
Faculty of Engineering, LTH

Centre for Mathematical Sciences

Master’s Thesis

1:N fingerprint classification

Linda Xiang
elt13lxi@student.lu.se

Ellen Petersson
nat12ep1@student.lu.se

Supervisor

Magnus Oskarsson
magnuso@maths.lth.se

Examiner

Niels Chr. Overgaard
nco@maths.lth.se

July, 2018

Abstract

Biometric recognition systems are widely used to recognize an individual. Finger-
prints is a biometric identifier and are today widely used in smartphones for biomet-
ric recognition. The fingerprint software used in smartphones are great and fast, and
usually implemented for one person usage. A fingerprint software used for smart-
phones often conducts a one-to-one comparison between the sample and the enrolled
templates. Software systems that can be used to recognize a person out of many are
desirable. Such a system would conduct one-to-many comparisons. However, using
the existing software in smartphones in a product used by many people would be
too slow since it has to conduct many one-to-one comparisons between the sample
and the enrolled templates.

This thesis examines whether it is possible to classify the enrolled templates by K-
centroid, such that the number of comparisons in the one-to-many authentication
problem is reduced. It was shown that the bag-of-words representation of an image
is the best feature to use, together with the cosine similarity, during classification.
To further improve the clustering, SVM and balancing were also applied. This com-
bination showed good results and is the most promising method out of all methods
examined in this thesis.

Keywords. K-centroid, similarity measure, SVM, templates, Bag-of-words.

Acknowledgements

We would like to thank Precise Biometrics for giving us the opportunity to make
this possible. Special thanks to Björn Völcker for excellent guidance and encourage-
ment along this thesis. We further thank the R&D team at Precise Biometrics for
insightful comments and helping us with technical struggles. We would also like to
thank Magnus Oskarsson at LTH for helping us and giving us feedback and academic
guidance during the work on this thesis.

Contents

1 Introduction 3
1.1 Fingerprint systems . 4
1.2 Fingerprint characteristics . 7
1.3 Templates . 8
1.4 Machine learning and computer vision 10
1.5 Problem formulation . 11

2 Theory 12
2.1 Features . 12

2.1.1 Orientation image . 13
2.1.2 Frequency image . 14
2.1.3 Bag-of-Words . 14
2.1.4 Scale Invariant Feature Transform (SIFT) 17
2.1.5 Good Features To Track (GFTT) 21

2.2 Clustering . 23
2.2.1 Partitioning methods . 23
2.2.2 Hierarchical clustering . 25

2.3 Similarity measures . 27
2.3.1 Earth mover’s distance . 27
2.3.2 Euclidean Distance . 28
2.3.3 Cosine similarity . 28

2.4 Support Vector Machine (SVM) . 29
2.4.1 Linearly separable data . 29

2.5 Prediction of a verification template 33
2.5.1 Centroid based prediction . 33
2.5.2 Prediction using SVM . 34

3 Dataset and Tools 35
3.1 Data . 35
3.2 Tools . 37

1

CONTENTS 2

3.2.1 Python . 37
3.2.2 OpenCV . 37
3.2.3 Scikit-learn . 37
3.2.4 SciPy . 38

4 Experimental setup 39
4.1 Introduction . 39
4.2 Features . 40

4.2.1 Frequency and Orientation histograms 40
4.2.2 Bag-of-Words . 40

4.3 K-centroid . 42
4.3.1 Hierarchical clustering . 42

4.4 Support vector machine . 43
4.5 Performance measure . 44

5 Result 47
5.1 Visualization of the data . 47
5.2 Results from frequency and orientation features 48

5.2.1 Direct clustering . 49
5.2.2 Divisive clustering . 50
5.2.3 Without clustering . 52

5.3 Results from bag-of-words features 52
5.3.1 Detector and similarity measure evaluation 53
5.3.2 Divisive clustering . 53
5.3.3 Without clustering . 56
5.3.4 Example of BoW histograms 56
5.3.5 Finger scores . 61

6 Discussion and future work 63
6.1 Discussion . 63

6.1.1 Experimental setup . 63
6.1.2 Results . 64

6.2 Future work . 69
6.2.1 Keypoint detectors and descriptors 69
6.2.2 Different method for bag-of-words vocabulary 69
6.2.3 Bigger and smaller images . 70
6.2.4 Similarity measures . 70

6.3 Conclusion . 71

Chapter 1

Introduction

Biometric recognition refers to the use of biometric identifiers for automatically
recognizing an individual. Biometric identifiers are anatomical and behavioral char-
acteristics, e.g, fingerprints, face, iris, and voice. Biometric identifiers are considered
more reliable for person recognition than traditional systems such as keys, ID-cards,
password, and PIN. Biometric identifiers cannot be shared or misplaced while pass-
words or PIN can be guessed or shared and ID-cards can be lost or stolen. No
two individuals have the same fingerprint, which is one reason why fingerprints are
the most widely deployed biometric characteristics. Fingerprint-based recognition
methods are being increasingly deployed in civilian and government applications [1,
p. 1 - 3].

Precise Biometrics AB develops fingerprint software for convenient and secure au-
thentication of identity in mobile devices, smart cards, and other products with
fingerprint sensors. The software is well suited for products with small sensors and
limited processing power and memory. The software for authentication of identity
in the mentioned products is developed for one person usage, i.e., it conducts an
one-to-one comparison. A software which can recognize and authenticate a person
in a product designed for authentication of many people, i.e., conducting one-to-
many comparisons, is desirable. However, using the existing software in such a
product is too slow. This project evaluates the possibilities of reducing the number
of comparisons in the one-to-many authentication problem.

This report is divided into six chapters. The first chapter contains an overview of
concepts relevant for fingerprint systems and fingerprint recognition. The second
chapter contains a more in depth description of the theory of the algorithms used in
this project. The datasets and tools used in this project are introduced in the third
chapter. Proposed setups of how the theory, datasets, and tools can be connected

3

CHAPTER 1. INTRODUCTION 4

as a solution to the problem are described in chapter 4. How to evaluate the setups
is also described in the fourth chapter. Results obtained from the proposed setups
are presented in the fifth chapter. The results and the proposed setups are discussed
and a conclusion is presented in chapter 6.

1.1 Fingerprint systems

When designing a system for recognition using biometric identifiers one must deter-
mine how the person is going to be recognized. There are two types of biometric
systems called verification system and identification system [1, p. 3]. A verification
system does an one-to-one comparison to verify if the claim of identity by a person
is true. For a submitted claim of identity by a person, the verification system either
rejects or accepts it. An identification system, on the other hand, does an one-to-
many comparison to search if the person is present in the database. If the person
is present then the system will return the identifier of the enrollment reference that
matched. In comparison with the verification system, the identification system an-
swers the question on ”Who are you?” and in verification systems we answer the
question ”Are you...You?”.

The verification system and the identification system can be divided into three main
processes, enrollment, verification, and identification. A verification system uses
the enrollment and verification processes while an identification system uses the
enrollment and the identification processes [1, p. 5].

The enrollment process registers the fingerprint information from individuals in the
system storage. The identification process outputs a list containing templates of
possible candidates for a match. The verification process is responsible for confirming
the claim of identity by the subject. As seen in Figure 1.1 the enrollment, the
identification and the verification processes can be broken down into the following
modules:

• Capture: a raw digital fingerprint image is captured by a fingerprint sensor.
The digital representation is often called a sample.

• Feature extraction: the sample is further processed by a feature extractor.
This generates a compact but expressive representation of the sample, known
as a feature set.

• Template creation: this module organizes one or more feature sets into an
enrollment template. The enrollment template will be saved in the system
storage.

CHAPTER 1. INTRODUCTION 5

• Pre-selection: takes a verification template (obtained from a new sample) and
the enrolled templates of all subjects in the system storage as input. The
module reduces the size of the enrolled template database in order to mini-
mize the number of enrollment templates that have to be compared with the
verification template. The module is mainly used in an identification system
when the number of enrolled templates is large.

• Matching : the matching module, also known as the matcher takes a verifi-
cation template as input. The verification template is compared against the
enrollment templates of that subject and the similarity between these is com-
puted, known as a similarity score. The similarity score is then compared with
a system threshold to make the final decision. The person is recognized if the
similarity score is higher than the system threshold. In this case, the matcher
produces a match decision. If the similarity score is lower than the system
threshold, the person is not recognized and the matcher produces a non-match
decision.

• Data storage: is responsible for storing the templates.

The focus in this project is on the identification process, in particular on the fea-
ture extraction, template creation and the pre-selection modules. The pre-selected
templates will then be sent to Precise Biometrics’ verification system for matching.

CHAPTER 1. INTRODUCTION 6

Figure 1.1: Enrollment, identification and verification processes. The enrollment
process is responsible for creating enrollment templates from the captured samples
and storing them. The identification process recognizes a subject by comparing
a verification template created from a new sample with all enrolled templates in
the data storage, the pre-selection and matching module are often combined. The
verification process authenticates a subject’s identity by comparing a verification
template with the subject’s enrollment templates.

CHAPTER 1. INTRODUCTION 7

1.2 Fingerprint characteristics

A sample of a fingerprint is captured by a fingerprint scanner during the enrollment
process. The extraction of biometric characteristics is an essential component when
identifying a person.

In an identification system, it is needed to determinate features of a fingerprint
sample that can discriminate between different fingers as well as remain invariant
for a given finger. A feature space in which fingerprint images belonging to different
fingers have high inter-class variations and fingerprint images belonging to the same
finger have low intra-class variations needs to be determined [1, p. 39].

A fingerprint is the reproduction of the exterior appearance of the fingertip epidermis
(outer skin) [1, p. 97]. Ridges and valleys form the most noticeable structural
characteristic of a fingerprint. A fingerprint consists of a pattern of interleaved
ridges and valleys. Ridges, also called ridge lines, are dark lines and valleys are bright
lines, see Figure 1.2. The pattern of ridges and valleys has different characteristics
for different fingerprints, the ridge structure of every fingerprint is permanent and
unchanging [1, p. 32]. The ridge details are usually analyzed in a hierarchical order
at three different levels which exhibit different types of features. Level 1 describes the
overall global ridge flow pattern, Level 2 is the local level which describes minutiae,
and Level 3 is the very-fine level which can detect intra-ridge details.

Figure 1.2: Ridges and valleys in a fingerprint image. Figure from [1, p. 97].

The global ridge flow pattern (Level 1) is mainly a pattern of ridges that run
smoothly in parallel, but there are regions that assume distinctive shapes char-
acterized by frequent ridge endings and high curvature [1, p. 98]. These regions are
called singular regions and can be classified into three categories, loops, deltas, and
whorls. An example of the singular regions can be seen in Figure 1.3. The fingerprint
orientation image and frequency image are also features that can be detected at the
global level.

CHAPTER 1. INTRODUCTION 8

Figure 1.3: From left to right: delta (4), loop (∩) and whorl (©).

Local ridge characteristics called minutiae can be found at the local level (Level
2). Minutia means small details, ridge endings and bifurcations are the two most
prominent minutiae [1, p. 39]. A ridge ending is where a ridge suddenly comes to
an end and a bifurcation is where a ridge divides into two ridges, see Figure 1.4 for
an illustration.

Figure 1.4: A ridge ending (left) and a bifurcation (right).

The intra-ridge details detected at the very-fine level (Level 3) include width, shape,
curvature, and edge contours of ridges but also incipient ridges, pores, creases,
breaks, and scars [1, p. 101]. Sweat pores located at the ridges are considered the
most important detail at the very-fine level. However, high-resolution fingerprint
images of high quality are necessary for extraction of details at this level.

1.3 Templates

In both identification and verification processes, one verification template created
from a new sample has to be compared with an enrollment template in order to decide
if the verification template is from the same finger as the enrollment template or not.
This comparison is important for the decision match/non-match in the verification

CHAPTER 1. INTRODUCTION 9

process and for the decision if the enrollment template should be in the output
candidate list generated by the identification process.

Sensor manufacturers tend to reduce the size of the fingerprint sensors in order to
lower the cost of production. A smaller fingerprint sensor means a smaller sensing
area which will capture a partial fingerprint. It is difficult to compare templates
created from samples of partial fingerprints because of the possibility that the tem-
plates only have a little overlap, even though the templates are from the same finger.
Figure 1.5 illustrates this problem. The error that occurs when the verification tem-
plate and the enrollment template are from different parts of the same finger and
have a little overlap is called information limitation [1, p. 12]. The pre-selection
module and the matching module cannot make a correct decision in situations like
this.

Figure 1.5: Overlap between a verification template (green) and an enrollment tem-
plate (red) captured by a small sensor. Original fingerprint image from [1, p. 131].

To increase the possibility of overlap between the verification template and an enroll-
ment template, some systems collect multiple samples of a user to produce a set of
enrollment templates for each finger. A set of enrollment templates for one finger is
known as a multi-template, an illustration of a multi-template can be seen in Figure
1.6. The verification template is compared with all templates in the multi-template,
if the similarity score for one of these comparisons is high enough a correct decision
can be made.

Important core features such as loops and whorls or deltas are in most cases not
included in a sample captured by a small sensor. Users have difficulties placing
the center of the fingerprint in the center of the sensing area if the sensor is too
small [2]. In order to increase the possibility of large overlap between a verification
template and an enrollment template, it is desirable that the enrollment templates
in the multi-template are evenly distributed across the fingerprint. The verification
template will in this case not overlap most of the enrollment templates in the multi-

CHAPTER 1. INTRODUCTION 10

Figure 1.6: Overlap between a multi-template made from a set of enrollment tem-
plates (red) and a verification template (green). Original fingerprint image from [1,
p. 131].

template, but the overlap is expected to be large in cases where an overlap exists.
The enrollment templates will possibly have little overlap with each other.

1.4 Machine learning and computer vision

Machine learning is a type of artificial intelligence which allows computer systems
to learn with data without being explicitly programmed1. The computer makes a
prediction based on learned patterns from the training data. The goal is to allow the
computer to learn by-itself without the interference or assistance by humans. The
algorithms or tasks in machine learning can be divided into two subgroups, super-
vised and unsupervised learning. In supervised learning, the computer is presented
with example inputs and with the desired outputs1. The goal for the computer is
to map inputs with outputs, to find a pattern or a general rule for this map. In
unsupervised learning, we don’t have any desired outputs. In other words, the data
is not labeled. With unlabeled data we allow the computer to find structures and
hidden patterns in the data.

Computer vision can be seen as a way to automate tasks that the human visual
system can do2. The tasks in computer vision include methods for acquiring, pro-
cessing, and analyzing digital images such that the system can make some form of
decision. Computer vision can be used for recognition tasks. A task to determine
whether a specific object is present in an image. It can also be used for identifi-
cation, for example, to identify a persons face, fingerprint, handwritten digits or

1https://en.wikipedia.org/wiki/Machine_learning
2https://en.wikipedia.org/wiki/Computer_vision

CHAPTER 1. INTRODUCTION 11

a specific vehicle. Other tasks include motion analysis, scene reconstruction, and
image restoration2.

1.5 Problem formulation

Biometric recognition systems using fingerprints as the biometric identifier can be
seen in many smartphones. To unlock your phone, you need to have your fingerprint
stored on the device. When a person is trying to unlock the phone, the captured
fingerprint image needs to be matched with the stored fingerprint image, which is
the definition of a verification system. An identification system, for example in a
door lock, can be implemented by using a verification system that does many one-
to-one comparisons. If the algorithm for unlocking your phone were applied to a
door lock, the matching time would be very slow, because of the many one-to-one
comparisons.

This thesis investigates the possibilities of reducing the number of comparisons in
a one-to-many authentication problem. This can be done by reducing the number
of possible matching templates, such that a search through the whole database can
be avoided. If the database contains 1000 persons, and each person has enrolled 10
templates, the database will consist of 10, 000 templates. This means that 10, 000
comparisons need to be conducted to authenticate one person. The goal of this thesis
is to find a method to reduce the number of comparisons by reducing the number of
possible matching templates. If there’s 10, 000 templates in the database in total,
the goal is to reduce it to about 100−200 possible templates during authentication.

Chapter 2

Theory

In this chapter, all relevant theory for this thesis is presented. This chapter is orga-
nized as follows; in section 2.1, different feature extracting methods are introduced.
In section 2.2, the reader are introduced to different clustering methods. In section
2.3, different similarity measures for histograms are presented. Then in section 2.4,
the Support Vector machine is introduced. Finally, in the last section, 2.5, methods
for labeling new data are discussed.

2.1 Features

In this section, the different features found in fingerprints and methods for fea-
ture extraction are presented. First, the difference between feature detectors and
descriptors will be explained. In the following sections orientation, frequency and
bag-of-words will be introduced as features that are found in fingerprints. In sections
further down SIFT and GFTT feature extractors are presented.

A detector detects interesting points or image features in an image. These features
can, for example, be corners or blobs. A feature detector can be seen as a searching
window. The searching window looks for regions in the image where it has maximum
variation when the searching window is moved by a small amount1.

A feature descriptor is a description of the feature that was found by the feature
detector. A feature descriptor describes the region around the detected feature.
This description is of great importance because it makes it possible to find the same

1https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_

meaning/py_features_meaning.html#features-meaning

12

CHAPTER 2. THEORY 13

feature in another image, an image taken on the same object but maybe from a
different angle1.

2.1.1 Orientation image

The fingerprint orientation image is one of the features that can be found in the
global level (Level 1). The orientation image represents the directionality of ridges
[3]. The orientation image is a matrix whose elements encode the local ridge orien-
tation [1, p. 103]. The local ridge orientation at a pixel [x, y] is the angle θx,y that
the fingerprint ridges, crossing through an arbitrary small neighborhood centered at
[x, y], form with the horizontal axis. Instead of computing the local ridge orienta-
tion at each pixel, it is estimated at discrete positions. Each element θij denotes the
average orientation of the ridges in a neighborhood of the pixel [xi, yj]. To denote
the reliability of the orientation, a value, rij, is often associated with each element
θij. The length of each element is proportional to its reliability [1, p. 103]. An
illustration of an orientation image is shown in Figure 2.1.

Figure 2.1: An orientation image faded into the corresponding fingerprint image.
Each element denotes the local ridge orientation. Figure from [1, p. 103]

The most popular approach for extracting local ridge orientations is based on com-
putation of gradients in the fingerprint image. The orientation image feature is
represented with a 12 bin histogram. The orientation image histograms are not
rotation invariant.

CHAPTER 2. THEORY 14

2.1.2 Frequency image

The frequency image for a fingerprint will be introduced shortly in this section. The
method of how to find this image and how to generate the frequency feature will not
be described. As the frequency histograms are provided by Precise Biometrics.

The most noticeable structural characteristics of a fingerprint is its ridges and valleys,
as has been described in section 1.2. The ridges are dark lines and the valleys are
bright lines. The ridges and valleys vary across different regions of the same finger.
At some region, there are more ridges than other regions. The number of ridges
across different fingers also varies. Generally, the frequency feature calculates the
local ridge frequency at different locations in the fingerprint image. At a point [x, y]
in the image, the local ridge frequency fxy is measured as the number of ridges
along a hypothetical segment centered at [x, y] and orthogonal to the local ridge
orientation [1, p. 112]. The frequency image is created by estimating the frequency
at discrete positions.

The fingerprint frequency image is also found in the global level (Level 1). The
frequency image provided, is represented by a 12 bin histogram, as the orientation
image.

2.1.3 Bag-of-Words

The bag-of-words (BoW) model was originally used in natural language processing
and information retrieval [4, p. 149] for document representation. The representation
of a document using this model is a bag of its words2. In this bag, there are words
that occur many times in the document. The count of how many times a word is
present in the document is the definition of the frequency of occurrence. These words
and their frequency of occurrence can be conceptualized as a feature that can be
used to train a classifier [4, p. 150]. BoW is a common model used in methods for
document classification.

The same idea or model can be applied to computer vision to create a bag-of-words,
or bag-of-visual-words (BoVW), for image classification [4, p. 150]. The difference is
that objects in the image are counted instead of words. The objects are the visual
words, and they are important points in the image. Images and documents can then
be represented in the same way, by a histogram of (visual) words and their frequency
of occurrence.

2https://en.wikipedia.org/wiki/Bag-of-words_model

CHAPTER 2. THEORY 15

To be able to create this model for images, a method for extracting interest points
is needed. These methods are called feature extractors. A feature extractor detects
interest points in an image called keypoints. For every keypoint, the region around
it is described by the descriptor. There are different feature extractors like Scale-
Invariant Feature Transform (SIFT), Good Features To Track (GFTT) and Speeded-
Up Robust Features (SURF). SIFT and GFTT will be explained later.

A BoW trainer is also needed to be able to represent the image by its visual words.
Before each image can be represented by its visual words, a vocabulary of all possible
visual words in the dataset is needed. The images in this dataset will be represented
by a subset of the words in the vocabulary. The vocabulary is created by using a BoW
trainer. The trainer is commonly a k-means clustering method. The visual words
are created by clustering the descriptors from the feature extractor into K clusters.
The center for each cluster will describe a visual word. When the clustering has
converged the vocabulary is made up of the centers from the clusters [4, p. 151]. A
larger dataset will make the vocabulary richer in words.

Let’s summarize the algorithm for the BoVW model [4, p. 151]:

1. For every image in a dataset, use a feature extractor to extract descriptors

2. Add the extracted descriptors to a BoW trainer

3. The descriptors are then clustered into k clusters. The center of these clusters
are the visual words.

In Figure 2.2 there is a picture of the bag-of-words process

Term frequency-inverse document frequency (tf-idf)

Term frequency-inverse document frequency, tf-idf, is often used as a weighting term
for text documents. The tf-idf calculation determines how relevant a given word is
in a particular document. In a large (English) text document there will be many
words like ”a”, ”the”, and ”and”. Classifying documents with occurrences of these
words will not tell much of what kind of text it is. These common words in a text
can be weighted by the tf-idf term. The term frequency (tf) in tf-idf is the number
of times a term appears in a document [5]. The term frequency is denoted

tf(t, d) = f(t, d),

where t is the term and d is the document.

The inverse document frequency (idf) varies inversely with the number of documents
to which a term is assigned in a collection of documents [5]. Common words such

CHAPTER 2. THEORY 16

Figure 2.2: Bag-of-words process. At the top we see a set of images that represents
our dataset. In the middle we see our vocabulary of words. At the bottom we see a
histogram of words and its frequency for each image in the dataset.

as articles and prepositions tend to have smaller tf-idf numbers than words that are
common in a single or a small group of documents. The inverse document frequency
is calculated as

idf(t) = log

(
N

1 + nt

)
,

where N is the total number of documents and nt is the number of documents
containing the term.

Terms that are able to distinguish certain individual documents from the remainder
of the documents are the best terms for document content identification. Such terms
should have high term frequencies but low document frequencies [5]. A measure of
term importance can be calculated as

tf-idf(t, d) = tf(t, d)× idf(t).

The tf-idf weighting is usually used after the BoW-vocabulary has been created.
Then for every histogram, the tf-idf term is applied to each bin.

In the same way as the tf-idf term is applied to the histograms representing a docu-
ment, it can be applied to the histograms representing an image. The tf-idf weights
down the most common features in an image instead of common words in a docu-

CHAPTER 2. THEORY 17

ment. A characteristic specific representation for an image is yielded by applying
tf-idf.

2.1.4 Scale Invariant Feature Transform (SIFT)

David G. Lowe proposed the SIFT-algorithm in 2004 [6], which extracts features
that are invariant to image scale and rotation.

Four major stages of computation are used to generate the set of image features.
The stages are listed and described below.

Detection of scale-space extrema

Potential interest points that are scale- and rotation-invariant, which are called
keypoints, are detected at the first stage of computation.

Using scale-space extrema in the difference-of-Gaussian (DoG) function convolved
with the image, D(x, y, σ), to detect stable keypoint locations in scale-space was
proposed by Lowe [6]. It can be computed as the difference of two nearby scales
separated by a constant factor k, mathematically expressed as

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (2.1)

where ∗ is the convolution operation in x and y, and

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

. (2.2)

The first reason for choosing this function is that D(x, y, σ) is efficient to compute
since it can be computed by simple image subtraction. The second reason is that it
is a good approximation to the scale-normalized Laplacian of Gaussian. It has been
shown that the maxima and minima of the scale-normalized Laplacian of Gaussian
produce very stable image features.

One approach to the construction of D is shown in Figure 2.3. For each octave of
scale space, the initial image is repeatedly convolved with Gaussians to produce the
set of scale space images separated by a constant k in scale space, illustrated with
the left stack in Figure 2.3.

A purple stack in the left stacks is called an octave, each octave is divided into an
integer number, s, of intervals, so k = 21/s. Each octave must contain s+ 3 images

CHAPTER 2. THEORY 18

Figure 2.3: Gaussian pyramids (purple) with two octaves. For each octave, the
image is repeatedly convolved with Gaussians to produce the set of scale space
images (purple). To produce the difference-of-Gaussian images (yellow), adjacent
Gaussian images are subtracted. The next octave is produced when the current
octave is completed and the Gaussian image has been down-sampled.

so that the extrema detection covers a complete octave. The difference-of-Gaussian
images shown on the right are produced by subtracting adjacent image scales. When
an octave is completed, the second Gaussian image from the top is re-sampled by
taking every second pixel in each row and column (half the image resolution) and
next octave can be produced.

Local maxima and minima of D(x, y, σ) are detected by comparing each sample
point to its eight neighbors in the current image and nine neighbors in the scale
above and below, as shown in Figure 2.4. The sample point is selected as a keypoint
candidate if it is either larger than all of its neighbors or smaller than all of them.

Keypoint localization

Once potential keypoints have been found, the next step is to eliminate bad keypoints
which are selected based on measures of their stability. For each candidate keypoint,
this step performs a detailed fit to the nearby data for location, scale, and ratio
of principal curvatures. This information allows candidate keypoints, which are
sensitive to noise or are poorly localized along an edge, to be rejected.

CHAPTER 2. THEORY 19

Figure 2.4: Detection of extrema of the difference-of-Gaussian images is done by
comparing a pixel (marked with x) to its neighbors (orange) at the current and
adjacent scales.

A method for fitting a 3D quadratic function to the keypoint to determine the
interpolated location of the maximum is used to give the keypoint a more accurate
location. This method uses Taylor series expansion of the scale-space function,
D(x, y, σ), shifted so that the origin is at the sample point. The intensity of the
extrema at the interpolated location given by the Taylor expansion function is useful
for rejecting unstable extrema with low contrast (points that are sensitive to noise).

The DoG function has a strong response along edges, even if the location along
the edge is poorly determined. A poorly defined peak in the DoG function will
have large principal curvature across the edge but small principal curvature along
the edge. The principal curvatures can be computed from a 2 × 2 Hessian matrix,
H. The eigenvalues of H are proportional to the principal curvatures. A concept
similar to Harris corner detection is used to avoid computing the eigenvalues since
the ratio of the two eigenvalues is sufficient. Candidate keypoints that have a ratio
of principal components greater than some threshold is eliminated.

Orientation assignment

The next step is to assign each keypoint with one or more orientations. The orienta-
tions are based on local image gradient directions. The keypoint will after this step
achieve invariance to image rotation since the keypoint can be represented relative
to the assigned orientations.

The Gaussian smoothed image, L, with the closest scale to the scale of the key-
point is selected. The gradient magnitude m(x, y), and the orientation, Θ(x, y) are
precomputed for each image sample, L(x, y), at this scale using pixel differences

CHAPTER 2. THEORY 20

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.3)

Θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))) (2.4)

This information is extracted in a neighborhood around the keypoint in the Gaussian
smoothed image. An orientation histogram with 36 bins is formed, where each bin
covers 10 degrees. Each image sample is weighted by the magnitude. Dominant
directions correspond to peaks in the histogram, the highest peak is detected and
local peaks within 80% of the highest peak are used to create a keypoint with that
orientation. There will be multiple keypoints but with different directions located at
locations with multiple peaks of similar magnitude. Creating these extra keypoints
contributes to the stability of matching.

Keypoint descriptor

A location, scale, and orientation have been assigned to each keypoint in the previous
steps. This step will compute a descriptor for each keypoint. The computations in
this step are performed on the image closest in scale to the keypoint’s scale.

The descriptor extraction procedure proposed by Lowe [6] first samples the image
magnitudes and orientations around the keypoint. Orientation invariance is achieved
by rotating the coordinates of the descriptor and the gradient orientations relative to
the keypoint orientation. For efficiency, the gradients are precomputed for all levels
of Gaussian blur for the image as described in the section about orientation assign-
ment. The left side of Figure 2.5 illustrates the precomputed gradients with small
arrows at each sample location. The magnitude of each sample point is weighted
with a Gaussian weighting function with σ equal to one half of the descriptor win-
dow. The Gaussian weighting function is illustrated with a circular window in Figure
2.5. The purpose of the weighting is to avoid sudden changes in the descriptor with
small changes in the position of the Gaussian window and to give less emphasis to
gradients far from the center. For each 4×4 sample region, an orientation histogram
is created. Each orientation histogram has eight directions, illustrated with arrows
on the right side of Figure 2.5. The orientation histogram will, therefore, be an 8
bin histogram where the magnitude of each bin corresponds to the lengths of the
arrows. The histograms of all sample regions are then concatenated, the resulting
vector is the descriptor. Figure 2.5 is an illustration of a 2× 2 array of orientation
histograms, the SIFT paper [6] uses a 4 × 4 array of orientation histograms (16
sample regions) with 8 bins in each, resulting in a 4× 4× 8 = 128 length keypoint

CHAPTER 2. THEORY 21

Figure 2.5: The descriptor is created by computing gradient magnitudes and orien-
tations in a region around the keypoint location, these are weighted by a Gaussian
window illustrated as a circle in the figure to the right. An eight bin orientation
histogram is created for each 4 × 4 subregion, the length of each arrow (left fig-
ure) corresponds to a bin in that histogram. These histograms are concatenated,
resulting in the keypoint descriptor.

descriptor. Finally, the descriptor is modified to make it invariant to affine changes
in illumination, and to reduce the effects of non-linear illumination changes.

The theory of the SIFT algorithm is presented in detail in [6].

2.1.5 Good Features To Track (GFTT)

Good Features To Track (GFTT) also known as Shi-Tomasi Corner Detector was
first introduced by Shi-Tomasi in 1994 [7]. It is an improved version of the Harris
corner detector which was introduced in 1988 by Chris Harris and Mike Stephens
[8]. The implementation of the scoring function is the main difference between the
two methods3. This section is organized as follows; the Harris corner detector will
be explained first, and then the difference between the two detectors is explained.

Harris corner detection

A corner in an image is defined as a region of large intensity variation in all directions.
Harris corner detection looks for such changes in the intensity I of an image, by the

3https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_shi_tomasi/

py_shi_tomasi.html#shi-tomasi

CHAPTER 2. THEORY 22

following expression[8]:

E(x, y) =
∑
u

∑
v

w(u, v)(I(u+ x, v + y)− I(u, v))2, (2.5)

for a displacement (x, y). Here E denotes the change of intensity between the original
and the moved window, w(u, v) is a window function at position (u, v), I(u+x, v+y)
is the intensity of the moved window, and I(u, v) is the intensity of the original
window. The window function can either be rectangular or gaussian.

If the function E(x, y) is maximized, it will look for corners in the image. The
function is maximized when the second term (I(u+x, v+y)−I(u, v))2 is maximized.
By applying Taylor series expansion and after some computation on the second term,
the function E(x, y) can be written as, (for full computations refer to [8]):

E(x, y) =
[
x y

]
M

[
x
y

]
, (2.6)

where M is

M =
∑
x

∑
y

w(x, y)

[
I2x IxIy
IxIy I2y

]
, (2.7)

where Ix and Iy are the first order derivatives of I in x and y directions.

Let the matrix M have the eigenvalues λ1 and λ2. These eigenvalues represent the
changes in intensity in the orthogonal direction of the image[9]. Instead of computing
the eigenvalues of matrix M , we consider computing the cornerness measure or the
response function R [8][9]. The response function is computed as

R = det(M)− κ · tr(M)2, (2.8)

for a small constant κ > 0 [9]. The response function can also be written as

R = λ1λ2 − κ · (λ1 + λ2)
2, (2.9)

where
det(M) = λ1λ2, (2.10)

tr(M) = λ1 + λ2. (2.11)

If both λ1 and λ2 are small, then R is small, and the region will be flat. If one
eigenvalue is much bigger than the other, then R < 0, and the region is an edge.
Finally we have a corner if R > 0, and if both eigenvalues are large and λ1 ∼ λ2.

CHAPTER 2. THEORY 23

Shi-Tomasi Corner Detector

As described above for the Harris corner detector, a region is a corner if the response
function is positive, R > 0. Later in 1994, J.Shi and C.Tomasi [7] made a small
change to the Harris response function, which resulted in better results compared
to the original. The Harris response function is computed as

R = det(M)− κ · tr(M)2.

In Shi-Tomasi corner detector, the response function is computed as

R = min(λ1, λ2). (2.12)

If the response function is bigger than a given threshold value λ, then the region is
a corner4.

2.2 Clustering

Clustering is an unsupervised learning problem. The task is to find a structure in a
collection of unlabeled data and grouping the data according to the found structure.
The data in a group, called a cluster [10, p. 1], is a collection of objects that are
more similar to each other than to objects in other clusters. The similarity measure
between two objects can, for instance, be distance. The objects will belong to the
same cluster if they are close according to the chosen distance metric.

There are various algorithms for solving the clustering problem. An algorithm for
hard clustering and an algorithm for hierarchical clustering are described in the
following sections.

2.2.1 Partitioning methods

Clustering can be divided into two subgroups, which are hard clustering and soft
clustering. In hard clustering, each data point can only be assigned to one of the K
clusters [11, p. 428]. Whereas in soft clustering, every data point is assigned with
a possibility or likelihood of belonging to the different clusters. Soft clustering is
desirable for clustering problems where many data points are between clusters. In
this thesis, only hard clustering will be considered. A figure illustrating the difference
between hard and soft clustering can be seen in Figure 2.6.

4https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_shi_tomasi/

py_shi_tomasi.html

CHAPTER 2. THEORY 24

Figure 2.6: The difference between hard and soft clustering.

K-centroid

K-centroid is similar to K-means, the only difference is how the center is updated. K-
centroid is a machine learning method under the category of unsupervised learning.
It can be used to cluster unlabeled data into K different clusters. The algorithm
iteratively assigns each data point to one cluster, by looking at the similarity of
features between each cluster center and the data point. When the data points have
been assigned to one cluster, each cluster center is updated to find a new center
within the cluster. After the center update, the data points are again assigned
to a cluster. If the centers don’t update in the next iteration, the algorithm has
converged. Alternatively, the algorithm has converged if it has exceeded a given
maximum number of iteration.

The K-centroid algorithm can be summarized in a few steps:

1. Choose the number of clusters K.

2. Randomly initialize the centroids µk for each cluster.

3. For each data point, assign it to one cluster according to a similarity measure.
There are different similarity measurements that can be used. In section 2.3,
different definitions will be described.

4. Update the cluster center. The center is updated by assigning one of the data
points in the cluster as the center. This is done by iteratively calculating the
similarity from one data point to all other data points in the cluster. The data
point with the smallest total similarity is assigned as the center.

Repeat step 3 and 4 until convergence. In this thesis, convergence is reached when

CHAPTER 2. THEORY 25

the center doesn’t update in the next iteration step. When convergence has occurred
we have reached a local minimum of the objective function J

J =
n∑
i=1

K∑
k=1

‖xi − µµµk‖2, (2.13)

where xxx1, ...,xxxn is the data set and µµµ is the set of cluster centers.

2.2.2 Hierarchical clustering

In hierarchical clustering, a hierarchy of clusters is built, the clusters merge together
or split at different stages in the hierarchy. A hierarchy means that objects belonging
to a child cluster also belong to the parent cluster.

Hierarchical clustering can be divided into two types, agglomerative and divisive
clustering. Agglomerative clustering is a bottom-up approach, starting with each
object as an individual cluster which is merged when moving up in the hierarchy
[10, p. 44]. Divisive clustering is a top-down approach, all objects start in one
cluster which is split recursively when moving down in the hierarchy. Only divisive
clustering will be considered in this thesis and it is presented in the following section.

Divisive clustering

At each step in the hierarchy, the divisive method splits up a cluster into two smaller
ones until all clusters contain only a single element [10, p. 253]. The decision of which
cluster to split at next step is based on the size of the clusters, the bigger clusters are
divided first. The hierarchy is built in n− 1 steps when the data contains n objects.
The method can, however, be stopped before reaching the last step, if larger clusters
are desired. An illustration of divisive clustering is shown in Figure 2.7.

A divisive clustering method starts from one large cluster containing all objects, the
first step of the method is to split the first cluster into two new clusters. In order
to get the best split of the large cluster, all possible divisions of the data may be
considered. Considering all possible divisions amounts to 2n−1 − 1 possibilities [10,
p. 254]. The number of possibilities grows exponentially fast and divisive clustering
could, therefore, be very computationally heavy. It is, however, possible to construct
divisive methods that do not consider all possible divisions. The split in each step
can, for instance, be done using the K-centroid algorithm explained in section 2.2.1,
where K = 2.

CHAPTER 2. THEORY 26

Figure 2.7: Divisive clustering. The method starts with one cluster containing all
single objects (a, b, c, d, and e) and proceeds with successive splits until all clusters
contain only one object. The hierarchy is built in four steps since the data contains
five objects.

Balancing clusters

K-centroid clustering which is used in the divisive clustering algorithm clusters the
data without respect to class labels. An unsupervised method is used to find underly-
ing structures that do not depend on class labels. During clustering, the assignment
of an object that is close to both cluster centers is not as reliable as an assignment
of an object which has a large difference in distance to both cluster centers. If the
objects have ground truth class labels, these labels can be used in order to find ob-
jects that possibly are wrongly assigned to a cluster. An object is possibly wrongly
assigned if the majority of the objects in the same class, according to the class labels,
are assigned to the other cluster.

To reduce the number of objects that are wrongly assigned to a cluster, some objects
can be re-assigned to the other cluster. First, the most impure of the two clusters
is found, this cluster is called the positive super cluster. The other cluster is called
the negative super cluster. The most impure cluster is defined as the cluster that
contains the most classes, i.e., the larger cluster. The classes of the positive super
cluster are then sorted in descending order of class size, a percentage of the objects
of the minority classes are moved to the negative super cluster [12]. This reduces the

CHAPTER 2. THEORY 27

noise in the positive cluster and it balances the two clusters in terms of the number
of classes and size.

2.3 Similarity measures

Similarity measures play an important role in how to measure the similarity of data-
features. The similarity measures that are going to be presented here are Earth
mover’s distance, Euclidean distance, and Cosine similarity. For these similarity
measures, two data-features are similar if the similarity measure is small. Bigger
values indicate that the data-feature is dissimilar.

2.3.1 Earth mover’s distance

Earth mover’s distance, EMD, is a similarity measure that computes the similarity
between two distributions. EMD measures the similarity by computing the mini-
mal amount of work that must be done to transform one distribution into another
distribution by moving ”distribution mass” around [13].

As described in A Metric for Distributions with Applications to Image Databases
[13] for two given distributions, one of the distribution can be seen as a mass of
earth properly spread in space. The other distribution can be seen as a collection of
holes in the same space. Let’s further assume that there are at least as much earth
needed to fill the holes. EMD will be the least amount of work that is needed to fill
the holes with earth. One unit of work is the same as multiplying one unit of earth
by a unit of (ground) distance [13]. The formula for computing the EMD-distance
is [13]:

EMD(x, yx, yx, y) =

∑
i∈I
∑

j∈J cijfij∑
i∈I
∑

j∈J fij
, (2.14)

where f is the flow, and c is the ground distance. Equation 2.14 is based on the
solution to the old translation problem [13]. In the translation problem, I is the set
of suppliers and J is the set of consumers, and the cost to take a unit of supply from
i ∈ I to j ∈ J is denoted as cij. For this problem, the set of flows fij that minimizes
the overall cost is wanted ∑

i∈I

∑
j∈J

cijfij, (2.15)

with the following constraints:

fij ≥ 0 i ∈ I, j ∈ J, (2.16)

CHAPTER 2. THEORY 28

∑
i∈I

fij = yj j ∈ J. (2.17)

∑
j∈J

≤ xi i ∈ I. (2.18)

Here xi denotes the total supply of supplier i, and yi is the total capacity of consumer
j. Constraint 2.16, only allows the supplier to ship supplies to the consumer and
not the other way around. Constraint 2.17 indicates that the consumer must fill up
all of their capacities. Finally, constraint 2.18 puts a limit on the supply that the
supplier can ship to its total amount.

The transportation problem can easily be used for matching between signatures or
distributions. Where one is defined as the supplier and the other is defined as the
consumer. The cost cij is then translated as the ground distance between element i
and element j of the two distributions. When the transportation problem is solved,
and when the optimal flow F is found, the earth mover distance will be defined as
in equation 2.14.

2.3.2 Euclidean Distance

The Euclidean distance is measured as the root of the square between two feature
vectors AAA and BBB, the formula can be seen below

‖AAA−BBB‖2 =

√∑
i

(ai − bi)2, (2.19)

where ai and bi are elements of AAA and BBB respectively. For two histograms, the
Euclidean distance measures the total difference or similarity between the bins.

2.3.3 Cosine similarity

The cosine similarity is another similarity measure that measures the similarity
between two vectors. Instead of looking at the magnitude, the cosine similarity
measures the cosine angle between two vectors to decide if they are similar or not5.
It is computed as

cos(θ) =
A ·B
‖A‖‖B‖

=

∑N
i=1 aibi√∑N

i=1 a
2
i

√∑N
i=1 b

2
i

, (2.20)

5https://en.wikipedia.org/wiki/Cosine_similarity

CHAPTER 2. THEORY 29

where ai and bi are elements of the vector AAA and BBB respectively.

2.4 Support Vector Machine (SVM)

Support vector machine, SVM, is a supervised machine learning algorithm. SVM
can be used for both classification and regression problems6. The method is used
on both linear and nonlinear data. In this section, we will only focus on SVM for
classification tasks on linearly separable data.

SVM is a classification method that finds a separating hyperplane for the labeled
data. If the data is linearly separable in the input space, then SVM can find a
hyperplane that separates the classes from each other [14, p. 4]. If the data is
not linearly separable in the input space, then a parameter can be passed to the
SVM that tells it to apply a nonlinear mapping to transform the data into a higher
dimension. In this new dimension, it tries to find a linear separating hyperplane. A
hyperplane can therefore always separate the data into two classes [15, p. 408]. The
separating hyperplane is found using support vectors and margins.

2.4.1 Linearly separable data

For the simplest case, let’s look at a two-class problem that is linearly separable. Let
D denote the data set which is given by (XXX1, y1), (XXX2, y2), ..., (XXX |D|, y|D|). Where XXX i

is the training tuples and yi is the associated class label. For a two class problem, yi
can take two values, let’s say that yi is either +1 or −1. To better understand the
problem, consider an example with two input attributes A1 and A2, see Figure 2.8.

As illustrated in Figure 2.8, the data can be separated by drawing a straight line
between the two classes. For this problem, there are multiple ways of drawing a line
that separates the classes, as can be seen in the same figure. Intuitively, one wants
to find the line that separates the classes the ”best”. The ”best” one is the one that
will have a minimum classification error on the test data. For 3-D data problems, the
best separating plane is wanted. If generalized to n dimensions, the best hyperplane
is desired. The term ”hyperplane” will be used to refer to the decision boundary
regardless of the dimension.

SVM is a method that finds the best separating hyperplane by searching for the
maximum marginal hyperplane. In Figure 2.9 two potential hyperplanes with their
respective margins are illustrated. The two hyperplanes classify the two classes

6https://en.wikipedia.org/wiki/Support_vector_machine

CHAPTER 2. THEORY 30

Figure 2.8: The two class problem in 2-D is linearly separable. As seen in this figure,
there are many possibilities to separate the classes from each other. Some of these
possibilities are drawn as lines.

Figure 2.9: Two possible separating hyperplanes with their respective margins. In
a) a hyperplane with a small margin, and in b) a hyperplane with a large margin.

correctly. However, the hyperplane that classifies the data the best need to be
considered. The hyperplane in Figure 2.9 b) is expected to be more accurate in
classifying new data, than the one with a small margin. Since the one with a larger
margin is more robust as it has the largest separation between the two classes.
During training, SVM will search for the hyperplane with the largest margin, that
is, the maximum marginal hyperplane, MMH [15, p. 409]. The length of the margin
is defined as the shortest distance from the MMH to the closest training tuple of
either class. Note that the length of the margin on both sides of the hyperplane is
equal [15, p. 410].

CHAPTER 2. THEORY 31

Mathematically the separating hyperplane can be written as

WWW ·XXX + b = 0, (2.21)

where WWW is a weight vector WWW = {w1, w2, ..., wn}, n is the number of attributes
(dimension), and b is a bias. Let’s again consider two-class problem in 2-D. The
training tuples in 2-D are XXX = (x1, x2), where x1 and x2 are values of the attributes
A1 and A2. Further, let’s think of b as an additional weight w0 [15, p. 410], equation
2.21 for the hyperplane can be rewritten as

w0 + w1x1 + w2x2 = 0. (2.22)

Points that lie above this plane will satisfy the following condition

w0 + w1x1 + w2x2 > 0. (2.23)

Points that lie below will satisfy

w0 + w1x1 + w2x2 < 0. (2.24)

Instead of defining the hyperplane, the ”sides” of the margin can be defined, after
some adjustments, as

H1 : w0 + w1x1 + w2x2 ≥ 1 for yi = +1, (2.25)

H2 : w0 + w1x1 + w2x2 ≤ −1 for yi = −1. (2.26)

Points that lie on or above H1 belongs to class +1, and points that lies on or below H2

belongs to class −1. The two equations above can be combined to get the following
[15, p. 411]

yi(w0 + w1x1 + w2x2) ≥ 1,∀i. (2.27)

The training tuples that lie on the hyperplanes H1 or H2 satisfy eq. 2.27 and are
called support vectors. In Figure 2.10 the support vectors are shown. The support
vectors are very hard to classify. However, they give much information regarding
the classification [15, p. 411] as they define the maximum marginal hyperplane.

The complexity of the support vector machine classifier is not described by the
dimension of the data, but by the number of support vectors [15, p. 412]. Thus,
SVM is less likely to suffer from overfitting than other methods. The support vectors
of this method is essential. If all other training tuples were removed and the model
trained again, the same separating hyperplane would be found. If a small number
of support vectors are found for high dimensional data, the SVM can still have a
good generalization performance.

CHAPTER 2. THEORY 32

Figure 2.10: The support vectors are shown in a thicker border. The support vectors
are the data tuples that lies on the margin.

Margin computation

As has been described above, SVM finds the hyperplane with the largest margin
between the different classes as the decision boundary. Let’s take the two-class
problem in 2-D again and say that XXX+ and XXX− lie on either side of the separating
plane, and on the margin. By definition, XXX+ and XXX− are the support vectors, and
they fulfill WWW ·XXX+ + b = 1 and WWW ·XXX− + b = −1. The distance between a point on
the margin and the hyperplane can be computes as

d =
g(XXX)

‖WWW‖
, (2.28)

where g(XXX) = WWW ·XXX + b, and ‖WWW‖ is the Euclidean norm of WWW . For computational
details on d see [16, p. 44]. The distance from any point on H1 to the separating
hyperplane is 1

‖WWW‖ . By definition, this distance is equal to the distance from any
point on H2 to the separating hyperplane. The total length of the margin can then
be computed as the distance between the two support vectors as:

M = d+ − d− =
g(x+)− g(x−)

‖WWW‖
=
WWW · xxx+ + b− (WWW ·XXX− + b)

‖WWW‖

=
1 + b− (−1 + b)

|WWW‖
=

2

‖WWW‖
, (2.29)

or by summing the distances from the hyperplane to the margin on either side. The
margin is inversely proportional to ‖WWW‖. SVM searches for the hyperplane with
maximum margin, thus by minimizing ‖WWW‖ the margin is maximized.

CHAPTER 2. THEORY 33

Multi-class classification

The support vector machine is designed for binary classification, classification with
only two classes [15, p. 430]. There are different approaches one can take to extend
these algorithms to allow for multi-class classification, classification with more than
two classes. One of these approaches is all-versus-all (AVA), sometimes also called
one-versus-one (OVO). In this approach, a classifier is learned for each pair of classes.

Given m classes, there will be m(m−1)
2

binary classifiers learned. During training of
the classifiers, data tuple from two classes is used. In other words, a pair of classes
are considered at a time. If an unknown tuple needs to be classified, the learned
classifiers votes [15, p. 431]. The unknown tuple is assigned to the class with most
votes.

2.5 Prediction of a verification template

In the previous sections, different methods for training and classifying data have
been discussed. But how to classify the test data has yet been mentioned. In the
following section, two different methods to label the test data based on which method
is used during training will be discussed.

2.5.1 Centroid based prediction

The centroid based prediction is used to classify the test data if the K-centroid
method has been used for classifying train data. The output of the K-centroid
method is labels of our training data and the K cluster centers. For a given test
data, the similarity between the K centers and the test data is computed, using any
of the similarity measures mentioned in section 2.3. The similarity measure that is
used during training is also used for prediction. When the similarity between test
data and the different centers have been computed, the test data is assigned to the
cluster with the smallest similarity measure. To put it in mathematical terms

min
k

[D(xTxTxT ,µµµk)]
K
1 , (2.30)

where xxxT is the test data, µµµ is the set of centers, and D is the chosen similarity
measure.

CHAPTER 2. THEORY 34

2.5.2 Prediction using SVM

Prediction using the trained SVM model is used if SVM has been used during train-
ing. The output from a trained SVM model is the support vectors, and they define
the MMH. Using some mathematical techniques, the MMH can be rewritten to
define the decision boundary (for computational details see [15, p. 412])

d(XXXT) =
l∑

i=1

yiαiXXX iXXX
T + b0, (2.31)

where yi is the class label of the support vector XXX i, XXX
T is a test tuple, αi and

b0 are parameters that can be determined during the training of SVM, or by an
optimization method [15, p. 412] [16, p. 43].

For a given test data XXXT in equation 2.31, the sign of the result is checked. The
sign decides which side of the hyperplane the test data falls on, and which class the
test data belongs to. If it is positive, then the test data is on or above the MMH. If
the sign is negative, then it falls on or below the MMH.

Chapter 3

Dataset and Tools

In this chapter, the datasets and tools used in this project are introduced. Section
3.1 describes the general structure of a database at Precise Biometrics and the
details of two datasets that are used as a basis for the evaluations in chapter 5. A
presentation of ground truth for the mentioned datasets is also given. The tools, e.g.,
the programming language and libraries used in the implementation of the proposed
setups, are introduced in section 3.2.

3.1 Data

A fingerprint image database at Precise Biometrics is constructed using volunteers
who provide samples from multiple fingers. The volunteers typically provide multiple
samples both for enrollment and verification for each finger. Multiple samples for
enrollment are captured in case of using a small sensor in order to cover the whole
fingerprint. Each sample has a label with information about which person and which
finger the sample comes from, the samples are also labeled according to the order in
which the samples are captured.

The experiments in this thesis are performed on one dataset which contains large
images. The dataset is described in detail in the following section.

Dataset

The dataset consists of fingerprint images from 111 persons. From each person,
images from six fingers are captured. The captured fingers are the thumb, index

35

CHAPTER 3. DATASET AND TOOLS 36

finger and middle finger from both left and right hands. There are 72 captured
images from each finger. In the experiments, 16 images from each finger are used,
resulting in 111 · 6 · 16 = 10656 images in total. Each person also provided 10
verification images for each captured finger, resulting in 111·6·10 = 6660 verification
templates in total. The size of each image is 192 × 192 pixels, which is considered
as rather large images.

Ground truth

For each database, a text file containing information about how the enrolled samples
overlap each other, and how the verification samples overlap the enrolled samples
can be generated. The information about overlap is used as ground truth when
evaluating an experiment in this thesis.

An example of a generated text file containing ground truth is shown in Figure 3.1.
The ground truth in this example is for one finger which has 7 enrolled samples.
Each row in the text file gives the ground truth for one sample, the samples are
counted from 0. The first column (from left) is the image file path. Columns 3-5
are information about how each sample is aligned in a multi-template, the multi-
template consists of all enrolled samples from one finger. Each sample in the multi-
template is assigned a translation, (dx, dy), and a rotation, θ. The last columns are
the overlapping area between all samples, the overlap is represented as a percentage
of the sample area. For example, the first row and the seven last columns says that;
the overlap between sample 0 and itself is 99%, the overlap between sample 0 and
sample 1 is 4%, there is no overlap between sample 0 and sample 2 or sample 3, the
overlap between sample 0 and sample 4 is 83%, the overlap between sample 0 and
sample 5 is 27%, and the overlap between sample 0 and sample 6 is 70%. Following
rows can be read in the same way.

Figure 3.1: Example of generated ground truth. The first column is the image
path, columns 3-5 are alignment information and the last 7 columns are overlap
information.

CHAPTER 3. DATASET AND TOOLS 37

In this thesis, the overlap data is used to calculate a score in order to evaluate the
experiments. How to calculate scores is described in section 4.5.

3.2 Tools

The programming language and libraries that are used for our proposed setup and
analysis is going to be introduced briefly in this section.

3.2.1 Python

Python is an interpreted high-level programming language for general-purpose pro-
gramming. It features dynamic semantics system and has automatic memory man-
agement. Python also supports multiple programming paradigms which includes
object-oriented, functional and procedural programming. It also supports modules
and packages and has a large standard library1.

3.2.2 OpenCV

OpenCV (Open Source Computer Vision Library) is, as the name implies, an open
source computer vision and machine learning software library. There are more than
2500 optimized algorithms which is a set of both classic and state-of-art algorithms
used for computer vision and machine learning. The algorithms that the library pro-
vides can be used for tasks like face detection and recognition, object identification
and finding similar images from a database. OpenCV has C++, Python and Java
interfaces and supports Windows, Linux, Android and Mac OS2.

3.2.3 Scikit-learn

Scikit-learn is a free software machine learning library for Python. It has various
machine learning applications such as classification, regression and clustering algo-
rithms. Such algorithms are support vector machines, random forest and k-means.
It is designed to operate with Python’s numerical and scientific libraries, NumPy
and SciPy3.

1https://www.python.org/doc/essays/blurb/
2https://opencv.org/about.html
3https://en.wikipedia.org/wiki/Scikit-learn

CHAPTER 3. DATASET AND TOOLS 38

3.2.4 SciPy

SciPy is a open source library for Python. It is used for scientific computing and
technical computing4. The modules in this library is for optimization, linear algebra,
signal- and image processing and many more.

4https://en.wikipedia.org/wiki/SciPy

Chapter 4

Experimental setup

4.1 Introduction

The main objective of this thesis is to investigate whether it is possible to apply
clustering on the database provided by Precise Biometrics, to reduce the searching
time. The goal is to cluster the database into a smaller subset by looking at the
property of each finger. Hence, if a person is trying to verify her-/himself, the system
will search through only one of these subsets and not the whole database to find a
possible match.

Properties that distinguishes one finger from another is desirable. It can be global
ridge flow patterns, local ridge characteristics, intra-ridge details, and scars on the
finger. These properties are called features which the clustering makes use of. If
there’s a variety of features and they are distinct, the clustering will hopefully be
better, as it can cluster fingers with similar features together. In such a case, the
variance between two clusters will be high, since the clusters contain fingers of
different characteristics. Apart from distinct features, an appropriate similarity
measure is also needed. Since it measures the similarity between different features
to decide whether they are similar or not. The features that are used for our proposed
setup is frequency histograms, orientation histograms, and bag-of-words histograms.
The corresponding similarity measures that are going to be tested are Earth mover’s
distance, Euclidean distance, and Cosine similarity. The purpose is to find the best
combination of feature and similarity measure.

The main clustering method used in this thesis, for clustering the features, is K-
centroid. There are different ways of applying clustering to a set of features. The ones
that are investigated in this project is; to cluster the features in K clusters ”directly”;

39

CHAPTER 4. EXPERIMENTAL SETUP 40

and through hierarchical clustering which uses a tree-like clustering process. Divisive
clustering is an approach in hierarchical clustering which is going to be tested.

In this chapter, the overall strategy and how the experiment is setup for analysis is
described. It is organized as follows; in section 4.2, how the features are generated
is described. In section 4.3, the general steps in K-centroid is introduced, and where
the different similarity measures are taken from is also presented. In section 4.4,
how to use OpenCv’s support vector machine algorithm is explained. In the last
section, how the performance of our proposed setup is evaluated is described.

4.2 Features

In this section, the main steps of generating the different feature histograms needed
for our research is provided.

4.2.1 Frequency and Orientation histograms

The frequency and orientation histograms used for our research are provided by
Precise Biometrics. They are provided as feature vectors, where each element are
bins in the histogram.

4.2.2 Bag-of-Words

In our work, OpenCV’s implementation of Bag-of-words has been used. The steps
to generate a bag-of-word representation for the images in the database can be
summarized as follows:

1. Set up the BoW, by initializing the number of words.
cv2.BOWKMeansTrainer(nbr words)

For this experiment: nbr words = 1000, 5000, and 10000

2. Initialize the detector. Use either the GFTT or the SIFT detector. Decide on
the number of keypoints that are going to be detected.
detector = cv2.GFTTDetector create(maxCorners = nbr keypoints)

detector = cv2.xfeatures2d.SIFT create(nfeatures = nbr keypoints))

For this experiment: nbr keypoints = 50, 100, 250, 200 and 250

CHAPTER 4. EXPERIMENTAL SETUP 41

3. Initialize the SIFT descriptor. The SIFT descriptor is always used in combi-
nation with different detectors.
descriptor = cv2.xfeatures2d.SIFT create()

4. (optional) Add image processing to the dataset if needed.

5. Detect keypoints in the image and compute the descriptor for the keypoints.
Add the descriptor to the BoW trainer.
kpts = detector.detect(img,None)

, feature = descriptor.compute(img, kpts)

bow trainer.add(np.float32(feature))

6. Train the BoW trainer to get the vocabulary.
vocab = bow trainer.cluster().astype(feature.dtype)

7. Set up the BoW descriptor that is used to find the subset of words for each
image in the dataset.
bow descr = cv2.BOWImgDescriptorExtractor(descr,cv2.BFMatcher(cv2.NORM L2))

bow descr.setVocabulary(vocab)

8. Compute the BoW-features for each image in the dataset. The returned fea-
tures are a set of histograms. Each histogram is a subset of words in the
vocabulary.
kps = detector.detect(img,None)

bow decr.compute(img, kps)

9. Weight the bins in the BoW-histograms using the tf-idf term.

BoW vocabulary

In the OpenCV implementation for BoW, the BoW-trainer uses K-means clustering
to obtain the vocabulary. If a vocabulary of 500 words is wanted, then a K-means
clustering with 500 clusters is trained. The center of each of these clusters is a
word in the vocabulary. The K-means implementation is using a mean-centroid
update. That is, for each iteration the centers are updated by taking the mean of
the data points in each cluster. The distance metric used in this implementation is
the Euclidean distance.

CHAPTER 4. EXPERIMENTAL SETUP 42

4.3 K-centroid

When the features have been generated, it is time to perform clustering on the data
using the K-centroid method. The implementation of the K-centroid is done by the
authors, and the main steps can be summarized as follows:

1. Initialize the K centers by randomly select K of the data points as centers.

2. Cluster all data points to one of the K clusters by assigning the data point to
the nearest cluster center. Use a suitable similarity measure.

3. Update the center of each cluster.

4. Check if the old centers (from the last iteration) is equal to the new centers.
If they are equal stop the clustering otherwise continue to step 2.

The main steps for the K-centroid algorithm can be seen above. In step two, the
data points are assigned to one of the K clusters. The similarity measure that is
used is Earth mover’s distance, Euclidean distance, or Cosine similarity. These three
similarity measures are tested on the frequency feature. For bag-of word feature, the
last two similarity measures are used. The similarity measure used for the orientation
feature is EMD.

The functions for computing the Euclidean distance and Cosine similarity distance
are taken from the SciPy library. With the following code the two similarity mea-
sures are accessed:
scipy.spatial.distance.euclidean(hist1,hist2)

scipy.spatial.distance.cosine(hist1,hist2)

The method for computing EMD is taken from openCVs c++ implementation:
EMD(hist1, hist2, distType = cv2.CV DIST L2)

All the code in this thesis is written in Python, but OpenCV’s function for EMD is
in c++. That’s why a Python binding had to be done to be able to use this function.

4.3.1 Hierarchical clustering

Divisive

The hierarchical divisive clustering method is implemented by dividing the cluster
in the next step of the hierarchy using the K-centroid clustering method. The K-
centroid clustering method clusters a cluster in the hierarchy into two new clusters.
The method is interrupted before it reaches its final state where each cluster contains

CHAPTER 4. EXPERIMENTAL SETUP 43

only one histogram. When to stop is decided using a pre-defined threshold related
to the cluster sizes. The method is interrupted when the size of the clusters, which
have not been divided, is smaller than the pre-defined threshold.

The clustering of the two new clusters after each step in the hierarchy can be done
in three alternative ways. The first alternative is to label the data only based on the
clustering from the K-centroid algorithm. The second alternative is to balance the
clusters (section 2.2.2) after the clustering, label the data according to the modified
clusters and then train an SVM classifier using the modified clusters. The third
alternative is to to train an SVM classifier using the clusters obtained from the
clustering. The resulting hierarchy using the divisive clustering method is obtained
by the following steps:

1. Cluster all data points into two clusters.

2. Find the largest cluster which has not yet been divided.

3. Cluster the largest cluster into two new clusters.

4. (Optional) Balance the clusters.

5. (Optional) Train a SVM classifier using the labels obtained from the clustering
or the labels obtained from the balancing.

The chosen steps are iterated until the size of all clusters to be divided are smaller
than the pre-defined threshold. The first alternative iterates step 2 and 3. The
second alternative iterates step 2-5. The last alternative iterates step 2,3, and 5.

4.4 Support vector machine

The support vector machine classifier implementation is taken from the Scikit-learn
library. The main functions that are used can be seen below:

Initializing the SVM by passing the argument ’ovo’ for multi-class classification and
specifying that the data is linearly separable
clf = svm.SVC(decision function shape=’ovo’, kernel=’linear’)

Train the classifier
clf.fit(data, labels)

Prediction or classification of data is done by
clf.predict(test data)

CHAPTER 4. EXPERIMENTAL SETUP 44

4.5 Performance measure

Performance measures are used in order to evaluate the performance of each experi-
ment. In this thesis, two different scores will be calculated and used as performance
measures. Before describing how to calculate the scores, some notation regarding
enrollment samples and verification samples are introduced.

Notation

The set of enrollment samples for a finger, n = 1 . . . N where N is the number of
captured fingers, is denoted

Tn = {Tn,1, . . . ,Tn,M},

where M is the number of enrollment samples for each finger. The set which contains
the sets of enrollment samples for all captured fingers is denoted

T = {T1, . . . TN}.

This is the dataset that is clustered using some of the clustering methods described
in section 2.2.

The set of verification samples for a finger, n, is denoted

In = {In,1, . . . , In,P},

where P is the number of verification samples for each finger. The set which contains
the sets of verification samples for all captured fingers is denoted

I = {I1, . . . IN}.

A verification sample, p, captured from one finger, n, creates a pair with the set of
enrollment samples captured from the same finger,

(Tn, In,p),

where p = 1 . . . P .

The clustering methods presented in section 2.2 clusters the data into K clusters,
these clusters form a set of clusters

C = {C1, . . .CK}.

CHAPTER 4. EXPERIMENTAL SETUP 45

Each verification sample is assigned, one by one, to one of the clusters in C. The
enrollment samples in the chosen cluster which are captured from the same finger
as the assigned verification sample is found. Two scores based on the information
from the found enrollment samples are calculated. The first score is based on the
overlap between the found enrollment samples and the verification sample, this score
is denoted So. The second score is based on if any enrollment samples were found
or not, this score is denoted Sf .

Score So

This score is an average score based on how much each verification sample overlaps
all enrollment samples from the same finger which are assigned to the same cluster
as the verification sample. The overlap is expressed in percent of the verification
sample area. The overlap between two samples can be seen as the possibility to
match. If the overlap is large, the possibility to make a correct match decision is
large while it is harder to make a correct decision if the overlap is small.

For each sample pair, (Tn, In,p), the score based on the overlap between the verifica-
tion sample and all enrollment samples will be calculated as,

S(Tn, In,p) = 1−
M∏
m=1

1− Tn,m ∩ In,p
100

, (4.1)

where the intersection is the overlap between the verification sample, In,p, and one
of the enrollment samples, Tn,m. If the enrollment sample, Tn,m, is assigned to a
different cluster than the verification sample, the intersection is 0. The term inside
the product will, therefore, be equal to 1 and it will not affect the score.

The scores of all sample pairs, (Tn, In,p), are added together and then divided by the
total number of captured verification samples,

So =
1

N · P

N∑
n=1

P∑
p=1

S(Tn, In,p). (4.2)

The score is bounded by 0 ≤ So < 1. A higher score corresponds to a better
performance in the experiment.

CHAPTER 4. EXPERIMENTAL SETUP 46

Score Sf

This score is a performance measure describing how many of the verification samples
that are correctly assigned to a cluster. Here, correctly assigned means that the
chosen cluster should contain at least one of the enrollment samples captured from
the same finger as the verification sample.

If none of the enrollment samples, which are in a pair with the verification sample,
are found in the cluster to which the verification sample is assigned, the score of
that sample pair is 0. If at least one enrollment sample, which is in a pair with the
verification sample, is found in the cluster that In,p is assigned to, the score of that
sample pair equals 1. This is, for each pair of samples (Tn, In,p), mathematically
expressed as

(∀T ∈ Tn : T /∈ Ck) ∧ In,p ∈ Ck =⇒ S(Tn, In,p) = 0,

(∃T ∈ Tn : T ∈ Ck) ∧ In,p ∈ Ck =⇒ S(Tn, In,p) = 1,
(4.3)

where Ck is the cluster which the verification template is assigned to and k = 1 . . . K.

The scores of all sample pairs are added together and then divided with the total
number of captured verification samples,

Sf =
1

N · P

N∑
n=1

P∑
p=1

S(Tn, In,p). (4.4)

The score is bounded by 0 ≤ Sf ≤ 1. A higher score corresponds to a better
performance in the experiment.

Chapter 5

Result

The experimental results are presented in this chapter. First, a visualization of the
data represented by the different features is presented in section 5.1. Performance of
the experiments made when using frequency and orientation features are presented
in section 5.2. In section 5.3, performance of the experiments performed when using
the bag-of-words feature is presented. An example of three BoW histograms and
the similarity between them are also presented in section 5.3. Finally, some images
from fingers that often seem to have low performance are presented.

5.1 Visualization of the data

Since it is hard to picture the data in a very high dimensional space, a simple
visualization is done. The visualization illustrates how the data is distributed in the
high dimensional space. For this visualization, all data points are considered to be in
one large cluster. First, the centroid of the cluster is found. The similarities between
the centroid and all other data points are then computed. The data is visualized
using the frequency feature, the orientation feature, and the BoW feature generated
with the GFTT detector.

Figure 5.1a shows the visualization of the data using the frequency feature. The
visualization of the data using the orientation feature is shown in Figure 5.1b. Figure
5.2 shows the visualization of the data using the BoW feature generated with the
GFTT detector. The x-axis measures the similarity from the centroid, which can
be viewed as a radius from the center. The y-axis is the logarithm of the number
of data points which lie inside or on the sphere which is spanned by the similarity
radius.

47

CHAPTER 5. RESULT 48

(a) Frequency feature (b) Orientation feature

Figure 5.1: Visualization of the data using the frequency feature (a) and the ori-
entation feature (b). Both of these features have been clustered using the EMD
similarity measure

Figure 5.2: Visualization of the data using the bag-of-words feature generated with
GFTT detector. The BoW histograms were produced by a combination of 500
keypoints and a vocabulary containing 1000 words.

5.2 Results from frequency and orientation fea-

tures

Performances of the experiments made when using the frequency features and the
orientation features are presented in this section. Section 5.2.1 presents the perfor-
mance obtained using direct clustering. The performance obtained using divisive
clustering is presented in section 5.2.2. For comparison, section 5.2.3 presents the
performance of a method for predicting the label of a verification template without
using clustering.

CHAPTER 5. RESULT 49

5.2.1 Direct clustering

The K-centroid clustering method is applied using different number of clusters on
both orientation and frequency features, called direct clustering. The number of
clusters varies from 2− 69 clusters. The result of comparing the frequency features
clustered with different similarity measures is shown in Figure 5.3. A comparison
between clustering the frequency feature combined with EMD and the orientation
feature combined with EMD is presented in Figure 5.4. In table 5.1, the best scores
obtained from direct clustering are presented. The results shows that the frequency
feature in combination with Euclidean distance performed the best.

Figure 5.3: Clustering of frequency features into 2-69 clusters using different simi-
larity measures. The blue line shows clustering with EMD distance, the red line is
clustering with Cosine similarity, finally, in yellow the Euclidean distance clustering
is plotted. In this figure, it can be seen that for frequency feature, the Euclidean
distance measure has a performance higher than the two other measures.

CHAPTER 5. RESULT 50

Figure 5.4: Comparing clustering of frequency and orientation features, using EMD
similarity measure. Using the frequency feature as a representation of the images has
better performance than representing the images using the orientation feature. The
blue line in the figure shows clustering with frequency features. In red is clustering
using orientation features.

Table 5.1: The best scores obtained by direct clustering of the frequency features is
shown in the following table.

Euclidean distance
Feature/Score So Sf
Frequency 0.3624 0.5275

5.2.2 Divisive clustering

In direct clustering, the cluster sizes of the different clusters may vary a lot. Thus,
divisive clustering is applied on both orientation and frequency features. The re-
sult of comparing frequency features clustered with different similarity measures and
orientation features clustered with EMD can be seen in Figure 5.5. In Figure 5.6,
a comparison between clustering using SVM, balancing in combination with SVM,
and without SVM can be seen. In table 5.2, the best scores obtained from divi-
sive clustering are presented. The frequency feature in combination with Euclidean
distance without balancing and SVM performed the best.

CHAPTER 5. RESULT 51

Figure 5.5: Clustering using the divisive approach to compare the different similarity
measures for the frequency feature. The performances are plotted as dots where the
blue dots represent EMD, red is for Euclidean distance, yellow dots are for Cosine
similarity, and finally, in green are the performance for clustering orientation features
using EMD.

Figure 5.6: Clustering using the divisive approach with Euclidean distance on the
frequency feature, with SVM and SVM combined with balancing, and without SVM.
In blue dots are frequency features clustered with SVM and balancing, in yellow only
SVM was used, and in red no SVM or balancing were applied.

CHAPTER 5. RESULT 52

Table 5.2: The best scores obtained from divisive clustering. Using the frequency
feature with Euclidean distance without balancing and SVM showed the best per-
formance.

Euclidean distance
Feature/Score So Sf
Frequency 0.3406 0.5085

5.2.3 Without clustering

An experiment which predicts the labels of the verification templates without clus-
tering was performed. Instead of clustering the data and label it according to the
clusters, the data is manually labeled according to the person from which the tem-
plates are captured. The templates are captured from 111 persons in total, it will,
therefore, be 111 different labels. Each person has one label and is considered as one
cluster. The verification templates are predicted using two methods. First, an SVM
classifier is used. The second method computes the centroids of the clusters. The
verification template is assigned to the most similar centroid. The scores obtained
from these two methods are shown in table 5.3.

Table 5.3: Scores obtained from two methods for prediction of verification templates
without using clustering.

SVM Centroids
Feature/Score So Sf So Sf
Frequency 0.06892 0.07072 0.04124 0.04264

5.3 Results from bag-of-words features

Performances of the experiments made when using the BoW feature combined with
SIFT and GFTT are presented in this section. The performances, that the decision of
which detector and similarity measure to use is based on, is presented in section 5.3.1.
The performance obtained using divisive clustering is presented in section 5.3.2. For
comparison, section 5.3.3 presents the performance of a method for predicting the
label of a verification template without using clustering. Some examples of BoW
histograms and the similarities between them are presented in section 5.3.4. Some
images from fingers that often get low performances are presented in section 5.3.5.

CHAPTER 5. RESULT 53

5.3.1 Detector and similarity measure evaluation

An evaluation of the detectors, the similarity measures and the use of weighted and
non-weighted features were made. The purpose of the evaluation is to chose a detec-
tor combined with a similarity measure that would achieve the best performance in
the subsequent experiments. A vocabulary containing 5000 words and 200 keypoints
from the images are used in this evaluation. A comparison between the scores ob-
tained, when clustering the features using the Euclidean distance into two clusters,
using the SIFT and GFTT detectors both when weighting the features and when
not weighting them is shown in table 5.4. Table 5.5 shows a comparison of clustering
weighted features, generated with SIFT and GFTT detectors, into two clusters with
the cosine similarity.

Table 5.4: Comparing SIFT and GFTT detectors by clustering the features,
weighted and non-weighted, into two clusters using Euclidean distance.

Weighting No weighting
Detector/Score So Sf So Sf
SIFT 0.8426 0.9725 0.8484 0.9667
GFTT 0.8515 0.9659 0.9287 0.9898

Table 5.5: Comparing features generated with the SIFT and the GFTT detectors,
by clustering the features, weighted and non-weighted, into two clusters using cosine
similarity.

Weighting
Detector/Score So Sf
SIFT 0.8700 0.9669
GFTT 0.8715 0.9737

5.3.2 Divisive clustering

In this section, bag-of-words features are generated with the GFTT detector and the
SIFT descriptor. All BoW features are weighted. The divisive clustering approach
using cosine similarity is applied to the BoW features. The divisive clustering is
done without balancing and without the use of an SVM. The number of divisions
is 68. In Figure 5.7, the scores obtained when clustering features generated from a
vocabulary of 5000 words and different numbers of keypoints can be seen. In Figure
5.8, the scores obtained when clustering features generated with different numbers of

CHAPTER 5. RESULT 54

words and 100 keypoints are presented. Table 5.6 presents the scores obtained when
clustering features generated by a vocabulary containing 1000 words in combination
with 250 and 500 keypoints. Figure 5.9 presents the overlap score when clustering,
using cosine similarity on BoW features generated with the GFTT detector, 500
keypoints, and 1000 words in the vocabulary, into a varied number of clusters. Both
clustering using SVM and SVM in combination with balancing are shown.

Figure 5.7: Clustering BoW features generated with the GFTT detector using the
divisive approach. The scores are obtained by using one vocabulary in combination
with different numbers of keypoints.

Table 5.6: Comparing the scores obtained by using a vocabulary of 1000 words
combined with 250 and 500 keypoints.

Keypoints So Sf
250 0.3975 0.5615
500 0.4303 0.5856

CHAPTER 5. RESULT 55

Figure 5.8: Clustering BoW features generated with the GFTT detector using the
divisive approach. The scores are obtained by using a set number of keypoints in
combination with different sizes of the vocabulary.

Figure 5.9: Clustering using the divisive approach with cosine similarity on the BoW
feature. In this figure the performance for clustering with SVM, and clustering with
SVM combined with balancing can be seen. In blue dots are the performance with
SVM, in red performance for SVM combined with balancing, in yellow are no SVM,
and in green is only balancing.

CHAPTER 5. RESULT 56

5.3.3 Without clustering

An experiment which predicts the labels of the verification templates without clus-
tering was performed, details are described in section 5.2.3. The data is manually
labeled according to the persons from which the templates are captured, resulting in
111 different labels. Each person has one label and is considered as one cluster. The
verification templates are predicted using an SVM classifier and using the centroids
of the clusters. The scores obtained from these two methods are shown in table 5.7.

Table 5.7: Scores obtained from two methods for prediction of verification templates
without using clustering.

SVM Centroids
Feature/Score So Sf So Sf
BoW 0.1607 0.1644 0.1180 0.1209

5.3.4 Example of BoW histograms

In order to better understand the results obtained when clustering BoW features,
some examples of BoW histograms and distances between them is presented. Three
images were chosen for this visualization which can be seen in Figure 5.10. Image (a)
and (b) is captured from the same finger and person. The overlap between (a) and
(b) is 91%. Image (a) and (c) is captured from different persons and are, therefore,
not overlapping each other.

Features obtained from two vocabularies of different sizes represent each image. The
first feature is obtained from 100 keypoints and a vocabulary containing 10000 words,
the resulting BoW histogram is very sparse. The second feature is obtained from 500
keypoints and a vocabulary containing 1000 words, the resulting BoW histogram is
denser.

Sparse BoW histograms

Bag-of-words histograms created by finding a small number of keypoints in an image,
and using a large vocabulary are sparse. In this example, 100 keypoints and a
vocabulary containing 10000 words were used, i.e., at most 100 different words are
found. Since each bin represents a word, at most 100 bins are filled with a value.

Figure 5.11 shows the BoW histogram corresponding to image (a). The BoW his-
togram corresponding to image (b) can be seen in image 5.12. The histogram in

CHAPTER 5. RESULT 57

(a) (b) (c)

Figure 5.10: Image (a) and image (b) are from the same finger and their overlap is
91% according to the ground truth. Image (a) and (c) are from different fingers and
do not overlap.

Figure 5.13 corresponds to image (c). The mentioned histograms are weighted BoW
histograms. Images that overlap each other are expected to have more similar BoW
histograms than images that do not overlap.

The similarity between the BoW histograms for image (a) and image (b) and the
similarity between the BoW histograms for image (a) and image (b) are calculated
using cosine similarity. The similarities are shown in table 5.8.

Figure 5.11: BoW histogram for image (a). 100 keypoints and 10000 words.

CHAPTER 5. RESULT 58

Figure 5.12: BoW histogram for image (b). 100 keypoints and 10000 words.

Figure 5.13: BoW histogram for image (c). 100 keypoints and 10000 words.

CHAPTER 5. RESULT 59

Table 5.8: Similarities obtained by using cosine similarity, 100 keypoints and a
vocabulary containing 1000 words.

Histograms Cosine similarity
(a),(b) 0.7163
(a),(c) 1.0

Dense BoW histograms

Bag-of-words histograms created by finding a large number of keypoints in an image
and using a small vocabulary are denser. In this example, 500 keypoints and a
vocabulary containing 1000 words were used, i.e., at most 500 different words are
found. Since each bin represents a word, at most 500 bins are filled with a value.

Figure 5.14 shows the BoW histogram corresponding to image (a). The BoW his-
togram corresponding to image (b) can be seen in image 5.15. The mentioned his-
tograms are weighted BoW histograms. The histogram in Figure 5.16 corresponds
to image (c).

The similarity between the BoW histograms for image (a) and image (b) and the
similarity between the BoW histograms for image (a) and image (b) are calculated
using cosine similarity. The similarities are shown in table 5.9.

Table 5.9: Similarities obtained by using cosine similarity, 500 keypoints and a
vocabulary containing 1000 words.

Histograms Cosine similarity
(a),(b) 0.2111
(a),(c) 0.9928

CHAPTER 5. RESULT 60

Figure 5.14: BoW histogram for image (a). 500 keypoints and 1000 words.

Figure 5.15: BoW histogram for image (b). 500 keypoints and 1000 words.

CHAPTER 5. RESULT 61

Figure 5.16: BoW histogram for image (c). 500 keypoints and 1000 words.

5.3.5 Finger scores

An example of templates captured from two fingers that often seem to have few
correctly predicted verification templates is presented in this section. Both pre-
sented fingers have 0 correctly predicted verification templates when using divisive
clustering, without SVM and balancing, in combination with cosine similarity.

Figure 5.17 shows an example of an enrollment template and a verification template
which are captured from the same finger. Image (a) is the enrollment template
which represents the overall appearance of the 16 captured enrollment templates.
Image (b) is the verification template which represents the overall appearance of the
10 captured verification templates which are used for prediction. The verification
templates show a lot of creases while the enrollment templates do not.

Figure 5.18 shows the overlap ground truth for another finger. The 16 captured en-
rollment templates overlap the captured verification templates a little. The overlap
is in many cases 0%.

CHAPTER 5. RESULT 62

(a) (b)

Figure 5.17: Image (a) is an enrollment template and image (b) is a verification
template. Both are captured from the same finger.

Figure 5.18: Overlap ground truth for 16 enrollment templates and 10 verification
templates captured from the same finger.

Chapter 6

Discussion and future work

In this chapter, the experimental setup and the results are discussed. Future work
that may improve the performance is also discussed and a conclusion is presented.

6.1 Discussion

6.1.1 Experimental setup

It should be mentioned that training a model was very time-consuming. Training a
model for frequency and orientation features using the EMD distance took days to
be done. One can, therefore, imagine how many days or even weeks it took to get
the optimal model. A better implementation of the EMD distance would, therefore,
be preferred. Models trained with the two other similarity measures were faster.
However, it still took half a day to do a full run. To train a vocabulary for the bag-
of-words model was also very time-consuming. The time for training a vocabulary
increases as the size of the vocabulary and number of detected keypoints increases.
Instead of making the vocabulary using the whole database, one could choose fingers
that generally represents the whole database. The challenge with a smaller dataset
is that fewer keypoints are available when generating the vocabulary, which could
affect the possibility of generating a large vocabulary. If a larger number of keypoints
were found in each image to avoid this problem, the keypoints get less descriptive.
Less descriptive keypoints may generate a vocabulary containing words describing
noise.

63

CHAPTER 6. DISCUSSION AND FUTURE WORK 64

6.1.2 Results

Visualization of data

In Figure 5.1, the frequency and orientation features have been clustered into one
cluster. Thereafter, the distances from that center to all other data points was
calculated. The distance can be seen in Figure 5.1. This figure visualizes how the
feature points are distributed in space. It shows whether the points are all enclosed
inside a globe, or if they are spread out in space. As can be seen in Figure 5.1, the
feature points for both frequency and orientation seem to be confined inside a globe.
It can be understood that the points are close to each other, which in turns means
that clustering could be difficult. Considering the fact that they already seem to
belong to one big cluster.

Comparing the range in the x-axis (distance from center) for the two plots, a) and b),
one can see that the radius varies from 0 to 800 for orientation, and from 0 to 1400
for frequency. The variation for frequency features is bigger than for orientation,
which implies that the orientation features are more centered together inside the
globe. Consequently, it means that the orientation feature is harder to separate into
different clusters.

The distance from the center to all other points using BoW-features can be seen
in Figure 5.2. The cosine similarity measures the cosine angle between two feature
vectors instead of the magnitude. That’s the reason why the range in the x-axis
ranges from 0 to 1. The distance from the center, for BoW-features, are more
distributed across the whole range than for orientation and frequency features. This
could imply that BoW features potentially are easier to cluster than the two other
features.

Frequency and orientation feature

A plot of clustering the frequency feature into 2-69 clusters with different similarity
measures can be seen in Figure 5.3. Clustering using the Euclidean distance showed
the best performance, even though EMD might be a better method to use considering
that the frequency histogram can be seen as a distribution. The EMD compares the
similarity between two histograms, by how much work must be done to transform
one of the distribution to the other one. The Euclidean distance, on the other hand,
compares the bins of two histograms and computes the Euclidean norm between the
histograms. With that said, the EMD method is a better method for these types of
histograms. However, the Euclidean distance was chosen in the proceeding analysis
instead of the EMD, as it had better performance and was computationally faster.

CHAPTER 6. DISCUSSION AND FUTURE WORK 65

The comparison between the orientation and the frequency feature is seen in Figure
5.4. The features have been clustered using EMD similarity measure. The perfor-
mance for the frequency feature is better than the orientation feature. Out of the
three similarity measures compared in Figure 5.3, EMD was the one with the lowest
performance measure. Orientation features clustered using EMD was even worse.
Hence, in the proceeding analysis, the orientation feature won’t be considered.

Even in the divisive clustering, where cluster sizes are approximately equal, the
Euclidean distance performed the best for the frequency feature, see Figure 5.5.
Divisive clustering is applied as the cluster sizes may vary a lot when direct clustering
is performed. The performance scores are therefore not trustworthy and can be
misleading since clusters with a bigger size give better scores as many fingerprints
can be clustered together. To get a better foundation for decision making, divisive
clustering must be done to get even clusters.

The same as in the case of direct clustering, divisive clustering using EMD has a
performance score below the performance of the two other similarity measures. In
the same figure, the performance for the orientation feature is still bad compared to
the frequency feature. Thus, this proves, again, that Euclidean distance combined
with frequency features is a good combination for proceeding experiments.

When a combination of feature and similarity measure has been chosen, further
improvements are desired. In this project, SVM and SVM combined with balancing
are two improvements that are tested. The result can be seen in Figure 5.6. As
can be seen, using the two methods mentioned above, no improvements are made.
The performance is the same for all three methods. SVM is applied to improve the
verification stage when a verification template needs to be labeled. The SVM finds
the separating hyperplane between the different classes, when new data need to be
labeled, all the learned classifiers votes. The new data is assigned to the class with
most votes. Compared to predicting a new label using the centroid-based method,
where new data is assigned to the cluster with the smallest similarity. Balancing, on
the other hand, is applied to get approximately equal cluster sizes for all clusters. To
conclude the above, in order to further improve the performance; SVM and balancing
are applied. However, for the frequency feature, there are no improvements.

The frequency feature has been the best feature choice so far. This is consistent with
the result from the visualization in section 5.1, where the orientation feature was
less probable of being sufficiently good clustered than the frequency feature. The
suitable combination of a method to use during clustering is; clustering with the
divisive approach using Euclidean distance, without SVM, and without balancing.
This combination showed the best performance, and the scores for this combination
is So = 0.3406 and Sf = 0.5085, Table 5.2. Comparing these scores with the scores

CHAPTER 6. DISCUSSION AND FUTURE WORK 66

obtained from direct clustering, So = 0.3624 and Sf = 0.5275 , Table 5.1, one can
see that the scores from direct clustering are slightly better than those for divisive.
As mentioned, this can be due to the fact that the cluster sizes are uneven in direct
clustering. The scores are thus not trustworthy.

The scores from divisive clustering can be compared with the scores without any
clustering, Table 5.3. The scores with clustering are much better than without clus-
tering, which is good since it shows that improvements are made during clustering.
Considering that fingers from the same person vary as much as fingers from different
persons, these results are satisfying. Thus, labeling the fingerprints according to a
person is not the best approach, and clustering can be considered as a better method
for labeling.

BoW feature

To decide whether to use the SIFT or the GFTT detector to detect keypoints in an
image, comparisons were made by clustering the BoW-features into two clusters and
comparing the scores, see Table 5.4. In this table, the features were clustered using
the Euclidean distance. The GFTT without weighting applied has the best scores.
However, the sizes of the two clusters varied incredibly and should therefore not be
considered. In this case, it is hard to make a decision as the two scores So and Sf
vary slightly between the three other options. The So score for GFTT is better than
for SIFT’s So score. However, the Sf score for SIFT with weighting is slightly better
than the Sf score for GFTT with weighting.

Weighting the BoW-features seem to be a better approach as it gives even cluster
sizes. Thus, only weighted features will be considered in the sequential analysis. In
Table 5.5, the scores from clustering the features using cosine similarity can be seen
for both GFTT and SIFT. The scores for GFTT are higher than for SIFT. These
scores are also better than all the scores in Table 5.4. Since weighted feature using
GFTT detector clustered with cosine similarity seem to have the best scores, this
combination will be considered in the proceeding analysis.

The main challenge of generating BoW-features is to find a suitable combination of
the number of keypoints and the size of the vocabulary since these two variables seem
to be correlated. For this project, analysis using vocabularies of sizes 1000, 5000 and
10000 combined with a number of keypoints equal to 50, 100, 150, 200 and 250 is
performed. To find the appropriate combination of the number of keypoints and size
of the vocabulary, one of these variables must be fixed and the other changed during
testing. To examine how many keypoints that are going to be used, clustering using
a vocabulary of 5000 words and different numbers of keypoints was evaluated, see

CHAPTER 6. DISCUSSION AND FUTURE WORK 67

Figure 5.7. A vocabulary of size 5000 was chosen as 5000 is between 1000 and 10000.
The results in this figure show that the score increases as the number of keypoints
increases.

To evaluate the relation between the number of keypoints and the size of the vo-
cabulary, analysis on different sizes of the vocabulary combined with 100 keypoints
was also performed. The result is found in Figure 5.8. In this case, the score is
decreasing as the size of the vocabulary is increasing. From the two figures, 5.7 and
5.8, it can be concluded that a large number of keypoints combined with a small
size of the vocabulary is desired.

A divisive clustering, with a vocabulary size of 1000 words and the number of de-
tected keypoints equal to 250, was performed. This combination was based on the
analysis mentioned above. A clustering with 500 detected key points in each image
and a vocabulary of 1000 words was evaluated, to investigate whether an even higher
number of key points would yield higher scores. The result can be seen in Table
5.6. Detecting a higher number of keypoints shows better performance. Hence, a
vocabulary of size 1000 combined with 500 keypoints will be used in the proceeding
experiments.

When a chosen model has been decided, further improvements on the performance
score for this model is desired. As mention in section 6.1.2, the improvement methods
used in this project are SVM and SVM combined with balancing. In figure 5.9, the
performance scores for the two methods can be seen. The performance of these
methods are generally equal, in some cases, the SVM has a higher score. However,
the best scores obtained when the data is divided into 68 clusters, are still the scores
where no SVM and no balancing is applied, Table 5.6.

The explanation of why a small size of the vocabulary combined with a big number
of keypoints is better, is shown in section 5.3.4. In this section, histogram repre-
sentations of images that have big overlap and no overlap are considered. In Figure
5.10, the images (a) and (b) are from the same finger, i.e., large overlap. Image
(c) is taken from a different finger than (a) and (b), i.e., no overlap. The BoW
histogram representation of the images of the same finger, using a vocabulary of size
10000 combined with 100 keypoints, differ from each other even though they are
from the same finger. If it was not known that these histograms, Figure 5.11 and
Figure 5.12, are from the same finger, one would think that they are from different
fingers since the histograms looks different. The difference in appearance between
histogram 5.11 and 5.12, and between histogram 5.11 and 5.13, seem to be equal.
In other words, they are equally different from each other. The similarity measures
between these three images (a) and (b) (same finger), and (a) and (c) shows that (a)
and (b) are almost equally different from each other as (a) and (c). The similarity

CHAPTER 6. DISCUSSION AND FUTURE WORK 68

measure indicates that (a) and (b) are not from the same finger, and has a small
overlap which is not true.

Representing the three images with a smaller vocabulary combined with a large
number of keypoints seem to be suitable. The histogram representation of the three
images can be seen in the figures 5.14, 5.15 and 5.16. Comparing histogram 5.14
with 5.15, this pair is more similar than the histogram pair 5.11 and 5.12. The
bin with maximum frequency is equal for both histograms, (5.14 ,5.15). One could
tell that these two histograms have a big overlap, without knowing in advance that
they are from the same finger. This could not be guessed in the case with a bigger
vocabulary and a smaller number of keypoints. The histogram representation of
(a) and (c) are still very different from each other, which is good as they are from
different fingers with no overlap. The similarity measure, Table 5.9, between the
histograms from the same finger is small. It indicates that the images have a big
overlap, as they are more similar to each other. The similarity measure between (a)
and (c) is big, it indicates that they have small or no overlap.

It can be concluded that a histogram representation of the images using a small
vocabulary and a large number of detected keypoints is desired. As it represents
the images better, i.e., images with big overlap are more identical to each other.
This, in turn, means better clustering, since similar histograms can be clustered to-
gether. This is consistent with the result in Table 5.6, which shows that a small sized
vocabulary combined with a large number of keypoints, yields better performance
results.

For the purpose of understanding why the scores are bad, the finger scores was
evaluated, see section 5.3.5. Some fingerprints seem to have few or none correctly
predicted verification templates. The finger scores were therefore evaluated to find
these hard cases, and to examine why they are hard to cluster. In Figure 5.17,
there are an example of an enrollment template and a verification template. The
fingerprints from this person was hard to cluster, and in turn gave bad scores, as
the enrollment templates and the verification templates had different appearances.
The enrollment templates from this persons finger consisted of templates without
scars. However, most of the verification templates had scares. The enrollment tem-
plates will therefore be clustered in a cluster without scares, whereas the verification
templates will most likely be clustered together with fingers that have scares.

The second hard case is when the verification templates have small or no overlap with
the enrollment templates, see Figure 5.18. The ground truth shows that, overall, the
verification templates have zero overlap with the enrolled templates. If there is no
overlap, the same keypoints/features can not be found. The clustering will, again,
be bad since the enrollment and verification templates are going to be clustered into

CHAPTER 6. DISCUSSION AND FUTURE WORK 69

different clusters.

If the database consists of many of these hard cases, the overall score will be affected
negatively. If the verification templates are incorrectly predicted, it will result in
a low score. For many incorrectly clustered verification templates the overall score
will be low.

K-centroid

The drawback of the K-centroid clustering method is that every time it converges,
it converges to a local minimum rather than a global minimum. The best clustering
can, therefore, not be ensured. This fact needs to be taken into consideration when
making decisions on which feature representation that is going to be used, and when
comparing the scores from different methods. It could be solved by doing a number
of clusterings and choosing the model with the highest performance. This approach
was desired, but considering how much time it takes to train one model it could not
be done practically.

6.2 Future work

6.2.1 Keypoint detectors and descriptors

Just two different interest point detectors and one descriptor were tested in this
thesis. The choice of detectors and descriptor was made based on a master’s thesis
performed at Precise Biometrics AB in 2016 [17]. It was shown that the combina-
tion of the chosen detectors and descriptor made good performance when matching
two fingerprint images. Precise Biometrics AB has since then moved on to other
detectors. There exist numerous algorithms for interest point detection and for re-
gion description. Extensive testing of detectors and descriptors in order to find the
combination that fits our problem the best would be interesting. Finding such a
combination would improve the performance.

6.2.2 Different method for bag-of-words vocabulary

The bag-of-words method used in this thesis is from OpenCV, which uses a k-
means clustering with Euclidean distance to generate the vocabulary. As mentioned,
there are different similarity measures that could be used. It would, therefore, be

CHAPTER 6. DISCUSSION AND FUTURE WORK 70

interesting to try different similarity measures when creating the vocabulary using
the k-means method.

Generating the vocabulary with K-means clustering is the most common method.
However, there are other methods one could use to generate the vocabulary. Neural
networks can, for example, be used to create the vocabulary. If time was not a
problem, this approach could be tested to see if creating a vocabulary with a different
method affects the clustering performance.

6.2.3 Bigger and smaller images

The images used in this thesis are of the size 192-by-192. It would be worth the
effort to try the proposed method on bigger and smaller images, to examine whether
the images have too much information or too little. With too little information in
the image, the vocabulary won’t be rich in words, which in turns leads to a poor
representation of each image. Smaller images also mean less overlap. The probability
of two smaller images, from the same finger, overlapping each other would be small.
However, with smaller images, one feature could be captured instead of many.

If the images were bigger, for example, if the image captured the whole fingerprint,
they would contain a lot of information. The vocabulary would be richer in words,
and the overlap between two images from the same finger would be big. The prob-
ability of finding the same keypoints from two images of the same finger is then
high, and the histogram representation would be more describing. Computing the
similarity measure between such histograms results in a small value.

6.2.4 Similarity measures

The similarity measures used in this project are EMD, Euclidean distance, and cosine
similarity. EMD is a good similarity measure for distributions such as the frequency
and orientation histograms. The Euclidean and Cosine similarity measure is better
for comparing the bins in the BoW histograms. Cosine similarity has been used
for text classification, and it performed well for image classification too. To further
improve the clustering, it would be worth to try different similarity measures than
the mentioned measures in this thesis. The Jaccard similarity, for example, has also
been widely used for document classification. It would be interesting to know if this
measure gives better clustering in terms of performance than the other similarity
measures.

CHAPTER 6. DISCUSSION AND FUTURE WORK 71

6.3 Conclusion

The main objective of this thesis was to investigate whether it was possible to
cluster the database provided by Precise Biometrics. The goal was to cluster the
database into smaller subsets, such that a search through the entire database could
be avoided during verification. The investigation in this project has resulted in
a divisive K-centroid model. The feature with the highest score for this model
is a weighted BoW histogram representation of the fingerprints. The histograms
represent the fingerprints in the best way when detection of 500 keypoints in each
image is used, and when the vocabulary consists of 1000 words. Out of the three
mentioned similarity measures, Cosine similarity was the best measure to use for
BoW features.

The performance of the final chosen model is not good enough to be implemented
in a product. The performance of the best model was So = 0.4303 and Sf = 0.5856.
The clustering method is, however, better than labeling the fingerprints according
to the persons from which the fingerprints were captured. This gave a performance
score (SVM) So = 0.1607 and Sf = 0.1644. The BoW-feature representation of the
images showed the most promising results in the clustering, and could for sure be
improved to reach the desired performance result.

Bibliography

[1] Davide Maltoni, Dario Maio, Anil K. Jain, and Salil Prabhakar. Handbook of
fingerprint recognition. Springer Science & Buisness Media, London, 2009.

[2] Belen Fernandez-Saavedra, Raul Sanchez-Reillo, Rodrigo Ros-Gomez, and Ju-
dith Liu-Jimenez. Small fingerprint scanners used in mobile devices: the impact
on biometric performance. IET Biometrics, 5(1):28–36, 2016.

[3] Jayant V. Kulkarni, Bhushan D. Patil, and Raghunath S. Holambe. Orientation
feature for fingerprint matching. Pattern Recognition, 39(8):1551 – 1554, 2006.

[4] Joe Minichino and Joseph Howse. Learning OpenCV 3 and Computer Vision
with Python. Packt Publishing Ltd, Birmingham, 2015.

[5] Gerard Salton and Christopher Buckley. Term-weighting approaches in auto-
matic text retrieval. Information Processing & Management, 24(5):513 – 523,
1988.

[6] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91–110, 2004.

[7] Jianbo Shi and Carlo Tomasi. Good features to track. 1994 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’94), pages 593–600, 1994.

[8] Chris Harris and Mike Stephens. A combined corner and edge detector. In
Alvey vision conference, 15:50, 1988.

[9] Reinhard Klette. Concise Computer Vision - A Introduction into Theory and
Algorithms. Springer, London, 2014.

[10] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data - An
Introduction to Cluster Analysis. John Wiley & Sons, Inc., Hoboken, New
Jersey, 2009.

72

BIBLIOGRAPHY 73

[11] Christopher M. Bishop. Pattern recognition and machine learning. Springer
Science & Buisness Media, Singapore, 2006.

[12] Thanh-Nghi Do, Philippe Lenca, and Stéphane Lallich. Classifying many-class
high-dimensional fingerprint datasets using random forest of oblique decision
trees. Vietnam J Comput Sci, 2(1):3–12, 2015.

[13] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distribu-
tions with applications to image databases. IEEE International Conference on
Computer Vision, pages 59–66, 1998.

[14] V. Kecman. Support vector machines - an introduction. Support Vector Ma-
chines: Theory and Applications, pages 1–47, 2005.

[15] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: Concepts and
techniques. Morgan Kaufmann, Waltham USA, third edition, 2012.

[16] M.N. Murty and Rashmi Raghava. Support Vector Machines and Preceptrons:
Learning, Optimization, Classification, and Application to Social Networks.
Springer, Switzerland, 2016.

[17] Johan Hagel and Alexander Karlsson. Fingerprint matching - hard cases. Mas-
ter’s thesis, Lunds Tekniska Högskola, Sweden, 2016.

