
 

 

 

 

Soil moisture modeling for 
agricultural needs in Brazil,  
France, and the U.S.A. 
 
 
 

________________________________________________ 

Filipe Fava 
 
 
 
 
 
 
 
 
 
 
 
  

Master Thesis  
TVVR 18/5006 
 

Division of Water Resources Engineering 

Department of Building and Environmental Technology 

Lund University 

Filip 

 



 

 

 

 

 

 

 

 
Soil moisture modeling for 

agricultural needs in Brazil, France, 
and the U.S.A. 

 

 

 

 
 
 
 
 
 
By: 
Filipe Fava 
 
 
Master Thesis 
 
Division of Water Resources Engineering 
Department of Building & Environmental Technology 
Lund University 
Box 118 
221 00 Lund, Sweden 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Water Resources Engineering 

TVVR-18/5006 

ISSN 1101-9824 

 

Lund 2018 

www.tvrl.lth.se 



i 

 

 

Master Thesis 

Division of Water Resources Engineering 

Department of Building & Environmental Technology 

Lund University 

 

 

  

English title: Soil moisture modeling for agricultural needs in Brazil, 

France, and the U.S.A. 

Author(s): Filipe Fava 

Supervisor: Magnus Persson 

Examiner: Rolf Larsson 

Language English 

Year: 2018 

Keywords: Soil moisture; HBV; Leaky-Bucket model; Thomson 

Reuters; NOAA 

 

 

  



ii 

 

 

Acknowledgments 

 

I am eternally grateful for all the support and education my parents provided 

me, who instructed me from a tender age on the high value of education for 

opening new doors. 

 

I acknowledge the generosity and dignity of Sweden who, through its 

universities and other institutions present in our everyday lives in this country, 

offers life-changing opportunities for citizens all over the world. 

 

I would also like to thank Thomson Reuters and its staff for proposing this 

thesis partnership, offering me continuous support and motivation from day 

one. Every single member of the Hydrological Research and forecast 

department (Stefan, Raza, Marion, and Markus) would always lend a helping 

hand and considerably improved the technical quality of this project. 

 

Likewise, the academic support provided to me throughout the way was 

plenty and inspiring. Starting at my bachelor in the Federal University of 

Brasilia, the head of the Water Resources Department, Professor Sergio 

Koide, always captivated students with his expertise, seriousness and his life-

long dedication to the student community and our society. 

 

In Lund, from all the excellent professors within the department, Professor 

Magnus Larsson was individually responsible for most of the courses in our 

programme and always kept a friendly, exciting and proficient study 

environment. Regarding this specific project, Professor Magnus Persson 

played a crucial role in its development. He raised interest in this topic since 

the Rainfall-Runoff course lectures and was always receptive and resourceful 

in his supervision. 

 

I could not forget about the friends I made on this journey. People with the 

most diverse backgrounds who cherished universally good values and made 

this a most pleasant ride. I am blessed to have had such a united, exciting 

group of classmates who, along with other members of the student and local 

communities, are engraved in my memories. A special thanks to Elizabeth 

Jenkins Sahlin, Jennifer Salvo and my brother, whom all have a special place 

in my heart. 

  



iii 

 

 

Abstract 
 

The purpose of this master’s thesis project is to aid Thomson Reuters to 

forecast soil moisture, enhancing the agricultural productivity of its clients. 

This thesis focuses on testing the company’s HBV model (HBV-TR) to 

accurately produce daily soil moisture values in Brazil, France, and the U.S.A. 

 

The problem is that, up to this day, the most reliable monitoring of this soil 

water content is also through a model (the one-layer “Leaky-Bucket model”), 

whose results are only published as monthly hindcasts. This delay prevents 

most stakeholders from real-time information and planning.   

 

By using input series similar to the Leaky-Bucket inputs, the HBV-TR 

simulated the target soil moisture for the last thirty-seven years. This project 

adapted the HBV-TR to calculate soil water with a one-layer and a three-

layer version. The HBV-TR daily results are then compared to the monthly 

target series at consistent dates by the Nash-Sutcliff parameter, volume error, 

visual aspects, field capacity and evapotranspiration.  

 

According to all these performance parameters, the results were sound, 

showing substantial evidence that this method can safely emulate the Leaky-

Bucket model. Ultimately, this project concludes that soil moisture has 

potential to become the new feature in the company’s forecast portfolio, 

providing planning capacity to more stakeholders.  
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1. Introduction 

1.1 Background  
 

The societal background of this thesis is the agricultural business and the 

food market and availability. According to recent UN’s projections, world 

population is expected to increase to approximately 8.3 billion by 2030. 

Within this scenario, one of the primary goals in the 2030 Agenda for 

Development Goals is to eradicate hunger and achieve food security, which 

involves the promotion of sustainable agriculture and the implementation of 

practices that increase productivity and production (United Nations 2015).  

 

Indeed, target 2.3 in that agenda is to duplicate the productivity and income 

amongst small-scale producers and family farmers through knowledge and 

increased investments in agricultural research (United Nations 2015). For 

great agricultural producers, target 2.4 addresses explicitly water quality and 

its sustainable use to correct food market barriers and distortions, avoiding 

extreme food price volatilities (United Nations 2015). 

 

Given the present rising demand for food, maximizing the productivity in 

plantation fields is a common interest among producers, governments, and 

societies. Many programmes have been deploying remote sensing for soil 

moisture such as NASA, the United Nations, and for crop monitoring, such 

as the USDA and USDC through NOAA (Bolten, Crow, et al. 2010). This 

information, however, is only available nowadays to other stakeholders as 

monthly hindcasts (Huang, van den Dool, Huug M, et al. 1996), thus 

impairing the producers’ water allocation capacity. 

1.2 Objectives 
 

To address this problem, Thomson Reuters has been looking into the 

possibility of forecasting soil moisture. To do so, it counts on its in-house 

HBV model in MatLab (HBV-TR), currently oriented for runoff calculations 

regarding energy markets. Considering that HBV-TR is a procedural model 

that calculates all water processes within a basin for local flow systems, 

Thomson Reuters wants to investigate whether HBV-TR can also produce 

accurate soil moisture values, similar to those produced by NOAA.  
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Beyond replicating, the purpose of this project is to model this soil water 

content in Thomson Reuters’ way. NOAA, through its “Leaky-Bucket model,” 

generates and publishes monthly hindcasts for soil moisture all over the 

global land surface having precipitation and temperature as an input. 

Thomson Reuters aims to use its HBV-TR along with similar input series to 

produce daily results consistent with these monthly targets. This project 

deploys the methodology above for regions in Brazil, France and the United 

States of America.  

 

Well-established hydrological performance parameters assess the modeled 

series capacity to emulate the target series. According to the performance 

criteria here established, satisfactory results can signal the possibility for 

Thomson Reuters to forecast soil moisture, providing clients from 

agricultural businesses a tool for optimizing natural resources. 

 

This project was divided into the following steps to reach its ultimate goal: 

 introduce the theory behind water processes in the land surface and 

how different models approach these dynamics; 

 describe the areas in which the model runs the simulations; 

 inform about the collection, quality, and processing of the data; 

 adapt, calibrate and validate the model; 

 display and evaluate the results; 

 conclude whether the HBV-TR can effectively model soil moisture. 

 

1.3 Method 
 

A literature review on soil hydrology and the models in view was carried, 

focusing on their routines and interactions between the independent variables. 

Additional research on local climate, topography, agriculture, and hydrology 

for the study regions of Mato Grosso, Picardy and Northwest Iowa provide a 

context for understanding the differences between the inputs and how they 

behave over time in these areas. 

    

The next step displays the georeferenced input data for precipitation and 

temperature from NOAA, processed into tables. The data quality undergoes 

scrutiny regarding format, quantity, completeness, validity, and accuracy. 
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The missing values are filled in and graphically displayed for comparisons 

within and between regions.   

 

Then, the HBV-TR model is set up to calculate soil moisture values. Two 

different structural arrangements are used to compute the water content in the 

soil for the regions above. The daily output series from this modeling is made 

compatible with the monthly target series, and the Nash Sutcliff efficiency, 

the volume error, NOAA’s maximum field capacity, the evapotranspiration 

and the visual aspects are the selected parameters to evaluate the modeling 

performance. The calibration of the model parameters took place for the first 

thirty-three years, whereas validation would occur in the last four years.  

 

Results are displayed and analyzed thoroughly for each of the performance 

parameters with the aid of graphs for both calibration and validation. The 

results are then discussed, basing the conclusion for this project, and pointing 

to further developments.  

 

1.4 Limitations 
 

This work abridges the correlations between meteorological data and soil 

moisture. The irrigation input to soil moisture is ignored, which in plantation 

fields is a primary contributor. The theory regarding evapotranspiration in the 

HBV-TR ignores central variables such as net radiation, wind speed, and 

plantation cover. Negative pressures within the unsaturated flow are also 

disregarded. Both HBV-TR and Leaky-Bucket abstract reality by overlooking 

such correlations. 

 

The soil moisture target values from NOAA are already a product of 

modeling and not direct field measurements, containing the same 

assumptions as the HBV-TR. Furthermore, the Leaky-Bucket was only 

validated with gauged soil moisture and runoff values in small basins in 

Oklahoma, which does not attest its universal application (Huang, van den 

Dool, Huug M, et al., 1996).  Therefore, this modeling does not aim to 

reproduce real measures, but also idealized ones.  

 

Lastly, the areas put forth for modeling are whole regions or states englobing 

multiple basins. When considering the spatial heterogeneity of precipitation, 
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temperature, land cover, soil properties, and topography, one single averaged 

value does not characterize the many different soil moisture states throughout 

the area. Therefore, users of both target and modeled series must bear in mind 

the representativeness of these values. 

1.4 Structure 
 

After this introduction, the next section addresses the theoretical background 

involving soil moisture and the models by NOAA and Thomson Reuters. 

Chapter three depicts the investigated regions regarding their meteorology, 

economy, hydrography, and geography. The following chapter exposes the 

data as well as its collection, quality, and processing. Chapter five goes on to 

how to adapt, calibrate and validate the HBV-TR model for each of the three 

study areas. Section six displays the results, while chapter seven discusses 

them. Finally, chapter eight concludes and paves the way for further 

developments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



5 

 

 

2. Theory background  

2.1 Soil Hydrology components 
 

Soil hydrology, or vadose zone hydrology, studies the physical interactions of 

water within the vadose zone as well as in its air and groundwater interfaces, 

including measurements and predictions of properties and processes (Shukla, 

2011). These processes directly impact society by influencing agricultural 

production, environmental and water qualities, and the water distribution and 

storage on Earth (Shukla, 2011). Getting a grip of these dynamics enables 

sustainable practices and more access to natural resources. 

 

The vadose zone, otherwise called unsaturated zone or aeration zone, is a 

three-phase system containing mineral grains and organic matter, water with 

dissolved solutes, and water vapor and other decomposition gases (Fetter, 

2014). Soil surface, root zone, and transition zone can physically divide the 

unsaturated zone in three. The aeration zone is determinant to the sustenance 

of life on Earth, for it stores the water plants uptake. Beyond this, land use 

debris deposited on the soil surface might affect the infiltrating water quality, 

consequently contaminating rivers and aquifers (Shukla, 2011).  

 

 
Figure 1: Water dynamics within the vadose zone (SHUKLA, 2011) 
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The core inputs of water occur at the air interface with the vadose zone. For 

precipitation to happen, a humid air mass must experience adiabatic 

expansion in an atmosphere filled with solid granular matter. Once the air 

mass cools until the dew point, droplets of water condensate around these 

nuclei, precipitating. If the forming raindrops are big enough not to evaporate 

until they reach the surface, rain falls on the ground (Fetter, 2014). When 

natural precipitation does not suffice for a specific culture, irrigation can aid 

that water supply. 

 

It is also at the air interface where most water losses occur. According to 

works by Dunne & Leopold in 1978, plants can intercept as much as 35% of 

annual precipitation, eventually evaporating without ever reaching the soil 

(Fetter, 2014). Evaporation is a function of many variables such as latitude, 

temperature, water availability, radiation influx, solar hours of exposure and 

wind (Thornthwaite, 1948). 

 

In land-dominated basins, plant transpiration is an even more significant 

contributor to water losses, for plants lose 99% of their water uptake through 

the micropores of their leaves in the form of water vapor (Fetter, 2014). 

Evaporation and transpiration are soil water losses impossible to separate in 

practice; therefore, evapotranspiration is the variable accounting for the total 

water vapor loss into the atmosphere (Thornthwaite, 1948). 

 

When precipitation overcomes vegetation’s storage capacity, water reaches 

the soil, being stored in ponds or infiltrating. Water infiltrates up to the 

specific infiltration capacity of a given soil, at decreasing rates over time as 

the vadose zone becomes more saturated until it reaches equilibrium (Fetter, 

2014). Moreover, initial infiltration increases the amount of swelled colloidal 

particles in the soil, clogging waterways between voids, also reducing the 

infiltration capacity (Fetter, 2014).  

 

Horton in 1933 and 1940 describes infiltration capacity in time according to  

Figure 2 below: 



7 

 

 

 

Figure 2: Horton’s infiltration capacity curve, adapted from (Fetter, 2014) 

where 𝑓𝑐  and 𝑓𝟎  are the equilibrium and initial infiltration capacity, 

respectively, and K an experimental constant describing the decreased 

infiltration capacity (Fetter, 2014). 

 

If the precipitation rate is higher than the infiltration capacity at a particular 

time, water will either accumulate in puddles to later infiltrate and evaporate, 

or flow overland according to the topography (Fetter, 2014). If soils are 

uniformly permeable, water will percolate vertically through the unsaturated 

zone until the water table, which at the same time outputs water into streams 

as baseflows (Fetter, 2014).  

 

Depending on their size, lakes and reservoirs can be chief inputs to 

groundwater tables through direct precipitation (Bergström, 1992). The total 

surface runoff in a basin can also be composed by horizontal flow in the 

unsaturated zone -interflows- if the permeable unsaturated zone overlies on 

top of an impermeable layer (Fetter, 2014). 
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2.2.1 Soil moisture contents 
 

According to the water inflows and outflows, the soil water content varies 

with time. Soil moisture represents the weight or volume rate of water and 

the soil media in the unsaturated zone. Considering saturation (S) to be the 

ratio between water and void volumes, while porosity ( 𝜙  ) the relation 

between empty and total volumes, soil moisture or volumetric water content 

(𝜃𝑣 ) can be expressed as a coefficient of the total volume according to 

Equation 1 below:  

Equation 1  𝜽𝒗 =
𝑽𝒘

𝑽𝒕
=

𝑽𝒘

𝑽𝒗
∗

𝑽𝒗

𝑽𝒕
=  𝑺 ∗ 𝝓 (Tucci, Silveira, André L L da, 2009).  

The capacity of plants to uptake water through the negative pressure in their 

roots can be a parameter to classify different components of soil moisture 

content. The water in the vadose zone available for nurturing plants is found 

in the belt of soil water, expending no more than 2 meters from the land 

surface (Fetter, 2014). When there is no more available water for plants – 

thus, reaching the wilting point- water is still present in the soil according to 

Figure 3 below.  

 

 
Figure 3: Soil water components below the wilting point (Larsson, R., 2017) 
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Capillary fringes arise due to negative pressures in fine-grained soils, also 

known as capillarity (Larsson, R., 2017). Water might also be present in the 

aeration zone due to adsorptive forces, such as hygroscopic water and water 

vapor eventually enclosed between saturated voids (Larsson, R., 2017). 

 

In a yearly cycle, the soil moisture seasonal variations can be extreme. In a 

hypothetical basin in a mountainous region, snowmelt and spring rain yield 

plenty of water on the land surface (Bergström 1992). During this period, the 

infiltrated water column in the soil might overcome the surface tension and 

recharge the groundwater table, characterizing this maximum water holding 

as field capacity (Fetter, 2014).  

 

During long, dry summers, soil moisture content reaches its lowest levels due 

to high evapotranspiration, reaching close to the wilting point. After soil 

moisture recharge during the autumn, snowy winters with no infiltration leads 

the soil moisture content to drop asymptotically reaching the long-term field 

capacity. Indeed, gravity flow in the unsaturated zone might vary in time 

according to soil textures and compaction (Fetter, 2014). 

 

Historically, soil holding properties have been recorded to characterize  

different soils (U.S. Department of Agriculture, 1955) as in Figure 4 below: 

 



10 

 

 

 
Figure 4: Water-holding properties of different soil textures according to 

Dunne et al. 1975  (Larsson, R., 2017) 

Generally, the water holding properties increase proportionally to the surface 

area, inversely to the characteristic mean particle diameter considered. 

Thinner clay soils have a slightly higher void volume but are capable of 

withholding much more water than sand. In the other hand, plants can uptake 

water from sandy soils until lower limits in comparison to silt or clay. 

2.1.2 Soil Moisture Flow 
 

When infiltrating a dry land surface, gravity forces water downward through 

continuous void spaces while the soil matrix’s negative pressures resist the 

flow (Fetter 2014). As water fills up the voids, the hydraulic conductivity by 

Darcy’s law increases as matric suction decreases, for both are a function of 

the saturation conditions (Fetter, 2014).  

 

Darcy’s law applies when describing unsaturated flows (Fetter, 2014), in 

which water movement results from the product of hydraulic conductivity (K) 

and total potential according to the Equation 2 below: 
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Equation 2:  𝒒 = −𝑲 ×
𝒅𝝓

𝒅𝒛
 . 

The total potential (𝝓) results from opposing gravitational (𝒁) and moisture 

potentials (𝛙). Moisture potential, or matric potential, or matric suction, is 

the same negative pressure that explains capillary fridges and is a function of 

the volumetric water content (Fetter 2014, Larsson, R. 2017). The total 

potential at a given depth in the unsaturated zone can be described by 

Equation 3: 

Equation 3 𝝓 = 𝛙(𝜽𝝊) + 𝒁 

Richard combined the two equations above to describe the variation of soil 

moisture over time in the unsaturated zone as a function of hydraulic 

conductivity and matric suction according to the Equation 4 below: 

 Equation 4: 𝒒 =
𝒅𝜽𝝂

𝒅𝒕
=

𝒅

𝒅𝒛
(−𝑲 × (

𝒅𝝍

𝒅𝒛
+ 𝟏)) 

The soil-specific three-way interdependency between soil water content, soil 

suction, and hydraulic conductivity can be seen in Figure 5 below:  

 

 
Figure 5: The relationship between soil water content, moisture pressure, and 

unsaturated hydraulic conductivity (Larsson, R., 2017) 

The first graph of Figure 5 depicts the interdependency between volumetric 

water content and matric suction, registering over 10,000 meters of water 

column in drier conditions. Due to the larger surface areas, clays present 

more suction for any volumetric water content, up to 55% of water content.  
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The second graph in Figure 5 depicts the unsaturated hydraulic conductivity 

increase as a function of a wetter soil. The soil saturation can be deduced to 

be around 50% of water, where the hydraulic conductivity stabilizes. For the 

upper porosity curve from Figure 4, this second graph depicts light clay loam. 

 

The third graph illustrates the combination of the two dependent variables. 

This graph shows that for low matric potentials, sandy soils have better 

hydraulic conductivity, whereas for dry soils sandy loams are less resistant to 

flow (Fetter, 2014). 

 

Not only the pressures in unsaturated flow are functions of soil moisture; 

these pressures vary for a unique level depending on whether the soil is in a 

sorption or desorption cycle, according to the fourth graph in Figure 5. The 

behavioral change noticed is defined as hysteresis and complicates the 

unsaturated flow even more (Fetter, 2014).  

 

There is a wide range of techniques to access soil hydrology parameters, 

usually focusing on soil moisture. Amongst field measurements are neutron 

probes, electric resistance and gamma-ray dampening measurers (Tucci, 

Silveira, André L L da, 2009). Many programmes deploy remote sensing for 

soil hydrology, which supplies information for a wide range of investigated 

fields, spanning from individual farming to regional and national scales 

(Bolten, Crow, et al., 2010).  

 

Water availability and drought control are commonly calculated from mean 

absolute values of soil moisture content in millimeters, regardless of porosity 

of the vadose zone or its extent (Palmer, 1965). Absolute values are more 

accessible to all stakeholders, henceforth adopted in all next stages of this 

project. 

 

2.2 CPC-NOAA Model 
 

NOAA has created a drought information system to monitor soil moisture 

content. It deploys a so-called “Leaky-Bucket Model” for this task, a one-

layer hydrological model based on the water balance of the vadose zone 

(NOAA, 2002). Precipitation and temperature are the only model inputs to 

estimate the water distribution between evapotranspiration, soil moisture, 
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groundwater loss, and runoff. The conceptual model can be seen in Figure 6 

below: 

 

 
Figure 6: A conceptual Leaky-Bucket model (Yeik, 2014) 

The model parameters were tuned based on Oklahoma observed surface 

flows and are constant in space (NOAA, 2002). The American agency 

deploys this routine monthly to hindcast soil moisture states on basins all 

over the world. In all its applications around the globe by NOAA, the 

maximum water holding capacity registered was 760 mm, which divided by a 

common porosity of 40% in volume indicates a total unsaturated zone of 1,6 

meter (NOAA, 2002). Complying with this maximum field capacity is 

mandatory to validate the parameters and assumptions of new modelings. 

 

One of these assumptions is that the water content involved in the 

calculations only regards the available water in the soil, ignoring all water 

content below the wilting point. Furthermore, the negative pressures involved 

in infiltration and unsaturated flow are assumed negligible, thus only 

considering the gravity in the potential differences. In the same line, 

hysteresis is also neglected, thus establishing a uniform behavior for any soil 

in both sorption and desorption cycles. 

 

Variable unsaturated hydraulic conductivity is still valid, parameterized in 

function of the infiltrated water and the soil saturation state. Given the 

malleable definition of field capacity over time according to 2.2.1, here it is 

considered the total storage capacity of the soil, constant over time, validating 
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the model for any time-step. Whenever representing water contents, the 

variables regard absolute values in millimeters of water, abstracting surface 

dimensions, thus, homogenizing the results for the considered area.  

 

Considering the model in its whole (Huang, van den Dool, Huug M et al., 

1996), soil moisture can be estimated for a given area by Equation 5 below: 

Equation 5:  
𝒅𝑾(𝒕)

𝒅𝒕
= 𝑷(𝒕) − 𝑬(𝒕) − 𝑹(𝒕) − 𝑮(𝒕)       

in which W is the soil water content at time t; P(t) is the mean areal 

precipitation; E(t) is the mean areal evapotranspiration; R(t) the total runoff 

and G(t) the net groundwater loss through deep percolation. 

 

The total runoff (R(t)) is composed of surface runoff - 𝑷(𝒕) ∗ [
𝑾(𝒕)

𝑭𝑪
]

𝒃

- and 

base flow - 
𝜶

𝟏+𝝁
∗ 𝑾(𝒕)- parcels, respectively described by Equation 6 below: 

Equation 6:  𝑹(𝒕) = 𝑷(𝒕) ∗ [
𝑾(𝒕)

𝑭𝑪
]

𝒃

+
𝜶

𝟏+𝝁
∗ 𝑾(𝒕) . 

In Equation 6, in the first part determining the surface runoff, FC is the field 

capacity in millimeters, while [
𝑊(𝑡)

𝐹𝐶
]

𝑏

is the parametrization for unsaturated 

hydraulic flow, where b is a free parameter with values greater than 1. 

 

The second part of the equation determines the fraction that contributes to the 

base flow, where α is the inverse of the response time of the base flow, while 

µ is a dimensionless parameter that estimates how much of the subsurface 

flow will be turned into base flow in the drainage of the basin. The remaining 

parcel of Equation 5, G(t), represents unobserved groundwater flow, 

calculated according to Equation 7: 

Equation 7: 𝑮(𝒕) =
𝝁𝜶

𝟏+𝝁
∗ 𝑾(𝒕)  . 

Evaporation is given by Equation 8: 

 Equation 8: 𝑬(𝒕) = 𝑬𝒑 ∗
𝑾(𝒕)

𝑭𝑪
   

In Equation 8, Ep is the potential value for evapotranspiration in a month, 

which in turn is estimated by the recorded temperature.  

 



15 

 

 

A well-established interaction between temperature and potential 

evapotranspiration is described by Equation 9 below, complemented by 

Equation 10 and Equation 11 (Thornthwaite, 1948): 

 

Equation 9: 𝑬𝒑 = {

𝟎                                       ,        𝑻𝒂 < 𝟎º𝑪

𝟏𝟔 ∗ (
𝑳

𝟏𝟐
) ∗ (

𝑵

𝟑𝟎
) ∗ [

𝟏𝟎𝑻𝒂

𝑰
]

𝜶

,  𝟎 < 𝑻𝒂 < 𝟐𝟔, 𝟓º𝑪

−𝟒𝟏𝟓, 𝟖𝟓 + 𝟑𝟐, 𝟐𝟓𝑻𝒂 − 𝟎, 𝟒𝟑𝑻𝒂𝟐,      𝑻𝒂 > 𝟐𝟔, 𝟓º𝑪

 ; 

Equation 10:𝜶 = (𝟔. 𝟕𝟓 ∗ 𝟏𝟎−𝟕)𝑰𝟑 − (𝟕. 𝟕𝟏𝒙𝟏𝟎−𝟓)𝑰𝟐 + (𝟏. 𝟕𝟗𝟐𝒙𝟏𝟎−𝟐)𝑰 +

𝟎, 𝟒𝟗𝟐𝟑𝟗; 

Equation 11:  𝑰 = ∑ (
𝑻𝒂𝒊

𝟓
)𝟏,𝟓𝟏𝟒𝟏𝟐

𝒊=𝟏  .  

For the three equations above, Ta is the monthly mean surface temperature; N 

the number of days in the month calculated; L the average sunlight hours in 

the calculated month and i the ordinal number respective to the considered 

month (Huang, van den Dool, Huug M et al. 1996). 

Potential evapotranspiration is estimated as a function of the observed 

temperature. Radiation influx is the most influent parameter for evaporation, 

and it is not a direct input to this model. However, by computing sunlight 

hours and temperature as parameters for net radiation, complex climatologic 

interactions can be objectively modeled (Palmer 1965) 

 

2.3 Thomson Reuters Model (HBV-TR) 
 

Thomson Reuters’ in-house product is essentially a standard HBV model 

with outcomes focused on the electricity market in many different countries 

around the globe. The model assumptions for the unsaturated zone are the 

same as the Leaky-Bucket model in section 2.2. Darcy’s law, Equation 2, is 

also valid for the saturated zone, driven only by gravitational potential. 

 

Developed by the Swedish Meteorological and Hydrological Institute -

SHMI- in 1972, the HBV model is the most widespread program for runoff 

modeling in the Nordic countries (Bergström 1992). In applications from 

lysimeter plots to the entire Baltic Sea drainage basin, its current version -

HBV96- is in use in over 40 countries (SMHI 2015). HBV is suitable for 
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flood forecasting and spillway design flood simulations to water resources 

evaluation and nutrient load estimates (SMHI 2015).  

 

Unlike the Leaky-Bucket, temperature and precipitation are the only input 

data for the HBV-TR, which respectively combine to a constant, Tcorr, or a 

coefficient, SFCF or RFCF as in Figure 7. Moreover, HBV-TR estimates 

potential evapotranspiration for every registered temperature combining it 

with a fixed constant, Thorn, specific to each basin. Ideally, an HBV model 

can be set to run at any desired resolution, depending on data availability 

(SMHI 2015). 

 

The model is designed in a way to distribute the soil surface according to 

topographic elevations; in HBV-TR, seven sub-basins are present – according 

to the routines in the first box of Figure 7. This division allows for 

corrections in the climatological input according to patterns commonly 

observed in nature: the temperature lapse rate is usually -0.6ºC for each 100-

meter increment in topography, as TCALT in Figure 7 (Bergström 1992). 

Likewise, precipitation also undergoes a distribution directly proportional to 

the altitude, PCALT in Figure 7, regulated in the model as a free parameter. 

 

In its standard configuration, the model is structured in a series of four 

overlaying, sequential boxes, or routines, namely: Snow box, Soil moisture 

box, Upper Response/ Groundwater box and Lower Response/Deep 

Groundwater box (Bergström 1992), as shown in Figure 7 below: 
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Figure 7: General HBV scheme (Jódar, Carpintero, et al., 2018) 

Ideally comprising infinite horizontal dimensions in a daily time step, all 

parameters accounting for water and snow volumes in HBV-TR are vertical 

measurements in millimeters of water. The HBV-TR scheme can be 

described by Equation 12  to Equation 20 as follows. 

2.3.1 Snow Box 
 

The snow box deals with the snow accumulation and is the first distributed 

stage – as seen in the top box from Figure 7 (Jódar, Carpintero, et al. 2018). 

The threshold temperature, TT, defines whether precipitation occurs as snow 

or rain according to temperatures values below or above TT, respectively 

(SMHI 2015). In HBV-TR, TT is also the threshold over which accumulated 

snowpack starts melting according to the degree-day method explicated in 

Equation 12: 

Equation 12: 𝑴𝑬𝑳𝑻(𝒕) = 𝑪𝒎𝒆𝒍𝒕 ∗ (𝑻(𝒕) − 𝑻𝑻)  

In Equation 12 above, 𝑀𝐸𝐿𝑇 is given as millimeters of water at a given day t, 

while 𝐶𝑚𝑒𝑙𝑡  is a degree-day factor – a  free parameter (cannot be physically 

measured but is inferred from calibration), that depends on the land cover, 
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given in mm/ºC*day -, T the daily average temperature in °C, and TT also a 

free parameter, in ºC. The snowpack in HBV is set to retain 10% of its mass 

in water, derived from both snowmelt and precipitation (Bergström 1992). 

The exceeding water from the snowpack input to the following box. 

 

2.3.2 Soil Moisture Box 
 

The soil moisture routine in the HBV model enables different storage 

capacities to each of the distributed sub-basins, resembling the Leaky-Bucket 

model as depicted in the second box in Figure 7 (SMHI 2015). This routine is 

where evaporation takes place, with four free parameters controlling all 

interactions, namely FC, BETA, Thorn and LP (Bergström 1992), according 

to Equation 13, Equation 14 and Equation 15. 

Equation 13: 𝑬𝑨(𝒕) = {
(

𝑺𝑴(𝒕)

𝑳𝑷
) ∗ 𝑷𝑬;       𝑺𝑴(𝒕)  < 𝑳𝑷

𝑷𝑬(𝒕);                        𝑺𝑴(𝒕) ≥ 𝑳𝑷 
 

in which the potential evapotranspiration is related to temperature by the 

Thorn factor as given by Equation 14: 

 

Equation 14: 𝑷𝑬(𝒕) = 𝑻𝒉𝒐𝒓𝒏 ∗ 𝑻(𝒕); 

Equation 15:  𝑹(𝒕) = 𝑰𝑵(𝒕) ∗ [
𝑺𝑴(𝒕)

𝑭𝑪
]

𝑩𝑬𝑻𝑨

. 

Soil moisture -SM(t)- at a given day follows a similar logic as in the bucket 

model – see Equation 5.  Infiltration -IN(t)- is the input from the snow box 

(as P(t) in Equation 5), in the form of snowmelt from Equation 12 or 

precipitation as rain. In the other end, recharge -R(t)- is the output for surface 

runoff, identical to the first part of Equation 6 for the surface runoff.  

 

The two graphs in Figure 7 depict the interactions between the variables in 

Equation 13 and Equation 15 in the soil moisture box. LP is the criteria for 

soil moisture content, given as a fraction of FC, the field capacity, below 

which evapotranspiration is a linear function of soil water content, as 

described in Equation 13 (SMHI 2015). BETA is a dimensionless parameter 

that regulates the increase in soil moisture storage for every millimeter of 

input from the snow box, parameterizing the varying unsaturated hydraulic 
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conductivity by Darcy`s law in Equation 2. Thus, the complement is the 

output to the runoff routine, as described in Equation 15 (SMHI 2015).  

2.3.3 Response Routine 
 

The averaged recharge from all sub-basins is the input to the runoff 

generation routine, composed of two lumped sequential boxes in the center-

right of  Figure 7. The upper box is a non-linear one, simulating quick, 

superficial channel discharges (“upper groundwater” in HBV-TR), described 

by Equation 16,  Equation 17,  and Equation 19. The lower one (“lower 

groundwater in HBV-TR”) is responsible for base-flows in the hydrograph 

and responds linearly (SMHI 2015) according to Equation 20: 

Equation 16: 
𝒅𝑺𝑼𝒁(𝒕)

𝒅𝒕
= 𝑹(𝒕) − 𝑸𝒐(𝒕) − 𝑸𝟏(𝒕) − 𝑷𝑬𝑹𝑪(𝒕); 

Equation 17: 𝑸𝟎(𝒕) = (𝑺𝑼𝒁(𝒕) − 𝑼𝒁𝑳) ∗ 𝑻𝟏; 

Equation 18: 𝑸𝟏(𝒕) = 𝑼𝒁(𝒕) ∗ 𝑻𝟎 

Equation 19: 𝑷𝑬𝑹𝑪(𝒕) = 𝑺𝑼𝒁(𝒕)/𝑳𝑮𝑽𝒄𝒐𝒆𝒇𝒇 ; 

Equation 20: 𝑸𝟐(𝒕) = 𝑺𝑳𝒁(𝒕) ∗ 𝑻𝟐. 

SUZ(t) is the level of the upper groundwater box at a given time-step t. UZL 

is the threshold limit for the non-linear response, above which rules a 

recession coefficient (𝑻𝟎) faster than the governing one at the bottom level 

(𝑻𝟏). 𝑸𝟎 + 𝑸𝟏 is the total discharge from the upper ground water box, while 

LGVcoeff is the percolation coefficient to the lower groundwater box. 

Analogously, 𝑸𝟐 accounts for the low groundwater discharge, expressed as a 

linear function of its water level SLZ(t), considering a slower recession 

coefficient 𝑻𝟐. The lower box also accounts for the direct precipitation into 

rivers and lakes as well as their evaporations (SMHI 2015). The two models 

above have their main equations compiled in Table 1 below. 
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Table 1: Compiled main variables within soil hydrology for the HBV-TR and 

NOAA models. 

 

 

 

  

LEAKY-BUCKET HBV-TR

Total Runoff

Variable 
Model

Evapotrasnpiration

Potential 

Evapotranspiration

GW Recharge



21 

 

 

3. Investigated areas  

3.1 Mato Grosso, Brazil 
 

Mato Grosso is a Brazilian State by the Bolivian border which spans over 

900,000 km², depicted in Figure 8 (IBGE, 2017). It is mainly known for its 

exuberant forests, abundant water resources and for being an agricultural 

powerhouse (State Administration of Mato Grosso, 2015). 

 

 
Figure 8: Location, topography and sectional cut in Mato Grosso, Brazil. 

Adapted from (Google Earth, 2017c, IBGE, 2010) 

Mato Grosso is the third Brazilian State in size but only accounts for 1.59% 

of the population, with an estimated total count of 3.3 million inhabitants 
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(IBGE, 2017). The state name means thick bush/forest, and it is nationally 

unrivaled when it comes to biodiversity, being the only one in the federation 

with three biomes. The Amazon adds up to 53% of its territory while the 

Pantanal, the vastest flooded landscape in the world and Unesco’s World 

Heritage and Biosphere Reserve, accounts for less than 10%. The other 

biome is the Cerrado, a markedly drier and more spread-out vegetation in flat 

planes, similar to the African Savannah (State Administration of Mato 

Grosso, 2015).  

 

Mato Grosso is a state with low profile altitudes, characterized by broad, 

flattened surfaces throughout three distinct regions laying in sedimentary 

rocks mostly covered by red clay latosol, according to Figure 8. These are the 

sedimentary plateaus and crystalline uplands in the center-North, leveling at 

around 800 meters above sea level; the sandy-basaltic uplands and plateaus 

from the South; and the low lands from the Pantanal accounting for the 

Paraguay and Cuiabá-Paranatinga depressions around 200 meters above sea 

level (IBGE, 2010).  

 

Regarding hydrology, Mato Grosso is one of the most abundant areas in 

potable water in the world, being the spring to the three most important river 

basins in the nation (State Administration of Mato Grosso, 2015). The 

Parecis plateau is the water divide between them, shown in Figure 8: the 

Tocantins, the Paraguay, which is a sub-basin to the Plata, and the Amazon 

(State Administration of Mato Grosso, 2015). A remarkable hydrology 

feature occurs in the Paraguay low lands, where due to mild declination and 

unconsolidated sediments on the margins, the river beds continually move, 

submerging large land extents on the depressions during the rainy season 

(EMBRAPA, 1982). This flooding enables the connection between the two 

most essential basins of the continent by boat, the Plata, and the Amazon, 

linking the east and west coasts (EMBRAPA, 1982). 

 

The climate in Mato Grosso is mostly characterized as Tropical with summer 

showers (Souza, Mota et al., 2013). The estimated yearly average 

temperature is 29.7°C, with minimum and maximum averages of 22.8°C and 

37.7°C, respectively (Barbarisi, Pilau et al., 2006). Locally, temperatures can 

vary widely: the capital, Cuiabá, seldom tops 40°C, while 60 kilometers 

south of it,  negative temperatures have been registered at the Guimarães 

Plateau (State Administration of Mato Grosso, 2015). Yearly precipitations 
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can reach as much as 2,750 millimeters in the north of the state, being no 

lower than 1,500 millimeters elsewhere. Approximately 50% of the rain 

volume occurs during the summer months, in contrast to very dry winters 

with no more than 80 millimeters (Souza, Mota, et al., 2013).   

 

The combination of warmth, profuse precipitations, and a vast, flat territory 

in a fertile land surface is one much favorable for agriculture. The State is 

seeded second in total agricultural production, a share worth US$13.5 billion, 

growing 10-fold over the past 20 years (IBGE, 2016). Mato Grosso is the 

leading annual producer for two of the top three most significant cultivations 

in Brazil: soybeans ( 27.3%) and corn (24%), which have alternated cycles 

around the year, usually sharing the same fields (IBGE, 2016). Mato Grosso 

has well-established agriculture, responsible for over 50% of the State yearly 

GDP,  and is always in demand for new technologies to enhance its 

productivity (State Administration of Mato Grosso, 2015). 

3. 2 Picardy, France 
 

Formerly accounting for 19,400 km², Picardy is a historical territory and 

former administrative region of France, which englobed the départments of 

Oise, Somme, and Aisne. In 2016, it was merged with Nord-Pas-de-Calais 

région into Hauts-de-France, as part of a national reform to enhance 

bureaucratic efficiency (Encyclopædia Britannica, 2016). Figure 9 depicts the 

location below. 
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Figure 9: Location and topography of Picardy, France (Wikisoft, 2008) 

Situated by the English channel north of the Isle de France, see Figure 9, 

Picardy is mostly drained by the Somme river, laying in a plateau of arable 

land within the Paris Basin (Schulzke, Kaule, 2001). Historically renowned 

for its strong agricultural productivity, Picardy’s crops consist mainly of 

wheat (Encyclopaedia Britannica, 1820) and for the past decades, sugar beet 

(Oxford World Encyclopedia, 2004). Picardy currently ranks as the second 

region in France for wheat production, and its productivity of 8.4 t/ha is one 

of the highest in the world (Licker, Kucharik, et al., 2013).  

 

The Paris basin consists mostly of plains and series of low plateaus 

interrupted by shallow valleys, with altitudes usually not higher than 200 

meters (Embleton, 1984). The flat surfaces in Picardy are a result of early 

erosion in the basin, which lies on a broad chalk plateau (Blondel, Shennan et 

al., 2018). Clay-with-flints (loess) compose most of the local soil (Embleton, 

1984), fertile for agriculture. When combined with its climatic conditions, 
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this set describes the most exceptional arable lands in the country (Blondel, 

Shennan, et al., 2018). The downside, however, is that virtually all woodland 

has been cleared by man since medieval times, interfering in the natural 

equilibrium (Embleton, 1984). 

 

Picardy’s climate is Temperate, for the most of it classified as Oceanic, but 

otherwise as Transitional Oceanic in its the eastern limits. Wet air masses 

coming from the Atlantic in a relatively abundant (ca 700 mm), well-

distributed precipitation throughout the year characterize the Oceanic 

weather. Rains slightly peak between October and February and decrease in 

volume towards the countryside (Meteo France, 2017). Picardy averages 

annually 130 days of rain, accompanied by cloudiness, humidity, and haze 

(Meteo France, 2017).  

 

Due to its northern location near the border to Belgium, winters in Picardy 

are colder than in other Oceanic climates in the country, with minimum mean 

temperatures around 1.5ºC during winter months, seldom going below zero 

(Meteo France 2017). In case it snows, it does not remain for long on the soil, 

due to the dynamic weather changes brought in from the Atlantic by 

continually blowing winds from the west (Blondel, Shennan, et al. 2018). 

During the summer, temperature averages around 18°C (Meteo France, 

2017). 

 

3. 3 Northwest Iowa, U.S.A. 
 

Iowa is situated in the Continental United States, bordering the Mississippi 

River on the East side and the Missouri River and the Big Sioux River on the 

West, as seen in Figure 10. As a part of the Corn Belt, Iowa has always 

played a pivot role in the American economy as a rural state, with over 90% 

of its area designated to agriculture. Nonetheless, this business employs less 

than 10% of the workforce in the state, which has been diversified since the 

turn of the millennium (Encyclopædia Britannica, 2018). Iowa’s main 

agricultural products are corn, soybeans, hogs, and cattle; its production is 

mostly exported, sent by rail and truck to Mississippi River, allocated, then, 

in barges for shipment to the Gulf of Mexico (Encyclopædia Britannica, 

2018).  
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Figure 10: Location, topography, and rivers in Northwest Iowa, U.S.A. 

Adaptation from (Maps of the World, 2017)  

The investigated area, shown by the black line in Figure 10, adds up to 

approximately 14,000 km² or nearly 10% of  Iowa. It consists mainly of the 

Northwest Plains, the highest lands in the state. Topography is described as a 

“gently rolling landscape” with a well-fixed network of streams across the 

entire region (Prior, Iowa 1976), accounting for most of the lakes in the state 

(NOAA, 2018). Northwest Iowa is a transitional landscape to the high planes 

of the Dakotas, with a remarkable decrease of native woodlands when 

compared to the rest of the state (Prior, Iowa, 1976). 

 

The topography in from the Northwest Plains also influences precipitation. 

Pluviometry in the area registers mean records below 625 millimeters 

annually, around 25% lower when compared to more abundant regions in the 

State, (Prior, Iowa 1976). Rainfall is unevenly distributed throughout the 

year, heavily concentrated in the summer (Encyclopædia Britannica, 2018), 

when the dominant moist air flow from the Gulf of Mexico produces a 

maximum (NOAA, 2018). During the winter months, the Canadian air flow 

creates a considerably cold and dry climate (NOAA, 2018). Therefore, the 
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investigated site is the most elevated, driest and less forested in the whole 

state. 

 

Iowa presents a well-divided four season-climate, as most areas deep into that 

continental land. In January, the coldest month of the season, temperature 

averages -15°C early in the mornings and -5°C in the afternoons (NOAA, 

2018). However, snowfall (32 inches on average) is comparatively low 

considering the neighboring states (Encyclopædia Britannica, 2018), rarely 

remaining throughout the whole winter. Nonetheless, substantial snowfalls on 

the beginning of the spring followed by rapidly increasing temperatures and 

strong showers have left the state severely flooded for months on different 

occasions, such as 1993 and 2008 (Encyclopædia Britannica, 2018). 

Temperature surpasses 32ºC, on average, between 8 days -Northeast- and 36 

days -Southwest of state (NOAA, 2018). 

 

The state of Iowa is prone to several natural hazards. Around 85% of the 

thunderstorms (55/year) that hit the State occur between April and 

September, producing hail, strong wind currents, torrential rains and 

occasionally tornadoes (46/year) at the peak season, in June (NOAA, 2018). 

Tornado occurrences prevail between May and June, usually spread over 16 

days. Hailing occurs only between two and four days per year but are 

responsible for crop losses around 1.4-4.5% depending on the culture, and are 

even more severe in the Northwest Plains (NOAA, 2018). Droughts 

frequently occur, historically damaging the local economy more than all other 

weather events combined (NOAA 2018). 

 

Its soil is mainly configurated by loess at the surface, topping a clayey glacial 

till, occasionally forming springs and seeps. These phenomena result from 

groundwater standing on impermeable till layer until reaching acutely-sloped 

topography (Prior, Iowa 1976). As with most of Iowa, the terrain is well 

suited to the cultivation of crops, dark in color and rich in organic matters and 

minerals (Encyclopædia Britannica, 2018). However, the typically low soil 

moisture of the region, coupled with hot, dry winds in autumnal “Indian 

Summers,” demand extra attention regarding the conservation and efficiency 

of water use to secure the harvest (Prior, Iowa, 1976, NOAA, 2018).  

 

Table 2 presents a summary of the regional descriptions below. 
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Table 2: Local features summary for Mato Grosso, Picardy, and Northwest 

Iowa 

 

 

 

  

Area Precipitation Temperature Natural

 Hazards

Soil / 

Topography

Rivers /    

Watersheds

Economy

Mato

Grosso

*1500-2750mm

*Wet and dry 

seasons

* mín, mean, max 

daily T:  22.8°C; 

29.7°C; 37.7°C

* ≠  local Ts

*Floods

*Moving river 

beds

*Eroded, mostly 

clay latosol

* Mostly Plateaus 

800 m a.s.l.

*Cuiabá and 

Paraguai rivers

*Tocantins, Plata 

and Amazon 

basins

*Soy

*Corn

Picardy *+- 700 mm

*Well distributed

* little snow 

accum.

*season mín and 

max avg.: 1,5°C ; 

+18°C

*Quick weather 

changes

- *Eroded, clay w/ 

flints

*Low, flat surfaces 

200 m a.s.l.

*Somme

*Mostly in  Paris 

basin

*Wheat

*Sugar 

beet

NW 

Iowa

*>625 mm

*Wet and dry 

seasons

*snowpack most 

of the winter

*daily mín and max 

avg.: -15°C ;  +32°C

*Quick weather 

changes

*Thunderstorms

*Hails

*Tornadoes

*Droughts

*Dark loess, rich in 

organic matter and 

minerals

*Plains ca 500 m 

a.s.l.

*Sioux and 

Misouri rivers

*Soy

*Corn 
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4. Data  

4.1 Collection  
 

The precipitation input herein onward adopted is from CPC’s PRECipitation 

REConstruction over Land project. This analysis consists of reconstructed 

records using GHCN v.2 dataset, interpolated for over 17,000 gauge 

observations over land, along with anomalies dataset registered in CAMS 

(Chen, Xie, et al. 2002). In this series, the precipitation climatology is 

analyzed separately from the anomalies series, added up together afterward to 

generate the total precipitation (Fan, van den Dool 2004).  

 

The temperature series selected is from the Climate Forecast System 

Reanalysis (CFSR), which was performed by NOAA’s NCEP (Saha, 

Moorthi, et al. 2010). CFSR is a modeled data which deploys satellite 

observations, accounting for variations in the levels of carbon dioxide, 

aerosols, trace gases as well as solar variations (Saha, Moorthi, et al. 2010).  

 

The soil moisture target values are calculated from monthly time series of 

accumulated precipitation and mean temperature by the Leaky-Bucket model 

(as described in 2.2) with spatially-constant parameters (Huang, van den 

Dool, Huug M et al. 1996, Huug van den Dool, Jin Huang, et al. 2003). It 

represents the soil condition on the first day of every month, after the action 

of a whole month of climate input. NOAA used CPC’s PRECipitation 

REConstruction over Land as the rainfall input data, while the temperature 

series is NCEP`s Reanalysis/CDAS v.2 or CDAS2 two-meter air temperature 

(Huug van den Dool, Jin Huang, et al. 2003).  

 

Thomson Reuters’ Agriculture Department provided the study areas through 

internal communication, where potential clients could benefit from the 

implementation of this new forecast. 

4.2 Quality of data 
 

A product of a modeling can only be as good as the quality of its input data. 

The areas selected by Thomson Reuters are the georeferenced polygons on 

Google Earth files depicted in Chapter 3. Both climatological input and soil 

moisture data are georeferenced to the same 0.5º x 0.5º grid over the globe 
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from February 1
st
, 1981 to December 1

st
, 2018. Precipitation, soil moisture, 

and temperature have a daily resolution and are available in millimeters and 

degrees Celsius, respectively.  

 

The precipitation records are directly obtained from the field with a four-digit 

significance, registering 1780 missing values in the Brazilian region 

(4,17days/37 years); in France, 920 values were missing, or 27,9 days/37 

years; while in the U.S.A., only 404 flaws, or 4 days. The series from each 

cell are direct measurements, averaged from observation stations. The more 

functioning observation stations influencing the values of a grid cell, the 

higher the gauge density of that cell. Grid cells with the same number of 

contributing observation stations might have different gauge densities if in 

one of them the observations are constantly interrupted by technical 

problems, for example. Some grid cells might not even encompass any 

gauged data at all, interpolating their data from neighboring cells. The colors 

in Figure 11 depict the gauged density of observed values for precipitation in 

excluding intervals as portrayed below. 

 

 
Figure 11: Precipitation gauge density over the grid for all three areas(Google 

Earth 2017a, Google Earth 2017b, Google Earth 2017c, Thomson Reuters 2018) 

The CSFR data is obtained indirectly, once the temperature themselves were 

not measured, but estimated by correlation with radiation from the land 

surface, captured by satellite. This temperature data is available at 64 vertical 

layers in the atmosphere, in an hourly resolution, also with a four-digit 

significance (Saha, Moorthi et al. 2010). If no technical problems occur, 

every cell in the grid will have their temperature recorded from one satellite 

scan; hence, gauge density does not apply. When analyzing completeness, the 

temperature series is very satisfying. In Brazil, amongst all pixels, there are 
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only 25 unfilled values, representing a failure equivalent to 1/9 of a day in the 

whole series. In France and U.S.A., there is no missing data at all. 

 

The modeled soil moisture data reported by NOAA monthly is initially 

available in the grid format as the input series, which is to say there is one 

Leaky-Bucket model per cell. Before reporting these values, NOAA fills in 

its missing input data, so the soil moisture series is entirely complete. While 

the precipitation input series used is the same for NOAA and the modeling 

carried in this project, the temperature series are slightly different.  

 

NOAA deploys the NCEP CDAS series, which uses some technology and 

algorithms that have become inadequate over time. An example is the initial 

atmospheric conditions conceived in the 1990’s coupled with model 

components from a decade later (Saha, Moorthi, et al. 2010). Despite CDAS 

being one of the most used NCEP products in history, the NCEP CSFR series 

show a far better time and space resolution, greater covered area, better data 

assimilation system and forecast model (Saha, Moorthi, et al. 2010). The 

NCEP CFSR deployed in this project will provide the basis for most of 

NCEP’s climate products and forecasts in the forthcoming years(Saha, 

Moorthi, et al. 2010).  

4.3 Data processing 
 

The georeferenced precipitation and temperature series were processed by 

Thomson Reuters’s agriculture and climate department and transformed into 

a table in text extension. Each cell from the 0.5° x 0.5° grid was assigned a 

column and a name symbolizing its geographic location, and the registered 

values for each cell displayed in chronological order. Thus, one table for each 

climatological input was created encompassing all three regions. 

 

The gridded georeferenced soil moisture series, however, had to be expressed 

as one single value per region, enabling comparison with the single results 

from the HBV-TR, as described in 2.3. The gridded cells had their monthly 

values averaged, thus yielding a one column table for each region. The only 

cells used to calculate the unique regional soil moisture are the ones 

contained inside the study areas, represented in Figure 11. Logically, these 

were also the cells pre-selected for the input series. Thomson Reuters mined 
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the values for surface temperatures (2m) and compiled the data in a daily-

average format (Thomson Reuters 2018).  

 

The input data was completed to yield flawless soil moisture results. The 

missing values for precipitation were assumed to be zero, considering their 

low occurrence do not affect the yearly water budget. Given the small range 

of variation in temperature in Mato Grosso, the series average replaced the 

unregistered figures. The soil moisture target data did not require any 

treatment in that sense. 

 

The processed metadata from the gridded cells and the soil moisture series 

were plotted over time to verify the validity within and between data sets. 

Illustrations of daily input data from two distant gridded cells in each region 

were compiled monthly, further aided by monthly and yearly statistics, as 

seen in the auxiliary graphs in Figure 12, Figure 13, Figure 14 below. 

 

Figure 12 is mostly consistent with the depiction of Mato Grosso in Chapter 

3. Temperatures are close to 25°C all year round in the first auxiliary graph, 

slightly below the 27.8°C mean from 3.1, with a pronounced rain period 

during summer months. Considering Mato Grosso’s vast territory, gauged 

values do vary significantly, averaging from 1500 mm to over 2400 mm of 

precipitation. Temperature also behaves distinctly, as is depicted in the first 

auxiliary graph, with winter records up to 13% lower. 
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Figure 12: Processed input data for Mato Grosso 

Figure 12 also shows an interestingly steadily varying cycle of soil moisture. 

According to the monthly averages from monthly values graph, soil moisture 

values increase during the first months of the year, when water is abundant. 

When winter arrives, and precipitation ceases, soil moisture drops while 

temperatures rise from July to September, creating the driest periods in the 

soil. Rains timidly start again in August, and by October the soil moisture is 

already on the rise. 

 

Figure 13 below is according to the general description of Picardy given in 

Chapter 3. In a temperate climate by the ocean, the area presents monthly 

mean minimum temperatures slightly above 0°C and mild summers around 

17°C, as in 3.2. It is also interesting to observe that grid cell number 0087 is 

colder during the winter, according to the monthly averages from monthly 
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values graph. That can be attributed to its location far into the continent, 

whereas cell 0075 by the coast is thermally better isolated.  

 

 
Figure 13: Processed input data for Picardy 

Figure 13 shows a well-distributed rainfall over the year averaging 800 mm 

yearly according to the first auxiliary graph, slightly superior to the 700 mm 

average from section 3.2. The “monthly averages from the monthly values” 

aid graph illustrates a clear correlation between temperature and soil 

moisture. The yearly averages aid graph, on the other hand, makes the 

dependency between soil moisture and precipitation explicit, when it aligns 

points of maximums and minimums from both series.  
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Figure 14 below portraits the Northwest region of Iowa in resonance with the 

description from Chapter 3. A Continental climate, with distinct seasons 

around the year, with mean monthly temperatures ranging around -10°C to 

nearly +24°C, seen in the first auxiliary graph. This variation is 

representative to the description in 3.3, where daily extremes of -15°C and 

+32°C occur. Rain records are slightly higher than in the description, 

averaging 700 mm yearly, concentrated around midsummer. Grid cell 

number 3193 presents slightly lower precipitations for being the most 

northwestward for Iowa, while 3297 is in the opposite location.   

 

 
Figure 14: Processed input data for Iowa 

The monthly averages from Figure 14 show that soil moisture decreases 

during winter despite the absence of evaporation considered in those 

temperatures. In the same Figure 14, the “yearly averages from monthly 

values” graph displays both influences of precipitation and temperature in 

soil moisture values, with rainfall being a more predominant factor.  
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5. Modeling soil moisture in HBV-TR 

5.1 Model adaptation 
 

Considering the HBV-TR original runoff orientation,  its daily time-step 

capacity and calculations for all the variables described from Equation 12 to 

Equation 20 in table format, the first adjustment needed is to display the 

results for soil water content instead of runoff.  

 

An adaptation for the HBV-TR model would be to consider only the water 

content from the soil box described in subsection 2.3.2. This adjustment 

transforms the HBV-TR into a one-layer model, physically similar to the 

Leaky-Bucket from NOAA in section 2.2. Evapotranspiration in both models 

is a function of the soil saturation and temperature, see equations 8 and 13. 

Likewise, both models assume water losses dependent on the saturation level 

according to equations 6 and 15. This version for soil moisture calculation 

modeled the Brazilian basin. 

 

However, this HBV set-up has a limitation when emulating long-term field 

capacities during winter, as described in subsection 2.1.1 and visible from 

Figure 14. According to Equation 15, this box never loses water in negative 

temperatures, for there is no evapotranspiration nor infiltration from snow to 

force groundwater recharge. If many consecutive days register low 

temperatures, as is the case for Iowa, then the soil moisture values would 

remain constant for months. 

 

To account for gravitational losses like the Leaky-Bucket, the second 

configuration for the HBV-TR was to include the response routines, which 

act according to Darcy’s law in Equation 2. This second HBV-TR set-up 

modeled the Picardy and Iowa regions. 

5.2 Computing model performance 
 

The performance analysis of a hydrologic model demands objective and 

subjective estimates to enable a reliable conclusion (Krause, Boyle, et al. 

2005). The most important approach to evaluate modeling performances is 

through the visual assessment of systematic (over or underestimations) and 

dynamic aspects, such as timing, baseflow, rising and falling limbs (Krause, 
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Boyle et al. 2005). Nonetheless, for quantitative evaluations, efficiency 

criteria must be coupled with a volume error assessment (Krause, Boyle, et al. 

2005). 

 

A frequently used performance criterium for runoff models in literature is the 

Nash-Sutcliffe (NSE) (Krause, Boyle, et al. 2005), which can be described by 

Equation 21: 

Equation 21: 𝑹𝟐 = 𝟏 −
∑ (𝐒𝐌𝐦

𝐭𝐓
𝐭=𝟏 −𝐒𝐌𝐨

𝐭 )²

∑ (𝐒𝐌𝐨
𝐭𝐓

𝐭=𝟏 −𝐒𝐌𝐨̅̅ ̅̅ ̅̅ )²
, for which 𝐒𝐌𝐦

𝐭  stands for the 

modelled soil moisture in a time step t, whereas 𝐒𝐌𝐨
𝐭  is the observed target 

value for the same period, and 𝐒𝐌𝐨
̅̅ ̅̅ ̅̅  the average of the observed series. The 

NSE coefficient equals one when the modelled and observed series are 

identical; a value of zero indicates that the modelled series is as good as the 

simple mean of the observed values (Moriasi, Arnold et al. 2007). For this 

thesis, the, acceptable threshold has been stipulated as 0.8 (Thomson Reuters 

2018). 

Another criterium commonly resorted to when assessing runoff models is the 

relative volume error. It describes the general tendency to estimate the 

observed series, expressed as follows in Equation 22: 

Equation 22: 𝐕𝐨𝐥. 𝐞𝐫𝐫𝐨𝐫 =
∑ (𝐒𝐌𝐦

𝐭𝐓
𝐭=𝟏 −𝐒𝐌𝐨

𝐭 )

∑ (𝐒𝐌𝐨
𝐭𝐓

𝐭=𝟏 )
× 𝟏𝟎𝟎%.  

In implementing the concept of volume error from runoff to soil moisture 

content, it is intuitive that it will constitute an accumulated volume error. 

Accumulated volume differences will inevitably occur, but the desired 

volume variation should be within 10% (Thomson Reuters 2018). Henceforth, 

accumulated volume error will be basically referred as “volume error”, given 

its widespread usage, immediately conveying the right concept to the reader. 

A relative criterium to which this project will also implement is the 

evaporation rates from the modelings. Evaporation rate is the percentile 

relation between the total amount evaporated compared to the total 

precipitation. This rate can vary widely but allows comparisons between 

basins’ performances. In the same line, the maximum water holding capacity 

for each region will be accessed and compared to NOAA’s threshold of 760 

millimeters, according to section 2.2. 
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The comparison between the evapotranspiration series from both models will 

also add to the validation of the methodology deployed. This way, the water 

output to the atmosphere will compare whether both models can describe the 

basin similarly, not only the target values. This validation can indicate 

improvements in the calibration or the approach taken if by-product series are 

distinct. 

 

Difficulties arise when computing performance in the HBV-TR: soil moisture 

will be modeled daily, while the target series is in a monthly resolution. It is 

only rational to compare data series with the same length and resolution, as 

noticed from Equation 21 and Equation 22. Trying to force a higher 

resolution in the monthly series is not feasible, for any mathematical 

distribution of the monthly variations into days would nullify the direct 

relation between daily observed weather and soil moisture, a relation which is 

the very core of this work. 

 

The alternative, however, seems more reasonable. A monthly series cherry-

picked from the daily modeled values can be compared to monthly target soil 

moistures at the same dates, thus proving the daily modeling capacity. This 

way, both series consider a monthly variation between soil moisture 

conditions after climate action, the HBV-TR soil moisture being an 

accumulated result of daily mutations.  

5.3 Calibration 
 

The time length of the available data is split between the calibration and 

validation phases. To have them simulated independently emphasize the 

parameter tuning from calibration. The time division herein on adopted aims 

to prove the model accuracy in both short and long periods. The calibration 

assigned spans from February 1
st
, 1981 until October 1

st
, 2013, while the 

validation occurs in the last four years, between October 1
st,

 2013 to 

December 1
st
, 2017.  

 

It is unknown how NOAA calibrated every single Leaky bucket on the 0.5° x 

0.5° cell grid. Therefore, it is necessary to calibrate the daily gridded records 

to achieve the best input combination for this modeling.  Given that this 

process is done manually, weighing more than 8-10 cells become unpractical, 

requiring some previous selection.  
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Considering the grid layout over the studied areas in Figure 11, only grid 

cells that overlap those areas are relevant. Due to Mato Grosso’s vast 

dimensions, the next selection criterium adopted was the gauged density. 

Denser gauged cells (blue, green and yellow, in that order) are more 

representative than those cells which only interpolate from neighboring cells 

(red), as seen in Figure 11. Grid cells far from each other are more likely to 

express distinct patterns, while neighboring grid cells can be redundant, 

especially for temperature, given its space-time continuity (Yun Fan, Huug 

van den Dool 2008).  

 

Fixing standard HBV-TR model parameters, the performance coefficients in 

Equation 21 and Equation 22 can evaluate initial simulations through 

sensitivity analysis, followed by an iterative calibration leading to the final 

weighing as presented in Table 3 below. 

 

 
Table 3: Weight distribution for gridded input series 

The weighed values attributed to each gridded cell are in every second 

column, adding up to 1, the total contribution. While in the smaller regions 

all gridded cells were considered to substantiate the moisture product, the 

selection in Brazil narrowed the input of gridded cells to four. Spread grid 

cells from the three different regions described in section 3.1 Mato Grosso 

were enough to represent the typical behaviors in the state.  

 

With an optimized weight distribution for input data, the free parameters 

from the HBV-TR model are set to undergo calibration. After manual 

sensitivity analysis for each of the parameters, the best set found for each 

study area is as follows in Table 4. 

 

P-Station 1,00 T-Station 1,00 P-Station 1,00 T-Station 1,00 P-Station 0,00 T-Station 1,00

2208403194 0,10 2408403194 0,05 22007602162 0,05 24007602162 0,05 2202500096 0,01 2402500096 0,08

2208403193 0,05 2408403193 0,05 22007602231 0,55 24007602231 0,75 2202500097 0,01 2402500097 0,58

2208403195 0,10 2408403195 0,05 22007602165 0,05 24007602165 0,05 2202500075 0,01 2402500075 0,08

2208403196 0,40 2408403196 0,05 22007602295 0,35 24007602295 0,15 2202500085 0,02 2402500085 0,03

2208403297 0,10 2408403297 0,05 2202500083 0,80 2402500083 0,06

2208403296 0,10 2408403296 0,70 2202500084 0,14 2402500084 0,06

2208403295 0,10 2408403295 0,05 2202500086 0,01 2402500086 0,06

2208403294 0,05 2408403294 0,00 2202500098 0,01 2402500098 0,07

MATO GROSSO - BRAZIL PICARDY - FRANCENORTHWEST IOWA - USA
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Table 4: Parameter calibration for HBV-TR 

HBV-TR allows for a correction factor in temperature and coefficients for the 

input precipitation, as seen in Figure 7 and section 2.3. The temperatures 

were increased between 1.3 to 2°C for all records. Thorn is the coefficient 

that relates temperature to potential evapotranspiration, according to Equation 

14.  LGV is the recession coefficient that regulates the water transfer from 

upper to lower groundwater boxes according to Equation 19. Most parameter 

sets from this calibration are consistent with expected values for their 

respective field according to Thomson Reuters’ experience. However, the 

values for Thorn for Brazil and France are higher than the usual 0,15 upper 

limit  (Thomson Reuters 2018).  

 

 

  

AREA
Tcorr

 (°C)
sfcf rfcf

TT 

(°C)

MELT

(mm/°C

*day)

Thorn 

(mm/°C)
hp

fc

 (mm)
b

LGV

 

coeff

UZL

 (mm)
T0 T1 T2

IOWA 1,3 0,85 1,0 -2,0 7,0 0,122 0,9 430 2,15 80 ∞ 15 32 140

PICARDY 2,0 1,00 1,0 0,0 4,0 0,172 0,95 530 1,30 80 ∞ 15 28 120

MATO GROSSO 1,8 1,00 1,0 0,0 4,0 0,180 0,98 630 3,00 50 - - - -
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6. Results  

6.1 General remarks 
 

The results here presented base the deployment of the performance criteria 

both objectively and subjectively, according to section 5.2. While the 

objective criteria are straight-forward and as simple as a three-digit number, 

it is commonly the visual aspect which enables a thorough understanding of 

the modeling and indicates further developments, as seen in the following 

sections. 

 

Because of the negative temperatures and the model adaptation implemented, 

as explained in Chapter 5, many more variables compose the soil moisture 

content in the regions of Picardy and Northwest Iowa in the following graphs. 

Their secondary vertical axis now includes snowmelt in small quantities, 

serving the ultimate purpose of a holistic visualization of the variables in play. 

Some liberties were taken from conventional methods for presenting the 

values in a logical, clear way. 

 

The secondary vertical axis is dimensionless and shows the climatic variables. 

These are plotted in the superior part of the graph in an inverted scale (except 

Figure 15), as to represent their disposition in nature. The primary vertical 

axis illustrates the total soil water content, composed of three contributing 

routines: soil box, upper and lower groundwater contents, instinctively in this 

vertical order, according to section 5.1. The target series is also on this same 

axis, making a red-blue duality in the middle of the graph. 

 

For the calibration period, the secondary vertical axis presents the 

climatological inputs in a monthly resolution. The series length made a daily 

quality impracticable, for precipitation data would be indistinguishable 

between days and was likely to spoil the graphics for temperature and snow 

box in the same axis. The soil variables plotted are the monthly picked values 

described in section 5.2.  

 

For the validation period, however, a daily resolution is feasible for the 

climatological input. Snowpack thickness now expresses the snow box 

instead of the accumulated snowmelt. The modeled soil moisture is in 

monthly resolution due to the necessary compatibility between model and 
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target series. This duality in resolution, however, elucidates the modeled 

series quality, emphasizing that the current analysis is for a daily model and 

does not spoil the graphics’ legibility. 

6.2 Mato Grosso, Brazil 
 

Figure 15 illustrates the modeling for the calibration period in Mato Grosso. 

The modeled series is depicted in red, and its good fit to the blue target series 

is immediately evident. The same broad variation pattern from the target 

series is noticed: precipitation cools the average temperature in the rainy 

season, leading to soil moisture build-up; during dry seasons, temperature 

registers its highest values, resulting in a soil moisture decrease of more than 

50%.  

 

 
Figure 15: Calibration results for Mato Grosso 

The NSE achieved for Mato Grosso in Figure 15 was the highest for this 

project. The HBV-TR model perfectly mimics the target series between 250 

mm to 550 mm of soil moisture. However, the modeled series slightly 

underestimates the peaking values above that threshold, causing a negative 

volume error. 



45 

 

 

 

Figure 16 depicts the modeling for the validation period, presenting a distinct 

scenario from calibration. The target series, now consistently below 500 mm, 

is slightly overestimated during the peaking seasons, as shown by the positive 

volume error. Moreover, the shape of the second last modeled soil moisture 

peak does not describe the variations between the wetter months accurately. 

The NSE drops to 0.85. 

 

 

 
Figure 16: Main validation results for Mato Grosso  

The daily weather inputs in Figure 16 show stable patterns and corroborate 

with the analysis done for the monthly series, being resonant and 

potentializing the soil moisture variations. The rainy season starts around 

October, with average daily precipitations easily topping 20 mm, registering 

showers over 100 mm on two occasions. The average daily temperature 

varies slowly daily between 23° and 33° year-round, and are consistent with 

the description given in section 3.1.  

 

Figure 17 emphasizes the relation between precipitation and runoff: rainy 

seasons with strong showers are accompanied by runoff peaks from 5 to 7.5 
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mm, while dry seasons lead to accentuated recession curves, with a baseflow 

around 0.5 mm, thus composing a typical yearly runoff cycle. 

Evapotranspiration nearly doubles during the rainy season, reaching around 4 

mm dropping below 2 mm in the dry season despite daily temperatures of 

roughly 5°C higher. 

 

 

 
Figure 17: Supplementary validation results for Mato Grosso 

6.3 Picardy, France 
 

Figure 18 below conveys the products from calibration for the Picardy region. 

The modeling for this period shows the influence of snow to be small, not 

occurring in 1992 and 2008. The modeled water content is mostly composed 

of the soil moisture box content, represented as the thinner red line hm month. 

During drier seasons, when target values are below 300 mm, this curve is the 

only significant influence, as seen between summer 1989 and spring 1992. 

The NSE performance scored 0.88, similar to Mato Grosso. 
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Figure 18: Calibration results for Picardy 

Figure 18 shows the response boxes always below 50 mm, but their 

contributions become substantial for target values above 300 mm. Some 

highlights of these contributions are the composition of the winter peaks as in 

1985, 1994 and 2000. Small underestimations are the trend according to the 

volume error, markedly occurring during the autumns of 1985, 1988, 1989, 

and 1996.  

 

Figure 19 below highlights the alternation of predominance between 

temperature and precipitation for soil moisture values. When an abnormal 

concentration of rainfall occurred in the summer of 2016, soil moisture 

values peaked despite the high temperatures. In the next fall, high 

temperatures until October forced the soil moisture curve below 300 mm, 

maintaining that level throughout 2017 despite a regular rainfall according to 

Figure 13.  Soil moisture was underestimated during the winter-spring of 

2014, while slightly overestimated during the summer of 2016.  
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Figure 19: Main validation results for Picardy 

Figure 19 above also shows the year of 2015 to be emblematic of the role 

played by the runoff boxes. When comparing the two modeled red lines, the 

values for soil moisture decrease faster from spring to late summer, as well as 

accumulate water more quickly until the following summer of 2016. The 

NSE parameter was 5% lower than during calibration, while the volume error 

was insignificant. 

 

The following Figure 20 depicts the water dynamics for Picardy during 

validation, in which snow played an insignificant part, with temperatures 

varying from near zero temperatures up to 25°C. Temperature variations are 

higher than in Mato Grosso in shorter periods of time. The vertical gap 

between consecutive local maximums and minimums is above 5°C, 

sometimes reaching a maximum 10°C variation in a couple of days. 
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Figure 20: Supplementary validation results for Picardy 

Figure 20 displays a proportional relation between evapotranspiration and 

temperature, as expected. There is synchrony between the evapotranspiration 

and runoff curves during the summers of 2014 and 2016, contrasting with the 

drier summers of the odd years. The total evapotranspiration rate is higher 

than the one registered for Mato Grosso. 

 

The runoff registered in Figure 20 above is continuously close to the 

baseflow around 0.5 mm, presenting brief recession curves. Regular 

precipitations that are seldom above 15 mm year-round yield many small 

peaks in between stronger events. While evapotranspiration commonly 

ranges from near-zero to 2 mm per day, the runoff presents half of that 

length, varying between 0.3 and 1 mm, peaking at 2 mm for an unusually 

rainy period. 

 

6.4 Northwest Iowa, U.S.A. 
 

Figure 21 illustrates the modeled results in Northwest Iowa for calibration. 

Due to monthly negative average temperatures during winter, the influence of 
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snowmelt is visible, reaching up to 25 mm as in 1984, 1997 and 2001. The 

precipitation cycle in Northwest Iowa is well-defined, resembling Mato 

Grosso, with monthly values varying from near-zero to around 175 mm. 

 

 
Figure 21: Calibration results for Northwest Iowa 

Figure 21 above shows that the modeled soil moisture series grasps the 

tendencies from the target series, but while it masters extreme variations as 

between the winter of 1990 and summer 1991 or from 2011 onwards, 

sometimes it fails to represent minor changes. Some examples are the winter 

of 1983 or the summer season of 1988 and 1989, which combined result in a 

lower NSE than for the other areas. As in Picardy, the soil box is the main 

contributor to soil moisture, but the influence of the response boxes 

considerably increases for target series over 300 mm.  

 

Figure 22 below is the graphic representing the validation for Northwest 

Iowa. The snowpack builds up to 10 mm and can be present nearly all- winter 

long. Gauged precipitation interestingly fits quite well under temperature, 

more intensive and constant during summer, with two or three showers 

around 40 mm/day, but nearly ceasing during winter.  
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Figure 22: Main validation results for Northwest Iowa 

Figure 22 shows how the response boxes improve the modeling for soil 

moisture in the first two winters. In 2013, the accumulation by the soil box 

was compensated by both response boxes, thus creating a constant decrease 

in the modeled series until the beginning of the spring. Between the summers 

of 2013 and 2014, the response boxes enabled the simulation of two soil 

moisture crests and a trough, which was not detected by the soil box curve 

hm month.  

 

Figure 23 below highlights the water variables in the region, in which marked 

peak flows around 2.5 mm occur as a result of summer’s intense showers, not 

being as regular as in Mato Grosso. The snowpack influences the falling 

limbs in the last two years, nearly doubling the baseflow of 0.5 mm registered 

in 2013 and 2014. The evaporation rate is significantly lower than the other 

two basins, for despite its higher registers being superior to Picardy’s. 
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Figure 23: Supplementary validation results for Northwest Iowa 

As a supplement to the modeling performance, Figure 24 below illustrates the 

comparison between the evapotranspiration series yielded by the Leaky-

Bucket and HBV-TR models. The visual aspect indicates synchronized series 

well-distributed throughout the years, and the NSE criterium is even higher 

than the ones obtained for the soil moisture modeling. From all 50 monthly 

records, only five modeled values were inferior to the NOAA series.  
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Figure 24: HBV-TR validation through evapotranspiration in Northwest Iowa 

A summary of the performance indicators from all HBV-TR modelings, as 

pointed at section 5.2, can be seen in Table 5 below. The results shown will 

base the discussion in the next chapter. 

 

 
Table 5: Main performance criteria from the HBV-TR models in all study 

areas. 

 

AREA   
CRITERIA

NSE 

(calib./

valid.)

Vol. Err.

 (calib./

valid.; %) 

Evap. 

Rate 

(val.; %)

Main 

visual 

remarks

Model valid.

(valid.: *R², 

Vol. Error)
FC

(mm)

Mato

Grosso
0.9

 0.85
-2.5

 8.47 63
Limited 

accuracy for 

SM peaks - 630

Picardy
0.88

 0.84
-2.04

 -0.09 64

Few 

underestimatio

ns in 

calibration
- 530

NW 

Iowa
0.84

 0.83
-0.14

 -2.09 49

Limited 

accuracy for 

quick SM 

variations

*0.93, 20%

* Well-distributed 

overestim. 430



54 

 

 

 

  



55 

 

 

7. Discussion  

7.1 Mato Grosso, Brazil 
 

The model adaptation for Mato Grosso showed the best NSE performance 

among all three regions. That, however, can be partially credited to distinct 

rainy and dry seasons at consistently high temperatures year-round. This fact, 

combined with similar procedural models used for target and modeled series 

enabled the only NSE in the 90% level for soil moisture, tolerable volume 

error and visually a nearly-mirrored modeled series.  

 

Other positive aspects are the shapes of the hydrograph, presenting a marked 

peak flow and recession curve, along with an evaporation rate much superior 

to the coldest basin. The inverse proportion observed between temperature 

and evapotranspiration is evidence that the water available in the soil limits 

this variable. Otherwise, it would reach much higher values than Picardy, 

according to Equation 14. The field capacity obtained from Table 4 was 630 

mm, below the NOAA limit. 

 

However, the modeling fell a little short for the peaking values of soil 

moisture, either through general underestimations during calibration or 

overestimations during validation.  This incapacity is at first surprising, given 

the repetitive, stable yearly cycle in Mato Grosso. During the calibration, the 

soil box content was always close to the field capacity in the wet months, 

indicating that either the groundwater recharge or evapotranspiration is 

excessive when the soil box near saturation (check functions in Table 1).  

 

Given that Figure 24 shows the evapotranspiration from HBV-TR very close 

to that from the Leaky-Bucket in wet, hot periods, the HBV-TR’s 

groundwater recharge is probably the responsible for this limitation. This 

analysis also enables the conclusion that BETA from HBV-TR is smaller than 

b from the Leaky-Bucket. A possible improvement to avoid running the 

HBV-TR model near the FC values would be deploying the second HBV-TR 

adaptation, as seen from Figure 18 to Figure 22 for the other regions.  
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7.2 Picardy, France 
 

Considering the volatility of the local climate explicit in Table 2 and the 

differences regarding the main variables within soil hydrology between 

models high lightened in Table 1, the comparison between monthly and daily 

resolutions between two different models will inevitably bring discrepancies. 

However, the Picardy model performed nearly as well as Mato Grosso, way 

above the performance standards.  

 

The Nash-Sutcliff criteria were slightly inferior to the Brazilian, at 0.88 and 

0.84, but with a better visual aspect and irrelevant volume errors. The visual 

aspect is satisfactory overall, being consistent with large and small soil 

moisture tendencies. The performance improvement due to the response 

boxes is evident when comparing the modeled series to the soil box curve, 

hm month.  

 

The evapotranspiration rate, higher than the Brazilian and harmonized with 

temperature, depicts a water-abundant environment, pointing to a realistic 

basin when compared to Northwest Iowa. The field capacity of 530 mm is 

satisfactory in comparison to the maximum of 760 mm from NOAA. 

However, some limited results are also present.  

 

The sporadic misfits pointed during calibration in Figure 18 can be punctual 

short comes from the calibration and the modeling differences, once there is 

no drastic meteorological event during autumn in France, and these flaws are 

not common even in autumns. If the weight distribution depicted better these 

local targets, the performance for the rest of the series would likely 

deteriorate. Because the calibration is manual, one must always consider the 

possibility of better results from a more experienced modeler. 

7.3 Northwest Iowa, U.S.A. 
 

The modeling for Northwest Iowa obtained the worst NSE results for both 

calibration and validation performances, which is natural given it is the most 

unstable of all three climates in this project. Nonetheless, the performance 

criteria were all safely above the quality standards, with small volume errors, 

a consistent NSE record in calibration and validation and an excellent visual 
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match overall despite some quick target variations, along with a field 

capacity of 430 mm, way below NOAA’s limit.  

 

Apart from these, the hydrograph is consistently in between those observed 

for Mato Grosso and Picardy. It presents typical peaks after heavy showers 

which do not amount to yearly hydrographs, for the rainy season is not as 

concentrated as in the Brazilian state, nor is the modeled snowpack sufficient. 

The lowest evapotranspiration rate among all areas, 49%, can be attributed to 

the most prolonged winters, in which there is no evaporation, and to the 

lower potential evapotranspiration coefficient from the calibration phase, as 

seen in Table 4, being therefore relatively consistent. 

 

As a product from calibration, hot and cold regions needed corrections 

around 1.6°C in their state-of-the-art reanalyzed temperature series, coupled 

with high Thorn values. An adverse outcome of this temperature 

compensation is less snowpack than expected (80 cm according to 3.3, and 

25 mm of water, roughly 250 mm of snow, from 6.3). A smaller snowpack is 

probably responsible for the unnoticed quick variations in the target values 

pointed in section 6.3, reinforced by the insensitivity of the model to the melt 

coefficient, set very high for Iowa as seen from Table 4.  

 

When validating the model, the volume error in Figure 24 is unusually high 

for the figures obtained in this project. However, considering the models are 

not precisely similar when calculating potential evapotranspiration nor the 

other vadose zone outflows, this secondary performance parameter in a 

model validation does not dampen the quality of the visual and NSE 

performances.  

 

Indeed, the investigation to validate the HBV-TR modeling of the NOAA 

shows very satisfactory results. The NSE factor obtained was surprisingly 

high at 0.93, which comes to show that the approximation done by Equation 

14 grasps well the same tendencies as the non-linear approach with many 

variables considered by Thornthwaite in Equation 9. The results from Figure 

24 are very reassuring of the methodology applied in this project.  

 

On the shortcomings of the calibration, it is a fact that numerous parameter 

sets satisfy a modeling. Small imperfections backed by multiple satisfactory 
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results indicate that the calibration was near an optimum point for the initial 

direction taken after the sensitivity analysis (Beven 2012). 
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8. Conclusion and further studies 

 

Describing the theory behind the natural processes of water within the vadose 

zone was crucial for understanding the unsaturated flow and soil moisture 

storage. This literature review enabled the comprehension of the models’ 

assumptions, all steps in their calculations, and the differences between them, 

consolidating the technical basis for the two models. 

 

This project also described the study areas Thomson Reuters put forth, thus 

depicting the regions regarding their weather, topography, geology, and 

economic statistics. This background enabled the assimilation of the collected 

data gathered from NOAA, as well of the importance of the regions in case. 

 

When looking at the input data itself, a description of the methodologies, 

mostly based on their authors and other hydrologists from NOAA, further 

aided its assimilation. A model is only as good as its input data, and for that 

reason, this project evaluated the series’ completeness, validity, accuracy, 

availability, and timeliness. To further guarantee the input soundness, the 

weather series was completed and selected by their relevance. Graphics 

supported the consistency of the NOAA series to the study areas background.  

 

According to all the justified efficiency criteria deployed, namely the Nash-

Sutcliff efficiency above 0.8, volume error below 10%, comparable 

evapotranspiration rate, maximum field capacity of 760 millimeters and the 

visual aspect, the two modeling adaptations based on HBV-TR from 5.1 can 

be considered successful. The small deviations are within the tolerance 

margin and are plausible given two different models and hydrologists. So 

many acceptable modeling approaches for soil moisture depict the fact that 

all have their limitations (Palmer 1965). 

 

The more straightforward adaptation deployed for Mato Grosso considering 

only the soil moisture box  in the HBV-TR model proved to be very close to 

the dynamics within the routine from the Leaky-Bucket, validating this 

approach. The lower performance when modeling for values near field 

capacity points to more efforts in deploying the second HBV-TR adaptation 

for these cases.  
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The addition of the response boxes to the model setup for the two other 

regions demonstrated to be positive. HBV-TR’s enhanced resolution in 

climates that are unstable on a daily basis did not, however, compromise the 

capacity to express monthly or seasonal behaviors. The modeling 

performances here achieved are safely above the thresholds established by 

Thomson Reuters. 

 

This project shows substantial evidence that soil moisture can be modeled by 

HBV-TR with a daily resolution, presenting the potential to become another 

product in Thomson Reuters’s forecast portfolio. This way, Thomson Reuters 

can provide a tool for farm producers to increase their productivity and 

consequently to lower food price, stabilizing food markets and meeting 

global demands. 
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