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Abstract

This thesis presents an application of machine learning techniques in a search for a high-mass
resonance particle decaying into top quark pairs in high energy dijet events using the ATLAS
experiment at the Large Hadron Collider. Top tagging is applied to the dijet events to select
the events with top signature and suppress the background, increasing the sensitivity of the
search. All the data used in this work come from Monte Carlo simulations.

Performance studies are carried out to compare four boosted top taggers available in the AT-
LAS framework: a conventional 2-variable tagger, two jet substructure-based machine learning
tagger using Boosted Decision Tree (BDT) and Deep Neural Network (DNN), and the Topoclus-
ter Tagger which uses a DNN to process the kinematics of jets’ topoclusters. It is shown that
the three machine learning taggers are capable of suppressing more background than the con-
ventional 2-variable tagger by roughly a factor of two at 80% constant signal efficiency. The
Topocluster Tagger is chosen to be applied to the dijet mass distribution to be analyzed.

The effect of the tagging is studied by performing Sliding Window Fit (SWIFT) resonance
search method to the distribution before and after top tagging. The method scans the dijet
mass distribution in the range of 1100 - 6787 GeV, with the assumed integrated luminosity of
100 fb−1. The search is conducted on two distributions: background-only distribution, and
signal-injected distribution. The 95% Confidence Level limit plots show an increase in the sen-
sitivity of the search on background-only distribution. This is further confirmed in the signal-
injected case where the method manages to pick up significant signal after top tagging, but not
before.



Popular Abstract

One of the main goals of the experiments in the Large Hadron Collider is to find phenomena
beyond what the Standard Model can explain. There are many theories predicting what phe-
nomena beyond the Standard Model could be circulating in the theory community, and it is
the job of the experimentalists to find the truth of these theories. And as you may have already
guessed, it is not so easy to find something that can not be explained by the strongest theory in
physics.

The challenge in searching for something that exciting is that it happens very rarely (if it
doesn’t, we would have already found it!). Even in the case that it happens, it is hidden in the
abundance of the other not-so-exciting stuff. It is like trying to find a golden egg in a swamp of
mud that is full of brown eggs, at night, with only a dim flashlight in your hand. Even if you
find it, it would look like a brown egg and chances are, you would throw it back to the mud. So
the challenge is, how does one develop a method to distinguish the golden egg and the brown
egg? Or to say it in a more technical term: to discriminate the signal from the background.

In high energy particle collisions, particles are flying out of the collision point, created by trans-
forming energy into mass, following Einstein’s E = mc2. Some of these particles cannot exist
on their own, so new particles are created from the vacuum to bind with them. The detector
would see this as a cone-shaped spray of particles coming from the collision point, called a jet.
Some theories describing what lies beyond the Standard Model predict that there will be new
undiscovered particles that would decay into jets with some particularity. This is why we use
jets as our search object – our eggs.

To look for the jets we are interested in, physicists usually use quantities called the jet substruc-
ture variables. They are variables that describe some particular properties of a jet. Knowing the
predicted value of these variables for the signal, we can use that value to make a cut around
it to narrow our search. In our egg-finding analogy, if we predict the mass of the golden egg
to be m, we can develop an algorithm like, ”if the egg is lighter than m − p, or heavier than
m + p, discard it!”, where p is how tight you want your search algorithm to be. Make it too
loose, you would accept too many brown eggs; make it too tight, you would lose some of the
precious golden eggs. One can combine the algorithm with other variables, say, the shininess
or the shape of the egg. A good search algorithm is the one that can reject as much background,
while at the same time, keeping as much signal as possible.

Now, this is where the machine beats us: while humans can only process a limited number
of variables, machine learning algorithm can learn from all the variables there are! Machine
learning can extract the information contained in all of the variables and conclude whether
the jet is more signal-like or background-like. In the studies in this thesis, machine learning
techniques have been shown to perform roughly twice as good compared to a conventional
method.

The implementation of machine learning in high energy physics will provide more powerful
tools than the ones used in the past searches. These newly acquired tools will allow us to see
hidden events that were previously undetectable and increase our chance for new discovery.



We make our world significant by the courage
of our questions and the depth of our answers.

– Carl Sagan, Cosmos
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Thesis Overview

Chapter 1 reviews some of the preliminary knowledge that would be required to follow through
the text. It begins with a brief summary of the Standard Model (SM), and continues with the
speculations surrounding Beyond Standard Model (BSM) Physics. The BSM theories with rele-
vance to the topic are described, supplying the motivation for the work. The search focuses on
heavy resonances decaying into top quark pairs. The LHC and the ATLAS experiment are the
scientific facilities used in this thesis, and are therefore briefly explained here. Jets as the main
object of study are discussed at the end of the chapter.

Chapter 2 explores the boosted top tagging tools that are studied and used in this thesis. It starts
with the nature of boosted top quarks, the decay channel that is considered, and the general
strategy to capture them. It proceeds with the details of four boosted top taggers: Smoothed
Top Tagger, DNN Tagger, BDT Tagger, and Topocluster Tagger. How the taggers operate and
how they were developed are explained here. These taggers were developed and trained by
the experts of ATLAS.

Chapter 3 takes the four boosted top taggers explained in the previous chapter and test them
to see how they compare to each other in their performance. The Monte Carlo samples used
are given, along with the event selections applied to them. The taggers are tested by assigning
them in two tasks: tagging individual jets and tagging dijet events. The results are shown here.

Chapter 4 explains how to obtain the dijet mass distributions used in the analysis. Since the
search is to be sensitive to top quarks, the QCD samples used in the previous chapter needs to
be enriched with the SM tt̄ productions. The SM tt̄ distributions are discussed and added to
the QCD dijet mass distributions. The procedure to derive the data-like distributions from the
Monte Carlo is explained at the end of the chapter.

Chapter 5 explores the Sliding Window Fit (SWIFT) resonance search method which is the
analysis method used in this thesis. The algorithms and calculations done inside the method
are briefly explained in the chapter, together with the value of the parameters used in this
particular search. The development of SWIFT was done by the experts of ATLAS and not part
of this project.

Chapter 6 displays the results of the SWIFT resonance search method when applied the dijet
mass distribution. To get a view of the effect of the top tagging to the quality of the search, the
analysis is done on the dijet mass distribution before and after top tagging. Discussions on the
obtained results are written in the chapter.

Chapter 7 summarizes everything done and learned in this thesis. It also gives an outlook on
what the future project can do to improve the work done in here.

Figures with a citation on the captions are taken from outside sources. Those without citation
on the captions are original products of this thesis.
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1
Introduction

This chapter guides the reader to some of the basic concepts that are needed in order to proceed
to the later chapters while it also gives the motivation behind the work. It starts by briefly
describing the Standard Model (SM) of particle physics, followed by what might be hiding in
the Beyond Standard Model (BSM) physics. Next, the main experimental instrument in particle
physics, the Large Hadron Collider, is introduced. The ATLAS detector is covered to give some
understanding of particle detection techniques. Lastly, jets as the main object of the study in
this thesis are explained from the physics that originates them to how to construct them from
the information given by the detector.

1.1 Standard Model of Particle Physics

Physics, in its attempt to probe the most fundamental nature of the universe, mainly follows
the reductionism approach: study the small parts to understand the big ensemble. Started
from the ancient Greek by the philosopher Democritus, the atomic theory which says that all
matter is made of indivisible discrete units has lead thinkers – ancient and modern alike –
to pursue this fundamental constituent of matter that makes up the whole universe. After
series of theoretical breakthroughs and experimental discoveries, a collective theory had been
developed to encompass all of the known fundamental particles and the forces between them:
the Standard Model of particle physics.

Written in the framework of quantum field theory, the Standard Model classifies the funda-
mental particles based on the quantum numbers they possess [1]. Each particle is uniquely
characterized by a set of quantum numbers: mass, spin, and charges. Based on the spin, the
particles are divided into two major groups: half-integer spin – fermions, and integer spin –
bosons. The charge determines the type of interaction a particle is subjected to; electric charge
for electromagnetic interaction, and color charge for strong interaction. Figure 1.1 shows all
the known fundamental particles in the Standard Model and their classifications. In addition
to this, there also exists a mirror image of the particles in the Standard Model: the antiparticles.
They are identical in all regards except that they carry opposite charge sign.

Inside the fermion group, particles are grouped further based on the charges they carry. Fermions
that carry color charge are called quarks and those do not are called leptons. Together, quarks
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and leptons take up the role as building blocks of higher structure of matter.

Possibly the most known elementary particle – the electron (e) belongs to the charged lepton
group, together with its siblings: muon (µ) and tau (τ). Each of them carries −1 electric charge.
Alongside the charged leptons, there also exist the neutral leptons. The neutrino (Italian for "lit-
tle neutral one") was first hypothesized by Wolfgang Pauli in 1930 to answer the missing energy
of neutron decays. Neutrons decay into protons by emitting electrons. Careful measurements
seem to indicate that the energy of the final products is always less than what it started with.
So Pauli suggested there is an invisible neutral particle in the final products that carry that
missing energy: the neutrino ν1. There are three flavors of neutrino: electron neutrino νe, muon
neutrino νµ, and tau neutrino ντ; each forms a doublet with its corresponding charged lepton
partners.

Quarks come in six flavors: up (u), down (d), charm (c), strange (s), top (t), and bottom (b).
The up, charm, and top have + 2

3 electric charge and the down, strange, and bottom have − 1
3

electric charge; they are commonly referred to as "up-type" quarks and "down-type" quarks,
respectively. Unlike leptons, quarks carry color charge, which means each of them represents
triplet of particles, cleverly named after colors: red, green, and blue2. Because of the nature
of Quantum Chromodynamics (QCD), quarks are always confined in a "colorless" bound state
called hadrons; they may not exist by themselves in isolation. For example, a proton – one of
the bound state of quarks – is composed of three quarks: two up quarks, and one down quark;
each of them can be red, green, and blue as long as they combined into a "white" proton.

Figure 1.1: Diagram of the Standard Model of particle physics [2].

Bosons take up the role of force mediators. There are four fundamental forces in nature: strong,
electromagnetic, weak, and gravity; each of them has a boson (or bosons) that is responsible to
mediate them. The strong force is mediated by gluons, the electromagnetic force by photons,
and the weak force by the neutral Z bosons and a pair of charged W± bosons. As of the writing
of this thesis, the Standard Model has no explanation for gravity. But it is natural to think that
gravity works just like the other forces: carried by a boson, hence the hypothesized graviton.
Due to its weak strength relative to the other forces, the absence of gravity does not have a

1Later it was realized that it is anti-neutrino that plays a role in the neutron decays.
2Do not confuse these with actual color. Quarks are too small to be visible, let alone to have color. Color in the

literal sense is a property of photon, a whole different particle!

2
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considerable effect on the prediction of the Standard Model in particle physics and can be
safely neglected. Table 1.1 lists the four fundamental forces with the corresponding carrier
bosons and their relative strength.

Theorized in the 1960s and discovered in 2012, the Higgs is somewhat different from the other
bosons. The Higgs boson is a product from a mechanism that breaks the electroweak symmetry
called the Brout-Englert-Higgs (BEH) mechanism. The BEH mechanism breaks the electroweak
symmetry by splitting the bosons of the original symmetry into the massless photon and the
massive W and Z bosons, breaking apart the electroweak interaction into electromagnetic and
weak interaction. For this to work, the theory requires a field that permeates the whole universe
and has non-zero value everywhere: the Higgs field. The stronger a particle couples to the
Higgs field, the more mass it gains. Quantum field theory dictates that particles are ripples
of fields, so the Higgs boson itself is nothing but a ripple in the Higgs field, just like all other
elementary particles are ripples to their corresponding fields.

Table 1.1: The four fundamental forces and the corresponding carriers with their relative
strength [3].

Force Carrier boson Relative strength
Strong gluon 1

Electromagnetic photon 1
137

Weak W±, Z 10−6

Gravity graviton3 10−39

1.2 Beyond Standard Model Physics

The Standard Model is currently the best theoretical model that describes nature at the most
fundamental level. Its predictions agree with every experiment conducted at the currently
accessible energy scale. However, it still has not captured the whole picture. Gravity is yet to
be incorporated in the framework of the Standard Model; and Dark Matter, which supposedly
makes up 27% of our universe [4], is also missing from the table. Furthermore, looking at
the diagram of the Standard Model in Figure 1.1, one cannot help but notice a pattern in the
arrangement of the particles. The fermions are organized in three generations, each shares
exact properties with the other two except differing in mass, which is a free parameter in the
Standard Model. There is no explanation on why the particles take the value they have, they
are just experimentally measured. This seemingly hidden structure and arbitrariness of the
Standard Model hints to a deeper underlying physics that lies beyond.

One of the unsolved problems in particle physics is the hierarchy problem. The source of this
problem is the quadratically divergent corrections to the Higgs mass. To be consistent with the
observation of the Higgs boson mass which is found to be around 125 GeV, it requires an incred-
ible fine-tuning that makes the theory seems unnatural. The problem can also be recognized
in the strange huge gap of strength between gravity and the other forces. Many BSM theories
offer solutions to the hierarchy problem, e.g Super Symmetric theories, extra dimensions theo-
ries, dynamic electroweak symmetry breaking theories; in which many of these predict a heavy
particle that couples to SM particles. The high mass of the top quark thus motivates the search
in this channel because of the high branching ratio.

3The existence of graviton has not been experimentally confirmed.

3
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One possible explanation for the observed weakness of gravity is that there is a hidden extra
dimension in spacetime and the force of gravity gets diluted in it. The Randall-Sundrum (RS)
Model [5] assumes that the four-dimensional spacetime is just a part of a five-dimensional
spacetime with a fifth extra dimension being "warped". The RS model predicts Kaluza-Klein
(KK) excited particles as a manifestation of the SM fields that propagate through the extra
dimension. The KK particles share the same quantum numbers as the original particles, except
heavier in mass [6]. Among other excited states, the KK excited gluons have the largest cross-
section and preferentially decay into top quark pairs (92.6% branching ratio [7]).

The Heavy Vector Triplet framework [8] offers a search strategy to look for narrow resonances
in a model-independent way. A Heavy Vector Triplet is a set of three high mass spin-1 bosons:
a pair of charged bosons, and one neutral boson. The charge eigenstates are superpositions of
the field eigenstate Va

µ with a = 1, 2, 3, written as,

V±
µ =

V1
µ ∓ iV2

µ√
2

, and (1.1)

V0
µ = V3

µ (1.2)

Since we are only concerned with top-antitop final states and only neutral charge particles
can decay into top pairs due to charge conservation, only the neutral boson V0

µ is used in the
analysis. Throughout this thesis, the neutral boson will be referred to as HVT. The Z’ – a heavier
copy of the SM Z boson [9] – is also used as an alternative signal model.

1.3 The Large Hadron Collider

Located 100 m below ground at the border of Switzerland and France, the Large Hadron Col-
lider (LHC) is a 27 km circumference double-ring tunnel where protons and lead ions are ac-
celerated and smashed together. The concept was first made public in a workshop by CERN in
Lausanne, Switzerland in 1984; and after years of planning, constructions, and much political
effort, the LHC stands today as the largest and most powerful particle accelerator.

Based on what is being accelerated, there are different physics programs conducted at the LHC:
proton-proton, lead-lead, and proton-lead collisions. As of 2018, the LHC is operating at a
center-of-mass energy (

√
s) of 13 TeV. This thesis focuses on proton-proton collisions at

√
s = 13

TeV; other types of collision are not discussed further.

The LHC utilizes CERN’s older accelerator facilities to accelerate protons from their stationary
state in multiple stages. The protons start their flight in LINAC2 (Linear Accelerator 2) where
they are accelerated from zero velocity to a third of the speed of light before entering the PS
(Proton Synchrotron). From there, the protons go through the SPS (Super Proton Synchrotron)
to be further boosted before finally transferred into the LHC ring. The particle journey from
the starting point to the LHC can be seen in Figure 1.2.

The double-ring construction of the LHC was meant so that the two beams are accelerated in
opposite direction. There are four points where these two rings inter-cross and become the
points of collisions for the accelerated particles. At these points, four major particle detectors
are placed, each specialized to look for particular physics. LHCb (LHC beauty) specializes in
studying the decay of b quarks. ALICE (A Large Ion Collider Experiment) is designed to study

4
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heavy ion collisions to investigate the quark-gluon plasma – a hot and dense state of matter
that filled the universe shortly after the Big Bang. ATLAS (A Toroidal LHC ApparatuS) and
CMS (Compact Muon Solenoid) are general-purpose detectors dedicated to observe collision
events and determine what comes out of the collisions. These two experiments lead the energy
frontier of experimental particle physics today and played a central role to one of the largest
achievement of particle physics – the discovery of the Higgs boson.

Figure 1.2: Diagram of CERN’s accelerator complex [10].

1.4 The ATLAS Detector

1.4.1 The Design

ATLAS, shown here by Figure 1.3, is a 25m high and 44m long particle detector placed in
one of the collision points of the LHC. The aim of the ATLAS detector is to capture as much
information as possible out of particle collision events: identify the outgoing particles and
measure their properties. To achieve this, ATLAS was designed to encapsulate the collision
point with layers of detectors, each specialized in detecting a certain type of particle. Any
particles that are produced at the collision points will travel outward, passing through the
layers of detectors until they are stopped or they escape the detector.

Closest to the beam line is the inner detector. Consisting of three sub-detectors: Pixel detector,
Semiconductor Tracker (SCT), and Transition Radiation Tracker (TRT), the inner detector is
responsible to track the path of the passing charged particles and reconstruct the point they
originate from. Being the closest to the collisions, the inner detector is where the most precise
measurements with the finest granularity are performed. The inner detector is contained within
a strong solenoidal magnet (2 Tesla central field) that provides magnetic field parallel to the
beam axis. It utilizes the magnetic field to measure the momentum of charged particles and
determine the charge. The momentum is calculated from how much the particles curve due to
the magnetic field4.

4The particle’s momentum is calculated by using the formula ~F = q~v × ~B; and the sign of the charge can be

5
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Figure 1.3: Computer generated view of the ATLAS detector [11].

Moving outward, the calorimeter is a sub-detector of ATLAS whose job is to measure the en-
ergy of the outgoing particles. The passing particles interact with the nucleus of the calorime-
ter’s materials, creating a shower of particles whose energy can be measured and reconstructed
back to the initial energy. The calorimeter consists of hundreds of thousands of fine granular
cells to give the needed spatial resolution of particle detection. The calorimeter is radially di-
vided into two parts: electromagnetic and hadronic calorimeter. The electromagnetic calorime-
ter catches particles that interact electromagnetically, e.g. electrons and photons. Strongly in-
teracting particles passes through the electromagnetic calorimeter, to be later captured by the
hadronic calorimeter. Some fraction of the time, strongly interacting particles starts shower-
ing in the electromagnetic calorimeter and continue showering to the hadronic calorimeter, in
which case the measured energy is summed over the two calorimeters to get the correct en-
ergy. The calorimeter is important for the topic of this thesis since it is from the energy of the
decay particles that mass of the mother particle is calculated. The jet tagging technique that is
discussed in the later chapter also uses energy signature deposited in the calorimeter cells to
determine the original particles.

At the outmost layer lies the muon spectrometer. Muons, like electrons, interact with the elec-
tromagnetic and weak force. But muons are much heavier; electromagnetically, it is more likely
to create electrons than muons, so muons mostly come from the weak interaction. Most of
the particles that are created in the collisions are stopped in the calorimeter, only muons pass
through the inner detector and the calorimeters without losing significant energy and can reach
the muon spectrometer, which is why it is specifically named after the particle. The muon spec-
trometer consists of gas tubes. When muons pass through the gas tubes, they will ionize the
gas, releasing electrons and ions which are collected in the cathode and anode of the tube as
signals. This method allows the tracking of the muons’ path. The muon spectrometer is per-
meated by magnetic field from the toroidal magnet system. This is so that momentum of the
muons can be measured by the bending of the curved track, similar to what is done in the inner
detector.

Not all of the particles can be detected by ATLAS. Neutrinos only interact via weak interaction,
which makes them very difficult to catch. This elusiveness forces physicists to think outside

deduced from the direction of the curve: positively charged particles curve according to the right-hand rule, while
the negatively charged particles curve according to the left-hand rule.
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the box when it comes to detecting neutrinos. Unlike other particles, neutrinos are detected not
by detecting the energy signature, but by detecting the absence of it. At the LHC, the colliding
protons only have longitudinal momentum along the beam line. Collisions always start with
zero transverse momentum, and conservation law dictates that they should end with zero net
transverse momentum. So in the events where conservation of transverse momentum is not
satisfied, it can be deduced that neutrinos are involved5. Figure 1.4 shows the cross-sectional
view of the ATLAS detector and how different types of particles interact with the sub-detectors.

Figure 1.4: Cross-sectional view of the ATLAS detector [12].

1.4.2 The Coordinate System

As shown by Figure 1.5, ATLAS uses a right-handed coordinate system with its origin at the
collision point, the positive z-axis points along the beam line, the positive x-axis points to the
center of the LHC ring, and the positive y-axis points upward. A spherical coordinate sys-
tem is also used with φ being the azimuthal angle, and θ being the polar angle. The physical
observables of particles are based on these coordinates.

One observable that is found often in this thesis is the rapidity y, defined as,

y ≡ 1
2

ln(
E + pz

E − pz
) (1.3)

where E is the particle’s energy and pz is the longitudinal momentum along the beam axis.
Rapidity describes how forward a particle is traveling relative to the beam line. The rapidity
is preferred over the polar angle θ to describe forwardness because the difference in rapidity
∆y is invariant under Lorentz boost, and also because particle production is independent of
rapidity.

One can make an approximation of rapidity by substituting energy E with modulus of the

5or, it could be a sign of a new exotic particle with invisible signature.
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three-momentum |p|. This approximation is called pseudorapidity, defined as,

η ≡ 1
2

ln(
|p|+ pz

|p| − pz
) = − ln(tan

θ

2
) (1.4)

Notice that at the limit of high energy or in the case of massless particles, pseudorapidity con-
verges with rapidity. Pseudorapidity ranges from −∞ to +∞, corresponds to particles going
completely backward and forward along the beam line; and η = 0 (or y = 0) corresponds to
particles moving perpendicular to the beam line.

Another important observable is the transverse momentum pT. It is the modulus of the par-
ticle’s momentum projected to the transverse (xy) plane. Since the collisions always initiate
with purely longitudinal momenta, the transverse momentum must come from the particle
interaction during the collisions, which can describe the momentum transfer of the interaction.

Figure 1.5: The coordinate system used in the ATLAS experiment. The origin is the collision
point, the positive z-axis points along the beam line, the positive x-axis points to the center of
the LHC, the positive y-axis points upward. φ and θ are the azimuthal angle and the polar
angle, respectively [13].

1.5 Jets

1.5.1 Quantum Chromodynamics and Color Confinement

QCD is the physics of the strong interaction. One of the uniquenesses of QCD compared to
QED is that the force-carrying boson, gluon, can interact with themselves. Figure 1.6 shows
the color force lines between a quark and an anti-quark. Just like in QED, the number of force
line only depends on the total charge; in this case, color charge, so it remains constant. Due
to the gluon self-coupling, the cross-sectional area A too remains constant. Imagine a thought
experiment where we can pick the quark and anti-quark by hand and try to separate them.
According to the QCD law stated previously, the force lines would stretch with the distance
r, just like rubber bands. Thus, the potential energy of two strongly interacting particles, here
illustrated by the volume of the flux tube, increases approximately linearly with the separation
between them. Consequently, the quark and anti-quark are confined as it takes infinite amount
energy to separate them. This phenomenon is called the color confinement, it prevents experi-
mentalists to observe a stand-alone quark.

The bound state is called a hadron. Used in the previous example, a meson is a hadron consists

8
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of two constituents: a quark and an anti-quark; and a baryon is a hadron made of three quarks.
Examples of baryons are protons and neutrons which make up the nucleus of atoms.

When protons collide, their constituent quarks and gluons (partons), interact with each other
by exchanging energy. Interactions are happening in the form of momentum transfers between
partons from the two colliding protons, moving the colliding partons away from the other par-
tons in their respective protons. In the case of highly energetic collisions, the momentum trans-
fers are high, causing the colliding partons to be strongly accelerated. Since partons carry color
charges, they then emit radiation in the form of gluons; just like accelerated electric charges
would radiate photons. These emitted gluons may pair-create quark-antiquarks who in their
turn also could radiate gluons. The resulting cascades of gluons and quark-antiquark pairs
from the interacting partons, are called parton showers.

As the distance between the initial bound quarks increase, the potential energy increases due to
color confinement; and if it reaches high enough energy, the force string is broken and a pair of
quark and antiquark is created, as shown by Figure 1.7. The new antiquark is then bound to the
initial quark by a new string, and similarly, the new quark is bound with the initial antiquark. If
the energy suffices, the new strings stretch and break again, and so on, until all of the energy is
converted into the creation of quark-antiquark pairs, which are recognized as hadrons. Such is
the hadronization process as modelled by the Lund String Model [14]. Note that this also occurs
to the gluons in the parton shower as they also carry color charge and therefore bound by color
strings. In the detector frame, an observer would see the accumulation of these processes as a
cone-shaped spray of particles going to the same general direction called a jet.

Jets become important because they are what the detector sees. When one wants to look for
(say) a b quark in the final state, one would look for a b jet in the detector. It is because of this
reason that jets become the main object of study for the search in this thesis.

Figure 1.6: Force lines of the strong interaction between a quark and an anti-quark [4].

Figure 1.7: String breaking process from a quark-antiquark initial state. The quark from the
initial bound state gained momentum and move away from the other quark it was bound
with, increasing the potential energy. If the energy is high enough, the force string breaks and
quark-antiquark pair is produced. [4]

1.5.2 Topoclustering

To find jets, one starts to look at the energy deposited in the calorimeter. As mentioned before,
the calorimeter is an assembly of hundreds of thousands of fine granular cells which absorb and
measure energy. To be able to reconstruct physical information about the incoming particles,
neighboring cells need to be clustered by a connecting algorithm. These clustered cells are
called a topocluster. The properties of a topocluster are summed from the constituent cells,
resulting in the direction, location, and energy of the cluster. Note that individual topoclusters
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do not necessarily contain a full energy of a single particle. Individual topoclusters can contain
a full or fractional energy of a single particle, a combined energy of multiple particles, or a full
energy of one particle plus some fraction of another particle shower [15].

The clustering algorithm collects the calorimeter signals based on the topology of the calorime-
ter cells in any given collision event. The goal is to be able to distinguish a localized signal
from background electrical noise and pile-up6. The clustering starts from the cell that has the
highest signal significance and grows by collecting the adjacent cells. The cell significance ςEM

cell
is defined as the ratio of the cell signal EEM

cell to the average background noise σEM
cell ,

ςEM
cell =

EEM
cell

σEM
cell

(1.5)

the superscript EM means that the quantities are measured in the electromagnetic (EM) en-
ergy scale, which measures correctly the energy deposited by electrons and photons. ATLAS
calorimeter is "non-compensating", meaning, it does not correct the signal loss for hadrons.
This signal loss can be recovered by further calibration by first determining the hadronic or EM
character of the particle shower based on the cluster shapes (depth, location, lateral shapes,
etc.) and calibrate it accordingly [16].

The topoclustering algorithm works as follows,

1. Find cells with ςEM
cell > 4 and order them in decreasing ςEM

cell, these cells are called primary
seeds.

2. The cells neighboring a seed with ςEM
cell > 2 are collected by the seed along with their

neighbor, forming a proto-cluster.

• If the neighboring cell is a primary seed, the two proto-clusters are merged.

• If the neighboring cell passes ςEM
cell > 2 and also belongs to a different proto-cluster,

the two proto-clusters are merged.

3. Repeat until the neighboring cells only have signal significance 0 < ςEM
cell < 2.

Figure 1.8 shows the result of the topoclustering algorithm in a simulated dijet event7. These
topoclusters act as inputs to construct the jets.

1.5.3 Jet-finding algorithm

The topoclusters are then put into a machinery called the jet-finding algorithm. The purpose
of the algorithm is to determine a set of energy deposits that are localized in η − φ space that
resembles a cone of collimated particles. There are a number of algorithms that have been de-
veloped to do this task, most basically follow the same idea: calculate the distance between
two objects and determine if they belong to the same jet. Similar to the topoclustering algo-

6Inside accelerators, protons are being collided in bunches, which means every recorded event consists of mul-
tiple interactions. In most cases, physicists are only interested in the most energetic collisions in each event, other
softer interactions are regarded as "pile-up".

7A dijet event is an event that features two jets.
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Figure 1.8: Result of the topoclustering algorithm in a simulated dijet event. [15]

rithm, the jet-finding algorithms start with a primary object which iteratively grows in size by
including nearby objects.

For a pair of two topoclusters i and j, the relative distance between the two, and relative dis-
tance of the object i and the beam diB are defined as,

dij = min(p2p
Ti

, p2p
Tj
)

∆R2
ij

R2 , (1.6)

diB = p2p
Ti

(1.7)

where pTi is the transverse momentum of object i, ∆R2
ij = (yi − yj)

2 + (φi − φj)
2 is the distance

between object i and j in y − φ space, and R is the radius parameter. The choice of p determines
the starting object for the jet-finding: p = 1 starts the jet-finding at the object with smallest pT,
p = −1 starts at the highest pT object, and p = 0 disregards transverse momentum altogether
and only looks at angular separation. These different choices of p are named kT algorithm [17],
anti-kT algorithm [18], and Cambridge/Aachen algorithm [19], respectively.

The jet-finding algorithm works as follows,

1. For each pair of object i and j, calculate dij; and for each object i, calculate diB.

2. Find the minimum dmin of all the dij and diB.

• If dmin = dij, merge i and j into a proto-jet.

• If dmin = diB, remove i from the list and declare it to be part of the "beam" jet.8

3. Repeat until no objects are left.

Moving forward, the definition of a jet departs from a collimated spray of particles, to a set of
objects which the jet-finding algorithms determine as a jet, which, if the different jet-finding
algorithms work ideally, should be the same.

8This follows the "exclusive" formulation of the jet-finding algorithm. In the "inclusive" formulation, i is added
to the list of the final inclusive jets.
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1.5.4 Dijet Events and Resonance Search

In searches looking for resonances decaying into two quarks, it is instructive to look at events
with two jets, or dijet events. The four-vector of the dijet can be obtained by summing the four-
vectors of the jet pair, and the invariant mass of the dijet system mjj is calculated as follows9,

mjj =
√

E2
jj − p2

jj (1.8)

where Ejj and pjj are the energy and momentum of the dijet four-vector. Aside from being a
direct measure of the energy reach of the experiment, the dijet invariant mass is an important
observable because it corresponds to the mass of the mother particle that decays into the two
jets. The mother particle could be an undiscovered particle that is produced via resonance that
could hint to new physics.

The QCD predicts a smoothly falling invariant mass distribution. Should there be a new un-
stable particle that decays into two jets, the particle would add to the total cross section that
corresponds to two jets final state. Therefore, the presence of a new resonance particle can be
observed as a localized excess, or bump, in the mass distribution. Looking for this bump is the
core principle of resonance searches.

9The formula follows a consensus in the field of particle physics to set the speed of light and the Planck constant
equal to one, c = h̄ = 1. This allows all observables to be expressed in the unit of electron volt (eV).
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2
Boosted Top Tagging

The top tagging tools studied in this project are covered in detail in this chapter. The main
principle of boosted top tagging, how the taggers work, how they were developed, and the
variables they use are explored here. Four taggers are covered: the Smoothed Top Tagger,
the Boosted Decision Tree (BDT) Tagger, the Deep Neural Network (DNN) Tagger, and the
Topocluster Tagger. The Smoothed Top Tagger uses two jet substructure variables as cuts, while
the BDT and DNN Tagger use different machine learning network architectures to process a
set of jet substructure variables. Similarly, the Topocluster Tagger also uses a neural network,
except that it processes topocluster information instead of jet substructure variables.

2.1 General Description

Top tagging is the term used for an act of determining if a jet originates from a top quark.
Due to its heavy mass, top quark has a very short lifetime (∼ 5 × 10−25 s) so it would decay
before it reaches the detector [20]. For that reason, top quarks can only be detected indirectly
by detecting the decay particles. Since the resonance of interest in this study is in the high mass
range (> 1.1 TeV), following conservation of energy, the top quark pair from the resonance will
be produced in a boosted state. The decay particles coming from a boosted top are collimated
and can be encaptured in a single large-radius jet ("fat" jet), as illustrated by Figure 2.1. Boosted
top tagging works by analyzing these fat jets rather than reconstructing the individual decay
products. In this chapter, "signal" is defined as jets originated from top (or anti-top) quarks, and
"background" is jets originated from the other flavors of quarks or gluons from QCD processes.

Top quark decays into bW+ almost all the time (BR(t → bW+) = 99.8%). This means the
top quark decays are mostly determined by how the W boson decays with a signature of an
additional b quark. The W boson branching ratio is easy to predict since it couples equally
strong with each generation of fermions (ud̄, νee+, etc). Note that the quarks have branching
ratios three times bigger than the leptons due to the color charge they carry, and the decay
to tb̄ is energetically not allowed because the top is heavier than the W. To summarize, the
branching ratio of the top quark is,

BR(t → bνee+) : BR(t → bνµµ+) : BR(t → bνττ+) : BR(t → bqq̄) = 1 : 1 : 1 : 6 (2.1)
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with qq̄ = ud̄, cs̄. The transverse component of the momentum of the neutrinos can be deduced
from the assumption that the collision starts with zero transverse momentum. However, the
longitudinal component of the neutrinos are not measurable, and therefore, some of the energy
is unaccounted. This prevents the invariant mass to be fully constructed in the leptonic channel.
Our search focuses on the hadronic decay channel t → bW+ → bqq̄ plus the anti-top counter-
part, whose diagram is shown by Figure 2.2. Although it promises the largest signal branching
ratio and the capability to fully construct the invariant mass, searches in the hadronic channel
suffer from the abundant background from the QCD processes. It is the aim of top taggers to
select the signal events buried in the background.

Figure 2.1: Decay particles from a low pT and a boosted top quark observed in the laboratory
frame. The decays of the boosted top quark travel in the same general direction with the boost
and become collimated so they can be captured by one large-R ("fat") jet.

W+

t

b

q̄

q

Figure 2.2: Feynman diagram of a hadronically decaying top quark. The three quarks in the
final state create jets. In the boosted top scenario, these three jets are compacted together in one
fat jet. The diagram for a hadronically decaying anti-top quark is identical with this one but
with the charge and fermion line flipped.

2.2 Smoothed Top Tagger

There is a wide range of methods for boosted top tagging. The most common ones utilize
the information from jet substructure variables, defined as a set of variables derived from the
substructure of the jets to quantify certain property of the jets. If jets of interest can be defined
with certain jet substructure variables, the variables can be used to distinguish those jets from
other types of jets. The Smoothed Top Tagger uses two jet substructure variables, namely: N-
subjettiness τ32 [21] and kT splitting scale

√
d23 [22].

N-subjettiness τ32 comes from the idea that the top quark is a three-body decay particle, so the
top fat jet should contain three hard sub-jets. To check this, N-subjettiness procedure starts
by taking a fat jet and reconstruct it using the exclusive-kT clustering algorithm and force it to
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return N sub-jets. Then, it calculates τN , defined as,

τN =
1
d0

∑
k

pT,k min{∆R1,k, ∆R2,k, ... , ∆RN,k} (2.2)

where k runs over all the jet’s constituents, and ∆Rj,k =
√
(∆η)2 + (∆φ)2 is the distance be-

tween a reconstructed sub-jet and a constituent k, and d0 = ∑k pT,kRjet is the normalization
factor where Rjet is the original jet’s radius. It can be seen that τN measures how aligned the
constituents are with the reconstructed sub-jets, or in another word, how well a jet can be re-
garded as a composition of N sub-jets. It has been shown in Ref. [21] that the ratio τ32 = τ3/τ2
is a better discriminant for three-body jets than τ3.

The kT splitting scale
√

d23 is calculated by first reconstructing the jet’s constituents using the
kT jet-finding algorithm. The

√
d23 comes from the quantity used in the jet-finding algorithm

defined in Eq. 1.6. Because the kT algorithm starts the clustering from the lowest pT constituent,
d23 corresponds to the clustering done in the second to last step, involving the second and third
highest pT particles, which, in the case of a top jet, are often two of the decay particles of the
top.

Figure 2.3 shows the distribution of τ32 and
√

d23 on signal and background jets in a pT range of
600 - 700 GeV. It can be seen that signal jets are populating the central region of the τ32 −

√
d23

plane relative to the background jets which are more concentrated in the bottom-right region.
The Smoothed Top Tagger chooses a value for τ32 as an upper cut and

√
d23 as a lower cut to

select the most of the signal while rejecting most of the background.
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Figure 2.3: The discrimination power of τ32 and
√

d23 is shown individually in (a) and (b). Plot
(c) and (d) show the distribution of τ32 −

√
d23 for signal and background. τ32 acts as the upper

cut, while
√

d23 acts as the lower cut to select most signals and reject most of the background.
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2.3 BDT and DNN Tagger

While the previous tagger uses two variables to discriminate signal and background, one may
intuitively think that the performance can be improved if more variables are considered. This
idea is put into practice by using a machine learning network. Two taggers discussed in this
section use two different network architectures, namely Boosted Decision Tree (BDT) and Deep
Neural Network (DNN), to process the information from a set of jet substructure variables.
Summary of the variables used is shown in Table 2.1. Details of the variables used can be
found in Appendix B.

Table 2.1: Summary of input variables used for BDT and DNN top tagger [23].

Variables BDT DNN
mcomb

pT
e3
C2
D2
τ1
τ2
τ3
τ21
τ32√
d12√
d23

QW

The network works based on the principle of "supervised training". It learns from a training
set that contains objects with known classification, in this case, signal and background jets. The
training sets "teach" the network from the properties or variables assigned to each object to best
determine the classification. The output is a mathematical function that can be used to predict
the degree of classification of an unclassified object. The details of the training phase for the
BDT and DNN Tagger: training and testing sets, training weights, etc. can be found in Ref.
[24].

Processing all of the variables can be computationally wasteful, and adding uncorrelated vari-
ables may negatively affect the performance. Therefore, there needs to be an optimization to
determine an optimal set of variables that go into the network. For the BDT Tagger, this is done
by sequentially adding the variable into the network, starting from the variable with the high-
est discrimination. Relative background rejection is calculated at each step. The variables that
do not give an improvement to the performance within statistical uncertainties are excluded.
Figure 2.4a shows the relative background rejection at each step; the variables left to the verti-
cal dashed line are the optimal variables. The jets used for the training must pass the training
criteria: 200 GeV < pT < 2000 GeV, mcomb > 40 GeV1, and number of constituents (Nconst) > 2.

For the DNN Tagger, the optimization is done by training the network using different sets of
variables that are grouped together. The grouping is based on the properties that the variables
describe and their dependency on other variables, as listed in Table 2.2. The performance is
calculated for each group and the relative background rejection is shown in Figure 2.4b. The

1After jet calibration, the combined mass mcomb is set as jet mass. The calculation of mcomb can be found in
Appendix B.
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group with the best background rejection is chosen, which happens to be the group with all of
the starting variables. The same training criterion is applied for the DNN tagger.

Table 2.2: Variables grouping used in the DNN optimization [23].

Group 1 C2, D2, τ21, τ32
Group 2 C2, D2, τ21, τ32, mcomb

Group 3 C2, D2, τ21, τ32, mcomb, pT
Group 4 τ1, τ2, τ3, e3, mcomb, pT
Group 5 C2, D2, τ21, τ32,

√
d12,

√
d23, QW

Group 6 C2, D2, τ21, τ32,
√

d12,
√

d23, QW , mcomb

Group 7 τ1, τ2, τ3, e3, mcomb, pT,
√

d12,
√

d23, QW
Group 8 C2, D2, τ21, τ32,

√
d12,

√
d23, QW , mcomb, pT

Group 9 τ1, τ2, τ3, τ21, τ32,
√

d12,
√

d23, QW , C2, D2, e3, mcomb, pT

(a) BDT optimization scheme (b) DNN optimization scheme

Figure 2.4: Relative background rejection plots showing how the optimization procedure is
done for the BDT and DNN Tagger. Optimization for the BDT Tagger is done by sequentially
adding variables to the network and calculating relative background rejection at each step, the
optimal variables are the ones on the left side of the dashed line. For the DNN Tagger, it is done
by grouping the variables based on Table 2.2 and calculating relative background rejection on
each group, group 9 is chosen since it gives the best performance [23].

2.4 Topocluster Tagger

The Topocluster Tagger [25] applies a similar but slightly different approach. It uses a DNN
architecture, but instead of processing jet variables, it processes the kinematics of the jets’ con-
stituents/topoclusters. Compared to the jet substructure variables that are derived to quantify
certain properties of a jet, the topoclusters promise a more fine-grained information about the
structure of jets, and thus, have better resolution. Details about the network can be found in
Ref. [25], although the implementation in ATLAS uses a slightly different configuration.

The network takes in kinematics information (pT, η, φ) of the ten highest pT clusters, ordered in
descending pT. Before being passed into the network, the clusters have to go into preprocessing
phase. This is done to reduce the dimensionality of the object that has no physical significance,
such as the orientation of the jet.
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2.4.1 Preprocessing

The preprocessing phase is done in four steps. Firstly, the pT of the topoclusters is scaled by
1/1700 GeV so that it falls in the same order of magnitude as the other input observables η and
φ. Secondly, the topoclusters are translated to position the highest pT cluster at the origin of the
η − φ plane using Eq. 2.3 and 2.4,

η′
n = ηn − η0 (2.3)

φ′
n = φn − φ0 (2.4)

where n denotes the cluster number, and 0 indicates the highest pT cluster.

Thirdly, a rotation of angle ϑ is performed to align the second highest pT cluster on the negative
y-axis, below the highest pT cluster. The rotation is done by transforming the py and pz com-
ponents of the momentum, since direct rotation in η − φ plane is not Lorentz invariant. The
calculation of rotation angle ϑ and the transformation of py and pz of the cluster is formulated
by Eq. 2.5, 2.6, and 2.7 below.

ϑ = tan−1(
py,1

pz,1
) +

π

2
(2.5)

p′y,n = py,n cos ϑ − pz,n sin ϑ (2.6)

p′z,n = py,n sin ϑ + pz,n cos ϑ (2.7)

Finally, if the average pT of the clusters is in the left half of the η − φ plane, then flip all the
clusters in η,

if
N

∑
i=0

pT,i · η′
i < 0, then η′′

i = −η′
i (2.8)

Figure 2.5 shows the kinematics of topoclusters from ∼400,000 signal and background jets on a
η − φ − pT plot before and after the rotation and flipping. The distinction between signal and
background is noticeable in the figure, and it is from this signature that the network learns to
discriminate the signal from the background.

The output from the networks is a single quantity called "score" that describes the classification
of the jets. Figure 2.6 shows the distributions of the network output score of the BDT, DNN,
and Topocluster Tagger; it is on these distributions that the cut is applied by the taggers.
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Figure 2.5: Plots on the left (right) column show images of jets before (after) preprocessing. Top
(bottom) row shows signal (background) jets. The signature of top jets can be observed as the
"shadowy" region on the upper-right plot near the central black circle. [25].
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Figure 2.6: Distribution of the output score of the three machine learning taggers for jet pT
range of 600 - 700 GeV.
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3
Performance Studies

This chapter features the performance studies that are done on the four boosted top taggers dis-
cussed in the previous chapter. The studies are done to measure the performance of the taggers
in two different scenarios: tagging individual jets and tagging dijet events. The Monte Carlo
samples used as background and signal are laid out, and the kinematic cuts are given. The
performance is measured by comparing the background rejection of each tagger at a mutual
signal efficiency level. The Topocluster Tagger is chosen to be the tagger used in the proceed-
ing analysis based on the result and the reasoning explained at the end of this chapter.

3.1 The Monte Carlo Samples

For the background estimates, the samples used are the QCD Dijet datasets generated by
PYTHIA8 [26, 27] and EVTGEN [28], known as the "JZXW" samples. In order to generate events
with the same statistical power across the pT range, the QCD Dijet samples are divided into
different slices based on the truth1 jet pT. Each slice generates the same number of events with
different weight for every slice. Inside every slice, each event also has a weight attached to
them to make sure the high-end pT of each slice has the same statistical power as the low-end
pT. The overall weight for the JZXW samples is formulated in Equation 3.1 below. It is nec-
essary to apply this weight to obtain the expected smoothly falling pT distribution. Full name
of the datasets can be found in Appendix A. Note that the JZXW samples only contain dijets
originated from QCD light quarks, the top quark contributions are contained by another set of
samples discussed in the next chapter. But for the purpose of the performance studies, only the
JZXW samples are used, as here, the background is defined simply as non-top jets.

weight =
σ × filter efficiency × event weight

number of events
(3.1)

For the signal, the neutral boson from the heavy vector triplet (HVT) decaying into tt̄ is used.
The HVT samples are a good signal candidate for the purpose of the performance studies be-
cause the HVT → tt̄ samples are generated at relatively narrow interval of discrete mass points
ranging from 400 GeV to 10 TeV, as shown in Appendix A. This mass range populates the

1"Truth" level denotes the information of particles that are generated by the event generator before being recon-
structed by the detector simulation.
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pT spectrum from 0 to 6 TeV. The signal samples follow the same weighting procedure as the
background JZXW samples, although the event weights are constantly equal to one.

3.2 Event Selection

As described in Chapter 2, boosted top tagging looks into large-R jets and determines if they
have top signature. The specification of the jets of interest are topocluster jets reconstructed by
the anti-kT algorithm with radius R = 1.0. The jets are trimmed to remove the effect of pileup
and other irrelevant processes. In the trimming process, the jet’s constituents are reconstructed
using the kT algorithm with radius parameter Rsub, and the subjets which carry less than a
specific fraction fcut of the original jet pT are removed. The trimming parameters chosen are
Rsub = 0.2 and fcut = 5%.

In the performance studies, in order to get a well-defined comparison, a more constraining
definition of "signal" is required. The top quarks coming from the resonance are required to
decay hadronically; events with leptonically decaying top are discarded. The signal jets also
need to be ensured to fully contain the decay particles of the top. Containment is defined based
on the distance of the truth decay particles to the jet ∆R =

√
(∆φ)2 + (∆η)2, and is classified

into three groups,

1. Top contained
Require the ∆R of the b quark and the two light quarks from the W to be ∆R < 0.75Rjet.

2. W contained
Require the ∆R of the two light quarks from the W to be ∆R < 0.75Rjet and the ∆R the b
quark to be ∆R > 0.75Rjet.

3. Other
Jets that do not satisfy two previous categories.

Here, Rjet is the radius of the jet (= 1.0). It is the "top contained" criterion that is taken as
the signal in the performance studies. Figure 3.1 shows the distribution of the signal jet mass
based on the containment classification divided into two pT slices: 500 - 1000 GeV and 1000 -
1500 GeV. One can see that the mass distribution for top contained jets peaks at 175 GeV, and
the mass distribution for W contained jets peaks at 80 GeV, which agrees with the observed
mass of the top quark and W boson. Notice also that the fraction of the top contained jets is
increased in the higher pT slice; as the more boosted are the jets, the more grouped together the
decay particles are, making it easier for the jets to contain all three of them.

Kinematic cuts are also applied in the performance studies to mimic the cuts used in the search.
To study the boosted top taggers in tagging individual jets, only the highest pT jet of every
event is considered in the performance study of individual jets. Events with leading jet pT
lower than 440 GeV are removed, so that only adequately boosted jets are considered. The jets
are required to have more than 2 constituents for the tagger to work effectively due to the fact
that the taggers are dependent on the jet substructure variables and the constituents. To ensure
that the jet is in the central region of the detector, a |ηjet| < 2.0 cut is applied.

The cuts used in the dijet study generally follow from the cuts used in individual jets study
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with some additions. The sub-leading jet pT is required to be higher than 350 GeV, note that
this is higher than the threshold used in the usual dijet analysis (> 60 GeV) because the taggers
require the jets to be considerably boosted. The rapidity difference y∗ = (y1−y2)

2 is defined
for leading and sub-leading jet, and a cut of |y∗| < 0.6 is applied to reduce the effect from
background processes [29]. Summary of the kinematic cuts used in the performance studies
can be found in Table 3.1.

In the individual jets (dijet) performance study, the signal pT (mjj) distribution is reweighted to
match the background pT (mjj) distribution so that the performance can be continuously mea-
sured over the spectrum range. This reweighting procedure is only done in the performance
studies and is not applied in the actual analysis.
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Figure 3.1: Distribution of signal jet mass based on the containment classification for lower pT
[500 - 1000 GeV] (left) and higher pT [1000 - 1500 GeV] (right). The top contained jets are the
ones used as signal in the performance studies.

Table 3.1: Summary of the cuts used in the performance studies.

Leading jet pT Sub-leading jet pT Njet
constituents |ηjet| |y∗|

Tagging individual jets > 440 GeV - > 2 < 2.0 -
Tagging dijet events > 440 GeV > 350 GeV > 2 < 2.0 < 0.6

3.3 Tagging Individual Jets

To quantify the performance of the taggers, signal efficiency and background rejection is calcu-
lated. Signal efficiency is defined as the fraction of the signal jets that are tagged by the tagger,
and background rejection is defined as the inverse of background efficiency or the number of
background jets that are not tagged per every one background jet that is mis-tagged; written
in mathematical form in Equation 3.2 and 3.3. Note that the subscript "total" means the total
number of jets that passes the kinematic cuts before the taggers are applied.

Signal Efficiency = εsig =
Nsig

tagged

Nsig
total

(3.2)

Background Rejection =
1

εbkg
=

Nbkg
total

Nbkg
tagged

(3.3)
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The taggers are set at a constant working point of 80% signal efficiency. For the three machine
learning taggers, this is done by finding a cut value that gives 80% signal efficiency for every
bin, and fitting over those cut values using a polynomial equation. For the Smoothed Top
Tagger, it is done by scanning the τ32 −

√
d23 distribution to look for values that give the desired

signal efficiency, and choose the cut values that give the most background rejection for every
pT bin, then finally fit the cut distribution over the jet pT. The cut functions can be found in
Appendix C.

After setting the signal efficiency constantly to 80%, the comparison of the performance is then
done by looking at the background rejection. The result is shown in Figure 3.2a and 3.2c. Note
that when comparing these plots, one needs to take into consideration that the signal efficiency
is not perfectly constant at 80% due to the imperfection of the fit used to get the cut functions.
A general trend that can be observed is that the performance of the taggers is declining with
increasing pT. This is due to the fact that the taggers are based on the jet substructure and jet
constituent information; as the jets get more boosted, the subjets and constituents get closer
together and overlap, resulting in jet substructure variables and constituents to lose some in-
formation. It can also be seen in the background rejection plot that the Smoothed Top Tagger is
outperformed by the machine learning taggers at most of the pT range, proving the superiority
of the three machine learning taggers.

Another representation of the taggers’ performance is shown by the Receiver Operating Char-
acteristic (ROC) curve that plots the signal efficiency vs the background rejection as shown in
Figure 3.3 for a pT slice [1000,1500] GeV. In this pT range, the three machine learning taggers
perform almost identically, and they perform better than the Smoothed Top Tagger by roughly
a factor of two, evaluated at the signal efficiency of the Smoothed Top Tagger.

3.4 Tagging Dijet Events

In the case of tagging dijet events, the definition of signal efficiency and background rejection
in Equation 3.2 and 3.3 is still used, but now N represents event count instead of jet count.
Signal efficiency and background rejection are now calculated over the invariant mass of the
dijet system mjj, taking the highest pT and the second highest pT jet. To tag dijet events, a new
variable is needed to place the cut on. Dijet score is simply defined as the average of the leading
and sub-leading jet’s tagger score,

Dijet score =
score1 + score2

2
(3.4)

The cut functions derivation follows a similar procedure as before, but now the fit is done over
the dijet score distribution over mjj. The cut functions used on dijet score distribution to get
constant 80% signal efficiency can be found in Appendix C. The performance of the Smoothed
Top Tagger is not studied further in the dijet case as the previous result has shown its relatively
poor performance and does not motivate further application.

The result of the performance study in the dijet case is shown by Figure 3.2b and 3.2d. The
DNN Tagger performs better compared to the BDT Tagger across the range, this could be due
to the extra number of variables that the DNN Tagger uses. The Topocluster Tagger is slightly
better in the middle mass range compared to the other two taggers, although being slightly
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worse at the lower and higher mass range.

Moving forward, the Topocluster Tagger is chosen to be the tagger used in the dijet resonance
search analysis in this project. This is supported by the results shown earlier that the Topoclus-
ter Tagger performs best in the mass range of interest. The relatively worse performance in
higher mass has less significance since, at the level of integrated luminosity the LHC has so
far2, there are few events at that high mass region. Also, since the Topocluster Tagger uses
topocluster kinematics, it processes a more fine-grained information compared to the BDT and
DNN Tagger which use jet substructure variables, and thus, has better resolution. This leads to
the idea that the Topocluster Tagger has the most potential to improve in the future develop-
ment.

2Integrated luminosity is a measure of the number of collisions at a particle accelerator. The number of event of a
certain process is equal to the integrated luminosity multiplied by the corresponding cross section, N =

∫
Ldt × σ.
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Figure 3.3: ROC Curve showing signal efficiency vs background rejection of the four boosted
top taggers in jet pT range of 1000 - 1500 GeV. The three machine learning taggers are repre-
sented by the colored line, and the Smoothed Top Tagger is represented by a single point where
it is optimized.
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4
Dijet Mass Distribution

After the boosted top taggers are studied and the Topocluster Tagger is picked as the tool of
choice, a distribution is needed for the tagger to work on. The Standard Model (SM) tt̄ processes
are discussed here to be added to the QCD light quarks from the JZXW samples. Together, the
QCD light quarks and the SM tt̄ makes up the smoothly falling background distribution. After
the full QCD mass distribution is obtained and the Topocluster Tagger is applied, the Monte
Carlo distribution is transformed so that it has the same statistical character as in real data,
the procedure is discussed in the second part of this chapter. The output is the dijet mass
distributions that are analyzed by the resonance search method in the next chapter.

4.1 SM Top Quark Pair Production

Running at the center of mass energy of
√

s = 13 TeV, the LHC is by far the most productive
top quark factory in the world. Top quarks can be produced via single top quark or top quark
pair productions. Since the presence of top quarks is of interest in this study, it is important to
consider the top quarks coming from the SM QCD contribution, especially the top quark pairs.
The leading order diagrams of SM tt̄ production are shown by Figure 4.1. The gluon-gluon
fusion process dominates the tt̄ production at the LHC by 90% [30], while the quark-antiquark
annihilation is suppressed because the LHC collides pp, which means the antiquark must come
from virtual sea quark.

In the context of a BSM resonance search, the SM tt̄ production is considered to be part of the
background since it originates from known SM processes. The JZXW samples do not contain
the QCD top production, therefore, it needs to be added from another dedicated set of samples.
The SM tt̄ samples are generated by POWHEG [31] + PYTHIA event generator, the list of the full
names of the samples can be found in Appendix A. Just like in the JZXW samples, the SM
tt̄ samples are also sliced into different datasets to make up for the low statistics in the more
energetic region. However, in the SM tt̄ datasets, samples are sliced based on the invariant mass
of the tt̄ system mtt̄ instead of the truth jet pT. The slices span from mtt = 1.1 TeV to mtt = 14
TeV. To populate the mtt < 1.1 TeV region, an inclusive sample is used, taking only events with
mtt < 1.1 TeV. Table 4.1 summarizes the mtt range for each of the SM tt̄ samples used. Notice
that by applying the cut mtt < 1.1 TeV to the inclusive sample, a full SM tt̄ distribution across
the mtt range is achieved.
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The weight used in POWHEG is slightly different from the one used in PYTHIA, as formulated
in Equation 4.1 below.

weight =
σ × filter efficiency × event weight

sum of weight
(4.1)

g

g

g

t

t̄

(a) tt̄ production via gluon-gluon fusion

g

q

q̄

t

t̄

(b) tt̄ production via quark-antiquark annihi-
lation

g t

g t̄

(c) tt̄ production via gluon scattering

g t

g t̄

(d) tt̄ production via gluon scattering

Figure 4.1: Leading order diagrams of SM tt̄ production.

Table 4.1: The SM tt̄ samples slices and their corresponding mtt range.

SM tt̄ sample mtt range
Inclusive 0 - 14 TeV

Slice 1 1.1 - 1.3 TeV
Slice 2 1.3 - 1.5 TeV
Slice 3 1.5 - 1.7 TeV
Slice 4 1.7 - 2 TeV
Slice 5 2 - 14 TeV

Figure 4.2 shows the distribution of the SM tt̄ with the kinematic cuts applied and scaled by
the assumed integrated luminosity of 100 fb−1, the number is an approximation of the current
amount of data that has been collected by ATLAS so far.1 Note that the distribution loses
statistical power at mjj > 4 TeV, but with the assumed integrated luminosity, this is of little
significance because there are very few events beyond that mass point. To get the full QCD
background distribution, the distributions from the JZXW samples are then added with the SM
tt̄ distribution. Figure 4.3 shows the tt̄-enriched QCD background mass distribution before and
after applying the Topocluster Tagger. Notice that after top tagging, the number of events from
the QCD distribution drops at higher magnitude compared to the SM tt̄.

1By the end of the 2017 run, ATLAS has recorded total integrated luminosity of 86 fb−1 of
√

s = 13 TeV pp
collisions [32].
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Figure 4.2: Distribution of SM tt̄ of different slices scaled by integrated luminosity 100 fb−1. The
histograms are stacked, so the total number is represented by the magenta line. The decline at
the lower mass region is due to the kinematic cuts removing events with low pT jets.
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Figure 4.3: QCD dijet mass distribution enriched with SM tt̄. Black (green) line represents the
distribution before (after) applying the Topocluster Tagger.
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4.2 Making Data-like Distributions

In the sliced Monte Carlo simulations, rare events are generated at a much higher rate than
what the detector records in reality. The simulated events are then weighted down to get the
real-life distribution as previously discussed. This is done to get an optimal statistical power
across the energy spectrum, especially at the higher energy region where the occurrence of the
events is low. As a result, distributions in Monte Carlo simulations have much less statistical
uncertainty then what could be achieved in real experimental data. So in order to study the
Monte Carlo distribution as if it was real data, the distribution needs to be transformed so that
it would have the same statistical fluctuation as one would find in a real experiment.

To get the data-like distribution, first the Monte Carlo distribution is fitted using the SWIFT

method (details of the SWIFT method are described in the next chapter). For each bin, the
data-like event count is a Poisson random number generated using the fit value evaluated at
the center of the bin as the Poisson mean. The uncertainty of each data point is assigned to
be

√
N, with N being the data-like event count for the bin. This procedure is done on the tt̄-

enriched QCD background Monte Carlo distribution, before and after top tagging, as shown
in Figure 4.4. These two data-like distributions act as the background mass spectrum in the
analysis done in the next chapter.
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Figure 4.4: Data-like background distribution before top tagging (top plot) and after top tag-
ging (bottom plot), obtained by generating random number according to Poisson distribution
using the fit value as the mean for each bin.
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5
Sliding Window Fit

The resonance search method used for the analysis in this thesis is called the Sliding Window
Fit (SWIFT) [33] method. The main idea of the method is to analyze the mass distribution in
smaller windows by doing simultaneous background and background+signal fit, and "slide"
the window over the distribution. The motivation behind the method and the general proce-
dure is discussed here along with the search parameters and the chosen values. Readers who
are interested in more technical details are referred to the cited source.

5.1 General Description

In the past, resonance searches were done by looking for excess in the dijet mass distribution
above a background estimate given by the "dijet function", defined as,

f (x) = p0(1 − x)p1 xp2+p3 ln x (5.1)

where x = mjj/
√

s, and pi are the parameters. The equation shown above is the 4-parameter
variant of the dijet function. By setting p3 = 0, it becomes the 3-parameter dijet function.
The dijet function is derived from the leading order matrix element and parton distribution
function, and thus, is only an approximation. In the previous dijet searches [34, 35], the dijet
function had proven to be effective to fit the mass distribution. However, with the increasing
amount of data that the LHC has accumulated and the new mass range it opens, the approxi-
mation of the function becomes less efficient at describing the mass distribution, especially at
the higher mass range. SWIFT offers a solution to this issue by fitting over smaller windows in
which the dijet function can fit relatively easy.

SWIFT essentially is a resonance search method that works by analyzing the data spectrum in
many small and overlapping windows. Each window is analyzed by doing various number
of fits and extracting some statistical quantities, with the bin edges assigned as the window
centers. Generally, the fits performed by SWIFT are divided into two types: nominal and
alternate fit. The nominal fit is defined as the 3-parameter dijet function, and the alternate fit is
the 4-parameter dijet function.

SWIFT takes in a mass distribution and the signal shape that one looks for. By the end of its
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run, SWIFT gives out,

• a local p-value scan based on log-likelihood ratio (LLHR)

• 95% Confidence Level (CL) limits

• a background estimate

The search in this study analyzes the mass range of 1100 GeV to 6787 GeV. The lower limit is
motivated by the optimal efficiency of the |y∗| < 0.6 selection which starts at 1100 GeV, while
the upper limit is motivated by the top-tagged mass distribution having no events beyond
6787 GeV. The first and last window center have to be set at some bins away from the edge
to avoid problematic background+signal fit at those areas as the signal component would be
cut away by the edge. The first and last window centers are set to be 1493 GeV and 5931 GeV,
respectively.

5.2 Signal Parameterization

Prior to the search, SWIFT needs the signal shape to construct the background + signal fits. It
requires a signal shape at every window center; unfortunately, signal samples are only gen-
erated at discrete mass points, leaving some gaps in between those mass points. In order to
circumvent this issue, the "signal morphing" method – included in the SWIFT package – is
applied to the signal mass distributions. First, it fits the MC signal mass distributions using a
"Gaussian - reverse Landau" (GrL) function, defined as,

f (x) = p0 × [p3 × Gauss(mjj, p1, p2) + (1 − p3)× Landau(−mjj, p4, p5)] (5.2)

where the parameters pi are described as follows:

• p0 = normalization factor

• p1 = Gaussian mean

• p2 = Gaussian width

• p3 = Gaussian/Landau fraction

• p4 = Landau mean

• p5 = Landau width

By performing the GrL fit to the MC signal at its generated mass points, the values of the GrL
parameters at each generated mass points are obtained. Then, each parameter is interpolated
with a cubic spline as a function of mass. As a result, signal shapes at any mass points can
be generated by evaluating the parameters of the interpolation functions at the desired mass
value.

The signal morphing procedure is done on the HVT and Z’ signal shapes before and after top
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tagging, the fits and the resulting parameters can be found in Appendix D. For a totally model-
independent search, a hypothetical fixed-width Gaussian signal generated at every window
center is used.

5.3 Choosing Window Sizes

SWIFT initializes its run by determining the size of each window by performing nominal
background-only (3-parameter dijet function) fit in different window sizes. For every window,
SWIFT chooses the window size with the best χ2 p-value.

The window sizes that are allowed are configurable by the user and are measured by a per-
centage of the window center. For example, for window center at 2 TeV and window size of
30%, the window will span from 2 TeV × (1 − 30%) = 1.4 TeV to 2 TeV × (1 + 30%) = 2.6 TeV.
SWIFT sets the window edges to the bin edges closest to 1.4 TeV and 2.6 TeV1. It is important
to make sure that the minimum window size is at least three times the signal width so that the
background+signal fit that is performed in the later step can capture the entire signal shape.
Minimum and maximum window sizes are set to be 30% and 100%, respectively.

The user also needs to specify the number of window sizes to be tested at the first window
center. To test 20 window sizes means that, at the first window center, SWIFT would test 20
window sizes from 30% and 100% with the increment of 3.5%, and choose the window with
the best χ2 p-value. For the next window until the last one, only 5 window sizes are tested: 2
sizes above and below the previous chosen size; this prevents the window to shrink or grow
too dramatically. For this analysis, the number of window sizes tested at the first window is
chosen to be 20.

5.4 Local p-value Scan

After the window size fixing is done as described in the previous section, SWIFT slides over
the spectrum from the first window center to the last, and at each window, two pairs of fits are
applied:

1. Nominal

• Nominal background-only fit

• Nominal signal+background fit

2. Alternate

• Alternate background-only fit

1The "window center" is not always at the center of the window. For example, for the first window center at 1493
GeV, a 30% window size means that it starts from 1493 GeV × (1 − 30%) = 1045 GeV, lower than the low edge of
1100 GeV. In this case, the first window is set at 1100 GeV. The same argument applies to the last and close-to-last
windows.
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• Alternate signal+background fit

The signal+background fit is the dijet function added with the signal shape that is obtained
from the signal parametrization step with the window center as the mass of the signal. The
normalization factor of the signal is allowed to float to be able to best capture the signal shape
in the data if a signal is present. At each window, SWIFT chooses to keep either the nominal
or alternate fits based on the χ2 p-value of the signal+background fits. The size of the signal
component determines the "extracted signal" at every window. Note that by this definition, the
extracted signal can be negative due to negative fluctuation in the data.

Once the pair of fits is chosen, the log-likelihood ratio (LLHR) is calculated by Equation 5.3
below. LLHR quantifies how much adding the signal component improves the quality of the
fit.

LLHR = ln
LHs+b

LHb
(5.3)

The likelihood (LH) is calculated by summing the Poisson probability of getting the bin content
xi using the estimate from the background fit as the mean λi over all bins,

LH(x|λ) =
N

∑
i=1

e−λi
λxi

i
xi!

(5.4)

To get the local p-value, Wilk’s theorem is applied to convert the LLHR to χ2 which can be
translated to local p-value. According to Wilk’s theorem, for a pair of nested models, in the
limit of large statistics, χ2 with degrees of freedom k equals to negative two times the LLHR
(Equation 5.5). Wilk’s theorem is applicable here because the models used in the ratio use the
same underlying function (background-only and signal+background function use the same
background function), so they can be considered nested. The LLHR-based local p-value deter-
mines the significance of any excess found in the data spectrum.

χ2(k) = −2 × LLHR (5.5)

5.5 95% Confidence Level Limits

In the case of no significant excess found as determined from the local p-value scan, the 95%
Confidence Level (CL) limit is calculated. The 95% CL limit is defined as the rate of signal
production that agrees with the data at 95% confidence level or 2σ.

The limit calculation starts with the extracted signal which is derived from the signal compo-
nent of the signal+background fit. To find the limit, the binary search algorithm is performed as
illustrated in Figure 5.1. The red dot in the sketch represents the number of the extracted signal
from the signal+background fit and the likelihood it corresponds to (defined as the minimum
likelihood), and the green dot represents the number of extracted signal and the likelihood ratio
made worse by 2σ from the minimum LLH. The cross section that corresponds to the number
of signal of the green dot, by definition, is the 95% CL limit. In the case of a negative extracted
signal, the 2σ deviation is calculated from the LLH that corresponds to zero extracted signal
(see Figure 5.1b). This comes from the assumption that any signal from BSM processes should
not cause negative deviation from the background, so any negative fluctuation is purely statis-
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tical. The algorithm tries to find the green dot by injecting or subtracting signal iteratively until
it reaches the desired likelihood within a tolerance value (set to be 0.001).

(a) Positive signal case (b) Negative signal case

Figure 5.1: Binary search procedure to find the 95% CL limits [33].

5.6 SWIFT Background

To construct the background estimate, after the choice of nominal or alternate pair of fits,
SWIFT saves the value of the background-only fit evaluated at the window center of each win-
dow to be the background estimate of only that particular bin. This way each window center
gets a background estimate. For the bins below and above the first and last window center,
the background estimates are obtained by evaluating the background-only fit obtained in the
first and last window at those particular close-to-the-edge bins. This completes the background
estimation for the whole range; such is the process to produce the fit line in Figure 4.4 shown
in the previous chapter.

Figure 5.2 and 5.3 show the performance of the SWiFt background estimate on data-like back-
ground dijet mass distribution before and after top-tagging that are used in the analysis (see
Figure 4.4), in comparison with the 3-parameter and 4-parameter dijet function. The signifi-
cance on the bottom pad is defined as (data − fit)/

√
data. The significance swing observed on

3-parameter and 4-parameter dijet function fit exposes the approximation nature of the dijet
function. The accuracy of the fit is described by χ2 p-value printed on the plots. It can be seen
that the 4-parameter fit is better than 3-parameter fit, and the SWIFT background fit is better
than 4-parameter fit.

5.7 Signal Subtraction

In the case of a significant excess detected in the data, the background fit could be pulled up
by the presence of the signal. This fit bias causes the background estimate to be inaccurate in
describing the real background. To handle this issue, SWIFT is equipped with signal subtrac-
tion procedure. The procedure is activated if there is a window with local p-value less than a
threshold value; here set to be 0.001 which corresponds to approximately 3σ excess. The sub-
traction is done by extracting the number of signal captured by the signal component of the
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background+signal fit from the data distribution. Note that the signal subtraction is only done
at one window: the window with the smallest local p-value. After the signal has been sub-
tracted, the background estimate construction (explained in the previous section) is repeated
with the same type of fit (nominal or alternate) and window sizes. The new background esti-
mate can be used to calculate the global p-value or passed to other resonance search method
(e.g BUMPHUNTER [36]) as a bias-free background estimate. Table 5.1 summarizes the value of
parameters chosen for the SWIFT resonance search performed in this analysis.

Table 5.1: Summary of the parameters used for the SWiFt resonance search in the analysis.

Category Parameter Value

Ranges

Low edge of the search 1100 GeV
High edge of the search 6787 GeV
First window center 1493 GeV
Last window center 5931 GeV

Window size
Minimum window size 30%
Maximum window size 100%
Number of window size tested 20

Limit calculation
Limit binary search tolerance 0.001
Integrated luminosity 100 fb−1

Signal subtraction Local p-value trigger threshold 0.001
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(a) 3-parameter dijet function fit
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(b) 4-parameter dijet function fit
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(c) SWiFt background

Figure 5.2: Background estimates of the dijet mass distribution using (a) 3-parameter dijet
function, (b) 4-parameter dijet function, and (c) SWIFT, before top tagging.
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(a) 3-parameter dijet function fit
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(b) 4-parameter dijet function fit
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(c) SWiFt background

Figure 5.3: Background estimates of the dijet mass distribution using (a) 3-parameter dijet
function, (b) 4-parameter dijet function, and (c) SWIFT, after top tagging.
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6
Results

This chapter is dedicated to show the results of the resonance search and the analysis sur-
rounding it. For each of the result plots, two cases are displayed: before and after top tagging,
to show the effect of the top tagging to the quality of the search. The first part of the chapter
discusses the search results where only background processes are considered, and the second
part discusses the scenario where signal is injected in the spectrum at various mass points and
strengths. The readers are reminded that the data used in the analysis all come from Monte
Carlo simulations.

6.1 Background Only

The results shown in this section are the SWIFT resonance search results using only the di-
jet mass contribution from the background processes, before and after top tagging by the
Topocluster Tagger. The background processes considered are the QCD light jets plus the SM
tt̄ production, as shown by Figure 4.4. The SWIFT procedure is applied to the two data-like
mass distribution and the relevant outputs are shown here. Multiple signal models are used
for the resonance search: hypothetical Gaussian signal with various widths (σG/mG = 3%, 5%,
and 7%), HVT → tt̄, and Z’ → tt̄.

Figure 6.1 shows the local p-value scan as a function of the window center for the dijet mass
distribution before and after top tagging. Since no local p-value is lower than the detection
threshold (< 0.001), no significant excess is found in the local p-value scan, as expected from
background-only distributions. Any excesses observed (dips in the local p-value plots) can be
attributed to statistical fluctuations. It can be concluded that the method does not mistake any
statistical fluctuation as a significant excess. Note that since no local p-value falls below the
signal subtraction threshold for all signal models, both before and after top tagging, the signal
subtraction is not triggered.

After the local p-value scan has proven no significant excesses observed, SWIFT calculates
the 95% CL limits. The limit plots for the HVT and Z’ model are shown by Figure 6.2, along
with the theory line for each model. The expected limit is the median of the 95% CL limits
calculated from 1000 pseudo-experiments, and the green and yellow band is where 68% and
95% of the limits of the pseudo-experiments lies around the median, respectively. The theory
line is calculated by the product of cross section, branching ratio, and selection efficiency at
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each generated mass points. Note that the selection efficiency is affected by the top tagging,
so the line is slightly lower for the top-tagged case. The mass points below the theory line are
excluded at 95% confidence level. By comparing the limit plots before and after top tagging,
it can be observed that the act of top tagging decreases the cross section limit on both models
by roughly one order of magnitude. Before top tagging, there are no mass points excluded for
the two signal models. After top tagging, HVT → tt̄ is excluded at mass points [1533, 1698]
GeV and 2600 GeV, and Z’ → tt̄ is excluded at mass points [1533, 1698] GeV, 1968 GeV, and
[2542, 2600] GeV. This signifies that the act of top tagging increases the sensitivity of the search,
although, a better tagger is desired for more exclusion at the given cross sections.

The limit plots for the Gaussian signal models are shown by Figure 6.3, with the bands drawn
for the Gaussian model with width σG/mG = 3% and the limits from the other widths are
overlaid. Here, the sensitivity increase after top tagging can also be observed by the decrease
in the cross section limits. Notice that the limits from wider signals are generally worse. As the
signal gets wider, it requires a higher cross section to leave a noticeable "bump" on the mass
distribution, thus, the worse limits.

6.2 Injected Signal

This section presents the resonance search results of dijet mass distributions from background
processes with a signal presence. The Z’ → tt̄ signal of mass 2 TeV, 3 TeV, and 4 TeV are
injected separately to the background mass distribution. The signal strength for each injected
signal mass points is varied by multiplying the predicted cross section by a factor of 1, 3, and 5;
creating multiple mass distributions containing signals at different mass points and strengths.

The results from the local p-value scan for each of the signal injected mass distributions are
shown in Figure 6.4 (note the different ranges of the y-axis). A general trend can be observed:
local p-value around each injected mass points after top tagging is lower than before top tag-
ging, which implies that the presence of the signal is more pronounced and becomes relatively
easy to detect after top tagging. The detection is most recognized in case of injected signal at 2
TeV mass point, where the local p-value reaches 9 × 10−5 (4 × 10−10) for σ × 3(5) at 1968 GeV.
For the injected signal at 3 TeV mass point, detection is only observed in the σ × 5 case at 3100
GeV; and is not observed for the injected signal at 4 TeV mass point. The lost of sensitivity
at higher mass is due to the small predicted cross section at higher mass and the insufficient
integrated luminosity to produce a significant amount of signal event at the higher mass range.

As a final proof of the benefit of top tagging in the resonance search, the BUMPHUNTER [36]
algorithm is employed to analyze the dijet mass distribution with Z’ → tt̄ injected at mass
2 TeV with strength σ × 3, before and after top tagging, as shown by Figure 6.5. The back-
ground line is the SWIFT background estimate for each distribution. Note that since the local
p-value reaches < 0.001 after top tagging (see Figure 6.4d), the background estimate for the
top-tagged distribution is the one from the signal subtracted distribution. Before top tagging,
BUMPHUNTER fails to detect any significant excess; and after top tagging, it manages to iden-
tify the signal correctly at the range of 1785-2164 GeV, matching the injected signal at mass 2
TeV.

All of these results are proofs that the quality of the search is improved by applying top tagging.
The fact that one might see something that was previously hidden encourages the application
of this tool and method on real data, and see what might have been hiding all along.
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Figure 6.1: Local p-value plotted over the window center for background-only dijet mass dis-
tribution (a) before and (b) after top tagging.
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Figure 6.3: The 95% CL limit plots for a hypothetical Gaussian signal with various widths (a)
before and (b) after the top tagging. The band is drawn for the σG/mG = 0.03 Gaussian signal.
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Figure 6.5: The BUMPHUNTER result for the mass spectrum with injected Z’ m = 2000 GeV (σ×
3). The background line is the background estimate from SWIFT. The increase of sensitivity by
top tagging let the BUMPHUNTER pick up the presence of the signal that is not detected before
top tagging.
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7
Summary and Outlook

This thesis is motivated by the potential of discovering new physics in the top channel, specif-
ically in the hadronic final state. By looking at the hadronic channel, the invariant mass of the
resonance particle can be fully reconstructed and it also promises the largest fraction of the sig-
nal. However, this comes with a price of an overwhelming amount of background from QCD
processes. To handle this problem, boosted top tagging is applied to keep most of the signal,
while rejecting as much background as possible.

Four boosted top taggers are studied: the Smoothed Top Tagger, the DNN Tagger, the BDT
Tagger, and the Topocluster Tagger. The performances of the taggers are evaluated by apply-
ing them in two different tasks: tagging individual jets, and tagging dijet events. At the pT
range of 1000 - 1500 GeV, the Smoothed Top Tagger is outperformed by the three machine
learning-based taggers by roughly a factor of two. By comparing the background rejection at a
constant working point of 80% signal efficiency in tagging dijet events, the Topocluster Tagger
is observed to be slightly better than the BDT and DNN Tagger in the mass range of interest.
Since the topoclusters contain lower level informations compared to the jet substructure vari-
ables, the Topocluster Tagger arguably has better resolution to resolve jets at higher pT, and
thus, promises potential for further improvement in the future. Following this argument, and
supported by the result of the performance study, the Topocluster Tagger is chosen to be the
tagger used in the resonance search in the thesis.

The SWIFT resonance search method is employed to analyze the MC-derived dijet mass distri-
butions using various signal models: HVT → tt̄, Z’ → tt̄, and Gaussian signal shapes of width
σG/mG = 3%, 5%, and 7%. To see the effect of top tagging on the quality of the search, the
method is performed before and after top tagging.

First, the method is tested on the background-only mass distribution. The local p-value scan
returns no significant excess from the distributions both before and after top tagging, as one
would expect from a background-only distribution. The 95% CL limits are calculated for each
of the signal models. It can be concluded from the decrease of the limits for each signal models
after top tagging, that the search gains sensitivity from adapting top tagging.

Second, a signal with various masses and strengths are injected separately to the distributions
to see how well the method can detect the signal. The signal used for injection is Z’ → tt̄
at mass 2 TeV, 3 TeV, and 4 TeV; with strengths of σ × 1, σ × 3, and σ × 5. Confirming the
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observation from the background-only test, the sensitivity improvement is noticeable from the
local p-value after top tagging that falls lower around the injected mass points compared to
the one before top tagging. To better visualize the benefit of top tagging, the mass distribution
injected with Z’ (m = 2 TeV, σ × 3) before and after top tagging are passed to BUMPHUNTER

together with the background estimate from SWIFT. Before top tagging, the background is
too overwhelming compared to the signal, resulting in BUMPHUNTER’s failure in detecting
the signal. After top tagging, the background is suppressed and BUMPHUNTER manages to
identify the signal around the injected mass point.

There are several modifications that one can do to improve the analysis done in this project.
The tagger cut functions can be altered to find a more optimal working point that can give
better background rejection, which does not have to be at constant signal efficiency. Further
study on the machine learning network can prove fruitful in improving the performance of
the tagger (which is demonstrated in Ref [37], where the Long Short-Term Memory network
improves the performance of the Topocluster Tagger by a factor of two). The parameters of
the SWIFT resonance search can be adjusted to suit a more specific model. But of course, the
ultimate interest lies in applying the tools and methods demonstrated in this work to real data,
and see what might surface.
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Appendices



A
Lists of Monte Carlo Samples

Table A.1: Datasets used for background estimates

Sample Name

QCD Dijet

mc15_13TeV.361023.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ3W.merge.DAOD_JETM8.e3668_s2576_s2132_r7267_r6282_p2528
mc15_13TeV.361024.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ4W.merge.DAOD_JETM8.e3668_s2576_s2132_r7267_r6282_p2528
mc15_13TeV.361025.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ5W.merge.DAOD_JETM8.e3668_s2576_s2132_r7267_r6282_p2528
mc15_13TeV.361026.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ6W.merge.DAOD_JETM8.e3569_s2608_s2183_r7267_r6282_p2528
mc15_13TeV.361027.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ7W.merge.DAOD_JETM8.e3668_s2608_s2183_r7267_r6282_p2528
mc15_13TeV.361028.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ8W.merge.DAOD_JETM8.e3569_s2576_s2132_r7267_r6282_p2528
mc15_13TeV.361029.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ9W.merge.DAOD_JETM8.e3569_s2576_s2132_r7267_r6282_p2528
mc15_13TeV.361030.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ10W.merge.DAOD_JETM8.e3569_s2576_s2132_r7267_r6282_p2528
mc15_13TeV.361031.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ11W.merge.DAOD_JETM8.e3569_s2608_s2183_r7267_r6282_p2528
mc15_13TeV.361032.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ12W.merge.DAOD_JETM8.e3668_s2608_s2183_r7267_r6282_p2528

SM tt̄ production

mc15_13TeV.410007.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_allhad.merge.DAOD_JETM6.e4135_s2608_s2183_r7725_r7676_p3297
mc15_13TeV.303722.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_allhad_mtt_1.merge.DAOD_JETM6.e4321_s2608_r7772_r7676_p3297
mc15_13TeV.303723.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_allhad_mtt_2.merge.DAOD_JETM6.e4321_s2608_r7772_r7676_p3297
mc15_13TeV.303724.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_allhad_mtt_3.merge.DAOD_JETM6.e4321_s2608_r7772_r7676_p3297
mc15_13TeV.303725.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_allhad_mtt_4.merge.DAOD_JETM6.e4321_s2608_r7772_r7676_p3297
mc15_13TeV.303726.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_allhad_mtt_5.merge.DAOD_JETM6.e4321_s2608_r7772_r7676_p3297

Table A.2: Datasets used for signal estimates

Sample Name

HVT

mc15_13TeV.307382.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m0400.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307383.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m0600.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307384.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m0800.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307385.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m1000.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307386.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m1200.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307387.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m1400.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307388.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m1600.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307389.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m1800.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307390.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m2000.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307391.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m2200.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307392.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m2400.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307393.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m2600.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307394.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m2800.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307395.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m3000.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307396.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m3500.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307397.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m4000.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307398.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m4500.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307399.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m5000.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307400.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m5400.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307401.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m5800.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307402.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m6200.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307403.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m6600.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307404.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m7000.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307405.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m7400.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307406.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m7800.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307407.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m8200.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307408.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m8600.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307409.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m9000.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307410.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m9400.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307411.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m9800.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297
mc15_13TeV.307412.MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_Vztt_all_m10000.merge.DAOD_JETM6.e5624_s2726_r7772_r7676_p3297

Z’

mc15_13TeV.301323.Pythia8EvtGen_A14NNPDF23LO_zprime500_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301324.Pythia8EvtGen_A14NNPDF23LO_zprime750_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301325.Pythia8EvtGen_A14NNPDF23LO_zprime1000_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301326.Pythia8EvtGen_A14NNPDF23LO_zprime1250_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7725_r7676_p2794
mc15_13TeV.301327.Pythia8EvtGen_A14NNPDF23LO_zprime1500_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301328.Pythia8EvtGen_A14NNPDF23LO_zprime1750_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301329.Pythia8EvtGen_A14NNPDF23LO_zprime2000_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301330.Pythia8EvtGen_A14NNPDF23LO_zprime2250_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301331.Pythia8EvtGen_A14NNPDF23LO_zprime2500_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301332.Pythia8EvtGen_A14NNPDF23LO_zprime2750_tt.merge.DAOD_JETM8.e4061_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301333.Pythia8EvtGen_A14NNPDF23LO_zprime3000_tt.merge.DAOD_JETM8.e3723_s2608_s2183_r7725_r7676_p2794
mc15_13TeV.301334.Pythia8EvtGen_A14NNPDF23LO_zprime4000_tt.merge.DAOD_JETM8.e3723_s2608_s2183_r7772_r7676_p2794
mc15_13TeV.301335.Pythia8EvtGen_A14NNPDF23LO_zprime5000_tt.merge.DAOD_JETM8.e3723_s2608_s2183_r7772_r7676_p2794



B
Jet Substructure Variables

B.1 Combined Mass

The combined mass mcomb [38] is a linear combination of the nominal jet mass mcalo which is
reconstructed from the topoclusters and the track-assisted jet mass mTA, defined as,

mcomb = wcalomcalo + wTAmTA (B.1)

The track-assisted jet mass mTA is calculated by reconstructing the tracks in the inner detector,
defined as,

mTA = mtracks ×
pcalo

T

ptracks
T

(B.2)

where mtracks and ptracks
T are the invariant mass and transverse momentum calculated from

the tracks inside the jets and pcalo
T is the original jet transverse momentum obtained from the

calorimeter.

The weights wTA and wcalo are defined as,

wTA =
σ−2

TA

σ−2
calo + σ−2

TA
(B.3)

wcalo =
σ−2

calo

σ−2
calo + σ−2

TA
(B.4)

(B.5)

where σ−2
TA and σ−2

calo are the mTA and calorimeter mass resolutions, respectively.



B.2. ENERGY CORRELATION FUNCTIONAPPENDIX B. JET SUBSTRUCTURE VARIABLES

B.2 Energy Correlation Function

The N-point energy correlation function (ECF) [39] is defined as,

ECFN(β) = ∑
i1<i2<...<iNεJ

( N

∏
a=1

pT,ia

)( N−1

∏
b=1

N

∏
c=b+1

Ribic

)β
(B.6)

where β is the angular exponent (set to 1) and Rij is the distance between the i and j constituents
in the y − φ plane. Only up to 3-point correlation functions are considered:

ECF1(β) = ∑
iεJ

pT,i (B.7)

ECF2(β) = ∑
i<jεJ

pT,i pT,j(∆Rij)
β (B.8)

ECF3(β) = ∑
i<j<kεJ

pT,i pT,j pT,k(∆Rij∆Rik∆Rjk)
β (B.9)

Using Equation B.7 to B.9, one can construct ratios of ECF, as follows,

e(β)
2 =

ECF2(β)

ECF1(β)2 (B.10)

e(β)
3 =

ECF3(β)

ECF1(β)3 (B.11)

Furthermore, double ratios of ECF can be defined, as follows,

C2(β) =
e(β)

3

(e(β)
2 )2

(B.12)

D2(β) =
e(β)

3

(e(β)
2 )3

(B.13)

B.3 Minimum Invariant Mass

QW [40] is simply defined as the minimum of the invariant masses of the combinations of three
strongest subjets, as shown by Equation B.14. The subjets are obtained by deconstructing the
jet using the kT jet-finding algorithm.

QW = min(m12, m23, m31) (B.14)
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Tagger Cut Functions
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Figure C.1: Upper and lower cut functions used by the Smoothed Top Tagger on tagging indi-
vidual jets to get constant working point of 80% signal efficiency over jet pT.
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(b) DNN Tagger
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(c) Topocluster Tagger
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(d) BDT Tagger

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 [GeV]jjm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
N

N
 D

ije
t S

co
re

Cut Points

Fit

(e) DNN Tagger

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 [GeV]jjm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
op

oc
lu

st
er

 D
ije

t S
co

re

Cut Points

Fit

(f) Topocluster Tagger

Figure C.2: Cut functions used by the three machine learning taggers on tagging individual jets
(top) and tagging dijet events (bottom) to get constant working point of 80% signal efficiency
over pT and mjj.
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Figure D.1: GrL fits on the HVT signal before top-tagging at various mass points.
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Figure D.2: GrL fits on the HVT signal after top-tagging at various mass points.
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Figure D.3: Cubic spline interpolation of the GrL parameters corresponding to Figure D.1
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Figure D.4: Cubic spline interpolation of the GrL parameters corresponding to Figure D.2
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Figure D.5: GrL fits on the Z’ signal before top-tagging at various mass points.
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Figure D.6: GrL fits on the Z’ signal after top-tagging at various mass points.
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Figure D.7: Cubic spline interpolation of the GrL parameters corresponding to Figure D.5
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Figure D.8: Cubic spline interpolation of the GrL parameters corresponding to Figure D.6
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