
 
Department of Automatic Control 

 

On Shock Propagation 
in Financial Networks 

Isabelle Rosenberg 

Viktor Svensson 



 
 

 

 

 

 

 

 

 

 

 

 

MSc Thesis 
TFRT-6062 
ISSN 0280-5316 

Department of Automatic Control 
Lund University 
Box 118 
SE-221 00 LUND 
Sweden 

© 2018 by Isabelle Rosenberg & Viktor Svensson. All rights reserved. 
Printed in Sweden by Tryckeriet i E-huset 
Lund 2018 

 



Abstract

This thesis develops a simplified financial network model for an interbank lending
system which is then analyzed in terms of contagion when exposed to external liq-
uidity shocks. The aim is to understand how individual institutions and the network
structure affect the shock propagation and finding factors that increase respectively
decrease the systemic risk of the network. The network structures analyzed are
mainly the ring graph, the complete graph, and the directed tree graph, given an
ex-post and an ex-ante perspective.

The first result indicates that traditional centrality measures are not capable of
identifying systemically important institutions. The second result concerns the in-
terconnections in the network structure, where it is concluded that if one institution
or all institutions are subject to a certain shock, a complete structure always per-
forms better than or equally as well as the denser structure of a ring graph, in terms
of number of defaulting institutions, whereas if multiple institutions, but less than
all of them, are exposed, the complete graph may perform worse. The last result
shows that in acyclic tree graphs, a higher number of offspring in the k-regular tree
graph and an offspring distribution with less variance in the random tree graph,
can restrict the contagion respectively reduce the probability of shock propagation
further down the tree.

Keywords: Financial Network, Financial Contagion, Systemic Risk, Shock Propa-
gation, Network Structure
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Notations

The financial network model is constructed by a set of notations and definitions are
stated below.

n Number of nodes, representing financial institutions, in the network
W Weight matrix of size n× n, representing the weighted, directed links in the

network
Wi j Weighted link from i to j representing the claim of j towards i, i.e. the amount

of money that j has lent to i⇔ The liability of i towards j, i.e. the amount of
money that i has borrowed from j

wi Total liability of node i, i.e. out-degree
vi Total claim of node i, i.e. in-degree
Pi j Fraction of total liability of i owed to j
xi Total repayment of node i to its creditors
xg

i Total repayment of node i in generation g to its creditors, applies only to the
tree graph networks

ai External asset of node i
bi External liability of node i
εi External shock on node i
si Induced shock from node i to all its creditors
sg

i Induced shock from node i in generation g to all its creditors in the tree graph
networks

si j Induced shock from node i to j
sg

i j Induced shock from node i in generation g to j in the tree graph networks
ξi Stochastic part of the induced shock si
βi Deterministic part of the induced shock si
ci Net worth of node i before shocks
di Net worth of node i after shocks
ki Number of children of node i in the tree graph networks
ψ Number of defaulting institutions in the network
Ψ Number of defaulting generations of institutions in the tree network
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1
Introduction

The global financial economy today is highly interconnected and interdependent
which have raised the question of how this affects the overall financial stability. The
recent financial crises have shown that a shock in one market may cause instability
globally, especially the financial crisis in 2008, where turmoil on the mortgage
market in the US turned into global recession. During the last years there has been
an increasing interest in and research of applying network theory to the financial
system in order to gain understanding of how the structure of the network affects
the economic stability and systemic risk and it has been heavily debated whether
more densely or more sparsely connected network structures are the key amplifiers
of shock contagion [Glasserman and Young, 2016].

The financial system is also characterized by an opaque and complex structure.
The liabilities and claims between financial institutions are to a great extent confi-
dential and the many ways of trading financial instruments create a delicate network
of connections. The limited information available about the connections in the net-
work makes it difficult to understand how the network structure affects the exposure
to contagion in the system. This in turn makes it harder for policy makers and reg-
ulators to limit systemic risk and prevent large financial crises. One approach is to
instead create simpler models of the financial network, according to graph theory,
where the nodes represent financial institutions and the links in between represent
the monetary connections. Then, the complex structure may be broken down and
several established graph concepts can be exploited to form comprehensible con-
clusions that may be applied in reality. Centrality measures are one of these graph
concepts and the question that has been discussed in the literature is whether these
may capture the systemically importance of single nodes, in terms of spreading
financial contagion [Acemoglu et al., 2015].
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Chapter 1. Introduction

1.1 Purpose

The purpose of this thesis is to gain further understanding of both the financial
network structure’s role and the individual institutions’ role within the financial
network in influencing the systemic risk. The goal is to derive measures of contagion
and conclusions, given ex-post and ex-ante shocks, which may be applied to the
real-world financial system in order to comprehend factors that may amplify versus
absorb negative shocks. Specifically, further analysis on the role of interconnections
and cycles, respectively, in the network is performed on specific topologies with the
aim to develop an understanding of how they affect the stability in presence of
shocks.

1.2 Limitations

The thesis considers a purely theoretical financial network which aims to model
a simplified interbank lending system. As it is simplified, several real-world fac-
tors are not taken into account. Also, since the time frame of the master thesis is
restricted to 20 weeks, the scope and depth of the analysis has been limited by this.

1.3 Previous Work

The concept of understanding the role of the financial network’s structure in spread-
ing financial contagion by shocks emerged during the early millennium. There are
primarily two significant papers that a great part of the later literature build upon.
It is partly a work which examines simple interbank markets and conclude that a
more complete structure is to prefer as it is more robust [Allen and Gale, 2000].
The other work examines a similar network but instead of shock contagion, they
analyze stability given a partially or completely defaulting bank and come to similar
conclusions of that a higher connectivity results in a more resilient network [Freixas
et al., 2000].

The financial network model in this thesis is mainly build upon the model de-
scribed in [Eisenberg and Noe, 2001]. In this paper, Eisenberg and Noe define and
prove the existence and uniqueness for a payment clearing vector in a financial,
cyclic network. With these findings, it is possible to develop a better framework and
understanding of how contagion spreads and default cascades through the network.
The model is basic and thus several suggestions of improvement have been devel-
oped afterwards.

Other important works for this thesis are the models and conclusions developed
in [Acemoglu et al., 2015; Acemoglu et al., 2016]. The financial network models
in these papers are closely related and inspired by the model by Eisenberg and
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1.3 Previous Work

Noe. An analysis of the role of connections and network structure is performed to
find an answer to whether more interconnectedness amplifies or absorbs contagion.
In [Acemoglu et al., 2015], it is concluded that given a small enough magnitude
of the shocks, a complete network performs better than more sparsely connected
networks. In this case, the more connected a network is, the better it performs. This
is in line with the conclusions of Allen and Gale and Freixas et al. However, in con-
trast to these works, Acemoglu et al. conclude that the complete network performs
worse than more sparsely connected networks given a large enough magnitude of
shocks and hence it is not always better with denser connections to provide a stable
network.

There has also been a field of literature building upon numerical simulations on
empirical data instead of theoretical frameworks. Even though this is not within the
scope of the thesis, there are some interesting result considering the interconnec-
tions and centrality in a network worth to mention. In [Gai et al., 2011] a simple
interbank system is modeled by a variety of complex network structures and it is
analyzed how the connectivity and concentration in the network affect the stability
and funding contagion. By experiments it is found that increasing the connectivity
may increase the fragility of the system. An extensive review of developed simu-
lation models of default contagion is found in [Upper, 2011] where it is concluded
that the current models are merely tools in assessing risk and not a complete frame-
work to prevent crises.

An extensive review of the current literature within financial contagion in net-
works is produced and compared in [Glasserman and Young, 2016]. Glasserman
and Young also show examples of how to extend the model by Eisenberg and Noe
and develop a measure to understand the importance of different nodes called Node
Depth. The systemic importance as measured by standard centrality measures has
been questioned in literature. Acemoglu et al. argues that these measures are insuf-
ficient and possibly misleading for nonlinear financial network models while there
are, on the other hand, empirical findings on interbank systems where these central-
ity measures are found to capture the systemic importance well [Farooq Akram and
Christophersen, 2010; Craig et al., 2015].

This literature review within the subject of financial contagion shows some con-
tradictory results of the relationship between the interconnectedness and systemic
risk in a network, and also the role of traditional centrality measures in a financial
network as to capture the systemically important institutions.
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Chapter 1. Introduction

1.4 Outline

The outline of this thesis is the following. In Chapter 2, the established graph theory
is presented and the analyzed specific graph topologies are described. Also, classi-
cal centrality measures are defined and graph concepts important for the thesis are
presented. The financial network model is presented in Chapter 3 with a detailed
description and application. Performance measures for the financial network are
defined and the model is then compared to similar models developed in previous
work. Also, a payment equilibrium, given the presence of shocks, is proved to exist
and being (generically) unique. Lastly, a notion called Node Depth is introduced
and three heterogeneous network examples are analyzed to compare their perfor-
mance in the presence of shocks to some traditional centrality measures as to find
the systemically important nodes.

The analysis of contagion when ex-post shocks are present, given a specific ho-
mogeneous network structure, begins in Chapter 4. First, an interpretation and
argumentation are given for the specific topologies. Both one deterministic and
multiple deterministic shocks are analyzed on the three specific topologies and
the contagion is measured by the number of defaulting institutions. In Chapter 5,
the shock propagation analysis continues on ex-ante shocks. The acyclic specific
topologies are analyzed given one stochastic and multiple independent stochastic
shocks. The contagion is measured by a probability measure of the size of the
induced shock from one node to another. In Chapter 6, the findings of the thesis are
concluded and further work is presented.
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2
Background on Graph
Theory

This chapter describes basic graph theory with common notations and definitions
of concepts that are important for this thesis. The financial network model is based
on this graph theory. The specific graph topologies ring graph, complete graph,
and tree graph are explicitly explained as they are later considered in the conta-
gion analysis. More traditional, off-the-shelf centrality measures for networks are
further described as well as the concept of cohesiveness. Lastly, since the Galton-
Watson branching process is applied to generate the random tree graph, it is further
described.

2.1 Networks as Graphs

The structure of a network can be described by a graph and in this section, graph
theory is more thoroughly described. The theory is based on the Lecture Notes from
Network Dynamics [Como, 2018]. A graph simply formalizes which nodes that are
connected and to what extent they are connected to each other. In other words, it
describes the pattern of links between the nodes.

Formally, a graph G consists of three sets, G = (V,E ,W ). The set V contains the
nodes, or vertices, where every node is assigned a number such that V = {1,2, ...,n}.
The set of links, or edges, is denoted by E and consists of ordered pairs of nodes
(i, j), where the link points from node i to node j. W is the link weight matrix, or
adjacency matrix. It is a square matrix with non-negative elements. If (i, j) ∈ E ,
then Wi j > 0. Similarly, if (i, j) /∈ E , then Wi j = 0.

The nodes that are connected by links are called neighbors. For a node i ∈ V ,
node j ∈ V is an out-neighbor if the link (i, j) ∈ E and an in-neighbor if the link
( j, i) ∈ E . The neighbors define the degree of each node. The out-degree of a node i
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Chapter 2. Background on Graph Theory

is defined as
wi = ∑

j∈V
Wi j (2.1)

The in-degree of a node i is defined as

vi = ∑
j∈V

Wji (2.2)

The normalized weight matrix is denoted by P and measures the relative fraction of
the out-degree of each node. In matrix notation it is defined as

P = D−1W, D = diag(w) (2.3)

Graphs can be either directed or undirected. If a graph is directed, at least one of
the links has a direction, which means that there is a link that points from a node
to another node but not vice versa. In an undirected graph on the other hand, all
links point in both directions. In this report, both directed and undirected graphs are
considered.

Graphs can also be either weighted or unweighted. In a weighted graph, every
link is given some positive weight. An unweighted graph can be seen as a specific
case of a weighted graph where all links have weights equal to one. In this report,
both unweighted and weighted graphs are considered.

A graph is said to be connected if there exists some path between every pair of
nodes in the graph, which means that every node is reachable from every other
node. If this is not true, the graph is disconnected. A graph is out-connected if for
every node in the graph, there exists a path that leads out from the graph. This
may only occur if there is some path to a node with a link that does not point to
another node in the graph but to some external entity. The term cyclic is related
to connectivity and refers to a graph that contains at least one cycle, which means
that it is possible to traverse the graph when starting and ending in the same node
without passing through a previously visited node. If the graph does not contain any
cycle, it is called acyclic.

In the next chapters, a financial network is modeled according to this graph theory
to develop a framework for how liquidity shocks spread across networks of finan-
cial institutions. Different types of graphs can be combined to build more intricate
topologies by this framework, which in a better way might reflect how actual in-
terbank lending network really are structured. Some specific graph topologies are
further investigated and these are the ring graph, the complete graph, and the tree
graph. They are by definition simple graphs which are unweighted, undirected and
without any self-loops, i.e. Wii = 0 ∀i. However, the graphs will be altered in this
report as described below.

14



2.1 Networks as Graphs

Ring graph The considered ring graph is a specific case which can be described
as a directed ring graph with n > 3 nodes. As it is directed, each node has one
out-neighbor and one in-neighbor. The directed ring graph is the most sparsely con-
nected graph. An example of the directed ring graph is shown in Figure 2.1 with
n = 10 nodes.

Figure 2.1 A directed ring graph with n = 10 nodes

Complete graph The complete graph considered is an undirected graph. In the
complete graph, all nodes n are connected to each other, and is thus the maximally
connected graph. That results in an equal degree for each node i ∈ V of size wi =
vi = n− 1 and hence, the graph is regular. In this report, only complete graphs of
n > 3 nodes are considered. See Figure 2.2 for an example of a complete graph with
n = 10 nodes.

15



Chapter 2. Background on Graph Theory

Figure 2.2 A complete graph with n = 10 nodes

Tree graph The tree graph considered is a directed and acyclic graph with n− 1
links. It is acyclic as the graph does not contain any cycle. This tree is also discon-
nected as it is not possible to reach every node by any other node. The neighbors
of degree-1 are called leaves and a tree may have a minimum of 2 (line graph) and
a maximum of n− 1 leaves (star graph). A line graph is shown in Figure 2.3 and
may be seen as a special case of an acyclic ring graph. A single root node initialize
the tree by letting directed links point to a certain number of neighbors k called
children, or offspring. Then, each node i has a number of new links to ki children.
The link Wi j is thus directed from the parent node i to the child node j.

Figure 2.3 A directed line graph with n = 5 nodes

The tree may be k-regular and constructed by a fixed number of children of each
node or random and generated by a probability distribution. The tree graph is struc-
tured according to generations where the root node belongs to generation g = 0, the
children of the root node belongs to generation g = 1, and so on. In this context the
tree is assumed to be infinite which means that n→ ∞ and all nodes are assumed
to have children, meaning that leaves are non-existent. An example of a k-regular
directed tree graph with k = 3 children and g = 3 generations is shown in Figure
2.4.
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2.2 Network Centrality

Figure 2.4 A directed k-regular tree graph with k = 3 children and g = 3 genera-
tions

2.2 Network Centrality

In network analysis, the concept of centrality measures aims to identify how central
the different nodes of the network are. There are many possible ways of measuring
node centrality. The different measures may or may not coincide and a measure
may be more or less suitable for the given network. In this thesis, two strands of
centrality measures will be considered, based on the in- or out-degree of nodes and
variants of eigenvector centrality.

The conceptually simplest measure is the degree centrality, where the centrality
of a node is given by its in- or out-degree. The in-degree of a node i is defined as
the sum of weights of the links pointing to the node, that is vi = ∑ j Wji. In the same
way the out-degree is the sum of the weights of the links pointing from node i, that
is wi = ∑ j Wi j. One may extend the degree centrality to the Eigenvector centrality
vector π defined as

λπ =W ′π (2.4)

where λ is the leading eigenvalue to the leading eigenvector π and this centrality
measure is unique if the graph G is assumed to be connected.

A variant of the eigenvector centrality is the invariant distribution centrality. It
is defined as the leading left eigenvector of the normalized weight matrix P. Thus,
it is the solution of

π = P′π (2.5)

where P is defined as P = D−1W and D = diag(w). The centrality vector is unique
for connected graphs.
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Chapter 2. Background on Graph Theory

A modified version of the Eigenvector centrality is the Katz centrality [Katz, 1953],
defined as the solution z of

z =
1−β

λw
W ′z+β µ (2.6)

where the parameter β weights the inherent centrality to the graph topology and µ

is defined as a nonnegative vector which measures the inherent centrality, typically
µ = 1. The dominant eigenvalue of W ′ is denoted by λw. For every 0 < β < 1,
the matrix (I−λ

−1
W (1−β )W ′) is invertible and the Katz centrality vector z can be

written as
z = (I−λ

−1
W (1−β )W ′)−1

β µ (2.7)

By using the normalized weight matrix P instead of the adjacency matrix W , it
becomes the Bonacich centrality π , as introduced in [Bonacich, 1987]

π = (1−β )P′π +β µ (2.8)

A variant of the Bonacich centrality is the PageRank centrality which is defined in a
similar way but typically with a β set to 0.15 [Brin and Page, 1998]. Then one may
find the PageRank centrality as

π
(β ) = (I− (1−β )P′)−1

β µ (2.9)

2.3 Cohesiveness

The concept of cohesiveness is a measure of connectivity [Morris, 2000]. It finds
the minimum normalized out-degree in a subset of the graph. In other words, given
a subset in the graph, the cohesiveness measures the minimum fraction of connec-
tions to the other nodes in the subset relative to the connections going outside the
subset. Thus, it finds how well a certain subset in the network is connected. The
mathematical definition of cohesiveness on a subset S ⊆ V is

κ(S) = min
i∈S

1
wi

∑
j∈S

Wi j = min
i∈S ∑

j∈S
Pi j (2.10)

A subset S is called α-cohesive for an α ≥ 0 if

κ(S)≥ α ⇔ ∑
j∈S

Pi j ≥ α, ∀i ∈ S (2.11)

The more cohesive a subset is, the more connections there are between the nodes
in the subset compared to the connections to the external nodes outside the subset.
The maximal cohesiveness α = 1 is given by a subset disconnected to the rest of the
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2.4 Random Tree by Galton-Watson Branching Process

network as there are no links between the subset and the nodes outside the subset.
The minimum cohesiveness α = 0 is given by a subset of disconnected nodes as
there are no links between the nodes within the subset.

To illustrate with an example, the cohesiveness in the complete graph consist-
ing of n nodes is shown. For any node in the complete graph the degree is n−1, as
it is maximally connected. Given a subset S of k < n nodes in the complete graph,
there will be k− 1 connections within the subset. Thus, the cohesiveness for this
subset in the complete graph is

κ(S) = k−1
n−1

(2.12)

2.4 Random Tree by Galton-Watson Branching Process

In a random tree graph, the number of children of each node depends on a certain
offspring distribution. In this thesis, the random tree graph will be generated by the
Galton-Watson branching process, as defined in [Como, 2018]. The process starts
with one root node of generation g = 0 to which a random number of neighbors are
added, called offspring or children. These neighbors belong to generation g = 1. To
each of these neighbors, a random number of new neighbors are added and so it
continues. The number of offspring to each node is an independent and identically
distributed random variable which follows a certain probability distribution {pk}k≥0
with the mean

µ = ∑
k≥0

kpk (2.13)

The number of offspring may be denoted by kg
i , where i is the member of the gen-

eration g. Thus, the offspring probability is defined as

Pr(kg
i = k) = pk, i≥ 1, g≥ 0, k ≥ 0 (2.14)

The number of nodes in generation g is Xg and may be recursively found as

X0 = 1, Xg+1 =
Xg

∑
i=1

kg
i , g≥ 0 (2.15)

For the random tree graph generated by the Galton-Watson branching process, the
number of children ki of each node i follows a certain positive offspring distribution
{pk}k>0. The offspring distribution considered in this thesis is either the Discrete
Uniform or the Binomial distribution, each defined by a probability mass function
fK(k):

Discrete uniform: fK(k) =

{
1

kmax
, if k ∈ [1,kmax]

0, if k /∈ [1,kmax]
(2.16)
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Chapter 2. Background on Graph Theory

Binomial: fK(k;n; p) =
(

n
k

)
pk(1− p)n−k (2.17)

Each node will have ki ∈ [1,kmax] children, where kmax is the maximum possible
number of children of a node. There is no possibility of leaves in this graph, as the
probability distribution is only defined for positive integers. A random tree graph
created by the Galton-Watson branching process with the Discrete Uniform off-
spring distribution is shown in Figure 2.5 where the number of children is defined
in the interval ki ∈ [1,3] with equal probability of 1/3.

Figure 2.5 A random tree graph created by a Discrete Uniform probability distri-
bution with kmax = 3 and G = 7 generations
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3
A Network Model for
Financial Contagion

In this chapter, the financial network model is defined in detail with important
notions and concepts clearly explained. The model is then compared to previous
established models. The main part of the financial network model is based on the
basic model defined in [Eisenberg and Noe, 2001]. The model is also inspired by
the "Financial Contagion" example in the general framework introduced in [Ace-
moglu et al., 2016]. The result is a simple and more general interbank lending
network. The foundation of the financial network model is the previously defined
graph theory, which this simplified interbank lending system is applied upon. Then,
a couple of performance measures are defined to enable comparison between dif-
ferent networks.

Also, a payment equilibrium is defined. This is proved to always exist and to
be (generically) unique in the presence of shocks. The result is important to carry
on the analysis of shock propagation in the financial network model. Lastly, a
centrality measure called Node depth is defined and used together with more tradi-
tional centrality measures in three different examples of heterogeneous networks.
The centrality measures are then evaluated by their ability to find the systemically
most important nodes, given by the comparison to the performance of the network.

3.1 Financial Network Model

Consider a graph consisting of n nodes where each node represents a financial in-
stitution, e.g. a bank or an insurance company, and a weight matrix W of size n×n.
Each element (i, j) in W corresponds to a weighted link in the graph, directed from
i to j, and represents the extent to which institution i owes money to institution j.
Thus, a link connecting two institutions represents an interbank lending, directed
from borrower to creditor. This means that the size of node i’s debt to node j is Wi j,
which is equal to the size of the claim of node j from i. If element Wi j = 0, there is
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Chapter 3. A Network Model for Financial Contagion

no link in the graph from node i to node j, i.e. node i does not owe any money to
node j.

The financial network interacts with external non-financial entities. Each finan-
cial institution i is assumed to have an asset of net value ai, which can be seen as a
liability from non-financial entities to institution i. The net value ai may consist of
both claims on non-financial entities and senior liabilities to non-financial entities,
but for simplicity it is called the external assets of node i. There may also exist
non-senior external liabilities from institution i to non-financial entities, denoted by
bi. The asset is assumed to be positive, ai > 0 ∀i. The external liability vector is
nonnegative, b ≥ 0, which means that the case of nonexistent external liabilities of
all nodes is possible, bi = 0 ∀i.

The financial network model of a network with two financial institutions is graph-
ically displayed in Figure 3.1 to show the directions of claims and liabilities, both
externally and internally.

Figure 3.1 Financial network model

The total debt of a node i is denoted by wi and the total claim is denoted by vi.
The total debt wi is given as the out-degree of node i by the sum of the total
liabilities

wi = ∑
j

Wi j +bi (3.1)

The total claim vi is given as the in-degree of node i by the sum of the total claims

vi = ∑
j

Wji +ai (3.2)

The fraction of liabilities of i to j of the total liabilities of i is given as

Pi j =
Wi j

wi
(3.3)
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3.2 Shocks and Payment Equilibrium

P is the relative liabilities matrix and if the external liabilities vector exists with at
least one positive entry, the P matrix will be sub-stochastic. The loans are assumed
to be of equal seniority, resulting in an equal, pro rata repayment relative the fraction
of liabilities. The initial net worth of a node is defined as the inflow by claims and
assets minus the outflow of liabilities by

ci = vi−wi (3.4)

and it is assumed that the net worth is nonnegative, i.e. ci ≥ 0. This assumption
implies that all institutions can meet their liabilities before introducing any liquidity
shocks.

3.2 Shocks and Payment Equilibrium

The network will be exposed to shocks (ε1, ...,εn), affecting one or several of the
institutions. These shocks are modeled as a sudden reduction of liquidity, i.e. a
reduction of the net value of external assets (a1, ...,an), for the affected institutions
and can thereby affect the institutions’ ability to meet their liabilities. The shocks
are nonnegative, i.e. εi ≥ 0. The simulation of shocks is carried trough to analyze
how the contagion spreads and evaluate the systemic risk in the network. The net
worth with shocks present is denoted by d and for a node i it is defined as

di = ci− εi = vi−wi− εi (3.5)

After the simulation of shocks, the loans in the network expire and the borrowers
need to repay their lenders. The repayment of i to its creditors is defined as minimum
zero and maximum wi and is denoted by xi. The repayment will depend on the size
of the external asset ai, the shock εi, and the sum of the received claim repayments
to i by

xi = satwi(ai− εi +∑
j

x jPji) (3.6)

where satwi(x) is a saturation function as shown in Figure 3.2 and defined as

satwi(x) = max{min{x,wi},0} (3.7)

DEFINITION 1
A payment equilibrium x is a vector that satisfies Equation 3.6 for every entry i. 2

The existence of such a vector is non-trivial for a cyclic network and is proved
in Section 3.4. In the same section, such a vector is also proved to be generically
unique or, under some mild restrictions, unique. For acyclic networks, the solution
of the payment equilibrium is trivial.
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Figure 3.2 Saturation function

As the repayment xi by definition cannot be negative, the shock εi will have a
maximum impact of

ε
max
i = vi (3.8)

Even though the shock may be of any size, it will never cascade to the next nodes
by more than εmax

i because of the saturation function.

The total induced shock of i is denoted by si. It is the difference of the total li-
ability wi and the repayment xi. The induced shock si describes to what extent node
i is affected by the shocks in terms of the magnitude of the contagion it spreads to
its creditors and is defined in the range si ∈ [0,wi]. If si = 0, node i can repay its
liabilities in full. If si > 0⇔ xi < wi, node i cannot meet its liabilities in full. The
total induced shock may be rewritten as

si = wi− xi

= satwi(wi + εi−ai−∑
j

x jPji)

= satwi(wi + εi−ai−∑
j

w jPji︸ ︷︷ ︸
=−vi

+∑
j
(w j− x j)︸ ︷︷ ︸

=s j

Pji)

= satwi(wi− vi + εi +∑
j

s jPji︸︷︷︸
=s ji

) (3.9)

The induced shock depends on both the fixed, known values of the total liabilities
wi and the total claims vi and variable, possibly unknown values of a shock εi and
the sum of induced shocks spreading from the borrowers of i, ∑ j s ji.

The shock induced from i to solely one creditor j, si j, is the fraction of the to-
tal induced shock, computed as the difference between the single liability Wi j and

24



3.2 Shocks and Payment Equilibrium

the fraction of repayment to j. The shock induced from i to j may be written as

si j =Wi j− xiPi j

= Pi j (wi− xi)︸ ︷︷ ︸
=si

= Pi jsatwi(wi− vi + εi +∑
h
(wh− xh)Phi)

= Pi jsatwi(wi− vi + εi +∑
h

shi) (3.10)

The induced shock may expressed by one stochastic part ξ and one deterministic
part β when analyzing how stochastic shocks affect the network. The induced shock
may hence be defined as

si = satwi(wi− vi−ai︸ ︷︷ ︸
βi

+εi +∑
h

shi︸ ︷︷ ︸
ξi

) = satwi(βi +ξi) (3.11)

DEFINITION 2
An institution i suffers a

i) direct default if the net worth after shocks is negative

di < 0 (3.12)

ii) complete default if the payment is zero and thus the induced shock maximal

xi = 0⇔ si = wi (3.13)

iii) partial default if the payment is less than the actual liability and thus the in-
duced shock positive

0 < xi < wi⇔ 0 < si < wi (3.14)
2

If an institution partially defaults, it repays its liabilities on a pro rata basis by the
remaining means available. Given a realized shock, the institutions in the network
may be separated into two subsets: Institutions that do not default and institutions
that partially or completely default. The set of defaulting institutions is denoted by
D and the non-defaulting institutions is thus a part of the complementary set. This
implies that

si > 0 ∀i ∈ D
si = 0 ∀i /∈ D (3.15)
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The general model presented in this section may be applied to any network con-
structed by a certain graph topology.

In order to understand how shocks affect the financial network model it is im-
portant to develop some kind of measure to be able to compare the performance
between different network structures. An intuitive performance measure is to calcu-
late the number of completely and partially defaults in the network as in [Acemoglu
et al., 2015]. This measure is denoted by ψ and simply called number of defaults,
given a certain shock. In Chapter 4, expressions for this measure are derived, given
certain topologies.

However, in [Glasserman and Young, 2016] it is argued that this measure is not
comprehensive enough and that the total systemic loss in a better way measures the
total impact. The systemic loss is denoted by L and takes both the financial entities’
ability to meet their liabilities as well as the non-financial entities’ ability to meet
their liabilities into account. The systemic loss is the sum of the external shocks and
the induced shocks

L =
n

∑
i=1

(εi + si) (3.16)

These performance measures can then by applied to find the systemically most im-
portant nodes in a financial network, as defined below.

DEFINITION 3
A systemically important node is a node to which an external shock causes greater
propagation of contagion, as measured by a performance measure, than when shock-
ing other nodes in the network. 2

The idea is that when exposing a systemically more important node to a certain
shock, it will lead to a worse performance compared to when other nodes are hit.

3.3 Comparison to Previous Models

The model developed by Eisenberg and Noe very much inspires both the financial
network model described in this thesis as well as other models that have been used
in previous work in this field [Eisenberg and Noe, 2001]. An example of such
previous work is the work done by Glasserman and Young who use a similar model
to the one in this thesis [Glasserman and Young, 2016]. Their model takes both
external assets and external liabilities into account and makes an assumption of out-
connectivity. This means that from every node in the network, there exists a path
out from the network to some node j which has a positive external liability b j > 0.
By making this assumption, there is a risk that an induced shock spreads out of the
financial network which also implies that the shock can be absorbed externally.
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Acemoglu et al. develops a similar but more complex model with features as
investments and time periods considered [Acemoglu et al., 2015]. In this model,
Acemoglu et al. also take external liabilities into account but assume that these
liabilities are senior over the interbank liabilities. Although this assumption is ques-
tionable [Upper, 2011], it leads to another possible interpretation of the model in
section 3.1. If the external liabilities are assumed to be senior and always met in
full they can be excluded from the model, i.e. the vector of external liabilities can
be set to zero, b = 0.

The general framework in [Acemoglu et al., 2016] is developed to understand
how network interactions affect the performance of the economy. This framework
is then specified to create a model of financial contagion which is closely related to
the model in [Acemoglu et al., 2015]. Also in this model the external liabilities are
set to zero.

The financial network model defined and applied in this thesis can be seen as a
more general case of these two models as it is a combination of both. There is no
restriction on the external liabilities as they may be both positive and set to zero.

3.4 Existence and Uniqueness of Payment Equilibrium

To study the impact of shocks and to determine how well the financial institutions
can meet their liabilities, it is essential to find the payment equilibrium. In this
section the existence and uniqueness of a payment equilibrium vector x is proved.
By Equation 3.6, the payment equilibrium satisfies

x = satw(a− ε +P′x) (3.17)

Two propositions are presented and proved below that given any realized vector
of shocks ε and structure of the financial network, the equilibrium exists and is
(generically) unique.

PROPOSITION 1
There exists a payment equilibrium in any financial network, exposed to any liquid-
ity shocks. 2

Proof It should be proven that there exists a payment vector x∗ ⊆Rn which satisfies
x∗ = satw(a− ε +P′x∗). A mapping function Φ : S→ S is defined as

(Φ(w)(x))i = max{min{ai− εi +∑
j

Pjix j,wi},0} (3.18)

where S = ∏i[0,wi], thus making S convex and compact. The problem of proving
the existence of a payment equilibrium is rewritten as proving the existence of a
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payment vector x∗ ⊆ Rn that fulfills the fixed point

x∗ = Φ(w)(x
∗) (3.19)

Since Φ is also continuous, by using Brouwer’s fixed point theorem, such a payment
vector must exist. 2

PROPOSITION 2
i) If the financial network is out-connected, the payment equilibrium is unique.

ii) If all external liabilities are zero (b = 0) and the financial network is connected,
the payment equilibrium is generically unique. 2

Proof i)
If the network of financial institutions is out-connected, then uniqueness can be
proved by the contraction mapping theorem. For the sake of simplicity, the first part
of the proposition will only be proved for the special case when all elements of
the external liability vector is larger than zero, bi > 0 ∀i.1 The contraction mapping
theorem says that given a mapping function Φ : S→ S, a metric space (S,d) and a
constant c ∈ [0,1), the mapping function is a contraction mapping iff

d(Φ(x),Φ(x̂))≤ cd(x, x̂), ∀x, x̂ ∈ S (3.20)

If this is true, there exists a unique fixed point as defined in Equation 3.19 on the
complete metric space.

Assume that d defines the distance by the Matrix infinity-norm, defined as
d(x) = ||x||∞, and given any x, x̂ ∈ Rn. The distance of the mapping function can be
written as

||Φ(x)−Φ(x̂)||∞ = ||satw(a− ε +P′x)− satw(a− ε +P′x̂)||∞ ≤ ||P′x−P′x̂||∞
(3.21)

where the last inequality comes from the restriction on the minimum and maximum
value, described by the saturation function. Without the saturation function, the as-
set and the shock would cancel each other out and the only expression left would be
the P-matrix and the payment vector. With the saturation function, it will always be
less than or equal to this. The rows of the relative liabilities matrix P sum up to less
than one when the external payment vector b is positive for all entries. This can be
written as

||P′||∞ = ||P||1 = max
1≤i≤n

n

∑
j=1
|Pi j|< 1 (3.22)

1 The proof could be extended to the general case, where the network is out-connected. In this case
||P||1 in Equation 3.22 can be equal to one. Though, the out-connectivity makes the spectral radius
of P less than one and to extend the proof to the general case, the idea is to replace ||P||1 with ||Pk||1
which, for large enough k, is less than one.
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Thus, the mapping function can be proved to be a contraction mapping with the
constant c = ||P′||∞ by writing Equation 3.21 as

||Φ(x)−Φ(x̂)||∞ ≤ ||P′||∞||x− x̂||∞ (3.23)

and the fixed point is proven to be unique. 2

Proof ii)
This proof follows the ideas of the proof of Proposition 1 in [Acemoglu et al., 2015].
For a zero external liabilities vector, b = 0, the payment equilibrium can only be
shown to be generically unique and only for networks that are connected. As the
b-vector is zero, the P-matrix is stochastic with row and column sums equal to 1.
Assume now that there exist two payment equilibria vectors x and x̂. These equilib-
ria are distinct and not equal, x 6= x̂. Since they are payment equilibria, they fulfill
Equation 3.17. Looking at one entry, representing any node i, the absolute value of
the difference between the payment equilibria is

|xi− x̂i|= |satwi(ai−εi+(P′x)i)−satwi(ai−εi+(P′x̂)i))≤ |(P′x)i−(P′x̂)i| (3.24)

where the last inequality comes from the saturation function as described earlier.
The only two cases of a tight inequality are when the payment equilibria are equal,
xi = x̂i, or when the payment equilibria are within the saturation interval, xi, x̂i ∈
[0,wi]. Rewriting for the whole payment vectors, the expression becomes

||x− x̂||1 ≤ ||P′(x− x̂)||1 ≤ ||P′||1 · ||x− x̂||1 = ||x− x̂||1 (3.25)

where the last equality comes from that ||P||1 = 1 by definition, since the external
payment vector is b = 0. Thus, it is proved that the inequality must be tight for
all entries and that the last inequality in Equation 3.25 is actually an equality. This
leads to that, for any node i, either

(P′x)i = (P′x̂)i (1)
or

0≤ ai− εi +(P′x)i,ai− εi +(P′x̂)i ≤ wi (2) (3.26)

For case (1) to occur, the only solution is xi = x̂i. For case (2) to occur, the payment
entry must be within the saturation interval, xi, x̂i ∈ [0,wi]. By denoting the set of
nodes that satisfies case (2) by B, the payment vector xi for all nodes i ∈ B can be
rewritten without the saturation function as

xi = ai− εi +(P′x)i (3.27)

Since the asset and shock cancel each other out, this results in a difference equal to

(P′x)i− (P′x̂)i = xi− x̂i, ∀i ∈ B (3.28)
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For all nodes i /∈ B, the difference must be equal to zero as it goes under case (1).
Thus, the total difference must be equal to

||P′(x− x̂)||1 = ||xB− x̂B||1 = ||x− x̂||1 (3.29)

where the last equality comes from Equation 3.25 and the subscript B indicates the
payment for nodes in the set B. This means it is necessary that xi = x̂i ∀i /∈ B for the
previous equations to hold. By defining a submatrix PBB of P, representing only the
nodes belonging to the set B, the following relationship can be established

P′BB(xB− x̂B) = xB− x̂B (3.30)

By making the assumption of a connected network, the matrices P and PBB are
irreducible and Equation 3.30 cannot hold for x 6= x̂ unless the complementary set
of B is empty, BC = /0. If all nodes belong to B, Equation 3.27 is true for all nodes,
and the sum of payments becomes

n

∑
i=1

xi =
n

∑
i=1

(ai− εi)+
n

∑
i=1

n

∑
j=1

Pi jx j (3.31)

This implies that ai = εi ∀i and this problem is non-generic with no unique solution.
Thus, the other case is xi = x̂i and that results in a payment equilibrium that is
generically unique. 2

3.5 Node Depth

Glasserman and Young develops a type of loss amplification measure called Node
depth [Glasserman and Young, 2016]. This measure is based on a Markov chain
applied on the defaulting set of nodes D. The Node depth of a node i is denoted
by ui and is given as the expected number of steps to exit the default set D when
starting at node i. The mathematical definition, given a realized shock ε , is

ui =

{
((ID−PD)

−1
1D)i = ((ID +PD +P2

D + ...)1D)i, for i ∈ D
0, for i /∈ D

(3.32)

where ID is the identity matrix of size D×D, PD is the sub-matrix of P of the default
set D, and 1D is the vector of ones of size D. The notation of the first line in Equa-
tion 3.32 should be read as the element of the vector (ID +PD +P2

D + ...)1D that
corresponds to element i and not necessarily as the i’th element of the vector. The
notion of Node depth is in one sense related to the eigenvector centrality. As will
be shown below, this measure can be used to understand how the loss is amplified
through the network.
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The performance of a network, given a realized shock ε , can be evaluated by
the total loss in value of both the direct loss in liquidity by ε and the indirect loss
of induced shocks by s. This performance is called systemic loss L and defined in
Equation 3.16. This performance measure can be combined with the Node depth
by the following derivation. Assume that the shocks are restricted according to
0 ≤ εi ≤ ai. Also assume that the subset of defaulting nodes D is out-connected,
either by a path to the set of non-defaulting nodes or by a path to the outside of the
network. Rewrite the shock as

si = wi− xi

= wi− satwi(ai− εi +∑
i6= j

Pjix j)

εi≤ai= wi−ai + εi− ∑
j∈D

Pji x j︸︷︷︸
=w j−s j

− ∑
j/∈D

Pjiw j

= wi−ai + εi + ∑
j∈D

Pjis j−∑
j

Pjiw j︸ ︷︷ ︸
W ji

= ∑
j∈D

Pjis j− (vi− εi−wi)︸ ︷︷ ︸
di

(3.33)

As the shock is zero for all nodes outside the default set, i.e. si = 0 ∀i /∈ D, the
induced shock can be expressed in matrix form for all nodes in the default set. The
induced shock for the defaulting nodes is denoted by sD and can thus be written as

sD = P′DsD−dD = P′DsD− (cD− εD) (3.34)

where cD defines the net worth before a realized shock and εD the realized shock
of defaulting nodes in set D. The sub-matrix PD is sub-stochastic which makes the
spectral radius less than one and the induced shock can be rewritten as

sD = (ID−P′D)
−1(εD− cD)

⇒ 1
′
DsD = 1

′
D(ID−P′D)

−1︸ ︷︷ ︸
u′D

(εD− cD) (3.35)
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This result implies that the performance given by L can be rewritten as

L =
n

∑
i=1

εi +
n

∑
i=1

si

=
n

∑
i=1

εi + ∑
i∈D

si

=
n

∑
i=1

εi +1
′
DsD

=
n

∑
i=1

εi +u′D(εD− cD)

=
n

∑
i=1

εi + ∑
i∈D

ui(εi− ci) (3.36)

The Node depth ui for a node i can be described as a measure of shock amplification
for large εi but on the other hand, if the net worth ci is larger than the shock, a larger
node depth implies a larger shock absorption capability.

Node depth can be bounded by a lower and an upper bound. These bounds can
be found by the cohesiveness measure κ(S) for a subset of the nodes S ⊆ V .
By applying cohesiveness on the subset of defaulting nodes D, it can be called
αD-cohesive if

∑
j∈D

Pi j ≥ αD, ∀i ∈ D (3.37)

The cohesiveness measure αD represents the minimum fraction of liabilities a node
in D owes to other nodes in D and thus shows the minimum connectivity between
nodes in the default set. As the node depth is a measure for how long it takes to exit
the default set, then 1−αD can be seen as the maximum probability for a node in
the default set to exit. Thus, the lower bound for the node depth is given as

ui ≥ (1−αD)
−1, ∀i ∈ D (3.38)

The more cohesive the set is, the deeper the node depth becomes as the probability
for leaving the set reduces. For the upper bound, the connectivity measure βi is used.
For a node i, the connectivity βi shows the fraction of liabilities to all nodes within
the financial network. Define the maximum connectivity of the default set as

βD = max
i∈D

βi = max
i∈D ∑

j∈V
Pi j (3.39)

Then the minimum probability for a node in the default set to exit to the external
entities is (1−βD) and bounds the node depth by

ui ≤ (1−βD)
−1, ∀i ∈ D (3.40)
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It is possible to bound the node depth for the whole set of nodes V by an upper
bound without knowledge of the present shocks which result in a default set. Then
the connectivity for the whole financial network is calculated as

β
+ = max

i∈V
βi = max

i∈V ∑
j∈V

Pi j (3.41)

The minimum probability of leaving the financial network is thus (1−β+) which
creates an overall upper bound for the node depth

ui ≤ (1−β
+)−1, ∀i ∈ V (3.42)

3.6 Centrality in Example Networks

In this section, it is investigated if it is possible to find and measure which nodes that
are systemically more important in a network, in terms of systemic contagion. The
analysis is applied on more general, heterogeneous example networks to understand
the role of individual nodes of spreading financial contagion in any network struc-
ture. More traditional centrality measures, as defined in Section 2.2, are compared
to the performance measures. Also the new notion of Node Depth, introduced in
previous section, is used and serves both as an indication of centrality and as a part
of calculating the systemic loss L.

For a centrality measure to be considered well-performing, it should hold that a
shock of a certain size to a more central node should lead to a worse performance of
the network compared to shocking a less central node. In this section, three arbitrar-
ily chosen examples of networks, all of them with n = 4 nodes, are considered. This
setup is inspired by Glasserman and Young to make a simple analysis. For every
network, the following centrality measures are calculated for each node: The inter-
nal in-degree ∑ j Wji, the total in-degree vi, the internal out-degree ∑ j Wi j, the total
out-degree wi, the PageRank centrality πi, and the Katz centrality zi. For both the
PageRank centrality and the Katz centrality, values of β = 0.15 and µ = 1 are used.
The P-matrix used in calculating PageRank centrality does not take out-connections
in the network into account. This is to mainly study the internal network structure
but also because including the out-connections did not improve the performance of
PageRank. Also the topological measure Node depth ui is calculated and shown in
separate tables.

For every network, four simulations are run. In the first simulation, node 1 is
hit by a shock of a certain size. In the second simulation, node 2 is hit by a shock
of the same size, and so on. After each simulation, the payment equilibrium is
found and thus also the set of defaulting nodes. Two performance measures are
then found by the default set, the number of defaulting nodes ψ and the systemic
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loss L, through Node depth. Then, the centrality measures are compared to the
performance measures to get an idea of how well the centrality measures actually
captures the systemic importance of the nodes.

The comparison between a centrality measure and the two performance mea-
sures is made by comparing the centrality of the four nodes to the performance
of the network in the four different simulations. As an example, let us say that a
centrality measure indicates that node 1 is the most central, node 2 is the second
most central, followed by node 3 and then node 4. For the centrality measure to be
considered good, the performance of the network should be the worst (i.e. the num-
ber of defaults or the systemic loss should be the largest) for the case when node
1 is shocked, second worst when node 2 is shocked, and so on. If this order does
not hold, the centrality measure is concluded to be insufficient. Of course, if the
opposite is true, i.e. that the centrality measure seem to satisfy the above mentioned
criteria for the example networks, the only conclusion that could be drawn is that
the centrality measure is satisfying for these three example networks but in order
for it to be considered a good centrality measure for financial networks in general,
further studies would be needed.

The three networks are shown in Figure 3.3, Figure 3.4, and Figure 3.5, respec-
tively. The considered networks are all both connected and out-connected. The
shocks affecting each node in the networks are chosen within the interval εi ∈ (0,ai].
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Network 1
The centrality measures in Table 3.1 favors node 1 to be the most central node,
except for the Katz centrality giving slightly more centrality to node 2 and the in-
ternal out-degree which indicates that node 4 is the most central node. All nodes
are then subject to a shock εi = 0.3. When comparing the centrality measures to the
performance measures given this shock in Table 3.3, it turns out that shocking node
1 causes the least number of defaults and smallest systemic loss in the network.
Instead, an equal shock to node 4 results in the highest number of defaults and the
largest systemic loss. None of the centrality measures seem to capture the systemic
risk in this network in a good way.

Figure 3.3 Network 1

Internal Total Internal Total
Node In-degree In-degree Out-degree Out-degree PageRank Katz

1 1.3 1.9 0.9 1.8 1.148 1.201
2 0.9 1.2 0.5 1.1 1.126 1.350
3 0.5 1.5 0.8 1.4 0.620 0.643
4 0.5 1.3 1.0 1.3 1.101 0.894

Table 3.1 Centrality measures for each node in Network 1
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Ext. Node Depth
Shock u1 u2 u3 u4

ε1 = 0.3 1.000 0.000 0.000 0.000
ε2 = 0.3 0.000 1.455 0.000 1.000
ε3 = 0.3 1.000 0.000 1.571 0.000
ε4 = 0.3 1.000 0.000 1.571 1.989

Table 3.2 Node depth for each node given the external shock in Network 1

Ext. Shock Number of Defaulting Nodes ψ Systemic Loss L
ε1 = 0.3 1 (node 1) 0.500
ε2 = 0.3 2 (node 2 and 4) 0.591
ε3 = 0.3 2 (node 1 and 3) 0.514
ε4 = 0.3 3 (node 1, 3, and 4) 0.640

Table 3.3 Performance measures given the external shock for Network 1

Network 2
In Network 2, both node 1 and 4 are favored to be more central than the others, as
seen in Table 3.4. In this simulation, the shock affecting all nodes is εi = 0.5. When
affecting node 1 with this shock, it causes three nodes to default which is equal to
the number of defaulting nodes when exposing node 3 to the same shock. However,
as stated in Table 3.6, the worst systemic loss is reached when shocking node 3.
Shocking node 2 by this shock causes the least damage with only one default and the
least systemic loss. Node 2 is also given the least centrality by PageRank, Katz, and
both out-degrees. None of the centrality measures seem to match the performance
measures in a satisfying way.

Figure 3.4 Network 2
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Internal Total Internal Total
Node In-degree In-degree Out-degree Out-degree PageRank Katz

1 0.8 1.5 1.0 1.3 1.095 0.973
2 0.6 1.1 0.5 1.0 0.756 0.819
3 0.5 1.0 0.9 1.0 1.069 0.933
4 1.0 1.5 0.5 1.4 1.081 1.312

Table 3.4 Centrality measures for each node in Network 2

Ext. Node Depth
Shock u1 u2 u3 u4

ε1 = 0.5 3.093 0.000 4.820 2.722
ε2 = 0.5 0.000 1.000 0.000 0.000
ε3 = 0.5 1.000 1.500 2.200 0.000
ε4 = 0.5 0.000 0.000 1.000 1.357

Table 3.5 Node depth for each node given the external shock in Network 2

Ext. Shock Number of Defaulting Nodes ψ Systemic Loss L
ε1 = 0.5 3 (node 1, 3, and 4) 1.156
ε2 = 0.5 1 (node 2) 0.900
ε3 = 0.5 3 (node 1, 2, and 3) 1.250
ε4 = 0.5 2 (node 3 and 4) 1.043

Table 3.6 Performance measures given the external shock for Network 2
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Network 3
The last example network shows the largest spread of highest centrality and node
1, 3, and 4 are favored by some centrality measure, given by Table 3.7. Node 2
is deemed to be the least central of all nodes by all centrality measures. Given an
equal shock εi = 0.3, the performance measures in Table 3.9 shows that shocking
both node 1 and 3, respectively, results in 2 defaults but the largest systemic loss is
implied when shocking node 3. This coincides with the largest centrality as given
by PageRank, Katz, and internal in-degree centrality. Both when shocking node 2
and 4, respectively, an equal systemic loss is incurred and only the one shocked
node defaults. The only ranking consistent with this performance is the ranking by
PageRank centrality.

Figure 3.5 Network 3

Internal Total Internal Total
Node In-degree In-degree Out-degree Out-degree PageRank Katz

1 1.0 2.0 1.8 1.9 1.163 0.958
2 1.0 1.4 1.0 1.3 0.699 0.832
3 1.4 1.8 1.0 1.7 1.192 1.135
4 1.4 2.1 1.0 2.0 0.946 1.051

Table 3.7 Centrality measures for each node in Network 3
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3.6 Centrality in Example Networks

Ext. Node Depth
Shock u1 u2 u3 u4

ε1 = 0.3 1.526 1.000 0.000 0.000
ε2 = 0.3 0.000 1.000 0.000 0.000
ε3 = 0.3 1.000 0.000 1.588 0.000
ε4 = 0.3 0.000 0.000 0.000 1.000

Table 3.8 Node depth for each node given the external shock in Network 3

Ext. Shock Number of Defaulting Nodes ψ Systemic Loss L
ε1 = 0.3 2 (node 1 and 2) 0.505
ε2 = 0.3 1 (node 2) 0.500
ε3 = 0.3 2 (node 1 and 3) 0.518
ε4 = 0.3 1 (node 4) 0.500

Table 3.9 Performance measures given the external shock for Network 3

Result
Given these three simple heterogeneous networks, there is no proof that any of
the considered centrality measures are able to find the systemically most important
node, in terms of performance of the network when shocks are present. Neither
in the first example nor in the second example the centrality measures are able to
predict which node that causes the worst performance, not even the PageRank and
Katz centrality which are designed to take more information into account. However,
in the second example they are able to predict the systemically least important node
by giving it the least centrality. The centrality measures coincided somewhat better
with the performance of the third network example, where especially PageRank
managed to rank the nodes similarly to the performance measures.

By these examples, it is shown that the traditional, off-the-shelf centrality mea-
sures fail to capture the systemically important nodes in a financial network subject
to shocks. This result is in line with [Acemoglu et al., 2015] which shows that due to
the nonlinearities in the financial network model for interbank lending, traditional
centrality measures are not sufficient to find the systemically most important nodes.
The measure of Node depth is comprehensible and given an ex-post perspective,
it captures the systemically important nodes better. However, this measure is not
possible to apply to a financial network to capture the inherent risk of individual
nodes, before any shocks has been realized, neither to a financial network that is
not out-connected. Though, as shown in the previous section by Equation 3.42, it
is possible to find an overall upper bound of the Node depth without realizations
of shocks, which illustrates the worst case of loss amplification for any node in a
financial network.
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4
Ex-post Shock Propagation
Analysis

In this chapter, an analysis in an ex-post perspective will be carried through of how
deterministic shocks propagate through specific, homogeneous networks where no
node has a larger influence than anyone else to understand the network structure’s
role in financial contagion. Mainly three different, specific networks are consid-
ered, constructed by the directed ring graph, the complete graph, and the directed
k-regular tree graph. These specific model topologies are modeled according to the
network model defined in Chapter 3 and a further motivation and implementation is
given in Section 4.1. The random tree graph will not be considered in this chapter
as it is not possible to find an exact measure due to its random nature.

To study how the contagion spreads in the different networks, two different cases
of shocks will be considered. As it is an ex-post analysis, the shocks are modeled
as deterministic and known. First, one deterministic shock on one node is analyzed
and then, both shocks on all nodes and multiple shocks on some nodes. To mea-
sure the contagion and the performance of the network, the number of defaults
are calculated, denoted by ψ . The number of defaults consists of both completely
and partially defaulting nodes in the network and are counted to later compare the
different network structures in terms of performance.

4.1 Specific Model Topologies and Assumptions

The main reason for choosing the directed ring graph as one of the investigated
topologies is the fact that it is the most sparsely connected graph. It has been dis-
cussed by many papers whether a higher or lower connectivity is to prefer in terms
of stability and robustness in the network when shocks are present [Glasserman
and Young, 2016]. It is also cyclic which implies that shocks may cascade around
the ring in more than one cycle. The implication of applying a directed ring graph
on the financial network model is the fact that each node has only one borrower
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4.2 Contagion by One Deterministic Shock

and one creditor, as there are only one in-neighbor and one out-neighbor. That
results in a generalization of the fraction of the repayment to the total repayment
as xi j = xi and the fraction of the induced shock to the total induced shock as si j = si.

The complete graph is chosen by a similar reason as the ring graph. It is the
most connected of all graphs and is disputed to be the most stable or the least stable
financial network graph. It is also cyclic and the maximum connectivity implies
that a shock may cascade through many cycles simultaneously.

The tree graph is chosen for its acyclic nature where shock contagion cannot
spread through more than one cycle. In the directed tree graph, the liabilities are
directed downwards, which means that a parent node i owes a total of wi to its ki
children. This means that the claims are directed in the opposite direction, upwards.
All nodes, except the root node, has one claim from its parent. A fixed number of
children means that all nodes in the graph have the same number of children, i.e.
ki = k, while the number of children is a random variable in the random tree graph.
This randomness implies that it is not possible to compute an exact outcome but
only a probability, which is the reason for it to not be considered in this ex-post
analysis.

The main assumption for all topologies is a homogeneous network where all
nodes have equal net worth ci = c. The reason for this restriction is to limit the
shock propagation analysis to the case where the contagion is only dependent on
the specific network structure and not on any heterogeneity in the network, like
different sizes or leverages of nodes. It is also assumed that the external liability
vector is nonexistent, i.e. bi = 0 ∀i. This may be interpreted as that all external
liabilities have already been paid and is of no interest. Lastly, the external asset is
assumed to be less than the total liabilities, i.e. ai < wi, as to make propagation of
contagion possible even when only one shock is present. For each specific topology,
a couple of more assumptions are made which are clearly defined in the next section.

The topologies and assumptions described above are also used when investigat-
ing shock propagation in an ex-ante perspective in Chapter 5.

4.2 Contagion by One Deterministic Shock

To understand what happens when a financial network is exposed to an external
liquidity shock, it is first assumed that only one shock hits the network at node 1,
resulting in ε1 > 0 and εi = 0 for i = 2, ...,n. To measure the direct impact of the
shock, it is initially given that the borrower(s) of the shocked node 1 can meet its
liabilities in full. The analysis starts with the directed ring graph, followed by the
complete graph, and lastly the k-regular directed tree graph.

41
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Ring network
To make the ring network homogeneous, the out-degree is assumed to be equal to
the in-degree. This makes the total internal liability, and thereby the total internal
claim, the same size when modeling the ring graph as the financial network model,
i.e. ∑ j Wi j = ∑ j Wji. The size of total claims and total liabilities of each institution is
normalized to wi = vi−ai = 1 ∀i to simplify the analysis. Thus, the weight matrix
can be illustrated as:

W =



0 1 0 . . . . . . . . . 0
... 0 1

. . .
...

...
...

. . . . . . . . .
...

...
...

. . . . . . . . .
...

...
...

. . . 1 0
0 0 . . . . . . . . . 0 1
1 0 . . . . . . . . . . . . 0


(4.1)

For homogeneity, it is assumed that the external asset is of the same size for all
nodes, i.e. ai = a ∀i. As node 1 is initially assumed to receive its claim in full,
institution n meets its liability to institution 1 in full, i.e. xn = 1.

Given these assumptions as initial starting values, the induced shock si from Equa-
tion 3.9 may be redefined for the ring network as

si =


sat1( w1︸︷︷︸

=1

+ε1−a1− xn︸︷︷︸
=1

) = sat1(ε1−a) for i = 1

sat1(wi− vi︸ ︷︷ ︸
=−ai

+ εi︸︷︷︸
=0

+si−1) = sat1(si−1−a) for i = 2, ...,n
(4.2)

The number of defaults in the network depends on how the contagion spreads, mea-
sured by si. A positive induced shock, si > 0, implies a default of node i and the
contagion will continue to spread until the induced shock is zero, si = 0. As can be
seen in Equation 4.2 above, the induced shock mainly depends on the size of the
asset and the external shock, relative to each other. Given the initial assumptions,
there are two possible scenarios for the affected node:

• Affected node absorbs shock if ε1 ≤ a
Node 1 can meet its liability to node 2 in full if ε1 ≤ a since then, according
to Equation 3.6, x1 = sat1(a−ε1+1) = 1. In this case, the induced shock will
be s1 = 0 and no contagion will spread. All the other nodes will also be able
to meet their liabilities in full and no nodes in the network defaults, i.e. xi = 1
∀i⇔ si = 0 ∀i.
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4.2 Contagion by One Deterministic Shock

• Affected node spreads shock if ε1 > a
On the other hand, if ε1 > a, then the net worth after the shock is negative,
d1 < 0, and the repayment is thus x1 < 1, which causes node 1 to a directly
default as it is not able to pay its full liabilities. The shock will then propagate
to node 2 as the induced shock will be s12 = s1 = sat1(ε1 − a) > 0, from
equation 4.2. For the shock to spread even further, the induced shock must be
larger than the asset. Hence, if s1 > a, the contagion spreads to the next node
and s2 = sat1(s1−a)> 0, which causes node 2 to default as well.

However, there is a maximum impact by the external shock due to the saturation
function of the repayment, defined by Equation 3.8. Even though the shock may be
of any size, the maximum impact for this ring network is εmax

1 = 1+ a. This is of
high importance when finding an expression for the number of defaulting institu-
tions. The number of defaulting institutions may be found as a function of the asset
a and the shock ε1 and is denoted by ψ . In the ring network it is equal to

ψ = min(
⌈

ε1

a
−1
⌉

,
⌈

1
a

⌉
, n) (4.3)

This expression is derived from the definition of a partial default by the induced
shock, si > 0. The number of defaults can be found as the minimum of i so that
si+1 = 0. For each node, there is an external asset a which serves as an absorption.
The condition for the first node to default is ε1 > a⇔ ε1

a > 1. For the next node to
default, the condition becomes ε1 > 2a⇔ ε1

a > 2, and so on. The strict inequality
results in a ceiling function of the fraction minus one to separate the cases when the
shock is equal to the asset. The ceiling function f (x) = dxe rounds up non-integer
numbers to the next integer. There are three cases in Equation 4.3. The first two
cases depend on the size of ε1. In the second case, the shock is restricted to its
maximum impact εmax

1 = 1+a. The third case comes from the fact that the number
of defaults cannot exceed the number of institutions in the network n.

Complete network
Modeling a financial, homogeneous network using the complete graph implies equal
internal liabilities and claims for all nodes. As in the previous analysis of ring graph,
the size of internal claims and liabilities for each node are equal and normalized to
wi = vi−ai = 1 ∀i. This means that the elements of the weight matrix W , and of the
normalized adjacency matrix P, in the complete network are

Wi j = Pi j =

{
1

n−1 , i 6= j
0, i = j

(4.4)

For homogeneity reasons, the additional asset is also assumed to be equal for all
nodes, ai = a ∀i. As in the ring network, it is initially given that node 1 receives its
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claims in full from the other nodes. The total repayment from a node i is xi ∈ [0,1]
and as long as xi = 1, it does not default. For node 1 to default, the same applies as
in the ring network, which is that the external shock must be larger than the asset
value, i.e. ε1 > a. Then, the induced shock s1 = sat1(ε1− a) > 0, i.e. node 1 will
not be able to meet its liabilities in full and the shock will propagate to all the other
nodes in equal proportion.

All the other nodes will receive an equal amount of money from node 1, which
implies that the induced shock from node 1 to an individual node will be the same,
s12 = s13 = ... = s1n. The induced shock from node 1 to any other node j 6= 1
is s1 j = P1 js1 = s1/(n− 1). Thus, the expression for the induced shock can be
redefined for the complete network as

si =

{
sat1(ε1−a) for i = 1
sat1(

s1
n−1 −a) for i = 2, ...,n

(4.5)

This expression can be found in a similar way as for the ring graph by rewriting
Equation 3.9. In order for the other nodes to default, the induced shock from these
nodes must be larger than 0, i.e. s j > 0 for j = 2, ..,n. This happens when the shock
that propagates to any node j from node 1 is larger than the asset a, i.e. s1 j > a.
Since the conditions are equal for all nodes, the condition for default applies to all
nodes and is defined by

s j > 0 ⇐⇒ s1 j > a ⇐⇒ min
(ε1−a

n−1
,

1
n−1

)
> a for j = 2, ...,n (4.6)

The shock must hence be ε1 > a(n− 1) + a⇔ ε1 > na to cause a complete de-
fault of the network. Since the induced shock s1 j that propagates cannot be larger
than 1/(n− 1), it implies that the maximum impact of the shock is εmax

1 = 1+ a
on the other nodes. This means that if ε1 ≥ 1+ a, any increase of ε1 will not af-
fect the other nodes and this is the reason for the two different cases in Equation 4.6.

The final result is that there are only three possible outcomes of the number of
defaults in the complete network:

• Zero defaults when ε1 ≤ a
If the shock is smaller than or equal to the asset, the affected node can absorb
the shock and prevent further contagion.

• One default of the affected node 1 when

– a < ε1 ≤ na
If the shock is larger than the asset but smaller than the complete de-
fault point na, only the affected node 1 will suffer a direct default and
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4.2 Contagion by One Deterministic Shock

the shock that spreads will not be large enough to affect the rest of the
network.

– ε1 > na and na≥ 1+a
If the shock is larger than its maximum possible impact εmax

1 , it does not
matter that the shock is larger than the complete default point na as the
impact cannot be larger than 1+ a. This implies that this case occurs
when the asset is large enough, i.e. a≥ 1

n−1 since na≥ 1+a.

• n defaults of all nodes in the network when ε1 > na and na < 1+a
If the shock is within its impact range and large enough, the whole network
defaults. This case can only occur when the asset is small enough, i.e. a< 1

n−1
since na < 1+a.

In summary, the number of defaults ψ in the complete network is equal to

ψ =


0, if ε1 ≤ a
1, if ε1 > a and a≥ 1

n−1
n, if ε1 > na and a < 1

n−1

(4.7)

K-regular tree network
For the directed k-regular tree network, the total liability of a node i to its children is
normalized to wi = 1 and is assumed to be equally distributed between its k children,
to keep the homogeneity restriction. The total claim v j of a child j consists of only
one internal claim, the claim on its parent, and the external asset ai. As the liability
of the parent is equally distributed between its children, a node i > 1 has a total
claim of

vi =
1
k
+ai (4.8)

To make the initial conditions for all nodes equal and keep the homogeneity con-
straint, the root node has an extra asset of value 1 in addition to the a′ and the other
nodes have an extra asset of value k−1

k in addition to the a′. The extra assets hence
make the net worth c of all nodes equal. The external assets of the nodes are

ai =

{
a′+1, for i = 1
a′+ k−1

k , for i = 2, ...,n
(4.9)

When the k-regular tree network is subject to a shock ε1 > 0 on the root node, the
shock possibly propagates from the root node to the next generations. Each node
in one generation is hit equally hard since the claims are identical. This makes the
repayment for all nodes in one generation equal and the repayment can be general-
ized for all nodes in the same generation. A consequence of this generalization is
an extension of the notation for the repayment and induced shock by a superscript
defining the generation, i.e. xg

i and sg
i . The generation index g simply explains to
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which generation node i belongs to. The root node generation is denoted generation
zero and so on. Equation 3.6 is hence redefined as

xg
i =

{
satw1(ai− εi), g = 0, i = 1
satwi(ai + xg−1

h Pji), g≥ 1,h≥ 1, i≥ k+1

⇒ xg
i =

{
sat1(a′+1− ε1), g = 0, i = 1

sat1(a′+ k−1
k +

xg−1
h
k ), g≥ 1,h≥ 1, i≥ k+1

(4.10)

where the node h is the parent of node i.

Equation 3.9, i.e. the total induced shock from a node in a given generation to
all its creditors, is redefined as

sg
i =

{
sat1(ε1−a′), g = 0, i = 1

sat1(
sg−1
h
k −a′), g≥ 1,h≥ 1, i≥ k+1

(4.11)

where the node h is the parent of node i, just as in Equation 4.10.

Since the condition is equal for all nodes in the same generation, it is intuitive
that if a node does not default, then the other nodes of that generation do not default
either. Neither does any generation further down the tree default, as there is no
shock left to spread. Thus, for each generation, all nodes will default or none will
default. A generation g of nodes will default if, for any node i in the generation, the
induced shock sg

i > 0.

The extreme case of no defaults at all occurs if and only if the size of the in-
duced shock from the root node is zero, i.e. if s0

1 = 0⇔ a′ ≥ ε1. Since it is assumed
that the net worth ci ≥ 0 and thereby that a′ > 0, it is clear that for every generation
g, the additional asset ai absorbs a part of the shock and the induced shock sg

decreases until it reaches zero. This implies that the most interesting cases where ε1
has potential to affect the network is when a′ < ε1. But as in previous cases, due to
the non-possibility of negative repayments, there is still a maximum impact of the
shock, εmax

1 = 1+a′.

The number of defaults in the tree network depends on how fast sg
i reaches zero,

which in turn depends on the initial asset size a′, the number of children k, and the
size of the shock ε1. The number of defaults in the network can be generalized to
the number of generational defaults, as the nodes in the same generation have equal
condition. For the whole network, the number of generational defaults Ψ is given
by

Ψ =

{
0, if s0

1 = 0
max(g+1|sg

i > 0), if s0
1 > 0

(4.12)
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If Ψ generations default, the number of defaulting nodes is

ψ =
Ψ−1

∑
i=0

ki (4.13)

The maximum impact the external shock may have is εmax
1 = a1 = a′+ 1 which

means that even if the shock is larger than this, it will still have the same, maximum
impact on the network. A better expression than Equation 4.12 for the number of
generational defaults Ψ, if the root node defaults (i.e. ε1 > a′), can be found by
maximizing Ψ subject to the following restriction

Ψ = max(Ψ|ε∗1 > a′
Ψ−1

∑
i=0

ki) (4.14)

where ε∗1 = min(ε1,ε
max
1 ). This expression is derived from Equation 4.10 by

iteratively finding each generation’s repayment, given the previous genera-
tion’s repayment. If x0

1 = sat1(a′ + 1− ε∗1 ) < 1, the next generation will repay

x1
i = sat1(

a′+1−ε∗1
k + a′+ k−1

k ) = sat1(
a′(k+1)+k−ε∗1

k ). For this generation to default,
the repayment must be x1

i < 1 and hence ε∗1 > a′(k+1). If this is true, the repayment

for the next generation will be x2
j = sat1(

a′(k+1)−ε∗1+k
k2 +a′+ k−1

k ) and the condition
for this generation to default is ε∗1 > a′(k2 + k+ 1). Thus, the number of genera-
tional defaults can be seen as a relationship between the shock and a geometric sum.

The restriction in Equation 4.14 can be rewritten to find a formula for the num-
ber of generational defaults in the network by making use of the geometric sum.

ε
∗
1 > a′

Ψ−1

∑
i=0

ki

k 6=1
=⇒ ε

∗
1 > a′

kΨ−1
k−1

⇐⇒ ε
∗
1 (k−1)> a′(kΨ−1)

⇐⇒ ε∗1 (k−1)
a′

> kΨ−1

⇐⇒ ln(
ε∗1 (k−1)+a′

a′
)> Ψ ln(k)

⇐⇒ Ψ <
ln(ε∗1 (k−1)/a′+1)

ln(k)
(4.15)
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If k = 1, the tree is reduced to a directed line graph, similar to the ring graph defined
earlier, and the geometric sum is equal to

ε
∗
1 > a′

Ψ−1

∑
i=0

ki

k=1
=⇒ ε

∗
1 > a′Ψ

⇐⇒ Ψ <
ε∗1
a′

(4.16)

So, the number of generational defaults is found by taking the largest integer value
of Ψ that fulfills Equation 4.15 (if k > 1) or Equation 4.16 (if k = 1). The number
of generational defaults Ψ is hence given by the equation

Ψ =

{
d ε∗1

a′ −1e, if k = 1

d ln(ε∗1 (k−1)/a′+1)
ln(k) −1e, if k > 1

(4.17)

For this equation to hold, only the "interesting" cases of a′ < ε1 are considered (if
a′ ≥ ε1, no nodes default) and the shock is still restricted to its maximum impact
ε∗1 = min(ε1,ε

max
1 ).

Comparison
Given the three topologies considered for one deterministic shock, a comparison
between the networks is presented below. The condition for the shocked node 1
to default is equal for all of the network topologies. Since it is assumed that node
1 receives its claims in full or, as for the k-regular tree, has an additional asset
representing this, the shock must be larger than a or a′ for one node to default. This
outcome is important since it makes the initial condition equal for further contagion
in the networks. How the contagion then spreads is only a result of the structure of
the network and is not dependent on any other factor.

In Figure 4.1, the ring and complete network are compared given four different
parameters for the number of nodes n and the size of the asset a. The contagion is
measured as a function of the number of defaults given the size of the shock. By
also looking at the graphs, the result becomes clear. The complete graph performs
always at least as good as the ring graph. As earlier concluded, the shock required
for one default is equal for both networks. Also, the shock required for all nodes to
default is equal for both networks. However, for any shocks within the interval of
these extreme cases, the ring network always perform worse by linearly increasing
the number of defaults while the complete network absorbs the shock for small
enough shocks. It is especially clear in the plot on the bottom left where the number
of nodes and the asset are large enough to completely absorb any shock in the
complete network and thus never causes more than one default, whereas the ring
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4.2 Contagion by One Deterministic Shock

network keeps increasing the number of defaults.

This result is in line with [Acemoglu et al., 2015], who states that given a large
enough shock relative to the asset and the size of the network, the complete and the
ring network perform equally bad. As long as the shock is lower than this threshold,
the complete network is strictly more stable and resilient than the ring network,
omitting the shocked node and only looking at the rest of the non-shocked nodes.

Figure 4.1 Comparison of the performance in terms of number of defaults as a
function of size of the shock by ring and complete network

Figure 4.2 shows the result of number of generational defaults Ψ and Figure
4.3 shows the number of defaulting nodes ψ when shocking the root node in the
k-regular tree network by a shock ranging as ε1 ∈ [0,1 + a′], when a′ = 0.15.
Four different scenarios are tested with number of children equal to k = 1,2,3,4.
These scenarios result in a different distribution of generational defaults. For k = 1
children, the tree graph is simply a line of nodes and behaves like the ring graph
earlier described. The maximum number of generational defaults is Ψ = 7, which
coincides with the number of node defaults ψ = 7, as each generation only has
one node. By increasing the number of children to k = 2, the claim reduces to 1/2
but the asset also increases to a′+ 1/2 which makes the network more stable as
the nodes can rely on their asset ai to a larger extent. The maximum number of
generational defaults is Ψ = 3 and the maximum number of nodes defaulting is
ψ = 7. With k = 3 children, the default curve is even lower and reaches a maximum

49



Chapter 4. Ex-post Shock Propagation Analysis

of Ψ = 2 generational defaults, which implies a maximum of ψ = 4 node defaults.
When the number of children is k = 4, the number of generational defaults is the
same as with k = 3 children, but it requires a larger shock to reach the maximum of
Ψ = 2 generational defaults, which translates to ψ = 5 node defaults.

Figure 4.2 Comparison of the performance in terms of number of generational
defaults by four different tree graphs with k = 1,2,3,4 and a′ = 0.15.

Figure 4.3 Comparison of the performance in terms of number of defaults by four
different tree graphs with k = 1,2,3,4 and a′ = 0.15.
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If the concern is how far down in the tree, in terms of generations, the conta-
gion spreads, the ability to absorb shocks increases with the number of children in
the k-regular tree network, given the assumption on homogeneity and the structure
of the asset. Compared to the complete network, the k-regular tree network does not
have a certain threshold where the shock causes a complete default which may be
concluded to result in a higher stability. Also the fact that the tree is acyclic, which
means that defaults can only cascade in one direction, downwards, and does not
cycle back to any nodes, can be seen as factor of creating a more stable network.
Though, only looking at the number of generational defaults might be mislead-
ing as for each additional child in the tree, the generation becomes larger and a
generational default implies a larger number of nodes defaulting.
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4.3 Contagion by Multiple Deterministic Shocks

In this section, it is assumed that a number of shocks m are present. The shocks
are assumed to be homogeneous and deterministic. First a contagion analysis is
performed on the three networks when m = n shocks are present and thus all nodes
are exposed. The shock can then be rewritten as εi = ε ∀i, since it is equal for all
nodes. Then an example of exposing a ring and complete network with m = 2 < n
homogeneous shocks is shown.

Ring network
The analysis starts from the same initial condition as earlier, where it is given that
node 1 receives its claim in full from node n. As found in the previous section, node
1 does not directly default if the shock is less than its asset, i.e. ε < a. All nodes are
now subject to the same shock and if the shock is ε < a, all nodes’ net worth after
the shock is positive by d = 1− 1+ a− ε > 0 from Equation 3.5. Thus, no nodes
default in this case. The case of ε = a is omitted since the solution is not unique,
as given from Proposition 2 in Section 3.4. Then the final case is when the shock is
larger than the asset ε > a and this implies a complete default of the whole network
since all nodes’ net worth is negative and no nodes are able to pay their liabilities.
Hence, the total number of defaults only depends on the relation between the shock
and the asset. The result is either no node defaults or all nodes n default.

ψ =

{
0, if ε < a
n, if ε > a

(4.18)

Complete network
If the initial condition of node 1 receiving its total claim and if all nodes in the
complete network are exposed to the same shock ε , the consequence is the same as
in the ring network. As long as the shock is smaller than the asset, all nodes will
have a positive net worth and there will not exist any induced shock propagating
between any nodes since the asset absorbs all shocks. For the other case when the
shock is larger than the asset, ε > a, all nodes in the network will directly default
as the net worth is negative. The size of the network has no effect on the number of
defaults. Thus, the number of defaults in the complete network equals the number
of defaults in the ring network and ψ is equal to Equation 4.18.

K-regular tree network
From the analysis from the one deterministic shock case, it is still true that the
root node does not default if the shock is smaller than the extra asset, i.e. ε ≤ a′.
Then the root node can repay its liabilities in full as x0 = sat1(a′ + 1− ε) = 1
by Equation 4.10. Even though the nodes in the next generation also are sub-
ject to this shock, they will also be able to repay their liabilities in full as
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4.3 Contagion by Multiple Deterministic Shocks

x1 = sat1(a′ + k−1
k + 1

k − ε) = 1. And so it continues through the tree in each
generation and no nodes will default. Since the tree is disconnected and acyclic,
the payment equilibrium is also unique when the shock is equal to the asset and all
nodes may still meet their liabilities in this case.

The other case of when the shock is larger than the extra asset, ε > a′, causes
the root node to default as it cannot repay its liabilities when its net worth is neg-
ative d = a′+ 1− 1− ε < 0. This is also true for the other nodes in all the next
generations as their net worth also is negative d = a′+ k−1

k + 1
k − 1− ε < 0. The

number of default in the k-regular network depends thus on the relation between
the extra asset and the shock.

ψ = 0, if ε ≤ a′

ψ → ∞, if ε > a′ (4.19)

Comparison
When homogeneous shocks hits each node in the financial network, the ring and
complete network performs equally in terms of number of default. The only factor
determining if all nodes or no nodes default is how large the external asset a is
relative to the shock ε . For the k-regular tree network the conclusion is similar but
with the size of the extra asset a′ relative to the shock ε determining a complete or
a zero default of the network instead.

Comparing the k-regular tree network with the complete and ring network in
this case is difficult as the external assets are modeled differently. The total external
asset for the root node in the tree network is always 1/k larger than the external
assets for the rest of the nodes. The greater number of children k, the less difference.
The extra asset a′ is always smaller than the total asset a and given a similar total
external asset a in the three networks, one may argue that smaller, multiple shocks
are required to cause a complete default in the k-regular tree network compared to
the complete and ring network.

Example of 2 shocks in the ring and complete network
This example is to illustrate a scenario where the complete network performs worse
in terms of number of defaults compared to the ring network. Assume a complete
and ring network with n = 5 nodes ,modeled by the same homogeneous assets and
normalized liabilities and claims as earlier. Figure 4.4 illustrates these two net-
works. Assume that the external asset is a = 2

5 for all nodes in both networks. Then
let node 1 and node 2 in both networks be exposed to a shock ε1 = ε2 = a+δ , where
δ ∈ (0,1) is a positive quantity keeping the shock within its maximum impact. As
the shock now is larger than the asset, both node 1 and node 2 will directly default
in both networks.
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Chapter 4. Ex-post Shock Propagation Analysis

Figure 4.4 The ring network and the complete network in the Example of 2 shocks

Starting in the ring network on node 1, which, as earlier, initially receives its full
claim, the induced shock from node 1 becomes s1 = sat1(1− 1− a+ a+ δ ) = δ ,
from Equation 3.9. For the next node 2 the induced shock becomes s2 = sat1(2δ )
and node 2 thus repays x2 = sat1(1− 2δ ) to node 3. The worst case scenario oc-
curs if δ ≥ 1/2 which implies that x2 = 0 and node 2 suffers a complete default,
repaying zero to node 3. Then, node 3 can only repay its asset x3 = a < 1 and thus
also defaults. For the next node 4, the repayment is x4 = sat1(a+a) = 2a < 1 and
node 4 also defaults. However, node 5 does not default as its repayment is equal to
x5 = sat1(3a) = 1. The maximal number of defaults is ψ = 4.

For the complete network, the shocks will affect the network simultaneously. To
initialize the process, it is given that node 3, 4, and 5 repays their liabilities in full,
e.g. x3 = x4 = x5 = 1. Then node 1 and node 2 will produce the same induced shock
and also repay the other nodes the same amount. The induced shock for node 1 and
node 2 is found by Equation 3.9 as

s1 = sat1(1−1−a+a+δ +
s2

n−1
) = sat1(δ +

s2

4
)

s2 = sat1(1+1−a+a+δ +
s1

n−1
) = sat1(δ +

s1

4
) (4.20)

By a simple equation system, the total induced shock is found as s1 = s2 = sat1( 4δ

3 ).
The individual induced shock from node 1 then becomes s1i = 1

4 sat1( 4δ

3 )
∀i = 2, ..,5 and the individual induced shock is the same for node 2. Given
these induced shocks, the repayment for the other nodes is now equal to
x3 = x4 = x5 = sat1(1 + a− 1

2 sat1( 4δ

3 )) and they can only meet their liabilities
in full if a ≥ 1

2 sat1( 4δ

3 ). However, when δ > 3
5 , the induced shock becomes larger

than the asset a = 2
5 and the whole complete network defaults. In this setup, the
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4.3 Contagion by Multiple Deterministic Shocks

result is a maximum of ψ = 5 defaults in the complete network.

By this example, it is proven that the complete network may perform worse than
the ring network. This is true under some circumstances for when the network is hit
by 1 < m < n shocks. The result can be seen as an effect of the complete structure
which spreads the induced shocks to all nodes in the network and thus amplifies the
initial external shocks. The ring network, on the other hand, only spreads the shock
to one node at a time which in this case helps to absorb the initial external shock.
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5
Ex-ante Shock Propagation
Analysis

In this chapter, the contagion is analyzed on specific acyclic graph topologies sub-
ject to ex-ante shocks, given the same initial assumptions as described earlier. The
networks are modeled by the financial network model and are homogeneous with
equal initial net worths. The external liabilities are still assumed to be zero. How-
ever, since it is now an ex-ante perspective, the shocks are modeled as independent
random variables. The analysis is firstly performed with one stochastic shock, only
affecting one node, and then continues to multiple independent stochastic shocks,
affecting all nodes.

When analyzing the contagion of stochastic shock(s), the shock propagation will
be examined by looking at the shape and size of the complementary cumulative
distribution function (CCDF). It is defined as the probability of the induced shock
from a node i to one of its creditors j being larger than some α , Pr(si j ≥ α). From
this probability measure, the probability of default is found as Pr(si j > 0) and the
performance by each topology can be compared.

The examined graph topologies are the line graph, which represents an acyclic
ring graph, the k-regular directed tree graph, and the random directed tree graph.
For each type of shock, the considered graph topologies are evaluated and com-
pared to each other given the resulted contagion measure. As the graph topologies
are acyclic, the shock propagation is exactly the direct impact which is the reason
for this analysis to be limited to only acyclic graphs.

5.1 Contagion by One Stochastic Shock

The stochastic shock is only affecting node 1 and is now considered to be a random
variable distributed uniformly according to ε1 ∼ U(0,εmax

1 ) and εi = 0 ∀i ≥ 2. The
range of ε1 is constructed so that the shock is restricted to its maximum impact. The
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5.1 Contagion by One Stochastic Shock

distribution of ε1 may be altered to fit the distribution of a real-world external shock
but for now, the uniform distribution is used as it shows the possible consequences
of an external shock in a simple and intuitive way. The shocks are assumed to be
independent. The cumulative distribution function (CDF) of ε1 is thus defined as

Fε(x) = Pr(ε1 < x) =


0, if x < 0

x
1+a , if 0≤ x < 1+a
1, if x≥ 1+a

(5.1)

The propagated contagion can be described by the individual induced shock si j
from node i to node j. A positive shock si j > 0 implies a default of node i and a
measure of how much of the contagion spreads to the next node j. Since the shock is
stochastic, it is logical to evaluate the propagation by a probability measure. Thus, to
continue the analysis, the contagion will be evaluated by Pr(si j ≥ α) which defines
the probability of the individual propagated shock being larger than some α . This
can be seen as the probability of default, given that α > 0. By Equation 3.10 and
3.11, the definition of this probability is equal to

Pr(si j ≥ α) = Pr(Pi jsatwi(wi− vi + εi +∑
h

shi)≥ α)

= Pr(Pi jsatwi(βi +ξi)≥ α) (5.2)

where βi represents the deterministic part and ξi represents the stochastic part. The
stochastic parts ξi = εi +∑h shi are also assumed to be independent of each other.
Finding the probability measure for each induced shock from the previous proba-
bilities of induced shocks will be performed by a recursive process implemented in
MATLAB.

The analysis will be carried out on the directed line graph, the k-regular directed
tree graph, and lastly the random directed tree graph created by the Galton-Watson
branching process.

Line network
In this example, the ring graph is acyclic and can thus be represented by a line
graph, where the first node has received its total claim. For the line network, each
node has only one creditor which makes the individual induced shock equal to the
total, i.e. si j = si, which is the same implication as for the ring network. By finding a
probability measure for the size of si compared to some α , Pr(si ≥ α), it is possible
to further understand how the contagion is distributed. For this line network, the
probability as a complementary cumulative distribution function (CCDF) is defined
as

Pr(si ≥ α) =

{
Pr(sat1(εi−a)≥ α), for i = 1
Pr(sat1(si−1−a)≥ α), for i = 2, ..,n

(5.3)
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Chapter 5. Ex-ante Shock Propagation Analysis

by applying the definition of the induced shock si as given by Equation 4.2. As the
probability is found by an iterative process, it is intuitive to first find the probability
Pr(s1 ≥ α) of node 1 and then continue to node 2 and so on. As the external shock
is ε1 ∼U(0,1+a), then (ε1−a)∼U(−a,1). The probability for the induced shock
of node 1 being larger than some α is given as

Pr(s1 ≥ α) = Pr(sat1(ε1−a)≥ α)

=


1, if α ≤ 0
1−Pr(ε1 < α +a), if 0 < α ≤ 1
0, if α > 1

(5.4)

where the probability of Pr(ε1 < α +a) is given by the CDF Fε(α +a) of ε1, rede-
fined from Equation 5.1 as

Pr(ε1 < α +a) = Fε(α +a) =


0, for α <−a
α+a
1+a , for −a≤ α < 1
1, for α ≥ 1

(5.5)

Thus, the final expression for the probability as a CCDF of the first shocked node is

Pr(s1 ≥ α) =


1, for α ≤ 0
1− α+a

1+a , for 0 < α ≤ 1
0, for α > 1.

(5.6)

The probability of the induced shock of the next node 2 as a CCDF becomes

Pr(s2 ≥ α) = Pr(sat1(s1−a)≥ α)

=


1, if α ≤ 0
Pr(s1 ≥ α +a), if 0 < α ≤ 1
0, if α > 1

(5.7)

where the distribution of s1 from Equation 5.6 is used to find the probability. Contin-
uing this iteration, for each next node, there is one more asset a added which absorbs
the shock and reduces the probability. The general expression for the probability of
the induced shock is thus

Pr(si ≥ α) =


1, if α ≤ 0 ∀i
Pr(si−1 ≥ α +a), if 0 < α ≤ 1 and i≥ 2
Pr(εi ≥ α +a), if 0 < α ≤ 1 and i = 1
0, if α > 1 ∀i

(5.8)
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5.1 Contagion by One Stochastic Shock

K-regular tree network
In the directed tree graph with a fixed number of children k > 1, the induced shock
from node i to its child j can be found from Equation 3.10 as

sg
i j =

1
k

satwi(wi− vi + εi + sg−1
hi ) =

1
k

satwi(−a′+ εi + sg−1
hi ) (5.9)

where node h is the parent of node i. The one external stochastic shock hits the root
node. The external shock ε1 is modeled as a random independent variable that is
uniformly distributed from 0 to εmax

1 , ε1 ∼ U(0,1+a′).

As assumed earlier, the total liability is normalized to wi = 1 ∀i. This means
that the CCDF for the induced shock, si j, is

Pr(sg
i j ≥ α) = Pr(

1
k

satwi(wi− vi︸ ︷︷ ︸
βi

+εi + sg−1
hi︸ ︷︷ ︸

ξi

)≥ α)

= Pr(satwi(βi +ξi)≥ αk) =

= Pr(sat1(−a′+ξi)≥ αk)

=


0, if α > 1

k
1, if α ≤ 0
Pr(sat1(ξi−a′)≥ αk), 0 < α ≤ 1

k

(5.10)

As for the line graph in the previous analysis, it is intuitive to start the iteration
in the shocked root node, i.e. by finding Pr(s0

1 j ≥ α). Rewriting Equation 5.10 by
ξ1 = ε1, it is equal to

Pr(s0
1 j ≥ α) = Pr(sat1(ε1−a′)

=


0, if α > 1

k
1, if α ≤ 0
Pr(sat1(ε1−a′)≥ αk), 0 < α ≤ 1

k

=


0, if α > 1

k
1, if α ≤ 0
1−Fε(αk+a′), 0 < α ≤ 1

k

(5.11)

where Fε is the CDF of ε1 defined in Equation 5.1 and given a fixed number k > 1
of children.

For a node j > 1 in generation 1, the probability of the induced shock to a child
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Chapter 5. Ex-ante Shock Propagation Analysis

l > k+1 in generation 2 is

Pr(s1
jl ≥ α) = Pr(

1
k

sat1(−a′+ s0
1 j)≥ α)

=


0, if α > 1

k
1, if α ≤ 0
Pr(sat1(s0

1 j−a′)≥ αk), if 0 < α ≤ 1
k

(5.12)

and for each new generation the probability is found by the probability CCDF for
the previous generation.

Random tree network by branching process
The shock propagation analysis is carried out both on a random tree network with a
Discrete Uniform offspring distribution,with the PMF defined in Equation 2.16, and
with a Binomial offspring distribution, with the PMF defined in Equation 2.17. The
different distributions are chosen in order to analyze how different distributions,
with the same mean but different variances, affect the contagion conclusions.

In this random tree network, as in the k-regular tree network, all nodes have children
and hence liabilities. The total liability of each node to its children is still normal-
ized to wi = 1. The internal claim of a node j from its parent i is vi− ai = 1/ki,
thus depending on the number of children for node j’s parent. To make the network
homogeneous by equal net worth, the initial condition is made equal for the root
node, which has zero in claims, and the rest of the nodes in the tree, which have
both liabilities and claims. The asset ai for node i is hence equal to

ai =

{
a′+1, for i = 1

a′+ k j−1
k j

, for i = 2, ...,n
(5.13)

where k j is the number of children of node i’s parent j. It is still assumed that
ai > 0 for all possible values of k j. Since the smallest possible value of k j is 1, only
positive values of a′ are considered a′ > 0.

To initialize the analysis of how contagion spreads in this random tree network,
it is important to understand how the random elements will affect the result. As
both the number of children ki and the shock εi are random variables and belong
to a certain distribution, the concluded induced shock for a node i will also be
distributed according to these random values. An important assumption is that the
number of children ki is independent from the shock εi. In a directed random tree, if
j is a child of i and i is a child of h, the expression for the individual induced shock
is

sg
i j =

1
ki

satwi(wi− vi︸ ︷︷ ︸
βi

+εi + sg−1
hi︸ ︷︷ ︸

ξi

) (5.14)
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5.1 Contagion by One Stochastic Shock

It means that the size of the induced shock from node i to j depends on the fixed
variable βi and the random variables ki and ξi. It is assumed that ki is independent
from all elements in ξi. Given this assumption, the probability of sg

i j being larger
than or equal to some α , the CCDF becomes

Pr(sg
i j ≥ α) =

kmax

∑
k=1

fK(k)Pr(satwi(βi +ξi)≥ αk) (5.15)

where the second probability is given as

Pr(sat1(βi +ξi)≥ αk) =


0, if α > 1

k
1, if α ≤ 0
Pr(ξi ≥ αk−βi), 0 < α ≤ 1

k

(5.16)

The saturation function causes a zero probability in the first case and full probability
in the second case. Then it may be disregarded in the third case since the interval of
α for this outcome is defined within the saturation interval. Choosing one of the two
given offspring distributions above, fK(k) is defined and known. So, if Pr(ξi ≥α) is
also known for all values of α , then Pr(sat1(βi+ξi)≥ αk) and thereby Pr(sg

i j ≥ α)

can be computed from Equation 5.16 and 5.15 respectively. Now, when Pr(sg
i j ≥ α)

is computed, it is possible to find an expression for Pr(ξ j ≥ α) since ξ j = ε j + si j.
Thus, when Pr(ξ j ≥ α) is known it is possible to move on to the next generation
in the tree and calculate the CCDF for the induced shock sg

jl from node j to a child
l. Iterating through the generations makes it possible to see how the CCDF of the
induced shock changes.

The external shock to the root node is modeled as a uniform distribution,
ε1 ∼ U(0,1 + a′). In this case, where only the root node is hit by an external
shock, it follows that ξ1 = ε1, since the root node has no claims and thereby no
incoming induced shock. The rest of the nodes are not hit by any external shock
which means that the total shock for these nodes only consists of the incoming
induced shock. That is, ξi = sg−1

hi for i > 1 and g > 0, where node h is the parent of
node i.

For the root node, the induced shock is given by the offspring distribution fK(k)
and the probability Pr(sat1(β1 +ξ1)≥ αk) = Pr(sat1(ε1−a′)≥ αk) which can be
found using the same methodology as in previous analysis. Together with Equation
5.15 and 5.16, the CCDF of the induced shock from the root node to a child j can
be explicitly calculated. The result is

P(s0
1 j ≥ α) =


0, if α > 1

∑
kmax
k=1 fK(k)(1−Fε(αk+a′)), if 0 < α ≤ 1

1, if α ≤ 0
(5.17)
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where Fε is the CDF of ε1 and is defined in Equation 5.1.The CCDF of the next
generation’s induced shock, i.e. of the induced shock s1

jl from node j to a child l,
can be found from the previous induced shock by

Pr(s1
jl ≥ α) =


0, if α > 1

∑
kmax
k=1 fK(k)Pr(s0

1 j > αk+a′) if 0 < α ≤ 1
1, if α ≤ 0

(5.18)

By iteratively calculating the probability for each generation, moving further down
the tree, it is possible to get an understanding of and visualize how the shape of the
CCDF of the induced shock changes when moving further down the tree.

Comparison
To see the result graphically and to be able to compare the different network topolo-
gies, the probability Pr(si j ≥ α) is plotted for α ∈ [0,1] in the figures below with
similar initial parameters.

For the line network, Figure 5.1 shows the probability when the asset is a = 0.2.
As it can be seen in the plot, the probability of a higher induced shock decreases
for each next node and when reaching node 4, the probability is zero for all α > 0.
This translates to a zero probability of default for all nodes further than two steps
away from the shocked node. As there is an asset a added for each next node, the
probability for a positive induced shock decreases. The result is consistent with the
case of one deterministic shock on the ring network, as the number of defaults de-
pend on the relation between the asset a and the shock ε1. When the asset decreases
(increases), the probability increases (decreases) for each next node and the number
of defaulting nodes increases (decreases).

An example of the probability in the k-regular tree network when the additional
asset is a′ = 0.05 and the number of children is k = 3 is given. In Figure 5.2, the
probability of the induced shock Pr(sg

i j ≥α) is shown for the three first generations.
There is a probability of default, i.e. sg

i j > 0, only in generation 0 and 1 and for all the
next generations, the probability is zero. Even though the asset is small, the shock is
well absorbed and eliminated already by the third generation. As earlier concluded,
it is mainly the number of children that determines the default probability. The more
children the less probability of default as larger generations absorb the shock better.

For the random tree graph, an example is shown below of how two different
offspring distributions with the same mean affects the probability of the induced
shock. In both cases, the asset is a′ = 0.05 and the maximal number of children is
kmax = 10. In Figure 5.3, the offspring distribution follows the Discrete Uniform
distribution defined in Equation 2.16. In Figure 5.4, the offspring distribution fol-
lows the Binomial distribution defined in Equation 2.17 with p = 0.5. The number

62



5.1 Contagion by One Stochastic Shock

Figure 5.1 The probability of si ≥ α in the line network when a = 0.2 and ε1 ∼
U(0,1+a) shown in a CCDF

Figure 5.2 The probability of Pr(sg
i j ≥ α) for a k-regular tree network with k = 3

children, a′ = 0.05 and one shock ε1 ∼ U(0,1+a′)

of children k are first drawn from a binomial distribution ranging from 0 to 9 and
then one children is added which makes the k vary from 1 to kmax = 10. This ap-
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proach makes the mean equal for both the uniform and the binomial distribution.
The mean is µ = kmax+1

2 = 5.5 in both cases.

As can be seen in the figures, the highest probability for default is in the first
two generations and thereafter the probability is strongly reduced and only positive
for small α . For the Binomial offspring distribution, the contagion may spread to
a maximum of 8 generations and for the Uniform offspring distribution, the conta-
gion may spread to a maximum of 10 generations. After the 8th and 10th generation
respectively, there is a zero probability of default. The main difference between the
two random tree networks is that the probability of a larger induced shock is higher
for the network with a Uniform offspring distribution.

A possible conclusion of the differences of shock contagion can be drawn from
the different variances of the distributions. For the Uniform distribution, the vari-
ance is

σ
2
k =

(kmax−1)2

12
= 6.75 (5.19)

For the Binomial distribution, the variance is

σ
2
k = np(1− p) = 2.25 (5.20)

A higher variance of the number of children k implies a higher systemic risk in
the network as a larger induced shock is more probable. Given the distributions
examined, the result is restricted for symmetric distributions without skewness. The
reason for this difference may be that a higher variance means a higher probability
for a lower number of children. This is the main risk for shock propagation in a
tree, since a lower number of children absorbs less than a larger number of children.
Although, a higher variance also means a higher probability for a large number of
children, which would lower the risk of contagion further down the tree, the net
effect seems to be a higher systemic risk.

The implication of variance can also be seen when comparing the k-regular and
the uniformly generated random tree network. The probability for a higher α is
significantly larger for this random tree network, with the interval of ki ∈ [1,10],
compared to the k-regular tree network, with a fixed k = 3 children. Comparing the
binomially generated random tree network, the probability for larger α is overall
smaller than for the k-regular tree network. However, there is a larger probability
for spreading the contagion further down the tree through more generations in both
of the random tree networks compared to the k-regular tree network.
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5.1 Contagion by One Stochastic Shock

Figure 5.3 The probability of Pr(sg
i j ≥ α) for a random tree graph created by a

uniform offspring distribution with kmax = 10, a′ = 0.05 and one shock ε1 ∼U(0,1+
a′)

Figure 5.4 The probability of Pr(sg
i j ≥ α) for a random tree graph created by

a binomial offspring distribution with kmax = 10, a′ = 0.05 and one shock ε1 ∼
U(0,1+a′)
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5.2 Contagion by Multiple Independent Shocks

In this case, all nodes are subject to a stochastic independent shock of size εi > 0 ∀i.
The shock is uniformly distributed as εi ∼ U(0,εmax

i ). The same probability mea-
sure of Pr(si j ≥ α) is applied to understand how severe and probable the contagion
is. However, since all nodes are subject to a shock, there will be two stochastic
variables, both the external shock and the induced shock, to take into consideration.
These are assumed to be independent of each other. To find the total probability, the
concept of convolution between the two distributions of shocks will be applied.

The analysis will be performed on the directed line graph, the k-regular directed tree
graph, and lastly the random directed tree graph, generated by the Galton-Watson
branching process by two offspring distributions.

Line network
For the line network, it is still initially given that the first node 1 receives its to-
tal claims and is not affected by any induced shocks. This results in a probability
Pr(s1≥α) equal to Equation 5.6. For the next node 2, the probability will be similar
as in previous analysis but now with an additional stochastic shock ε2 to consider.

Pr(s2 ≥ α) = Pr(sat1(s1 + ε2︸ ︷︷ ︸
ξ2

− a︸︷︷︸
β2

)≥ α)

=


1, if α ≤ 0
Pr(ξ2 ≥ α +a), if 0 < α ≤ 1
0, if α > 1

(5.21)

As both the external shock and the induced shock are stochastic, the distribution of
the total ξ2 will be stochastic and is a sum of the two independent distributions of
the shock ε2 and the induced shock s1. The distribution of εi is known as Uniform
and the distribution of s1 is calculated for the first node. The CDF of a sum of two
independent random variables Z = X +Y may be found by using convolution

H(z) = Pr(Z ≤ z) = Pr(X +Y ≤ z) =
∫

∞

−∞

FY (z− x) fx(x)dx = FY ∗ fX (5.22)

By rewriting the formula for Z = ξ2, X = ε2 and Y = s1, it becomes

Fξ2
(α) = Pr(ξ2 ≤ α)

= Pr(ε2 + s1 ≤ α)

=
∫

∞

−∞

Fs1(α− x) fε(x)dx

= Fs1 ∗ fε (5.23)
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Thus, the CDF of ξ2 is a convolution of the CDF Fs1 and the PDF fε defined as

Fs1(α) = 1−Pr(s1 ≥ α) (5.24)

fε(α) =

{
1

1+a , if 0≤ α < 1+a
0, otherwise

(5.25)

By computing iteratively the convolution of each induced shock and external shock,
it is possible to find each next node’s probability by

Pr(si ≥ α) = Pr(sat1(ξi +βi)≥ α)

=


1, if α ≤ 0
1−Fξi(α +a), if 0 < α ≤ 1
0, if α > 1

∀i > 1 (5.26)

K-regular tree network
When there are several shocks present in the k-regular tree network, the analysis
is carried through similarly as in the previous case of one stochastic shock. The
shocks are modeled uniformly as εi ∼ U(0,1+ a′) ∀i and the analysis starts with
the root node. The probability of Pr(s0

1 j ≥ α) for the root node is calculated as in
Equation 5.11. Then, for the next generations, the probability will be calculated by
convolutions since there are two stochastic independent variables, i.e. ξi = sg

hi +
εi ∀i > 1. By using and rewriting Equation 5.26, the following equation can be
calculated for finding the probability of the next generation of nodes

Pr(sg
jl ≥ α) =


1, if α ≤ 0
1−Fξ j(αk+a), if 0 < α ≤ 1

k

0, if α > 1
k

j, l > 1,g > 0 (5.27)

where the Equation 5.23 is used to find Fξ j as the convolution of Fsg−1
i

(α) = 1−

Pr(sg−1
i ≥ α) and fε(α).

Random tree network by branching process
The implication of several shocks in the network is similar to the k-regular tree
network, except for the additional distribution fK(k) of number of children ki. The
shock is uniformly distributed as εi ∼ U(0,1+ a′) ∀i. The probability for the first
root node is equal to Equation 5.17. The probability for the next nodes of generation
g > 0 can be found by rewriting Equation 5.27 and is equal to

Pr(sg
i j ≥ α) =


0, if α ≥ 1

∑
kmax
k=1 fK(k)(1−Fξi(αk+a)) if 0 < α ≤ 1

0, if α > 1

g > 0, i, j > 1 (5.28)
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where the CDF Fξi(α) is the convolution of Fsg−1
hi

(α)= 1−Pr(sg−1
hi ≥α) and fε(α).

Comparison
The probability of an induced shock being larger than some α is shown below for
the three first out-neighbors connected by liability for the directed line network, the
k-regular and random tree network. All nodes are subject to an equally distributed
independent stochastic shock ε .

By using the same example for the line network in the previous analysis of one
stochastic shock, where all nodes have an asset of size a = 0.2, and then exposing
all nodes to a random shock distributed as εi ∼ U(0,1+ a), the result is shown as
a CCDF for the three first nodes in line in Figure 5.5. The probability for a higher
induced shock increases fast for each node. For the third node in line, the probabil-
ity is close to 1 for the induced shock being larger than zero and a default is almost
certain. The probability continues to stay high even for larger α .

Figure 5.5 The probability of Pr(si ≥ α) for a line network with a = 0.2 and
several shocks εi ∼ U(0,1+a)

For the k-regular tree network, the probability for the first three generations is
shown as a CCDF in Figure 5.6 with the same parameters as last example, i.e. k = 3
children and an asset of the size a′ = 0.05. The root node has an identical prob-
ability as when only one shock is present but then the probability for an induced
shock increases for each next generation. The induced shock may not be larger than

68



5.2 Contagion by Multiple Independent Shocks

α > 1/k = 1/3 which makes the probability to be reduced to zero for larger α .
For the third generation, the probability of the induced shock is larger than zero is
close to one which implies an almost certain default of that generation. For each
next generation, the probability will continue to increase for larger α , given that the
nodes are shocked by the uniform εi.

Figure 5.6 The probability of Pr(sg
i j ≥ α) for a k-regular tree network with k = 3,

a′ = 0.05 and several shocks εi ∼ U(0,1+a′)

When exposing the two random tree networks, created by a Discrete Uniform
and a Binomial offspring distribution respectively, to several uniformly distributed
shocks, the result can be seen in Figure 5.7 and 5.8. The parameters is given as ear-
lier, where each node has an asset a′ = 0.05 and a maximum of kmax = 10 children.
The plots show only the three first generations but it is clear that the probability
increases for each next generation. The pattern is similar as for the k-regular tree
graph but with a slightly lower increase in magnitude and also with a larger proba-
bility for the Uniform offspring distribution for larger α and a smaller probability
for the Binomial offspring distribution. The Uniform offspring distribution still gen-
erates a higher probability than the Binomial distribution, which can be originating
from the higher variance previously discussed.

The noncontinuous tendencies in the plots are due to the fact that for each pos-
sible number of children, the probability is restricted to α ≤ 1/ki. For α > 1/ki,
the probability is zero, which creates the gaps of reduced probability for each
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ki ∈ [1,kmax].

Figure 5.7 The probability of Pr(sg
i j ≥ α) for a random tree graph created by a

uniform offspring distribution with kmax = 10, a′ = 0.05 and several shocks εi ∼
U(0,1+a′)

Given these examples, it is clear that each next node after the first shocked node
will spread a larger induced shock by a higher probability. Especially for the line
network the probability increases fast.

70



5.2 Contagion by Multiple Independent Shocks

Figure 5.8 The probability of Pr(sg
i j ≥ α) for a random tree graph created by a

binomial offspring distribution with kmax = 10, a′ = 0.05 and several shocks εi ∼
U(0,1+a′)
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6
Conclusions

In this last chapter, the findings of the thesis are explicitly concluded. The fulfill-
ment of the purpose and goal of the thesis, as defined in the first chapter, as well
as the contribution to the subject of contagion in financial networks are further pre-
sented. The conclusions of the thesis may be divided into two parts: one of smaller
magnitude regarding the role of individual nodes, as measured by traditional cen-
trality measures, and one of greater magnitude regarding the role of the financial
network’s structure in spreading contagion. Also, future work continuing on the
result of this thesis and within this strand of literature is proposed.

6.1 Summary of Work

In this thesis, a theoretical financial network model is developed to mimic the
complex real-world interbank lending system in a simplified way. It is based on
the well-established graph theory with several of its concepts applicable to the
model. However, the notion of traditional centrality measures, concerning variants
of degree and eigenvector centrality, is indicated to not be sufficient in finding sys-
temically important institutions, to which a negative shock causes greater contagion
than when shocking other nodes. The new notion of Node depth may find the worst
case loss amplification but cannot specifically say anything about the centrality
of the institutions in a network that is not out-connected or when knowledge of
realized shocks is unavailable.

Furthermore, in homogeneous specific network structures, where no node can
be deemed to be more central than any other, the role of interconnections in an
ex-post perspective is clarified. By analyzing the sparsely connected ring graph and
the densely connected complete graph, it is concluded that, in terms of number of
defaults, the complete graph performs better or equally as well as the ring graph
when there is only one shock present. When there are n shocks of the same size
present, the complete and the ring graph perform equally well. In the presence of m
shocks of the same size, where 1 < m < n, it is shown that there are cases where the

72



6.1 Summary of Work

complete graph performs worse than the ring graph and thus the complete structure
to a greater extent amplifies the shocks instead of absorbing them. Hence, more
interconnections mainly work as shock absorbers but under some circumstances,
sparser interconnections cause less contagion and number of defaults.

Also, acyclic features of the homogeneous network structures are examined by
the tree graph, both the k-regular and random directed tree, in the presence of ex-
ante shocks. The k-regular tree is also examined in the presence of ex-post shocks.
Given the assumed model in this thesis, it is concluded that a higher number of
offspring, equal to a higher out-degree, is preferred to ensure a more stable network
in terms of number of generational defaults.

When generating the random tree graph, an offspring distribution with a lower
variance seems to cause less contagion when looking at number of generational
defaults. If the variance of the offspring distribution is small it is less likely that the
contagion spreads as far down the tree as it would do if the offspring distribution
with the same mean has a larger variance. The reason for this is assumed to be the
following. If the variance is low, the probability for a high number of children is
small. This would imply a less stable network in terms of generational defaults.
However, a low variance also gives a lower probability for a smaller number of
offspring. This implies a more stable network. The effect of the latter implication is
concluded to be stronger than the effect of the first implication.

Comparing the acyclic tree graph with the cyclic ring and complete graphs in
the presence of ex-post shocks, the main conclusion is that the acyclic feature might
help to prevent further contagion. This is because in the cyclic graphs, the contagion
may cascade through several cycles before a payment equilibrium is found whereas
in the acyclic graphs, the equilibrium is directly given. This is especially clear in
the presence of one deterministic shock where the shock in the k-regular tree graph
quickly is absorbed as the number of children increases and there is no "threshold"
that may turn the whole network into default, as in the complete graph. However, to
compare the performance of these two features in this context is difficult since the
structures are modeled differently. In the case of n deterministic shocks, the result
is more ambiguous and it is not possible to say that a topology definitely performs
better than any other.

The main contribution of this thesis concerns the contagion analysis of the acyclic
tree graphs, which has not been found in previous literature. Also, the further clar-
ification and exemplification of how interconnections affect the shock propagation
helps to increase the understanding of their role in financial networks. Moreover,
the probability measure of the induced individual shock, as developed for ex-ante
shocks, gives an interesting perspective on the performance of the network and may
be further applied for risk assessment before any shocks has been realized.
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6.2 Future Work

Suggestions for future work firstly concerns further analysis similar to Chapter 4
and Chapter 5 on other homogeneous specific graph topologies, possibly with differ-
ing degree distribution between nodes like the barbell graph or the star graph. Also
the assumption of homogeneity concerning assets and liability could be relaxed in
future work. Yet another way of expanding the analysis could be to consider other
distributions of external shocks and include the possibility of dependent shocks, as
the correlation for shocks in financial networks is high in reality. The ex-ante shock
propagation analysis may be extended to include cyclical graphs as well.

Further suggestions involve a development of the financial network model de-
scribed, to include more parameters and extend the scope to cover more financial
instruments traded between banks. This will obviously increase the complexity but
also increase the resemblance to the real financial network which might make the
conclusions more applicable. Also, more studies is needed to develop a centrality
measure applicable to all kinds of financial networks before any realizations of
shocks, which succeeds to capture the systemically important nodes.

Lastly, if the actual global financial network manages to increase its transparency,
future work may include using real data to a larger extent, to compare the results in
this report and further validate the theoretical framework.

74



Bibliography

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015). “Systemic risk and sta-
bility in financial networks”. American Economic Review 105:2, pp. 564 –608.

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2016). “Networks, shocks, and
systemic risk”. The Oxford Handbook of the Economics of Networks. Edited by
Yann Bramoulle, Andrea Galeotti, and Brian Rogers, 569–610.

Allen, F. and D. Gale (2000). “Financial contagion”. Journal of Political Economy
108:1, pp. 1–33.

Bonacich, P. (1987). “Power and centrality: a family of measures”. American Jour-
nal of Sociology 92:5, pp. 1170–1182.

Brin, S. and L. Page (1998). “The anatomy of a large-scale hypertextual web search
engine”. In: Seventh International World-Wide Web Conference (WWW 1998),
pp. 107–117.

Como, G. (2018). Lecture Notes on Network Dynamics. Automation Control, Lund
University.

Craig, B. R., F. Fecht, and G. Tümer-Alkan (2015). “The role of interbank relation-
ships and liquidity needs.” Journal of Banking and Finance 53, pp. 99 –111.

Eisenberg, L. and T. H. Noe (2001). “Systemic risk in financial systems.” Manage-
ment Science 2, pp. 236–249.

Farooq Akram, Q. and C. Christophersen (2010). “Interbank overnight interest rates
– gains from systemic importance.” Norges Bank: Working Papers 11, pp. 1 –
32.

Freixas, X., B. M. Parigi, and J.-C. Rochet (2000). “Systemic risk, interbank rela-
tions, and liquidity provision by the central bank”. Journal of Money, Credit and
Banking 32:3, pp. 611–638.

Gai, P., A. Haldane, and S. Kapadia (2011). “Complexity, concentration and conta-
gion”. Journal of Monetary Economics 58:5, pp. 453 –470.

Glasserman, P. and H. P. Young (2016). “Contagion in financial networks”. Journal
of Economic Literature 54:3, pp. 779 –831.

75



Bibliography

Katz, L. (1953). “A new status index derived from sociometric analysis”. Psychome-
trika 18:1, pp. 39–43.

Morris, S. (2000). “Contagion”. The Review of Economic Studies 67:1, pp. 57–78.
Upper, C. (2011). “Simulation methods to assess the danger of contagion in inter-

bank markets”. Journal of Financial Stability 7:3, pp. 111 –125.

76



Document name 

Date of issue 

Document Number 

Author(s) Supervisor 

Title and subtitle 

Abstract

Keywords 

Classification system and/or index terms (if any) 

Supplementary bibliographical information 

ISSN and key title ISBN 

Language Number of pages Recipient’s notes 

Security classification 


