1.41 −4.52 −12.99 42.71 −41.27 −1.50 −2.17
−0.89 −2.56 −51.81 −5.21 −82.65 0.53 3.27
1.43 2.26 48.77 82.8 −9.47 2.53 −1.13
0.10 0.22 2.11 0.84 −2.84 −0.13 −145.96
−0.27 −0.6 −3.46 −4.30 4.83 145.99 −0.95


B =

[
2.71 5.75 10.41 6.11 −7.57 −0.63 1.70

]T
C =

[
0.57 −0.08 7.26 −3.88 −3.49 0.60 1.68
2.65 −5.75 7.47 4.71 6.72 −0.18 0.29

]
D =

[
0
0

]
(5.1)

The problem can be formulated as a constrained H2 minimization problem:
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Figure 5.9 The system considered in Section 5.3
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Figure 5.10 Bode magnitude plots of the notch filter W1 and the low-pass filter
W2.

minimize ‖W1Ty2r‖2
subject to ‖W2Ter‖∞ ≤ γ

where e = r − y1 is the tracking error of M1, and W1, W2 are weight functions
given by:

W1(s)
1.1531s+ 5.6566

0.001s2 + 0.0091s+ 11.384
, W2(s) =

(
10−4s+ 1

0.1s+ 1

)2

(5.2)

where W1 is a notch filter with a peak around 110Hz, and W2 is a low pass filter.
Bode plots of the filters are shown in Figure 5.10. The system is depicted in Figure 5.9

Previous results
The results reported in [Sznaier, 2000] are presented in Table 5.1
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Table 5.1 Results reported by [Sznaier, 2000]

Type Controller Order ‖Hζ2r‖2 ‖Hζ∞r‖∞
optimalH∞ 11 1534 0.47

mixedH2/H∞ (LMI) 11 2168 0.51
mixedH2/H∞ 29 1254 0.51
mixedH2/H∞ 18 1271 0.52

Method
Let P1(s) be associated with y1 and P2(s) with y2. Then Hζ2w = W1P2Q and
Hζ∞w = (W2 − W2P1Q). Construct a vector ω of Nω logarithmically spaced
frequency points in [10−4, 106]. The problem then becomes

minimize ‖Hζ2w‖2
subject to ‖Hζ∞w‖∞ ≤ γ

where the constraint can be approximated as

|Hζ∞w(iωk)| ≤ γ, ∀k = 1, . . . , Nω

Results
Setting γ = 0.0051 taking Nω = 5000, N = 200 and a = 100 results in the cost
1275. The output to a triangle wave, taking f = 5.84Hz is shown in Figure 5.11.
The results differ from those reported in [Sznaier, 2000]. The difference lies in that
the the bound γ is 1/100th of what the authors claim. The cost is slightly higher, but
the response to a triangle wave input seems similar.
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Figure 5.11 Outputs to a triangle wave with f = 5.84Hz
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6
Discussion

6.1 Convergence

It is clear from the previous chapter that the cutoff frequency of the Laguerre filters
has a large influence on the rate of convergence. We also observed that right half-
plane zeros forces the range to be very narrow. From all the problems presented in
Section 5.1 it seems like the minimum cost is smooth, and possibly quasi-convex in
the cutoff frequency. Quasi-convexity implies that gradient-descent methods can be
used and thus the optimization scheme may be wrapped in an outer algorithm with
the purpose to find optimal a. One approach to find a good candidate cutoff frequency
is to arbitrarily select the cutoff frequency then perform balanced truncation of the
Youla parameter to find a region where the rate of convergence is high.

6.2 Numerical issues

We found that 1lyap and 4lyap performed substantially better than toep and
lyapchol, which seems to experience issues for larger values of a. On numerous
occasions poor results can be attributed to the Hessian becoming indefinite. Since
the Hessian should be positive semidefinite this is attributed to computational inac-
curacies. Comparing Figures 3.4 and 3.5 to the results, it seems like the value of the
smallest eigenvalue, which could be seen as a measure of how far a matrix is from
being positive definite, is not a sufficient basis for evaluation of numerical stability,
as the results of toep are unsatisfactory.

6.3 Applications in other areas

The method of computing inner products via solving a Sylvester equation, combined
with the output-orthogonal realization of Laguerre filters can be used to project a
system onto the Laguerre filters. This can be used to approximate any continuous
stable linear system. Since bilinear transform of Laguerre filters results in powers of
z−1 this approach can be used to compute finite impulse-response approximations.
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6.4 Suggested further research

Based on the experiences gained and results observed we suggest the following
research topics.

Weighted inner-product of impulse responses
We found out that it is of interest to use time-domain-weighted l2 norms as cost
functionals. If the weight function is a linear combination of piecewise exponential
functions we may extend Theorem 3.4 to include a weight function in the following
manner. Let

h1(t) = C1e
A1tB1

h2(t) = C2e
A2tB2

v(t) =

{
ceat, t0 ≤ t < t1

0, else

where t0 > 0. Let the weighted inner-product for casual systems be defined by

〈h1, h2〉v =

∫ ∞
0

h∗1(t)h2(t)v(t)dt

Inserting h1 h2 and v leads to

〈h1, h2〉v =

∫ t1

t0

BT1 e
AT

1 tCT1 C2e
A2tB2ce

atdt

= BT1

∫ t1

t0

eA
T
1 tCT1 C2e

A2tceatdt︸ ︷︷ ︸
W

B2

Differentiating under the integral sign gives

AT1W +WA2 + aW = eA
T
1 t1CT1 C2e

A2t1ceat1 − eAT
1 t0CT1 C2e

A2t0ceat0

To write the left hand side on standard Sylvester equation form take

Ã1 = A1 + z1I

Ã2 = A2 + z2I

where

z1 + z2 = a

is taken such that the eigenvalues of Ã1 and Ã2 have negative real part.
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H∞-norm bounds for systems with time-delay
Consider a H∞-norm constraint on the sensitivity function for a SISO system with
time-delay. Let the sensitivity function be given by

S(s) = 1− P0(s)e−τsQ(s)

We can derive a bound on the infinity-norm.

‖S‖2∞ = sup
ω

(
|1− P0(iω)e−τiωQ(iω)|2

)
= sup

ω

(
1− 2 Re

{
P0(iω)e−τiωQ(iω)

}
+ |P0(iω)Q(iω)|2

)
≤ sup

ω

(
1 + 2|P0(iω)Q(iω)|+ |P0(iω)Q(iω)|2

)
This bound could potentially be useful because the exponential part will make the
sensitivity function oscillate quickly, possibly requiring an excessive amount of
points in the frequency grid. This is illustrated in the following example.

Example 6.1—Sensitivity bound
Consider the system

P1(s) =
e−s

1 + s

D(s) =
1

1 + 10s

N(s) = 1

where the intensities of the process disturbance, and measurement noise are given
by Wprocess = 200 and Wsensor = 10−3, respectively and ρ = 0.3. The problem
was solved exactly using N = 50 and a = 100 for the Ritz expansion. Bode’s
magnitude-plots for the sensitivity function and aforementioned bound are shown
in Figure 6.1. Note that the bound is quite conservative for lower frequencies but
is tight for the oscillation peaks for higher frequencies. The absolute value can be
easily implemented using convex-optimization software when working with Youla-
parametrized optimal-controller design. 2

Other basis functions
This thesis primarily concerns the Laguerre bases. It would be possible to add notch
filters, or Kautz filters (similar to Laguerre filters but allows for multiple, possibly
complex conjugated poles). Other ideas are piecewise constant, piecewise linear
functions, wavelets and Fourier series.
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Figure 6.1 Magnitude of the sensitivity function and upper bound for Problem 1
solved exactly. N = 50 and a = 100.

6.5 Conclusion

We propose using 1lyap to compute finite-dimensional equivalents to quadratic
cost-functionals on the subset of H2 spanned a truncated Ritz expansion. Further-
more we propose that reports of future research on Youla-parametrized optimal-
controller design using Laguerre bases should include the strategy used to select the
cutoff frequency of the filters. We believe that further improvements to the proposed
algorithms may be possible, but are likely to lead to marginal improvements, and
we suggest studying other basis functions, or combinations thereof instead. Even if
other bases are used, 1lyap can be quickly implemented and executed to construct
quadratic-program approximations ofH2 cost functionals.

65



Bibliography

Boyd, S. and C. Barratt (1991). Linear Controller Design: Limits of Performance.
Prentice-Hall.

Boyd, S. and L Vandenberge (2009). Convex Optimization. Cambridge University
Press. isbn: 978-0-521-83378-3.

Brawer, R. and M. Pirovino (1992). “The linear algebra of the Pascal matrix”.
Linear Algebra and its Applications 174, pp. 13 –23. issn: 0024-3795. doi:
10.1016/0024-3795(92)90038-C. url: http://www.sciencedirect.
com/science/article/pii/002437959290038C.

CPLEX (2018). Convex optimization software. url: https : / / www . ibm .
com / analytics / data - science / prescriptive - analytics / cplex -
optimizer (visited on 2018-05-29).

CVX (2018). Matlab-based modeling system for convex optimization. url: http:
//cvxr.com/cvx/ (visited on 2018-05-29).

Glad, T and L Ljung (2016). Reglerteori. Flervariabla och olinjära metoder. Stu-
dentlitteratur. isbn: 978-91-44-03003-6.

Gurobi (2018). Convex optimization software. url: http://www.gurobi.com/
(visited on 2018-05-29).

Heuberger, P. S., P. M. Van den Hof, and B. Wahlberg (2005). Modelling and
Identification with Rational Orthogonal Basis Functions. Springer. isbn: 1-
85233-956-X.

Hägglund, T. and K. J. Åström (2004). “Revisiting the ziegler-nichols step response
method for PID control”. eng. Journal of Process Control 14:6, pp. 635–650.
issn: 1873-2771. doi: 10.1016/j.jprocont.2004.01.002.

Ma, Y., J. Yu, and Y. Wang (2014). “Efficient recursive methods for partial fraction
expansion of general rational functions”. Journal of Applied Mathematics 2014.
Article ID: 895036.

MathWorks (2018). MATLAB’s optimization toolbox. Convex Optimization Soft-
ware. url: https://se.mathworks.com/products/optimization.html
(visited on 2018-05-29).

66



Bibliography

Megritski, A. (1994). “On the order of optimal controllers in the mixed H2/H∞
control”. Proceedings of the 33rd Conference on Decision and Control 33,
pp. 3173 –3174.

MOSEK (2018). Convex optimization software. url: https://www.mosek.com/
(visited on 2018-05-29).

Sznaier, M. (1994). “An exact solution to general siso mixedH2/H∞ problems via
convex optimization”. IEEE Transactions on Automatic Control 39, pp. 2511
–2517.

Sznaier, M. (2000). “An exact solution to continuous-time mixed H2/H∞ control
problems”. IEEE Transactions on Automatic Control 45, pp. 2095 –2101.

Wahlén, E. (2014). The matrix exponential. url: http://www.ctr.maths.lu.
se/media/MATC12/2014ht2014/exp_6.pdf.

Wernrud, A. (2008). QTool 0.1 - Reference Manual. Department of Automatic
Control, Lund University.

Youla, D. C., J. J. Bongiorno, and H. A. Jabr (1976a). “ModernWiener-Hopf design
of optimal controllers. Part 1: the single-input-output case”. IEEE Transactions
on Automatic Control AC-21, pp. 3–13.

Youla, D. C., J. J. Bongiorno, and H. A. Jabr (1976b). “ModernWiener-Hopf design
of optimal controllers. Part 2: the multivariable case”. IEEE Transactions on
Automatic Control AC-21, pp. 319 –338.

Zhou, K. and J. Doyle (1997). Essentials of Robust Control. Prentice Hall.

67





Document name 

Date of issue 

Document Number 

Author(s) Supervisor 

Title and subtitle 

Abstract

Keywords 

Classification system and/or index terms (if any) 

Supplementary bibliographical information 

ISSN and key title ISBN 

Language Number of pages Recipient’s notes 

Security classification 


	Blank Page
	regler-forstasida_A4.pdf
	Tom sida




