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Abstract 

Vegetation monitoring over time is important in a changing world due to climate change. Remote 

sensing, especially with the use of unmanned aerial vehicles (UAV), can be utilized to monitor 

vegetation at flexible scales at an accurate degree. However, the relatively new remote sensing 

platforms that are UAVs imply the requirement of understanding how to best monitor vegetation in 

an accurate way with the system in mind. This study aims to test a method for the radiometric 

calibration of images captured by a Parrot Sequoia multispectral camera to derive reflectance 

images. The radiometric correction method was tested and evaluated against Spectralon reflectance 

plates and in-situ normalized difference vegetation index (NDVI) during a field campaign. The 

technical properties of the camera were tested during different experiments to determine what 

factors propagate to the product reflectance images. The results show that the radiometric 

correction method could produce accurate estimates of Spectralon reflectance plates. However, not 

all Spectralon reflectance plates can be accurately estimated. The calculated NDVI from the UAV in 

the field after a radiometric calibration was far closer to the NDVI derived from the handheld 

spectrometer. The technical properties and thus limitations of the camera can be rectified by to a 

certain degree by radiometric calibration and pre-processing method used. However, more accurate 

reflectance estimates require a rigorous pre-processing of the data used to derive the radiometric 

calibration. 

Keywords: Physical Geography, UAV, Radiometric Correction, Multispectral Camera, Reflectance.  
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1 Introduction 

The technological advances in unmanned aerial vehicles (UAV) have been providing the possibilities 

of acquiring data in various fields of vegetation monitoring (Yang et al. 2017). One such field is 

phenology. Phenology is the science related to biological entities periodic phenomena to climatic 

conditions such as plant growth start and ending during a year (Klosterman & Richardson, 2017). 

Plant phenology governs ecosystem functions such as carbon sequestration that affect the climate 

and food security (Klosterman & Richardson, 2017; Xue & Su, 2017). With prospects of climate 

change the need to understand plant phenology becomes more important (Richardson et al. 2009).  

The two most common methods for gathering of phenological data are in-situ measurements and 

remotely sensed data (Richardson et al. 2009). Remote sensing provides benefits over in-situ 

measurement as remote sensing can provide a large spatial scale representation, variability in sensor 

payload and sampling of hard to reach areas (Chuvieco, 2016). Remote sensing can be done with a 

satellite or a near-surface camera where both options provide positive and negative factors. For 

satellites a problem is the low spatial resolution, clouds blocking the view and other atmospheric 

effects that need to be taken care of (Klosterman et al. 2018; Klosterman & Richardson, 2017). Near-

surface cameras have problems associated with the lack of landscape representation, only seeing 

what is directly in front of the system thus obstructing background vegetation that might differ 

resulting in a false view of the vegetation (Klosterman et al. 2018; Klosterman & Richardson, 2017). 

These negative aspects provide problems when conducting phenology studies that could be rectified 

by utilizing a method representing the vegetation at an intermediate scale between the satellite and 

near-surface cameras (Klosterman & Richardson, 2017; Klosterman et al. 2018).  

The use of unmanned aerial vehicles (UAV) fills the gap between large-scale satellite and small-scale 

near-surface remote sensing options. High potential temporal resolution, low cost of the platform 

and high spatial resolution are some of the key points when using a UAV (Berra et al. 2016). Several 

studies have collected phenological data from a UAV successfully with mounted red, green and blue 

(RGB) cameras (Berra et al. 2016; Klosterman et al. 2018; Klosterman & Richardson, 2017). However, 

Burkart et al. (2017) argue that more accurate phenological data will require more wavelength bands 

such as near-infrared (NIR) and especially with proper radiometric calibration. This topic of 

radiometric calibration is reoccurring in many of the studies which is the method for deriving 

reflectance values from the digital numbers of the pixels provided by the sensor in question 

(Chuvieco, 2016). Furthermore, the radiometric calibration methods used often do not include 

changes in illumination. For example, Berra et al. (2016) argue that the changes in illumination for 

between each flight is by some degree compensated by their post-processing of the sensor data but 
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however by no means provides an ultimate solution to the problem. Yang et al. (2017) further 

conclude that there is a lack of radiometric calibrated cameras used with UAV’s hence neglecting the 

true reflectance of the vegetation and only dealing with raw digital numbers. This emphasize the 

need to use a robust method for radiometric correction with a radiometric calibrated camera that 

takes in to account the incoming solar radiation and not just the radiance from the surface. All this to 

have reflectance data of vegetation that is valid and comparable in time regardless of illumination 

conditions. 

2 Aim 

New sensor technologies arriving for use with UAVs in phenology is constantly emerging with 

promises to the end user. However, to collect data for phenological studies, scientific evaluations of 

the hardware used and the methods applied are required to produce robust data that can be 

comparable over time. Hence, this study aims to: 

• Develop a radiometric correction method for lightweight multispectral cameras with a 

sunshine sensor. 

• Quantify the sources of errors that are present in images collected with the Parrot Sequoia 

system. 

• Perform radiometric correction on images captured with a Parrot Sequoia camera and 

evaluate against field measured NDVI. 
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3 Background 

3.1 Remote sensing and phenology 

There are many options to gather phenological data with remote sensing. However, some aspects 

need to be fulfilled regardless of platform and sensors. To derive the amount of vegetation and its 

status for instance for a given time there is a need to use a measurable metric to observe changes. 

The most basic metric to use is the reflectance of the vegetation, the ratio of outgoing radiation 

(radiance) and incoming radiation (irradiance) to observe vegetation activity from passive sensors 

(Chuvieco, 2016. P.346-348). The premise lies within the notion that the reflectance for a specific 

electromagnetic wavelength, the spectral reflectance, of vegetation changes due to factors such as 

plant type, water content, chlorophyll content and morphology to name a few (Xue & Su, 2017). 

There might, however, be a need to compare metrics more linked to biophysical variables rather 

than spectral reflectance. For this vegetation indices (VI) are often applied where two or more 

wavelength bands are used in an equation to compute the VI in question (Chuvieco, 2016. P.269).  

Furthermore, VIs can help minimize problems associated with raw reflectance data such as changes 

in viewing angles, atmospheric distortions and shadows when the VI is ratio based (Chuvieco, 2016. 

P.269). 

Different VI use different wavebands and provide information about different biophysical variables 

(Xue & Su, 2017; Yang et al. 2017). For example, one of the more commonly used VIs is the 

normalized difference vegetation index (NDVI) (Xue & Su, 2017). NDVI utilizes the chlorophyll 

absorbing red and the non-absorbing NIR waveband and is correlated to e.g. measured leaf area 

index (LAI) and biomass for example (Xue & Su, 2017; Yang et al., 2017): 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
    𝑒𝑞. 1 

where NDVI is the output index value ranging from -1 to 1 with a value close to 1 corresponding to 

high amount of vegetation, NIR is the near-infrared waveband reflectance or signal and Red is the red 

waveband reflectance or signal. As can be seen due to the nature of the index it can be calculated by 

using reflectance or non-physical counts for the wavebands. 

Another example where a VI can provide biophysical information is the study by Richardson et al. 

(2009) where the green excess index (GEI) was used which compromises of the red, blue and green 

waveband. Their results showed that measured gross primary product (GPP) in a deciduous forest 

was significantly correlated with GEI (Richardson et al. 2009). Thus, a VI can be used as a proxy for 

measurable biophysical variables that are of importance when assessing the phenology of a specific 

location or plant. 
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Phenology analysis in remote sensing is commonly performed at a pixel-by-pixel basis which imposes 

two specific requirements that are geometric rectification and radiometric calibration to discern true 

change from false (Chuvieco, 2016). The geometric accuracy involves that the pixels present in two 

images represent the same ground features. A way to obtain a good geometric match between two 

images is to use common control points present in both images, that are invariant features present in 

both images, to make sure the right pixels are overlapping (Chuvieco, 2016. P.343-345). However, a 

radiometric consistency must be present between the images which is obtained with a radiometric 

calibration of the sensor in question (Chuvieco, 2016. P.345-346). The radiometric calibration refers 

to the conversion of raw digital values captured by the sensor to the physical unit of reflectance 

(Chuvieco, 2016. P.345-346). When comparing raw digital values between images, if different, might 

provide indications of change where there are none due to various environmental changes for 

instance such as changes in illumination (Chuvieco, 2016. P.345-346). Further, if common control 

points are to be chosen within a time series it will rely on that the point in question has a uniform 

reflectance i.e. that they stay invariant if the surface in question is not changed– this raises the 

importance of having proper radiometric ally calibrated camera (Rasmussen et al. 2016). 

3.2 UAV remote sensing 

Zhang et al. (2017) showed that the usage of UAV platforms has soared in popularity in the timespan 

from the years 2010-2015. The benefits of using UAV’s for remote sensing are evident with the small 

formfactor, relative low cost, flexible payload which has been proven to work for many remote 

sensing applications (Zhang et al. 2017). UAV platforms have proven to be very useful as the flight 

altitude of an UAV is often so low that no atmospheric effects need to be considered such as aerosol 

content in the analysis, hence some radiometric corrections required for satellite data can be 

neglected when using an UAV (Yang et al. 2017). However, a disadvantage with UAV images is the 

need to acquire data with similar illumination condition. For example, the bi-directional reflectance 

direction function (BRDF) is a small factor for satellite remote sensing but is amplified for UAV 

remote sensing (Stark et al., 2018). A non-uniform illumination upon the scene can result in dark or 

bright hotspots depending on viewing and solar angle which is reduced on larger scales (Stark et al. 

2018). Hence, some conditions must be controlled such as solar intensity, UAV orientation in relation 

to the sun and uniform cloud conditions for each flight (Rasmussen et al. 2016; Berra et al. 2017; 

Burkart et al. 2017; Klosterman & Richardson 2017). Apart from these environmental factors on 

radiometric quality there are more technical factors that also need to be controlled over time that 

affect measured reflectance. In several articles the settings of the sensors are kept uniform over time 

such as exposure and ISO (Klosterman & Richardson 2017; Klosterman et al. 2018; Rasmussen et al. 
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2016; Berra et al. 2017). Due to these environmental and technical factors Yang et al. (2017) states 

that there is a lack of standardized methodology for UAV remote sensing. 

In the case of payload and methodology the notion of commercial off the shelf cameras (COTS) are 

common in the literature. The use of COTS on UAV platforms indicate low costs with a possibility to 

create phenological data (Berra et al. 2016; Berra et al. 2017; Burkart et al. 2018). However, these 

COTS systems lack multispectral capability as the commercial cameras often only have a red, green 

and blue channel that limit the analytical possibilities of the system (Xue & Su, 2017; Yang et al. 

2017). However, the vegetation indices possible to create with RGB data have been proven to be 

possible and successful in the study by Burkart et al. (2017) and Berra et al. (2016) to a certain 

degree.  

3.3 Radiometry and remote sensing phenology 

The case of radiometric calibration with UAV remote sensing differs from study to study. The 

examples mentioned above does not rely on using a radiometric calibrated camera for several 

reasons. One method can be seen in Berra et al. (2016) where the camera is set to static settings that 

will not change over time thus making comparable time series possible. Another method also shown 

in Berra et al. (2016) is that the vegetation index used in their case does not rely on reflectance data 

but merely the digital counts of the Red, Green and Blue channel in the camera – the ratio between 

the bands. However, Berra et al. (2016) does conclude that the vegetation index used takes no 

proper regard for varying illumination conditions that results in unwanted index variation. In the 

article by Burkart et al. (2017) they utilized reflectance panels for each flight and analysed the digital 

values present within these panels to determine if their digital values were stable over time. 

Furthermore, they discarded images where these reflectance panels had values that were out of the 

normal range of values (Burkart et al. 2017). 

However, when it comes to having phenological data that are accurate regardless of illumination 

conditions then a radiometric calibration of the camera in use must be done. The most popular 

method is the empirical line calibration proposed by Smith & Milton (1999). This method has been 

applied to COTS RGB cameras as well as multispectral cameras with success (Berra et al. 2017; 

Bueren et al. 2015). The empirical line method requires in-situ measured reflectance of dark and 

bright objects present in the UAV image. Then a linear relationship is made from these dark and 

bright objects between measured reflectance and digital numbers (DN) to predict reflectance of 

other objects present (Smith & Milton, 1999). Thus, measurements of reflectance plates in the field 

with varying intensity are used to derive a linear relationship to derive a calibration coefficient to be 

applied on all pixels in an image (Bueren et al. 2015). Due to the structure of the method the 
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calibration images generally need to be taken with each flight with accompanying field 

measurements to accommodate for the specific illumination conditions. In the article by Bueren et al. 

(2015) they argue that unwanted reflectance variability in their results was due to them only taking a 

single calibration image for their flight. Furthermore, their results show that in longer wavelengths 

the field measured reflectance could be as much as 1.5 times higher than that of the reflectance 

acquired from the UAV (Bueren et al. 2015). Additional problems associated with the empirical line 

method are that it assumes no illumination differences in the image, uniform atmospheric effects 

across the image and that the surface consists of Lambertian reflections (Smith & Miltion, 1999). 

These assumptions can be hard to fulfil with UAV flights as cloud cover might vary across the flight 

and that surfaces in the world tend not to be perfectly Lambertian thus exhibit bi-directional 

reflectance properties. More radiometric calibration methods are mentioned to be used in UAV 

remote sensing but at a far less rate as mentioned by Yang et al. (2017) such as the darkest target 

method, flat field model and internal mean method to name a few.  

Incoming solar irradiation is commonly not measured by the UAV platform so that the reflectance 

calculated is rarely the ratio of radiance and irradiance. Jin & Eklundh (2015) argue that having 

proper reflectance data derived from radiance and irradiance can provide greater analytical 

possibilities compared to only using radiance. Their argument stems in the fact that having 

reflectance data can provide possibilities to create non-ratio-based VI’s, thus broadening the 

capabilities of analysis of the data (Jin & Eklundh 2015). Since there are few UAV mounted cameras 

with a sunshine sensor there is no common method used to radiometrically calibrate them. Hence, 

methods used to radiometrically calibrate sensor pairs for measuring reflectance need to be adapted 

as the one proposed in Jin & Eklundh (2015). 

3.4 Camera performance theory 

The performance and characteristics of the camera has an impact on output data in remote sensing 

(Kelcey & Lucieer, 2012). Therefore, it is necessary to quantify certain aspects of the camera that 

propagate to the output. In the article by Kelcey & Lucieer (2012) they present the general 

components that make up the measured digital value in an equation that goes as follows: 

𝐷𝑁𝑅𝐴𝑊 =  𝐷𝑁𝑟𝑎𝑑 ×  𝐹𝑇𝑙𝑎𝑚𝑏𝑑𝑎 × 𝑀𝐸𝑙𝑎𝑚𝑏𝑑𝑎 ×  𝑉𝐿𝑈𝑇(𝑖,𝑗) + (𝐷𝑁𝑠𝑛 + 𝐷𝑁𝑟𝑛)    𝑒𝑞. 2 

where DNRAW is the output digital value present in each pixel, DNrad is the actual radiance in digital 

values, FTlambda is the transmittance of the spectral bandpass filters present in each sensor where a 

transmittance of 100% equals 1, MElambda is the monochromatic response/spectral sensitivity which 

states the required proportion of incoming radiance required to generate an electric charge in the 

sensor, VLUT(I,j) is the vignetting factor for a pixel which is the potential light intensity falloff or 
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increase from the centre of the image to the periphery where i,j is the pixel in question, DNsn is the 

systematic noise present in the image such as pixels with values considered as outliers and lastly DNrn 

which is the random noise present in the image (Kelcey & Lucieer, 2012). From equation 2 it can thus 

be argued that the technical characteristics of the camera need to be understood to derive accurate 

data for use in phenology. 

3.4.1 Noise 

As outlined in Kelcey & Lucieer (2012) noise can be divided in to two parts. One is of a random nature 

and the other systematic. The random noise is non-reproducible and non-correlated thus making it 

hard to quantify and be dealt with (Kelcey & Lucieer, 2012). The systematic noise is more consistent 

which could be a general value bias present in all pixels or in hotspots that is easier to identify and to 

compensate for (Mullekin et al. 1994; Kelcey & Lucieer, 2012).  

Commonly the systematic noise is dealt with by subtracting a dark offset image from the image to be 

used for deriving reflectance (Berra et al. 2017). A dark offset image refers to the phenomena called 

dark current which is the production of electrons per pixel from thermal energy (Mullekin et al., 

1995). The dark offset image is an image taken with zero incoming solar radiation, like in a pitch-

black room, thus only leaving the noise in the sensor providing a “base” DN (Berra et al., 2017). The 

random noise present is different from image to image and thus subtracting a “dark” image will not 

suffice. The most common method to deal with the random noise is to apply reductive techniques as 

a filter upon the image to smooth the values out across the image (Kelcey & Lucieer, 2012). Mansouri 

et al. (2005) show that dark offset images used need to be made with the same shutter speed and 

temperature of the sensor as in the field for a proper systematic noise correction. For instance, a 

dark offset image produced with a specific shutter speed and temperature is not recommended to be 

used for subtraction for an image taken with another shutter speed and temperature (Mansouri et 

al., 2005). 

3.4.2 Vignetting 

Vignetting is the radial decrease or increase in DN values from the image centre (Kelcey & Lucieer, 

2012). As shown by equation 2 the effects need to be rectified on a pixel-by-pixel basis. Several 

dedicated methods exist that can rectify vignetting such as the flatfield method (Mansouri et al, 

2005). This method relies on taking an image on a geometric and radiometric uniform surface to 

create a pixel-by-pixel correction factor to later be applied to subsequent images (Kelcey & Lucieer, 

2012).  

Apart from the more physical based correction of the flatfield method there are optical modelling 

approaches to rectify vignetting (Kelcey & Lucieer, 2012). However, Kelcey & Lucieer (2012) mentions 
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that the implementation of optical models is often more complicated and not necessarily more 

accurate than physical based approaches such as the flatfield method. 
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4 Methodology 

4.1 Multispectral camera properties 

In this study the Parrot Sequoia multispectral camera (Parrot SA, Paris, France) was used. The camera 

has 4 separate sensors which are in the Green (530-570nm), Red (640-680nm), Red-edge (REG) (730-

740nm) and NIR (770-810nm) wavelength bands– all with a global shutter capturing images with a 

resolution of 1280x960 pixels in a RAW format later saved as .TIFF files. Additionally, there is an RGB 

sensor with a rolling shutter of 3264x4896 pixels. The camera is also equipped with an optional 

sunshine sensor that measures incoming solar radiation with 4 sensor that have the same spectral 

waveband as the 4 separate sensors on the camera. In this study the camera captured images at a 

radiometric resolution of 10-bit and the sunshine sensor at 16-bit. When an image is captured by the 

camera there are a total of 9 reading done by the sunshine sensor. Hence, there is information 

stored as tags within the image as an EXIF or XMP format. EXIF and XMP is information stored within 

images that contain camera system diagnostics which need to be decoded such as sunshine sensor 

readings, shutter speed, ISO, dark offset value and temperature to name a few. 

Detailed information regarding the monochromatic response/spectral sensitivity and the filter 

transmittance is not provided, at this moment, by the manufacturer or is insufficient. Hence 

correction of these are not explicitly taken in to account in this study. 

The Parrot Sequoia cameras settings can be set for the 4 individual camera sensors as well as the RGB 

sensor. Settings that can be altered are ISO and shutter speed. However, the settings of the sunshine 

sensor cannot be altered. The modifications in this study are done by communication with the Parrot 

Sequoia over HTTP via Python (http://developer.parrot.com/docs/sequoia/#http-control-api). 

4.2 Radiometric Calibration methodology 

The Parrot Sequoia was radiometrically calibrated according to the method proposed for dual sensor 

pair calibration in Jin & Eklundh (2015). The method revolves around radiometrically calibrating a 

pair of sensors by using the sun as the illumination source (Jin & Eklundh, 2015). The radiometric 

calibration is done by having an upwards sensor registering incoming radiation and a downward 

looking sensor fixated upon a reflectance plate registering outgoing radiation. The equation for the 

radiometric calibration goes as follows: 

𝑅 =  
𝑅𝐿

𝑘
 × 

𝑉2𝑜𝑏𝑠

𝑉1𝑜𝑏𝑠
    𝑒𝑞. 3 

Where R is the wavelength specific reflectance, RL is the wavelength specific reflectance of the 

reflectance plate used in the calibration for the downward looking sensor, V2obs is the downward 
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looking sensor reading, V1obs is the upward looking sensor reading and k being the slope of the linear 

relationship between V2obs and V1obs with V1obs as the predictor. However, in this study reflectance is 

calculated at a pixel-per-pixel basis of the image thus resulting in a slight modification of equation 4: 

𝑅(𝑖,𝑗) =  
𝑅𝐿

𝑘(𝑖,𝑗)
 ×  

𝑉2𝑜𝑏𝑠(𝑖,𝑗)

𝑉1𝑜𝑏𝑠
    𝑒𝑞. 4 

Where R(I,j) is the wavelength specific reflectance of the specific pixel at row i and column j, RL is the 

reflectance of the reflectance plate used in the calibration, V2obs(I,j) is the DN value of the pixel at row i 

and column j, V1obs is the upward looking sensor reading and k(I,j) being the being the slope of the 

linear relationship between V2obs(I,j)  and V1obs at the same pixel row i and column j with V1obs as the 

predictor. It should be noted that in this study a radiometric calibration refers to a relative 

radiometric calibration as no radiometric sensitivities are derived. 

A reflectance correction matrix from the first term in equation 4 can be created that is dependent on 

the reflectance plate used for calibration. Thus, each pixel will have its own reflectance correction 

factor for each band. For example, if a radiometric calibration is done with a 50% reflectance plate 

then RL and k(I, j) will be a product of this reflectance plate – creating 50% reflectance plate calibration 

data. Then this reflectance correction matrix, that is the product of RL divided by k(I, j), can be applied 

upon V2obs(I, j) and V1obs from images acquired in the field to produce a reflectance image resulting in: 

𝑅(𝑖,𝑗) =  𝑅𝑒𝑓(𝑖,𝑗)  ×  
𝑉2𝑜𝑏𝑠(𝑖,𝑗)

𝑉1𝑜𝑏𝑠
    𝑒𝑞. 5 

where Ref(I,j) is the reflectance correction factor for each pixel derived from the radiometric 

calibration that is specific for the reflectance plate used. From visual inspection, images with a clear 

saturation of the 10-bit range were not used for calibration data.  

As the shutter speed and ISO settings of the camera affects the DN values within the image several 

radiometric calibration runs were made with different settings. The argument stems from the fact 

that the calibration coefficient, as seen in equation 3, which is derived from the radiometric 

calibration depends on the settings of the camera. For example, if the radiometric calibration is done 

with a specific ISO and shutter speed while the actual flight is done with other settings the calibration 

coefficient can produce errors of estimated reflectance. Hence, three radiometric calibrations were 

done using a 99% and 50% spectralon reflectance plate (Labsphere inc., New Hampshire, USA). The 

first was done with automatic shutter speed and ISO using the 99% spectralon reflectance plate for 

the downward looking sensor (V2obs).  
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The other two radiometric calibration were done with manual shutter speed and ISO with a 99% and 

50% spectralon reflectance plate for the downward looking sensor (V2obs). The spectral reflectance 

curve for the 99% reflectance plate is uniform across the wavelengths according to the provided 

metadata from the manufacturer – leaving the RL at a value of 0.99 for all the individual sensors. The 

spectral reflectance of the 50% reflectance plate is not uniform across the spectrum according to the 

manufacturer provided metadata. Thus, an approximation was made for the 50% reflectance plate. 

The central wavelength for the individual sensors governed which reflectance value was used for RL in 

equation 4 as can be seen in table 1. Hence, the spectral sensitivity of the individual sensors was 

assumed to be uniform within their bandwidth. If the spectral sensitivity is not assumed uniform 

within the bandwidth of the sensor the RL used would have to be weighted towards the part of the 

bandwidth with the largest sensitivity. 

Table 1: Values of RL used for the four individual sensors during the manual radiometric calibration run using the 50% 
reflectance plate. The central wavelength of the individual sensors was used to derive the value provided by the 
manufacturer. 

Sensor RL value used 

Green 0.4992 

Red 0.5167 

NIR 0.5358 

REG 0.5281 

 

The Parrot Sequoia was set to capture an image and thus also a corresponding sunshine sensor 

reading at a 1.5 second interval for all the radiometric calibrations regardless of settings as it was the 

shortest interval possible to choose. As the sunshine sensor reads incoming light 9 times prior to 

each image and thus the mean value was chosen as the final sunshine reading for the image in 

question. The radiometric calibration runs were done on the roof of the Department of Physical 

Geography and Ecosystems Science at Lund University. 

4.2.1 Radiometric calibration with automatic settings 

The radiometric calibration with automatic settings on the camera implies the camera choosing what 

is deemed optimal settings for an image taken at that moment. The ISO number was constant at 100 

for all sensors during the calibration. The radiometric calibration run with automatic settings were 

done during mostly cloudy conditions at solar noon for 96 minutes. The setting that was most 

dynamic was the shutter speed as can be seen in table 1. 
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Table 2: Exposure used by the camera during the automatic settings radiometric calibration. In this calibration run the 
camera set its exposure/shutter speed automatically. 

Sensor Shutter speed in microseconds 

(µs) 

Note 

Green 184 – 207 µs Mostly uniform at 184 

NIR 184 – 1592 µs Mostly uniform at 184 

RED 184 – 507 µs Mostly uniform at 184 

REG 392 – 2999 µs Non-uniform within the range 

 

4.2.2 Radiometric calibration with manual settings 

The second and third radiometric calibration were done with static manual settings. These settings 

were derived from analysing images taken in field with various vegetation covers to see what ISO 

number and shutter speed that was typically used by the camera. The ISO number was constant for 

all the images taken in the field. The shutter speed varied with illumination conditions and was 

overall shorter during clear conditions and longer during cloudy conditions. During the radiometric 

calibration it was noted that the camera was unable to take pictures at specific shutter speeds during 

a run. However, a decrease of the shutter speed for the different sensors resulted in the camera 

being able to take pictures. Hence, the original manual settings derived could not be used and had to 

be reduced by half. The problem probably stems from the fact that the camera is not being able to 

fully compensate for differences in illumination intensities. Consequently, the camera did not take a 

picture if illumination conditions were too bright for the corresponding shutter speed – protecting 

the sensors. However, this is not confirmed by the manufacturer. Hence, the reduced shutter speeds 

resulted in the camera being able to fulfil one 30 and one 45-minute run for the 50% and 99% 

reflectance plates respectively. Both runs were done during cloudy conditions during solar noon to 

decrease shifts in illumination intensity due to sun angles. The weather thus controlled how long the 

runs were able to last. The final shutter speed values chosen can be seen in table 3. 

Table 3: Shows the exposure/shutter speed chosen to be used for the manual settings radiometric calibration to be used 
with flights. The values were derived from analysing taken images in the field at various locations with various illumination 
conditions. 

Sensor Exposure/shutter speed in microseconds (µs) 

Green 400 µs 

NIR 200 µs 

RED 400 µs 

REG 800 µs 
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4.3 Sunshine sensor performance 

The sunshine sensor performance was tested with the automatic settings radiometric calibration run 

by simultaneous measurements with factory calibrated multispectral sensors (Skye instruments ltd. 

Model 48671, Powys, U.K). Two of the wavelength bands present in the Skye sensors overlapped 

those in the Parrot Sequoia making it possible to compare the performance of those Parrot Sequoia 

sunshine sensor channels. The Skye sensor channels that were compared were channel 1 at 647-

667nm and channel 3 at 733-743. It should be noted, however, that the spectral ranges do not 

overlap perfectly. 

The Skye sensor facing upwards made readings at a 2 second intervals compared to the 1.5 seconds 

of the Parrot Sequoia. This implied that both sensors timeseries readings had to be resampled and 

interpolated to a 1 second interval with offset correction to be able to correlate the sensor readings 

to each other. The offset correction was applied to the Parrot Sequoia time series so that the first 

measurement coincided at an exact second resulting in 39 milliseconds offset. The resampling and 

interpolation was done using the Pandas module in the Python programming language with a linear 

interpolation function. The gain channel of sunshine sensor for all bands during the whole run was 1. 

4.4 Noise correction 

Dark offset images were created so that the impact of the camera electronics on the sensor could be 

quantified and used for rectification. The rectification of dark current was done according the 

method described in Kelcey & Lucieer (2012) as a dark offset subtraction on a pixel-by-pixel basis. 

The test to obtain dark offset images to determine the noise was done in a dark room with dark cloth 

covering the lenses with an image taken every 1.5 second for a total of 35 minutes to let the camera 

get warm and stabilize. Furthermore, the long timespan of the test made it possible to analyse how 

noise increased with temperature. The mean value of DN of an image is highly sensitive to random 

noise, as in certain pixels with high values. This means that the median is less sensitive to these 

certain outliers thus the median was used to define the systematic noise present in an image.  

It should be noted that the dark offset run was done with automatic settings on the camera. This was 

due to the camera not taking images with manual settings. This is probably due to the camera not 

being able to detect any distinct radiation signal thus not taking an image. Hence, a dark offset curve 

could not be made with manual settings. Thus, an approximation was made to use the Parrot 

Sequoias own dark offset measurement as the basis for the dark offset correction. The dark offset 

measurement is stored as EXIF/XMP information. The random noise of the sensors was not rectified 

in this study. 
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A dark current offset was done for the sunshine sensor. However, there was no noise present in the 

sunshine sensor, so no dark offset subtraction was needed. Information about sunshine temperature 

was not analysed due to the camera not storing sunshine sensor temperature information in 

EXIF/XMP form. 

Descriptive statistics as mean and median values were calculated for the dark current runs to discern 

between noise of outlies and systematic background noise respectively. 

4.5 Vignetting correction 

To test the amount of vignetting within an image the images taken during the radiometric calibration 

were analysed. This was done since for asses vignetting it is necessary for the image to be taken at a 

Lambertian surface and under homogenous illumination conditions (Bachmann et al., 2013). These 

conditions were satisfied during the manual settings radiometric calibration runs with the 50% 

reflectance plate. Statistics on the vignetting were produced by stacking all images taken and 

calculating the mean pixel to determine the average vignetting during the calibration run. 

The radiometric calibration equation used in this study (Eq. 5) derives a reflectance correction factor 

for every pixel. This implies that the equation enables a flatfield correction if a geometrically and 

radiometrically uniform surface is used to radiometrically calibrate the camera. This is the case with 

the Spectralon reflectance plates used in this experiment which is flat and has a uniform reflectance 

across the surface. Thus, pre-processing and rectification of vignetting is deemed redundant. For 

example, if the DN values were to decrease radially from the image centre it would imply that the 

reflectance correction factor increases radially as well – thus compensating for the vignetting on a 

pixel-by-pixel basis. If a single reflectance factor was to be used for all the pixels and not being pixel 

unique then vignetting would have to be corrected for in a pre-processing manner. 

4.6 Field testing of the radiometric calibration 

To test the performance of the radiometric calibration, dark current correction and vignetting in real 

world conditions, flight tests were conducted. A flight was done at Lönnstorp experimental crop 

plots, maintained and run by SLU (Swedish Agricultural University), outside of Lund. Illumination 

conditions during field testing were clear skies at solar noon. The UAV used was a 3DR Solo (3DR 

Robotics Inc, Berkley, USA) with the Parrot Sequoia camera and sunshine sensor mounted. 

The performance of the corrections was tested by taking images at 10 and 60 meters height of four 

Spectralon reflectance panels placed upon a dark green tarp (Labsphere inc., USA). This was done to 

test how well the given reflectance of the panels could be replicated by the camera after radiometric 

calibration by the radiometric calibration data. Reflectance panels used for validation were at 5, 20, 



15 
 

50 and 99% reflectance with a non-uniform reflectance depending on wavelength, apart from the 

99% panel. The central wavelength for the different camera sensors was used to choose the spectral 

reflectance of the plates hence assuming that the spectral sensitivity is uniform. 

In addition, NDVI measurements were taken at two plots, 3x3 meters, in separate fields with a 

handheld NDVI spectrometer (Skye instruments ltd., U.K) at a height of 1 meter with central 

wavebands at 650nm and 860nm for the red and NIR band respectively. The handheld NVDI 

spectrometer measures the outgoing radiation in a 50-degree cone thus the signal received is in 

parts the mean of the plot. The UAV derived mean NDVI in the plots were calculated using the 

corrected and radiometric calibrated images from the Parrot Sequoia. For further comparison NDVI 

were also calculated for the plots using non-corrected and non-radiometric calibrated images from 

the Parrot Sequoia. 
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5 Results 

In this section the results of the various tests are presented. Results include the performance of the 

sunshine sensor, dark current tests, vignetting. Furthermore, the performance of the different 

radiometric calibrations on field acquired images are presented. All results are visualized with figures 

using the Python programming language. Data and code used is free of access upon asking (Contact 

me: Karl.Adler92@gmail.com). 

5.1 Sunshine sensor performance results 

The Parrot Sequoia sunshine sensor and Skye sensor both show a similar behaviour of responsiveness 

to incoming radiation in the red wavelength band (figure 1). Furthermore, the Parrot Sequoia in the 

Red band possess a large range of DN values ranging from circa 300 to 1800. 

 

Figure 1: Plot showing the resampled and interpolated Skye instruments ltd channel 1 facing upwards (mv)  vs the Parrot 

Sequoia sunshine sensor Red band (DN). The parrot Sequoia recorded at n 1.5 second interval while the Skye Instruments ltd 

at a 2 second interval. Both data sets were resampled to 1 second intervals with a linear interpolation. 
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The Parrot Sequoia sunshine sensor and Skye sensor both show a similar behaviour of responsiveness 

to incoming radiation in the REG wavelength band (figure 2). This responsiveness is similar to what 

could be observed for the red wavelength band as presented in figure 1. However, the total range of 

DN values for the Parrot Sequoia in the REG band ranges from circa 50 to 500. This range is smaller 

compared to the Red band for the sunshine sensor. 

 

Figure 2: Plot showing the resampled and interpolated Skye instruments ltd channel 3 facing upwards (mV) vs the Parrot 

Sequoia sunshine sensor REG band (DN). The parrot Sequoia recorded at n 1.5 second interval while the Skye Instruments ltd 

at a 2 second interval. Both data sets were resampled to 1 second intervals with a linear interpolation. 
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5.2 Dark current test results 

The Parrot Sequoia’s 4 different camera sensors show identical behaviour in temperature response 

when utilizing automatic camera settings during the dark offset experiment (Figure 3). The 

temperature increases in a rapid fashion during the dark current run with a sharp increase of 

temperature in a short amount of time. 

 

Figure 3: Plot showing the temperature response of the four individual bands in the Parrot Sequoia camera for a 35-minute 
dark current test with automatic camera settings. The y-axis represent temperature is Celsius. The y-axis represents image 
number in order during the 35-minute dark current testing i.e. 0 is the first image taken in the run. Images were taken at 1.5 
second intervals. 

During real-world testing the camera, depending on weather conditions, temperatures normally 

varies around 30-50 degrees Celsius. For instance, for images taken last summer at Abisko, in the 

north of Sweden, the temperature varied between 40-50 degrees Celsius. During radiometric 

calibration in early spring in southern Sweden the camera temperature was around 30-40 degrees 

Celsius. 
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Mean image pixel value in relation to temperature during the dark current experiment show an 

identical behaviour for all the bands (Figure 4). At First there is a drastic increase in mean image pixel 

value up to 50-60 degrees Celsius, thereafter the rate reduces and stabilizes at a mean image pixel 

value at around 150 for all the bands. 

 

Figure 4: Plot showing the temperature versus the image mean pixel value for the Parrot Sequoia four individual camera 
sensors for a 35-minute dark current test with automatic camera settings. The x-axis represents the image mean pixel value 
i.e. the mean value from the whole image. The y-axis represents the temperature in Celsius. Recordings were done at a 1.5 
second interval. 

The shutter speed was constant throughout the dark current run at 3000µs. The ISO was constant at 

6375 until the 55 degrees Celsius mark. However, when the camera reached 55 degrees Celsius the 

ISO number started to decrease. At the last recoding the ISO number was 1050. Hence, the ISO 

number decrease could be an explanation to for the decrease in image mean value. The median pixel 

value for an image at the start and end of the dark current test is shown in table 4. 
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When comparing the image median values (table 3) to the image mean values (figure 4) it can be 

noted that the image median value is less affected by temperature changes. The four bands behave 

differently as can be seen in table 3 where median of the NIR band image is stagnant from start to 

end while the Red increases from 67 to 79 for instance. During the test the cameras internally logged 

dark current value, encoded within every image, was static at 75 for all the bands. This logged dark 

current value is thus incorrect, but closer to the image median pixel value than the mean image pixel 

value. 

Table 4: Table showing the median pixel value for the first and last image for the dark current test for the four separate 
camera bands in the Parrot Sequoia.  

 Image median at start 
of dark current test 

Image median at the 
end of dark current 
test 

% Change in median 

Green 77 81 + 5.1% 

Red 67 79 + 17.9% 

NIR 73 73 0% 

REG 73 83 + 13.6% 

 

The overall noise present within an image increases drastically with increased temperature (figure 5). 

This behaviour is prevalent for all the bands where at low temperatures the noise within an image is 

low whereas with increased temperatures the noise is increased. The first image taken in the green 

band, to the left in figure 5, was at a temperature of 23.5 degrees Celsius were as image number 

1937 taken, to the right in figure 5, was at a temperature of 80.7 degrees Celsius. 

 

Figure 5: First and last image taken during the dark current test for the green band in the Parrot Sequoia camera. To the left 
is the first image taken and to the right is image 1397 – the last image. 
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5.3 Vignetting test 

The vignetting effect for the green, red and NIR sensors show overall similar behaviour where the 

REG band stands apart (Figure 6). It should be noted that the vignetting shape is similar but the range 

of values is different for the separate bands. The vignetting was calculated by stacking all images for 

each band to get the mean value of every pixel. This made it possible to determine the mean 

vignetting for the three horizontal transects to be quantified. For all the separate bands the 

vignetting is similar in the top, middle and bottom of the image.  

 

Figure 6: Showing the mean pixel value across three horizontal line transects at row 240, 420 and 720 for the four individual 
sensors. The mean value for every pixel across the transect is derived from 1131 images gathered during radiometric 
calibration using a 50% Spectralon reflectance plate. It should be noted that the y-axis has different ranges for the separate 
bands. 

The vignetting effect is more prevalent for the green and red band. However, the REG band shows a 

different, more erratic, behaviour with no distinct vignetting. In the Green and Red band, the 

outermost edges in the images are close to saturate the 10-bit range (0-1024). Furthermore, the 

vignetting is not symmetrical across the image depending on the sensor in question. For instance, the 

green band exhibits larger values to the left side of the image compared to the right, while the 

opposite is seen in the REG band. It can further be seen that various noise is present across the 

transects, with the REG band exhibiting more noise than the other bands. The vignetting seen is not a 

radial decrease in values but rather an outward increase in values in a non-radial shape (Figure 7). 
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Figure 7: An image taken of a 50% Spectralon reflectance panel during the manual radiometric calibration in the Green band 
where vignetting can be seen. The image taken is part of the dataset used to derive the vignetting statistics. The image 
taken was done during radiometric calibration using a 50% spectralon reflectance plate. The green band was chosen as of 
visualization purposes. 
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5.4 Calibration performance 

The calibration data derived from the 50% reflectance plate can recreate the target reflectance of 

the 50% reflectance plate in NIR and REG (Figure 8). However, the green and red bands show this 

reversed vignetting with higher values towards the edges of the images. This means that the 

radiometric calibration in this case did solve the vignetting problem for the NIR and REG band but not 

the green and red band. The NIR and REG band show no signs of vignetting and banding but have 

more pronounced random noise. The NIR band, as shown previously in figure 6, does exhibit 

vignetting that is rectified by the radiometric calibration. 

 

Figure 8: Images with applied radiometric calibration produced from the 50% reflectance plate calibration data upon a 
randomly selected image within that dataset. Reflectance is expressed in decimal form. White areas correspond to pixels 
having reflectance values exceeding 1 or being below 0. 

Apart from the vignetting seen there is also some horizontal banding present in the green and red 

band represented as varying lines of lower and higher values of estimated reflectance. Pixels with 

estimated reflectance values outside of the possible range of reflectance values (0 to 1) were 

omitted. The number of pixels omitted due to being outside of the possible reflectance range are 

30% (green), 2% (red), 0% (NIR) and 0% (REG). The descriptive statistics of the images can be seen in 

table 5 together with descriptive statistics of images. 

The mean and median reflectance for the wavebands, apart from the green band, are close to the 

target reflectance. The green band shows a higher reflectance of more than 10% compared to the 
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other bands which are below or above 3% of the target reflectance. The closeness of the median and 

the mean present in all the bands, except the green band, implies a non-skewed distribution of 

reflectance values in the images. 

Table 5: Showing the descriptive statistics of the images presented in figure 8. The target reflectance corresponds to the 
manufacturer given reflectance in the given waveband which is the reflectance value trying to be modelled. Pixels in the 
image having a reflectance value above 1 or below 0 were omitted. 

 Mean Median Min Max Standard 
deviation 

Target 
reflectance 

Green 0.636 0.59 0.448 1 0.124 0.499 

Red 0.53 0.511 0.436 1 0.074 0.517 

NIR 0.517 0.516 0.419 0.983 0.026 0.535 

REG 0.506 0.505 0.402 0.971 0.0.26 0.528 

 

The relationship between the pixels and the sunshine sensor show varying degrees of linearity from 

edge to centre in the green band (Figure 9). The pixel at the left side of the image in the green band 

show severe saturation of the 10-bit range for the pixel resulting in a skewed relationship (Left image 

in figure 9). The pixel in the centre of the image show less of this saturation compared to the pixel at 

the left, resulting in a more linear relationship (Right image in figure 9). However, there is still some 

saturation present of pixel values at the central pixel. The skewed relationship seen at the left pixel, 

that exhibits severe saturation, coincides with the area within the green band that had non-accurate 

estimations of reflectance (Figure 8). The less skewed relationship seen in the central pixel, that 

exhibits less saturation, coincides with the area present within the green band that was able to 

produce sensible estimations of reflectance (Figure 8). 

 

Figure 9: Two scatterplots showing the relationship between pixel value and sunshine sensor values measured during the 
50% calibration run for two pixels in the green band. To the left is the pixel at row 480 and column 1, central left edge of the 
image. To the right is the pixel at row 480 and column 640, centre of image. 
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The K factor used to produce the reflectance correction matrix using the 50% reflectance plate show 

a different distribution of values with different band (Figure 10). The distribution of K values for the 

bands show a close similarity to the distribution seen of estimated reflectance values presented in 

figure 8.  

 

Figure 10: Images representing the K factor matrix used for the reflectance correction matrix produced from the radiometric 
calibration data run using the 50% reflectance plate. 

The calibration data derived from the radiometric calibration run using the 99% plate show severe 

saturation (Figure 11). This resulted in many pixels being omitted due to having estimated 

reflectance values above or below the possible range of reflectance values (0 to 1). As with the 50% 

calibration data the vignetting is still present for the green band but not for the red band. The NIR 

and REG band show some vignetting towards the right edge. 
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Figure 11: The calibration data produced from the 99% reflectance plate upon a randomly selected image within that 
dataset. Reflectance is expressed in decimal form. White areas correspond to pixels having values exceeding 1 or being 
below 0. 

The number of omitted pixels for the 99% calibration run was 81% (Green), 94% (Red), 49% (NIR) and 

58% (REG). The number of pixels that were outside of the possible reflectance range is significantly 

higher compared to the 50% calibration data. The descriptive statistics of the images presented in 

figure 9 can be seen in table 6. The pixels that were not omitted show that the mean and median 

reflectance is close to the target reflectance of 99% (Table 6). However, the high omission of pixels 

indicates that the 99% radiometric calibration data is not able to estimate the 99% reflectance plate. 

This implies that the results cannot be trusted and thus the 99% radiometric calibration data was not 

applied upon the field images. 

Table 6: Showing the descriptive statistics of the images presented in figure 8. The target reflectance corresponds to the 
manufacturer given reflectance in the given waveband which is the reflectance value trying to be modelled. Pixels in the 
image with reflectance values over 1 or below 0 were omitted. 

 Mean Median Min Max Standard 
deviation 

Target 
reflectance 

Green 0.982 0.985 0.89 1 0.013 0.99 

Red 0.991 0.993 0.939 1 0.007 0.99 

NIR 0.968 0.971 0.819 1 0.022 0.99 

REG 0.969 0.973 0.831 1 0.022 0.99 

 



27 
 

The radiometric calibration data derived from the automatic calibration run provided no meaningful 

reflectance data for any of the bands except the green band, but with only 10% of the pixels being 

within the possible reflectance range. For example, the automatic calibration applied upon the red 

band returned no pixels within the possible reflectance range and reflectance values in several bands 

being far below or above the possible range of reflectance. Hence, the result showing the automatic 

calibration performance at reproducing the 99% reflectance plate used would only show images with 

no pixels within the possible range of reflectance values. Thus, the automatic calibration data was 

not applied on the field images.  

5.5 Field testing of reflectance and NDVI 

In this section images taken during the field campaign is presented with the 50% reflectance plate 

calibration data applied on images taken at 10 and 60 meters height. For all the images, the area of 

the image containing the tarp with the Spectralon reflectance plates upon it are cropped out for 

better visualization. The tarp with the reflectance plates upon was at the centre of every image. 

The reflectance produced with the 50% calibration data at a height of 10 meters show varying results 

depending on waveband (Figure 12). The green and red band cannot reproduce the reflectance of 

the 50 and 99% reflectance plates (Table 7). However, the lower reflectance plates of 5 and 20% are 

closer to the target reflectance for each band (Table 7). The NIR and REG are very close at 

reproducing the reflectance of the different plates but in the end fall short at reproducing the 99% 

reflectance plate with a under estimation of reflectance (Figure 12). 
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Figure 12: The reflectance of four reflectance plates for each band at a capture height of 10 meters using the 50% 
reflectance plate calibration data. The four reflectance plates lie on a tarp where the top left is a 5% plate, top right a 20% 
plate, bottom right a 50% plate and bottom left a 99% plate. The images are cropped to only include the tarp with the tarp 
being in the centre of the original image. 

At a height of 60 meters the 50% calibration data produces generally lower reflectance values for 

each band (Figure 13). Still the green and red band cannot reproduce the target reflectance of the 50 

and 99% reflectance plates (Table 7). The REG band show similar performance compared to a capture 

height of 10 meters but with a greater under estimation of reflectance values overall (Table 7). The 

NIR band show over estimation of target reflectance for the different reflectance plates with the 50% 

reflectance plate being the clearest indicator (Figure 13) 
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Figure 13: The reflectance of four reflectance plates for each band at a capture height of 60 meters using the 50% 
reflectance plate calibration data. The four reflectance plates lie on a tarp where the top left is a 5% plate, top right a 20% 
plate, bottom right a 50% plate and bottom left a 99% plate. The images are cropped to only include the tarp with the tarp 
being in the centre of the original image. 

The mean reflectance for each plate with the different configurations of calibration data and capture 

height show varying accuracies (Table 7). For instance, the mean predicted reflectance of the 5% 

reflectance plate in the green band using the 50% radiometric calibration data is 0.052 while 

according to the manufacturer of the plate the reflectance in that wavelength should be 0.037 – 

showing an under estimation of reflectance of 40%. The mean reflectance for the 5 and 20% show no 

distinct changes regardless of capture height with an error of 40%. The mean reflectance of the 20% 

reflectance plate shows the smallest error in target reflectance. However, as noted previously the 

mean reflectance for the 50 and 99% is far below the target reflectance regardless of calibration data 

and capture height used with an error around 70%. 

The red band show different behaviour compared to the green band with drastically smaller error of 

estimated mean reflectance for the 5% reflectance panel (Table 7). The estimated reflectance of the 

20% reflectance panel is much higher at a capture height of 60 meters compared to 10 meters in the 

red band. As with the green band the red band still under estimates the reflectance of the 50 and 

99% reflectance plates with a similar error.  
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The NIR band shows high amounts of error in estimated mean reflectance of the 5% reflectance plate 

at a capture height of 10 meters (Table 7). The estimated reflectance of the 20 and 50% reflectance 

plates show low error under the 5% mark. However, with a capture height of 60 meters the 

estimated mean reflectance for all the plates are generally doubled compared to the capture flight of 

10 meters. This means that there is an over estimation of reflectance for the 5, 20 and 50% 

reflectance plates compared to the target reflectance. The cause of this increase at this height is 

unknown and could be the product of a sudden burst of incoming solar radiation. However, even 

with this over estimation there is still an under estimation of the 99% reflectance plate. 

The REG band compared to the NIR band show a similar error in estimated mean reflectance 

regardless of capture height (Table 7). The estimated mean reflectance for the 5% reflectance plate is 

on par with the green band with an error around the 40% mark. As with all the other bands there is 

still an under estimation of the 99% reflectance plate even if the error is the smallest compared to 

the other bands. 

Table 7: Showing the mean reflectance for each plate present in the field images for the different calibration data and 
capture height. Reflectance is expressed in decimal form where each plate has a target reflectance acquired from the 
manufacturer data from each spectralon reflectance plate. I.e. column two corresponds to the calibration data acquired 
with the 50% reflectance plate at a capture height of 10 meters. The target reflectance is derived from assuming the spectral 
sensitivity within the band is uniform. * = error compared to the target reflectance in %. The calculated error is rounded to 
the closest integer. 

 Reflectance plate Predicted mean 
reflectance, 50% 
calibration at 10 
meters 

Predicted mean 
reflectance, 50% 
calibration at 60 
meters 

Actual plate 
reflectance 

Green 5% 0.052 (40%)* 0.052 (40%)* 0.037 

 20% 0.225 (6%)* 0.203 (4%)* 0.212 

 50% 0.275 (44%)* 0.273 (45%)* 0.499 

 99% 0.295 (70%)* 0.279 (71%)* 0.99 

Red 5% 0.042 (7%)* 0.045 (15%)* 0.039 

 20% 0.202 (9%)* 0.177 (20%)* 0.224 

 50% 0.288 (44%)* 0.278 (46%)* 0.516 

 99% 0.293 (70%)* 0.282 (71%)* 0.99 

NIR 5% 0.07 (70%)* 0.105 (150%)* 0.041 

 20% 0.234 (1%)* 0.437 (83%)* 0.238 

 50% 0.508 (5%)* 0.682 (27%)* 0.535 

 99% 0.755 (23%)* 0.688 (30%)* 0.99 

REG 5% 0.054 (35%)* 0.059 (47%)* 0.04 

 20% 0.221 (5%)* 0.228 (2%)* 0.232 

 50% 0.511 (3%)* 0.495 (6%)* 0.528 

 99% 0.777 (22%)* 0.766 (23%)* 0.99 
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5.5.1 Field NDVI 

The NDVI values calculated from the handheld spectrometer and the calibrated Sequoia data deviate 

by 0.017 and 0.019 in plot 1 and 2 respectively (Table 8). In plot 1 the calibrated Sequoia data equals 

a slightly higher NDVI compared to the handheld spectrometer while for plot 2 it is the opposite. 

However, the un-calibrated Sequoia data show a drastically lower NDVI compared to the handheld 

spectrometer and calibrated Sequoia data. This means that a radiometric correction will produce a 

higher NDVI compared to no radiometric correction. Furthermore, it should be noted that the 

median calculated NDVI from calibrated data were 0.704 and 0.58 for plot 1 and plot 2 respectively. 

This implies that the distribution of NDVI values within the plots are not to skewed as they 

correspond quite close to the mean. 

Table 8: The NDVI calculated for the two plots on separate cropping fields using a handheld spectrometer, un-calibrated 
Sequoia data, Sequoia data calibrated with the 50% reflectance plate calibration data. The NDVI calculated is the mean for 
the whole plot. 

 Plot 1 mean NDVI Plot 2 mean NDVI 

Handheld 0.665 0.601 

Un-calibrated Sequoia data 0.307 0.156 

Calibrated Sequoia data 0.682 0.582 

  



32 
 

6 Discussion 

6.1 Field reflectance 

The results show that with proper radiometric calibration and pre-processing the Parrot Sequoia can 

perform well for certain bands when estimating reflectance. For instance, the corrected images of 

the 5% reflectance plate were estimated with the greatest accuracy in the red band. Furthermore, all 

the bands could estimate the reflectance plate of the 20% reflectance plate within a 10% error span. 

However, this was not the case for the red and NIR band when captured at an altitude of 60 meters. 

This could possibly be the cause of some unknown factor that is not due to the radiometric 

calibration. For instance, Stark et al. (2018) show that the BRDF effect in images can produce large 

errors in pixel values if the field of view of the system is large – which it is on the Parrot Sequoia. 

Furthermore, Fernandez-Guisaraga et al. (2018) showed that the BRDF effects are highly present for 

the Parrot Sequoia. The argument stems in the fact that for some estimation of reflectance the 

estimation did not change with changes in flight altitude - as seen with the REG band for the 20 and 

50% reflectance plates for instance. However, if estimated reflectance increased with flight altitude 

for all the bands then it could be assumed that the radiometric calibration would not be suitable 

images captured at higher altitude. It can be argued then that with the methodology proposed 

several images should be captured at each altitude as a single image can thus exhibit reflectance 

variability. An image should then be chosen for reflectance calculation that does not exhibit some 

environmental factor that will produce errors. Furthermore, with images taken at a greater altitude 

the pixels will represent a larger ground area resulting in pixels containing more varied spectral 

signatures, a mixed pixel. From this it can be argued that a lower flight altitude is recommended for 

the estimation of reflectance with the use of this radiometric calibration and camera system. 

The NIR and REG band exhibited the lowest error in estimated reflectance for the 50% reflectance 

plate where the other bands had far higher error of estimated reflectance. The 99% reflectance plate 

could not be replicated to any degree by any band, but the green and red band produced the largest 

errors. These results imply that the radiometric calibration used with the Parrot Sequoia is not 

suitable for identifying the true reflectance of highly reflective surfaces. 

The error of estimation can be misleading. For example, the error in estimated reflectance for the 5% 

reflectance plate in the green band was 40% while the error for the 99% reflectance plate in the REG 

band was 23% at a capture height of 10 meters. So, by blindly looking at the error one would assume 

that the estimation of the 5% reflectance plate in the green band was poor while the estimation of 

the 99% reflectance plate in the REG band was better. However, by looking at the actual estimated 

reflectance for the 99% reflectance plate in the REG band it estimated a reflectance of 77% where it 
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should have been 99%. This means that the estimation was off by a reflectance of 22% whereas the 

estimation of the 5% reflectance plate in the green band was just off by a reflectance of 1.5%. By 

looking at the actual estimated reflectance and not at the error, in percent, one could thus argue that 

the green band was better at estimating the 5% reflectance plate than the REG band was at 

estimating the 99% reflectance plate. This makes it hard to claim that the estimated reflectance is 

good or bad as in the case presented above. However, if both the error and the deviation of absolute 

reflectance is low one could assume that the estimation in question was accurate as with the 20% 

reflectance plate for the REG band. Furthermore, the accuracy of the reflectance estimations is hard 

to validate as finding information or literature on acceptable boundaries of reflectance estimation 

error could not be found. For future studies the performance could be quantified by using more 

radiometric calibrations, such as the empirical line method, and using reflectance plates 

measurements with a calibrated handheld spectrometer for comparison (Berra et al., 2017). 

6.2 NDVI 

The methodology for radiometric calibration and image processing provided NDVI values closer to 

the NDVI values calculated with the handheld spectrometer. It should be noted that central 

wavelengths for the red and NIR band for the Parrot Sequoia and the handheld spectrometer does 

not perfectly overlap. Thus, the measured NDVI should in theory not be identical as the different 

systems measure different wavelengths. However, without any radiometric calibration the NDVI 

produced was drastically lower compared to the handheld spectrometer. Thus, NDVI derived from 

the radiometric calibration can be argued to be more accurate compared to the un-calibrated NDVI if 

the handheld spectrometer is assumed to be the baseline NDVI measurement. Furthermore, the un-

calibrated NDVI would imply that the vegetation was sparse at the location which was not the case. 

However, if a more rigorous statement is to be made more NDVI products from other systems need 

to be incorporated in the comparison. This could be achieved by doing the field campaign that 

coincides with a satellite flyover of the same area and then using the satellite data to derive NDVI for 

comparison (Berra et al., 2017). Furthermore, an incorporation of more plots to calculate NDVI 

within could also create the possibility to conduct more statistical testing such as correlations and 

significance between NDVI products. 

The reflectance-based VI used was NDVI that utilizes the red and NIR band. The results show that the 

red and NIR band has some of the lowest errors in estimated reflectance. Hence, it is difficult to 

know how well the radiometric calibration would have impacted another reflectance-based VI that 

does not rely on the red and NIR band. For example, the highest errors in estimated reflectance was 

seen in the green band and thus the impact of this on a VI utilizing the green band is hard to predict. 
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Further analysis on error propagation to given VI is needed to determine if the radiometric 

calibration proposed is suitable for a variety of reflectance-based VI. 

6.3 Radiometric calibration 

The results show that with proper calibration data reflectance values close to target reflectance can 

be estimated. However, it is important to keep the relationship between the sunshine sensor signal 

and the camera pixel value linear when creating the reflectance correction matrix. For instance, by 

having a non-linear relationship between the sunshine sensor and camera pixel value the slope being 

used in the calibration can be prone to errors thus providing a bad prediction of reflectance. This can 

be seen in figure 8 for the green and red band where the estimated reflectance for the reflectance 

plate in question is outside of the possible reflectance range at the edges of the image. This is most 

likely due to the vignetting effect that will induce saturation of the pixel values at the edges of the 

images during brighter illuminated conditions. The argument stems from the fact that the area of the 

image prone to vignetting in the green band is also the area of the image having values outside the 

possible range of reflectance values. Thus, when saturation occurs of the 10-bit range of the camera 

but not the sunshine sensor then the relationship will not be linear at higher values. However, this 

pixel-by-pixel radiometric calibration was able to remove the vignetting present in the NIR and REG 

band as the vignetting present did not equal to a saturation of the 10-bit range of the camera. 

Results showed that the REG and NIR band was most accurate at estimating the target reflectance 

across the image possibly due to this notion. 

When using the 99% calibration data to estimate the target reflectance upon an image used to derive 

itself the results were poor. The sheer number of pixels with values outside the possible range of 

reflectance values implied that the 99% reflectance calibration data was untrustworthy to use in the 

field campaign. The 99% reflectance plate is thus not deemed to be well suited for the radiometric 

calibration of the Parrot Sequoia. The problem is possibly due to the pixels being saturated for most 

of the images taken during the radiometric calibration run. This could be solved by decreasing the 

shutter speed of the camera so that less light enters the sensor hence reducing the pixel value or by 

doing the radiometric calibration run on a less illuminated day. However, a shorter shutter speed 

could result in dark images over vegetation.  

The automatic settings calibration data did not produce any sensible estimations of reflectance of 

the 99% reflectance plate used for that calibration run. Hence, the automatic settings of the Parrot 

Sequoia are not deemed suitable for the estimation of reflectance of vegetation with the 

methodology proposed in this study. 
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The notion of preserving the linearity of the sunshine sensor and the pixel values for the radiometric 

calibration run stresses the importance for more rigorous pre-processing of the images. This means 

that in the images selected for the calculation the reflectance correction matrix should not have any 

saturation present of the 10-bit range for any of the images. In this study it would imply using a lower 

shutter speed for the green and red band specifically. Fernandez-Guisaraga (2018) showed similar 

results for the Parrot Sequoia where the green and red bands were prone to saturation and showed 

horizontal banding, similar to this study. However, horizontal banding seems to be handled in the 

same fashion as vignetting was processed by the pixel-by-pixel radiometric calibration for the NIR 

and REG band. Hence, the radiometric calibration method used can provide a solution to systematic 

noise such as banding and vignetting if careful attention is taken to the data used for the radiometric 

calibration run. This kind of pre-processing on a pixel-by-pixel basis can be very time consuming as 

each pixel would have to be checked for saturation before being used. Furthermore, Jin & Eklundh 

(2015) argue that if the k, derived from calibration, multiplied with the incoming radiation signal is 

greater than the intercept of the linear relationship then that pixel in question should not be used. 

This was not done in this study as that kind of pixel-by-pixel processing was to time consuming. If 

then a more rigorous pixel-by-pixel processing chain is adapted these problems could be solved. 

Thus, with this method reflectance data can be gathered that can be compared in a temporal manner 

that is necessary within the field of phenology. 

The radiometric calibration used relies on both outgoing and incoming solar radiation. This implies 

that an accurate incoming solar radiation signal is crucial for the radiometric calibration to work. 

From the results the sunshine sensor is on par with designated multispectral sensors. As the 

radiometric calibration used relies on a linear relationship between the sunshine sensor and the pixel 

values the difference of the bit ranges can be disregarded. 

6.4 Dark current and vignetting 

The dark current and vignetting tests provided some insightful information on the Parrot Sequoia 

behaviour. The results showed that the vignetting present deviates from the vignetting defined by 

Kelcey & Lucieer (2012). The vignetting present in the Parrot Sequouia is not a radial decrease in pixel 

values, as expected, but an increase that is not radial. The vignetting present is severe for the green, 

red and to some extent the NIR band. The REG band show small signs of vignetting. However, it could 

be noted as mentioned above that the radiometric calibration can solve these issues if there is no 

real saturation of the 10-bit range. This was evident as the NIR and REG band after radiometric 

calibration presented no severe vignetting effect. Due to the vignetting being reversed with 

increased values towards the edges the saturation of the bit range must be minimized with a shorter 

shutter speed for example. Furthermore, Kelcey and Lucieer (2012) showed that decreases in shutter 
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speed resulted in less vignetting taken from their digital camera that could be applicable to the 

Parrot Sequoia. Thus, future studies could analyse the effects of different shutter speeds on the 

vignetting effect in the Parrot Sequoia. 

The dark current tests show that the Parrot Sequoia is strongly affected by temperature. The 

relationship between the random noise and temperature is evident with high image mean pixel 

values with increased temperatures. The dark current signal, image median, does not increase in 

such a drastic rate with increased temperature. The dark current signal measured does not 

completely correspond to the cameras own dark current metric. However, to derive accurate dark 

current readings for a given temperature, testing would have to be done with the shutter speed to 

be used in the field (Mansouri et al., 2005). This was not possible due to the camera not being able 

capture images during dark current testing with the shutter speed selected to be used in the field 

campaign. This temperature dependence could imply problems when operating the Parrot Sequoia 

over a longer period with varying temperatures during field campaigns such as the case with 

phenological studies. However, the noise present in the dark current images was substantial but 

were at such high temperatures that might never be reached in field. It should also be noted that the 

ISO and shutter speed of the dark current images were far away from common values utilized in the 

field. This means that the temperature responses of the camera might not be as severe if dark 

current images can be captured with static settings. 

  



37 
 

7 Conclusion 

In this study a novel pre-processing and pixel-by-pixel radiometric calibration method for images 

captured with the Parrot Sequoia camera was developed. The method was shown to be capable at 

providing accurate reflectance estimations of certain Spectralon reflectance plates with certain 

wavelength bands. However, some uncertainties exist as some reflectance plates are not well 

estimated and some bands provide larger error in estimated reflectance than others. With the 

radiometric calibration applied to images the calculated NDVI is closer to handheld derived NDVI. 

This means that this methodology can be used to derive reflectance-based vegetation indices usable 

for phenological studies. However, the properties of the Parrot Sequoia and the radiometric 

calibration used does require careful attention not to produce errors in estimated reflectance 

regarding saturation due to vignetting, temperature, systematic and random noise. More work is 

needed to better compare and evaluate the performance of the methodology presented in this study 

by comparing reflectance and Vis from other UAV systems.  
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