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Abstract 

Determining distribution and status of species in the context of climate change allow 

conservationists to assess contemporary and/or future ranges for plant species in the 

protected areas. Climate change data are important predictor variables for determining 

species range, yet is rarely used in Tanzania when modelling future distribution of 

species. In this study, Maximum Entropy modelling was used to construct species 

distribution maps for Prunus africana to determine relative contribution and effects of 

climate change on the potential geographical distribution of P. africana based on 

climatic scenarios. Species presence data were used as a dependent variable, while 

climate, soil, and topographic data were used as predictor variables. The current 

distribution model was evaluated with the Area Under the Curve (AUC). The results 

indicate that the distribution of P. africana could be modelled with test AUC that is 

significantly better than random, with average test AUC values of 0.97. This indicates 

high performance of the model.  Moreover, results for contribution of predictor 

variables revealed that the current distribution of P. africana was highly affected by 

climatic variables. Environmental variables found to have highest prediction 

contribution include; maximum temperature warmest month (27.2%), elevation 

(11.4%) and rainfall driest month (11.3%). Results for potential geographical 

distribution based on current climatic conditions revealed that suitable habitats for P. 

africana were predicted almost in all Eastern Arc Mount (EAM) forests. Moreover, 

current distribution maps depict areas with high elevations as having very high 

potential habitat suitability values. Furthermore, future distribution maps depict both 

gains and losses in range for P. africana under all climate scenarios in the EAM 

forests. Representative Concentration Pathways (RCP) 8.5 scenario records larger loss 

in range for P. Africana compared to RCP 4.5 in the Mid-century 2041-2070 (2055) 

and Late-century 2071-2100 (2085) in the EAM forests. Among the EAM forests 

Udzungwa, Rubeho, West Usambara, Ukagaru, Uluguru and Ukagaru forests will lose 

much more suitable habitats for P. africana. This implies that most of the areas 

currently predicted in EAM forests as suitable will not be suitable in the future. 

Therefore under changing climate, some species like P. africana might expand or 

contract their suitable habitats which will have implications on management and 

conservation of such species within the EAM forests. 
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1.0 Introduction 

1.1 Background Information 

The Inter-governmental Panel on Climate Change (IPCC, 2001) identifies Africa as 

one of the least studied continents regarding ecosystem dynamics and climate 

variability, despite the potentially large impacts of climate change on community 

livelihoods and biodiversity conservation (IPCC, 2014). Increased droughts have 

affected rain-fed agriculture and hence the livelihood of poor farmers. Climatic 

change influences species distributions, often through species-specific physiological 

thresholds of temperature and precipitation tolerance (IPCC, 2014). Climate change is 

predicted to have large impacts on species and ecosystems in several different ways. 

Climate change differs from land use and land cover change, in the global extent and 

nature of its likely impacts on species and ecosystems (IPCC, 2014). In mountain and 

protected areas, like in the Eastern Arc Mountains (EAMs) forests, potential 

distribution of species is less influenced by land use and land cover change, whereas 

climate change affects such species more strongly at all elevations (Briner et al., 

2013). Similarly, accelerating climate change will become the more important driver 

of changes to plant species distribution in mountain forests (Schirpke et al., 2017), 

such as EAM forests. It, however, remains unclear how plant species will be affected 

in the face of accelerating climate change. 

 

With warming trends, plant species are expected to track the changing climate and 

shift their distributions to the extent that resource availability allows (Berry et al., 

2002). Climate change influences on richness and species distributions as well as the 

composition of assemblages (Thuiller et al., 2008) may result in species either 

keeping their current range or respond to changing environmental conditions with 

range expansions, contractions or shifts (Sommer, 2010). Colonization of new 

suitable habitats or areas may result in poleward or upslope range expansions 

(Parmesan, 2006). However, retreat from unsuitable sites with unfavourable 

conditions may lead to local and even global extinction events (Thomas et al., 

2004; Thuiller et al., 2005).  

 

Pearson and Dawson (2003) revealed that species’ range expansion and contraction 

are profoundly influenced by changing climate. Range loss for instance as the result 

of climate change may vary across species. Species most able to persist in the face of 

https://www.sciencedirect.com/science/article/pii/S2212041616303953#b0030
https://www.sciencedirect.com/science/article/pii/S2212041616303953#b0030
http://rspb.royalsocietypublishing.org/content/277/1692/2271#ref-79
http://rspb.royalsocietypublishing.org/content/277/1692/2271#ref-52
http://rspb.royalsocietypublishing.org/content/277/1692/2271#ref-76
http://rspb.royalsocietypublishing.org/content/277/1692/2271#ref-76
http://rspb.royalsocietypublishing.org/content/277/1692/2271#ref-78


2 

 

changing climate have larger geographical ranges, confirming that large ranges 

provide a buffer against environmental changes (Jetz et al., 2007) such as climate 

change. Range shifts are predicted to be more pronounced at higher latitudes, where 

temperatures are expected to rise more than near the equator (Langer et al., 2013). 

Species may disappear in certain areas at a faster rate than they can migrate or regrow 

in new areas (Parmesan, 2006). Estimation of range shifts among species has led to 

rapid advancements in the use of niche modelling to predict where species are likely 

to move (Araújo & Luoto, 2007), following expected climate change from established 

global and regional models (Meehl et al., 2007). Ecological niche modelling 

combines known occurrence records for the target species with environmental data to 

estimate potential geographic distribution patterns and species’ ecological 

requirements (Khanum, 2013). Such estimates help to narrow down a matching set of 

possible occurrence sites for detailed field surveys (Menon et al., 2010).  

 

The use of species distribution modelling (SDM) to map and monitor animal and 

plant distributions has become a favourite technique for mapping, identification of 

suitable habitats and evaluation of species’ distribution for a wide variety of species 

(Porfirio et al., 2013). Species distribution models establish relationships between 

occurrences of species and environmental factors (Kumar & Stohlgren, 2009); and 

estimate species’ environmental niches across geographical space within a particular 

period by substituting new variables that reflect expected environmental changes into 

spatial models (Botkin et al., 2007). There are varieties of species distribution 

modelling methods available for prediction of potential suitable habitats for a species 

(Elith et al., 2006). Generalized regressions, Bayesian approach, neural networks, 

classification techniques, and environmental envelopes are among the broad groups of 

methods developed over the years (Phillips et al., 2006). Some of these methods are 

based on presence only data while majority of them are based on presence absent 

data. Classification and regression tree analysis, artificial neural networks (ANN), 

generalized linear models (GLM), and generalized additive models (GAM) require 

presence/absence data (Elith et al., 2006). Presence only methods include bioclimatic 

envelope algorithm BIOCLIM, DOMAIN and MAXENT (Phillips et al., 2006). 

Presence only methods rely on the establishment of environmental envelopes around 

locations where species occur, which are then compared with to the environmental 

conditions of background areas (Brotons et al., 2004).  
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Maximum Entropy (MaxEnt) modelling (Phillips et al., 2006) in particular, has been 

widely used and shown promising results (Elith et al., 2006) and performs better than 

many different modelling methods in model comparisons when presence only data are 

used (Ortega-Huerta & Peterson, 2008).. MaxEnt combines species presence only 

data with environmental layers to create species distribution models using maximum 

entropy (Jaynes, 1990). Species environmental niche is estimated by finding 

probability distribution that is based on a distribution of maximum entropy and is in 

reference to a set of environmental variables (Philips et. al., 2006). In MaxEnt pixels 

of the study area make up the space on which MaxEnt probability distribution is 

defined, pixels with known species occurrence records constitute the sample points, 

and the features are climatic variables, soil and elevation (Austin, 2007).  

 

MaxEnt is an innovative GIS-based method used to produce predictive maps of where 

species are likely to occur and likely not to occur. This makes it a suitable choice for 

species and environmental variables data to predict suitable environments for the 

likelihood of occurrence under climate scenarios. Some of the examples where 

MaxEnt models have performed well include predicting the current distribution of 

Humming-birds in the Andes (Tinoco et al., 2009), predicting the current global 

distribution of stony corals (Tittensor et al., 2009) and predicting the potential 

distribution of ants in New Zealand (Ward, 2007). Furthermore, MaxEnt models have 

successfully predicted the potential distribution of Nematodes in China (Wang et al., 

2007), the current global distribution of seaweeds (Verbruggen et al., 2009), and the 

current distribution of birds in the Andes (Young et al., 2009). This study intends to 

use maximum entropy modelling to predict the potential distribution of Prunus 

africana based on climatic scenarios. P. africana is a wild tree listed as “vulnerable to 

extinction” (IUCN, 2018) due to over exploitation for pharmaceutical uses. It has 

been suspected that besides human exploitation, climate change is another serious 

threat to the current and future distribution of P. africana. The magnitude of climate 

change impacts on the distribution of this species, however, remains unclear in 

protected areas of Tanzania. If protected areas are to remain a key conservation tool 

for vulnerable species, climate change needs to be factored into conservation plans.  
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1.2 Problem Statement and Justification  

In the era of changing climate, species are increasingly facing threats of range shits, 

decline in habitat and extinction both at local and global levels (Jetz et al., 2007; 

2004; Thuiller et al., 2005). The adverse impacts of climate change are now evident in 

many land-based economic sectors in Tanzania. Some impacts of climate change 

include decline of income from farming for the rural poor. The response of poor 

farmers to the impact of changing climate has resulted in over-exploitation of forest 

resources, which is believed to compound the shortage of water and species habitat 

contraction (URT, 2016). Studies on the effects of climate change on distribution and 

status of species are therefore highly relevant given the predictions of changing 

temperature and precipitation patterns, as well as increases in extreme weather events 

that are occurring in many parts of the country (Kirtman et al., 2013).  

 

Determining distribution and status of species in the context of climate change allow 

conservationists to determine declining trends of the ranges of species in the protected 

areas. Still, there has been no study that investigated the effects of climate change on 

the potential geographical distribution of P. africana in the EAM forests of Tanzania. 

(URT, 2016). This study, therefore, aims to investigate effects of climate change on 

the potential distribution of P. africana using GIS techniques and the maximum 

entropy distribution modelling approach. The findings of this study could help to 

comprehend potential geographical distributions of P. africana as a narrow ranged 

species in the face of changing climate. Furthermore, findings will provide useful 

indications of which forests will gain or lose suitable habitats for P. africana within 

EAM. This may provide an efficient starting point for biological surveys and 

consequently prioritizing conservation needs.  

 

1.3 Research Goal, Objectives, and Research Questions 

1.3.1  Research Goal 

The goal of this study was to assess effects of climate change on the potential 

geographical distribution of P. africana in the EAM forests of Tanzania.  

1.3.2 Research Objectives and Questions 

To help achieve the above goal, the study is divided into three specific objectives. 

Each of these objectives is further divided into research questions. 
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Objective i: To examine climatic variables important for predicting the potential 

geographical distribution of P. africana.  

i. Which of the selected climatic variables are important for predicting the 

potential geographical distribution of P. africana in the EAM forests 

ii. What is relative contributions of the climatic variables to predict 

the potential geographical distribution of P. africana in the EAM forests 

Objective ii: To assess the potential geographical distribution of P. africana 

based on current climatic conditions and projected climatic scenarios. 

i. What is the current potential geographical distribution of P. africana in the 

EAM forests under current climatic conditions 

ii. What is the potential geographic distribution of P. africana in the in the 

EAM forests under future climatic scenarios 

Objective iii: To estimate the geographical range shifts of P. africana under current 

climatic conditions, and following climate scenarios of different severity. 

i. How is the potential geographical distribution of P. africana in the EAM 

forests likely to change in the Mid-century (2055) and Late-century (2085) 

under RCP 4.5 and RCP 8.5 scenarios?  

ii. Will P. africana gain or loss its suitable habitats EAM in the Late-century 

(2085) under RCP 4.5 and RCP 8.5 scenarios in the EAM forests? 
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2.0 Methods 

2.1 Study Area Description 

2.1.1 Location 

The EAM are a chain of crystalline mountains near the Indian Ocean coast which run 

from the Taita Hills in South-East Kenya to the Udzungwa Mountains in South-

Central Tanzania (Lovett, 1993; Burgess et al., 2007). They are located approximately 

between latitudes 3o2’S and 8o51’S and longitudes 34o49’E and 38o20’E. The EAM 

range from sea level up to 2,635m in altitude. There are 12 blocks in EAM of 

Tanzania, namely: North Pare, South Pare, West Usambara, East Usambara, Nguu, 

Nguru, Uluguru, Ukaguru, Rubeho, Malundwe, Udzungwa, and Mahenge (see Figure 

1).  

 

Figure 1: Study area map showing the location and elevation of the EAM, and presence 

records of P.africana 
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2.1.2 Climate  

The EAM receive up to 500-2000 mm per year of rainfall, but in some mountain, 

blocks exceed 3000 mm per year (Mulligan, 2006). The area has wetter climate 

compared to surrounding lands. Windward slopes are wettest due to orographic 

rainfall and mist driven by Indian Ocean currents (Marchant et al., 2007) and 

support moist forests. Leeward slopes support open woodland rather than moist 

forest communities (Newmark, 1998). Uppermost montane plateaus are covered 

with grassland and heathland (Finch and Marchant, 2011). Mean annual 

temperatures in the study area range from 12.4-24.1 ˚C with a mean of 20.7 ˚C 

(Hijmans et al., 2005). The coolest months are June through August, when mean 

daily temperature drop below 5˚C at high altitudes while the warmest months are 

November through March, with mean daily maxima exceeding 34 ˚C on lower 

slopes (Platts, 2012).  

 

2.1.3 Topography and Soils 

The EAM are characterized by mountain blocks rising from the lowland 

topography and coastal plain of eastern Africa (Lovett & Wasser 1993). The 

highest elevation rises to 2,635 meters in Kimhandu peak in the Ulugurus. The 

forest can be divided into upper montane, montane and submontane forest with 

elevation ranges of 2635-1800 m, 1250-1800 m and 800-1250 m respectively 

(Pócs 1976). Upper montane forests are distinguished by large trees such as 

Cassipourea malosana, Prunus africana and Olea capensis and high rainfall. 

Submontane forests which overlap with montane forests are characterized by the 

presence of lowland species such as Afrosersalisia cerasifera, Milicia excelsa, and 

Parkia filicoidea (Lovett & Wasser 1993). The geology is composed of late Pre-

Cambrian metamorphic rocks with two main highland soil types, namely, the 

humid ferrisols in the drier areas and humic ferralitic soils in the more humid and 

wet areas (Hall, 1980).  The soils of  EAM are less rich when compared to those of 

the volcanic mountains (Lovett & Wasser 1993). The soils are hihgly leached due 

to heavy precipitation and have high water holding capacity (Munishi, et al., 2007). 

 

2.1.3 Biological importance 

The forests are biodiversity hotspots home to hundreds of species found nowhere 

else on earth and store vast amounts of carbon (Burgess et al., 2007). The EAMs 
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are nationally and internationally recognized as being of exceptional biodiversity 

value with high endemism in many taxa. The EAMs contain at least 800 endemic 

plant species accounting for more than 25 % of the plant species (Burgess et al., 

2007). The EAM forests of Tanzania have recently been proposed to be UNESCO 

World Heritage site. 

 

2.2 Study Species  

P. africana is a medium to large evergreen tree with a height of more than 

40 meters and a stem diameter of up to 1 meter (Gachie et al., 2012). P. 

africana long-lived (>100 years) monoecious tree species (Hall et al., 

2000). It is a highland forest tree, and grows in the humid and semi-humid 

highlands and humid midlands (Orwa et al., 2009). It occurs in sub-

Saharan Africa; in Tanzania, it naturally grows on the slopes of Eastern 

Arc Mountains. Its biophysical limits range from an altitude of 900-3400m, 

mean annual rainfall of 890-2600mm and mean annual temperature of 18-

26 °C (Orwa et al. 2009). P. africana is found in association with tree 

species such as Albizia gummifera, Cassipourea malosana, Celtis africana, 

Podocarpus falcatus and Hagenia abyssinica.  

 

 

It is a light demanding species, growing better in forest gaps (Orwa et al., 2009). For 

conservation purposes, P. africana is among threatened and vulnerable species 

(IUCN, 2018). According to Cunningham, (2005), the species is categorized as a 

species ‘of urgent concerns’ by CITES due to over-exploitation of the bark for 

treatment of benign prostatic hyperplasia. Since 1970, P. africana bark harvest has 

shifted from subsistence use to large-scale commercial use for international trade 

(Cunningham, 2005). Harvesting of bark is done locally by debarking using machette 

and sharp knives. This cause destruction of conduction tissue (phloem) that transport 

food from leaves to the roots. 

 

2.2 Data collection 

2.2.1 Species occurrence data 

Species occurrence data (Longitudes and Latitudes) for P. africana was obtained 

from TROPICOS database (http://www.tropicos.org) and National Forest 

Figure 2: Young trees of 

Prunus africana 

Source: Author 

http://www.tropicos.org/
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Resources Monitoring and Assessment (NAFORMA) database 

(http://www.tfs.go.tz). Data were obtained in the form of presence records only. 

The oldest presence record for the study species dates back to 1972. This falls 

within the temporal resolution of the climate data being used (1950-2000). A total 

of 120 presence records in longitude and latitude coordinates were obtained for P. 

africana. The presence records were projected from WGS 84 lat/long into WGS, 

Africa Albers, in ArcGIS 10.5. 

 

2.2.2 Environmental Variables 

2.2.2.1 Current and Future Climate Data 

Current and future climatic data were downloaded from KITE database 

(https://webfiles.york.ac.uk/KITE/AfriClim/ByCountry/Tanzania/). Current 

climate data were produced by spatial interpolation of monthly averages recorded 

at weather stations throughout the world for the 1950-2000 period (Hijmans, 

2005). These data were interpolated using thin-plate smoothing splines due to its 

accurate spatial interpolation results (Hutchinson, 1995).  

 

Future climate data used by this study were ensemble mean downscaled to the 

resolutions that suit ecological studies at local scales (up to 1 km) using 18 

pairwise combinations of 5 RCMs driven by 10 GCMs (Platts et al., 2015). The 

ensemble were projected under two IPCC-AR5 representative concentration 

pathways, RCP4.5 and RCP8.5, which project global temperature anomalies of 

2.4°C and 4.9°C above pre-industrial levels by 2100 (Rogelj et al., 2012), with 

atmospheric CO2 equivalents of 650 and 1370 ppm by 2100, respectively (Moss et 

al., 2010). RCP8.5 depict a relatively conservative business as usual case with low 

income, high population and high energy demand due to only modest 

improvements in energy intensity (Riahi, et al., 2011). RCP4.5 scenario is 

comparable to a number of climate policy scenarios and several low-emissions 

reference scenarios (Van Vuuren et al., 2011). The emphasis is on clean and 

resource-efficient technologies, leading to a reduced warming trend (IPCC, 2007).  

 

Both current and scenario climate data were downloaded with a spatial resolution 

of 30 arc-seconds (~1km). The dataset covers the period between 1950-2000 for 

current climate and Mid-century 2041-2070 (2055) and Late-century 2071-2100 

https://webfiles.york.ac.uk/KITE/AfriClim/ByCountry/Tanzania/
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(2085) time periods for future climate to represent two possible futures in terms of 

global emissions (RCP8.5) and mitigation (RCP4.5). Eleven (11) temperature and 

rainfall variables were derived by this study from these data set for both current 

and future conditions (Table 1). All data layers were projected from WGS 84 

lat/long into WGS, Albers equal-area projection that defines each pixel (cell) to be 

a similar area for species contraction and expansion area calculations.  

 

2.2.2.2 Topographical data  

Digital Elevation Model (DEM) data was downloaded from Shuttle Radar 

Topography Mission (SRTM) database (http://srtm.csi.cgiar.org) in tiles. A total of 

9 tiles were downloaded for Tanzania. The tiles were then combined into a mosaic 

layer in ArcGIS 10.5. Aspect and slope in degrees were calculated using spatial 

analyst tool in ArcGIS 10.5. Aspect was then converted into Northness and 

Eastness to produce two layers using equation 1 and 2 developed by Deng et al 

(2007). 

 

Northness = cos (aspect).............................................................eq (1) 

Eastness = sin (aspect).................................................................eq (2) 

 

Cosine and sine transformation of aspect were used to obtain a continuous 

gradient, stressing the north-south or east-west gradient (northness or eastness). 

This conversion gives a value of -1 and 1 for northness and eastness respectively. 

These values represent the extent to which slope faces north (1), south (-1), east 

(1), or west (-1). Northness and eastness have been found to be more convenient 

for comparison with the topographic attributes (Deng et al., 2007) rather than 

circular linear correlation initially calculated as circular degrees clockwise from 0 

to 360, which is difficult to compare because 0 and 360 imply the same aspect. 

 

2.2.2.3 Soil data 

Soil data was downloaded from the International Soil Reference and Information 

Centre (ISRIC) database (https://www.isric.online/). Africa Soil Grids dataset 

contains layers of soil properties for the whole African continent at 250 m spatial 

resolution at various soil depths produced by ISRIC - World Soil Information. The 

http://srtm.csi.cgiar.org/
https://www.isric.online/
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predictions are obtained using an automated mapping framework (3D regression-

kriging based on random forests). Four (4) soil properties were derived from this 

dataset (Table 1). Soil layers were then projected into the working projection and 

masked to EAMs which is the study area. Layers were then resampled into a 

1000m resolution to match the spatial resolution of the climate and topographical 

variables. 

 

Table 1: Description of environmental variables used in modelling the potential 

distribution of P. africana  
Category Original 

Resolution 

Resample  

Resolution 

Source 

Climatic    

[bio1]  Mean annual temperature 925m 1000m WorldClim data 

[bio5] Max temp warmest month 925m 1000m WorldClim data 

[bio6] Max temp coolest  month 925m 1000m WorldClim data 

[bio7] Annual temperature range 925m 1000m WorldClim data 

[bio10] Mean temp warmest quarter 925m 1000m WorldClim data 

[bio11] Mean temp coolest quarter 925m 1000m WorldClim data 

[bio12] Mean  annual rainfall 925m 1000m WorldClim data 

[bio13] Rainfall of wettest month 925m 1000m WorldClim data 

[bio14] Rainfall driest month 925m 1000m WorldClim data 

[pet] Potential evapotranspiration 925m 1000m WorldClim data 

[mi]      Annual moisture index 925m 1000m WorldClim data 

Topographic    

[el] Elevation 925m 1000m SRTM 

[sl] Slope 925m 1000m SRTM 

[nr] Aspect (Northness) 925m 1000m SRTM 

(es) Aspect (Eastness) 925m 1000m SRTM 

Soil    

[scec] Soil cation exchange capacity 250m 1000m ISRIC 

[sawc] Soil available water capacity 250m 1000m ISRIC 

[soc] Soil organic carbon 250m 1000m ISRIC 

[sph] Soil pH 250m 1000m ISRIC 
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2.3 Modelling and Analysis 

2.3.1 Modelling with Maximum Entropy (MaxEnt) 

MaxEnt software version 3.3.3k was used to model the potential geographical 

distribution of P. africana. The software is available for download at 

https://biodiversityinformatics.amnh.org/open_source/maxent/. MaxEnt may be run 

both from a graphical user interface (GUI) and the command line. This study used 

GUI as it is relatively straight forward (Philips et al., 2006). MaxEnt is a general-

purpose machine learning method with a precise mathematical formulation (Phillips 

et al., 2006). The idea of MaxEnt is “to estimate (approximate) unknown probability 

distribution of a species” based on maximum entropy (Phillips et al., 2006). 

Generally, the maximum entropy principle suggests that the best approach to 

approximating unknown probability distribution is to maximize entropy, subject to 

constraints (in this case, environmental data associated with species presences) 

representing incomplete information (Jaynes, 1957). The technique first constrains the 

modelled distribution to match certain features (environmental layers) of empirical 

data (training data) and choosing the probability condition that satisfies these 

constraints being as uniform as possible (Negga, 2007). Basically, if a pixel in the 

study has similar distribution as of the training data, then higher values are assigned 

and accordingly pixels with different distribution are assigned lower values. The 

result of Maxent shows a map where every grid has a value of 0-1 if the result output 

format is selected as logistic; this represents the estimate of probability 

distribution/habitat suitability for a species (Singh, 2013).  

 

Maxent takes as input a set of layers or environmental variables (such as elevation, 

precipitation, etc.), as well as a set of geo-referenced occurrence locations (presence 

point locations/presence-only species records), and produces a model of the range of 

the given species. It is a powerful tool applicable in exploring ecological relationships 

with fine scale, raster (gridded) environmental data using spatial information on 

species occurrence in relation to environmental data to estimate potential (suitable) 

habitat for species. It is a promising method for modelling species potential 

distribution and has proven to perform well in comparison with alternative approaches 

(Elith et al., 2006). MaxEnt has been chosen for this study because it uses presence-

only data and has the ability to project from current environmental conditions onto 

future or past conditions (Philips et al., 2006).  

https://biodiversityinformatics.amnh.org/open_source/maxent/
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MaxEnt algorithm was run with default parameters (convergence threshold = 10-5, 

regularization multiplier = 1, the maximum number of background points = 10000); 

these default settings have been shown to achieve good performance (Phillips & 

Dudík, 2008). Maximum iteration value was set to 5000 (to give the model adequate 

time for convergence). Replicates was set to 15 in MaxEnt to allow a model to run 

multiple times for the evaluation to have sufficient statistical power to give significant 

results, and then conveniently averages the results from all models created (Phillips et 

al., 2008).  MaxEnt jackknife test was used to examine the importance of each 

variable (Phillips et al., 2006). The jackknife test shows which environmental 

variables have the highest gain when used in isolation. The one with the higher 

appears to have the most useful information by itself. Also jackknife test shows the 

environmental variables that decrease the gain most when it is omitted, such variables 

appears to have the most information that is not present in the other variables (Phillips 

et al., 2006). 

 

MaxEnt offers many advantages and a few drawbacks. Taken from Phillips et al. 

(2006), the advantages include the following: 1) requires only presence data, not 

presence/absence data, 2) can use both continuous and categorical variables, 3) the 

optimization is efficient, 4) has a concise probabilistic definition, 5) it avoids over-

fitting through l-regularization, 6) can address sampling bias formally, 7) output is 

continuous (not just yes/no), and 8) is generative rather than discriminative which 

makes it better for small sample sizes. Some drawbacks of the method are: 1) it has 

fewer methods for estimating the amount of error in prediction, 2) It uses a 

exponential model for probabilities which is not inherently bounded above and can 

give very large predicted values for environmental conditions outside the range 

present in the study area, and 3) it has possibility of over-fitting, limiting the capacity 

of the model to generalize well to independent data. 

 

2.3.2 Autocorrelation Test 

Before running, MaxEnt environmental data was tested for autocorrelations using 

SDM tool in ArcGIS 10.5 to find out which climatic variables to use. It is widely 

known that many climate variables are highly correlated variables (Brown, 2014) and 
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may bias selection of variables to use (Cohen et al., 2003). Hence, among the two 

variables that have a high correlation coefficient (|r|>0.7), as proposed by Dormann et 

al., (2013), only one variable was selected for modelling due to its ecological 

importance for P. africana (Table 2). This is because a strong correlation between 

these variables would introduce a bias in the model (Dormann et al., 2013).  The 

variables removed were mean diurnal range in temperature (bio2), isothermality 

(bio3), Temperature seasonality (bio4), rainfall seasonality (bio15), rainfall wettest 

quarter (bio16), and rainfall driest quarter (bio17) (Table 2). 

 



            Table 2: Correlation test results for variables used for the potential distribution of P. africana. 

 

bio1 bio5 bio6 Bio7 bio10 bio11 bio12 bio13 bio14 pet mi alt slp nor es sco ph sawc scec bio2 bio3 bio4 bio15 bio16 bio17 

bio1 1 

                        
bio5 0.65 1 

                       
bio6 0.67 0.60 1 

                      
bio7 -0.26 -0.05 -0.47 1 

                     
bio10 0.66 0.66 0.67 -0.28 1 

                    
bio11 0.65 0.67 0.66 -0.23 0.69 1 

                   
bio12 0.19 -0.02 0.32 -0.68 0.21 0.15 1 

                  
bio13 0.17 -0.05 0.29 -0.67 0.18 0.13 0.68 1 

                 
bio14 0.20 0.19 0.30 -0.30 0.25 0.18 0.31 0.23 1 

                
pet 0.61 0.65 0.42 0.58 0.59 0.63 -0.48 -0.53 0.01 1 

               
mi 0.04 -0.17 0.19 -0.60 0.06 0.00 0.68 0.67 0.26 -0.63 1 

              
alt -0.65 -0.61 -0.65 0.34 -0.66 -0.64 -0.26 -0.21 -0.35 -0.53 -0.12 1 

             
slp 0.05 0.05 0.08 -0.08 0.06 0.06 0.03 -0.01 0.17 0.05 0.02 -0.10 1 

            
nor -0.01 -0.01 -0.01 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.01 0.01 1 

           
es 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.01 1 

          
sco -0.29 -0.37 -0.22 -0.27 -0.28 -0.31 0.39 0.34 0.23 -0.39 0.43 0.21 0.35 0.00 0.00 1 

         
ph 0.40 0.51 0.28 0.41 0.38 0.41 -0.51 -0.50 -0.05 0.66 -0.58 -0.35 0.04 -0.01 0.00 -0.46 1 

        
sawc -0.40 -0.42 -0.36 -0.03 -0.40 -0.40 0.08 0.07 -0.16 -0.33 0.15 0.36 0.27 0.00 0.00 0.48 -0.26 1 

       
scec -0.02 -0.02 -0.01 -0.01 -0.01 -0.03 0.10 0.05 0.18 0.04 0.09 -0.02 0.35 0.00 0.00 0.54 0.05 0.21 1 

      
bio2 -0.82 0.80 -0.72 0.97 -0.73 -0.77 -0.77 -0.79 -0.85 0.74 -0.81 0.28 -0.02 0.00 0.01 -0.22 0.43 -0.03 0.05 1 

     
bio3 -0.82 0.97 -0.86 0.88 -0.78 -0.73 -0.72 -0.76 -0.76 0.79 -0.78 0.23 0.04 0.00 0.01 -0.14 0.41 -0.02 0.11 0.96 1 

    
bio4 0.98 0.97 0.84 -0.80 0.85 0.72 0.72 0.85 0.97 0.80 0.77 -0.39 0.07 0.00 0.00 0.13 -0.04 -0.11 0.15 -0.31 -0.30 1 

   
bio15 0.74 -0.76 0.76 -0.72 0.74 0.82 0.89 0.93 -0.76 -0.81 0.91 -0.04 -0.10 0.00 -0.01 0.26 -0.56 0.12 -0.06 -0.75 -0.76 0.11 1 

  
bio16 0.79 -0.72 0.73 -0.77 0.80 0.86 0.95 0.98 0.87 -1.00 0.97 -0.14 -0.06 0.00 -0.01 0.31 -0.56 0.08 -0.02 -0.80 -0.79 0.25 0.97 1 

 
bio17 0.80 0.88 0.80 -0.73 0.75 0.88 0.84 0.76 0.99 -0.77 0.80 -0.35 0.18 -0.01 0.00 0.26 -0.08 -0.14 0.20 -0.27 -0.17 0.58 -0.03 0.19 1 

Note: The variables with bold correlation values are the ones removed before modelling 
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2.3.3 Current Distribution Modelling 

To predict the current distribution of the P. africana with MaxEnt, all environmental 

layers are required to be in the same projection, extent and resolution and need to be 

converted into ASCII format (Phillips et al., 2006). Using boundary layer of the study 

area, in this case, EAM, the environmental layers were modified to be in the same 

extent (geographic bound and cell size) using ArcGIS 10.5. The occurrence records 

were prepared in Excel and saved as comma-separated value (.csv).  

 

Species present records from TROPICOS database were randomly divided into 

training and test data. Then models were created using 75% of the presence records 

for training the model and 25% for model testing. Hence, for P. africana, with a total 

of 120 presence  records, 89 presence records were set aside for training the model, 

while the remaining 29 were used for testing (Table 3). But, not all the training and 

test data had corresponding environmental variables in the study area. The presence 

records without ecological variables were afterwards removed before simulating. 

Model performance is known to rapidly decrease for sample sizes smaller than 20 

(Stockwell and Peterson 2002) or 15 (Papeş and Gaubert 2007), and is dramatically 

poor for samples sizes smaller than 5 records (Pearson et al. 2007). So a sample size 

of 120 is sufficient because high model accuracy was observed when modelling 

distribution of P. africana. 

 

Table 3: Training and test data used in the modelling for the potential distribution of P. 

africana  

Species Total presence records Training records Test records Number of 

records removed 

P. africana 120 89 29 2 

 

2.3.4 Future Prediction Modelling 

To investigate how future climate change may influence the potential distribution of 

the P. africana. Projected climate models for Mid-century 2041–2070 (2055) and 

Late-century 2071–2100 (2085) under RCP4.5 scenarios (a medium-low GHG 

emission pathway) and RCP8.5 scenarios (a high GHG emission pathway) were used. 

Changes in suitability conditions were then reclassified into 4 classes (Table 4). The 

10 percentile training presence threshold of 0.27 (a minimum value for suitable 

habitat) was used as a cutoff value to define suitable habitat and unsuitable habitat for 
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P. africana. The 10 percentile training presence uses the suitability threshold 

associated with the presence record that occurs at the 10th percentile of presence 

records (i.e. the suitability of the presence record below which 10% of presence 

records' suitability fall (Pearson et al., 2004). The binary map for future prediction 

was given a value of 2 for suitable and 0 for unsuitable. The current conditions were 

reclassified into 1 and 0 values for suitable and unsuitable respectively. The current 

binary maps were then subtracted from the future maps to identify the effect of 

climate change in species range (contraction or expansion). 

 

Table 4: Description for current and future classes for the change in species range 

Class Current suitability Future suitability 

-1 Suitable Not suitable 

0 Not suitable Not suitable 

1 Suitable Suitable 

2 Not suitable Suitable 

 

2.3.5 Model Calibration and Evaluation 

From randomly partitioned data, the study selected 75% of presence records to train 

the model and 25% of presence records to test the model. For studies with few 

presence records like this Philips (2008) recommends to 75% by 25% partition to 

attain excellent prediction. This setting allows withholding a certain percentage of the 

presence data to be used to evaluate the model’s performance at the same time 

avoiding bias due to inflated measure.  

 

Statistical evaluation of the models was based on threshold-independent measure of 

Area Under the curve (AUC) of Receiver Operating Characteristic (ROC) parts of 

MaxEnt (Phillips et al., 2006). For presence-only modelling, the ROC curve is a plot 

of sensitivity (proportion of correctly predicted presences) against the fractional area 

predicted present. (Fielding & Bell, 1997). The resulting area under the ROC curve 

provides a single measure of overall model accuracy, which is independent on a 

particular threshold. The AUC metric (value ranges between 0 and 1.0) provides an 

assessment of how accurately the model predicts the suitable habitats for a species 

within a given area (Phillips et al. 2006; Phillips & Dudík 2008). Models with AUC 
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values greater than 0.75 have good discrimination ability in accurately identifying the 

potential distribution of a species (Elith et al., 2011). In this study, an AUC 

approximating 1 would mean optimal discrimination of suitable versus unsuitable 

sites, whereas an AUC between 0 and 0.5 is indicative of predictions no better than 

random. 

 

2.3.6 Jackknife Test of Variable Importance and Response curves 

To measure which variables are most important in the model, a jackknife test part of 

MaxEnt was used to determine how each variable influences the presence of the 

modelled species. Jackknife test excludes one variable at a time when running the 

model to provide information on the performance of each variable in the model 

regarding how important each variable is at explaining the species distribution and 

how much unique information each variable provides (Yost, et al., 2008; Philips, 

2012). Principal component analysis is another statistical approach that could have 

been used serve for the same purpose but a jackknife is a default test to MaxEnt. To 

show how each environmental variable affects the prediction the response curves part 

of MaxEnt was used. The curves show how the logistic prediction changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value (Philips, 2006) 

 

2.3.7 Limitation of MaxEnt Modelling 

MaxEnt Modelling has the possibility of overfitting (model begins to describe the 

random error in the data rather than the relationships between variables), limiting the 

capacity of the model to generalize well to independent data. To address this 

limitation, MaxEnt has the ‘regularization multiplier’ parameter which can limit the 

complexity of the model and generating a less localized prediction (Phillips and 

Dudík, 2008).  
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3.0 Results 

3.1 Important Variables for Predicting Geographical Distribution of P. africana 

3.1.1 Model Performance 

Model for P. africana performed better than random, with average test AUC values 

greater than 0.5. The average training AUC values for P. africana were 0.97. An 

AUC value of >0.9 indicates high performance.  Moreover, P-values calculated on 

both average Training AUC and average Test AUC for the model found to be 

significantly better than a random model (p<0.05). Hence, from the test statistics 

produced against a null model of 0.5, it can be concluded that it is possible to predict 

the potential geographical distribution of P. africana using environmental variables 

and achieve both test and training AUC that are significantly better than a random 

model.  

 

Table 5: Results of threshold independent evaluation and p-values for the potential 

distribution of P. africana from average of 15 replicate runs  

Species Training AUC Test AUC 

AUC Standard 

Deviation 

P-Values of 

average AUC 

P. africana  0.97 0.95 0.025 0.00003 

3.1.2 Analysis of Variable Contributions 

The contribution of predictor variables to current distribution of P. africana in EAM 

forests shown in Table 6. The current species distribution was affected by maximum 

temperature warmest month, rainfall driest month and annual moisture index. This 

make up most important predictor climatic variables. Mean temperature warmest 

month had highest predictive contribution (27.2%) than other variables followed by 

elevation (11.4%), rainfall driest month (11.3), northness (7%) and soil organic 

carbon (6.5%) (Table 6).  Variables recorded to have lowest predictive contribution 

include: soil cation exchange capacity (0.7), annual temperature range (0.5), Slope 

(0.4%), soil available water capacity (0.2%), minimum temperature coolest month 

(0.1%) and mean temperature warmest quarter (0.1%) (Table 6).  
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Table 6: Contributions variable in the potential distribution of P. africcana from 

average of 15 replicate runs 

Variables Abbreviation Percent contribution (%) 

Maximum temperature warmest month bio5 27.2 

Elevation elv 11.4 

Rainfall driest month bio14 11.3 

Annual moisture index mi 10.1 

Northness (north-south gradient) nor 7.0 

Soil organic carbon soc 6.5 

Soil pH ph 5.6 

Mean annual rainfall bio12 4.1 

Rainfall wettest month bio13 4.1 

Eastness (east-west gradient) es 2.9 

Mean temperature coolest quarter bio11 2.8 

Potential evapotranspiration pet 2.8 

Mean annual temperature bio1 2.3 

Soil cation exchange capacity scec 0.7 

Annual temperature range bio7 0.5 

Slope slp 0.4 

Soil available water capacity sawc 0.2 

Minimum temperature coolest month bio6 0.1 

Mean temperature warmest quarter bio10 0.1 

 

3.1.3 Jackknife Test of Variable Importance for P. africana  

The environmental variable with the highest gain, when used in isolation, is 

maximum temperature coolest quarter (bio11) for P. africana (Figure 3). This appears 

to have the most useful information by itself. Other variables found to have a high 

gain when used in isolation are mean temperature warmest month (bio5), mean 

temperature warmest quarter (bio10), mean annual temperature (bio1) and elevation 

(elv). The high gain means that these variables are good predictors of where the P. 

africana can survive. Similarly, maximum temperature warmest month (bio5) and 

altitude (alt) contributed 27.2% and 11.4% respectively to the MaxEnt model for P. 

africana. Northness (nor) highly decreases the gain when it is omitted, and therefore 

appears to have the most information that is not present in the other variables. Other 

variables that highly decrease the gain when omitted are rainfall wettest month 

(bio13), rainfall driest month (bio14), eastness (es) and soil organic carbon (soc).  



23 

 

 
Figure 3: Jackknife test showing important variables for the potential distribution of P. 

africcana from average of 15 replicate runs 

 

3.1.4 Response curves of P. africana  

Figure 4 below show how the predictions depend on the variables. For P. africana as 

altitude (alt), soil cation exchange capacity (scec), soil organic carbon (soc), soil 

available water capacity (sawc) and slope (sl) increase the probability of its presence 

(habitat suitability) increases. While on the other hand, as mean annual temperature 

(bio1), maximum temperature warmest month (bio5), mean temperature warmest 

quarter (bio10), mean temperature coolest quarter (bio11), soil pH (ph) increases 

habitat suitability for P. africana decreases. However, there was a sharp decline in 

occurrence of P. africana with increasing rainfall wettest month (bio13), Mean annual 

rainfall (bio12) and annual moisture index (mi). Only potential evapotranspiration 

(pet) seem to decrease with habitat suitability of P. africana but at some points habitat 

suitability starts to increase again.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Response curves show how habitat suitability (y-axis) of P. africana changes as each environmental variable (x-axis) is varied. Red 

indicates the average response of the 15 replicate MaxEnt runs and blue the mean +/- one standard deviation
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3.2. Current and Future Geographical Distribution   

Figure 5 and 6 show map of the potential distribution of P. africana. Current suitable 

habitats for P. africana in EAM forests were predicted across all forests. Current 

distribution maps clearly depict areas with high elevations as having very high 

potential habitat suitability values. Also, areas with high mean annual rainfall, rainfall 

driest month, rainfall driest quarter, annual moisture index and soil organic carbon 

have potential habitat suitability values. Generally, P. africana seem to avoid lower 

altitudes and higher temperature with high suitability areas found in peaks of EAM 

forests. This implies that P. africana have a narrow range of potential suitable habitats 

in the study area.  

 

Visual observation indicates that potential distribution of P. africana will change 

much in the future. There seems to be a decrease of potential suitability areas for P. 

africana for all future climate change scenarios. Future predictions were based on 

RCP 4.5 (focusing mainly on environmental sustainability and hence low-temperature 

predictions) and RCP 8.5 (more economic focus and thus high-temperature 

predictions).  

 

 

 

 



 

Figure 5: Current and future potential suitability maps showing distribution of P. africana in the EAM forests for Mid-century under RCP 4.5 and 

RCP 8.5 scenarios 

Predicted current conditions Predicted future conditions 2055 RCP 4.5 Predicted future conditions 2055 RCP 8.5 
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Figure 6: Current and future potential suitability maps showing distribution of P. africana in the EAM forests for Late-century under RCP 4.5 and 

RCP 8.5 scenarios 

Predicted current conditions Predicted future conditions 2085 RCP 4.5 Predicted future conditions 2085 RCP 8.5 
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3.3 Potential Areas of Range Expansion or Contraction  

Range expansion and contraction maps in Figure 7 and 8 clearly depict a gain and loss 

in range for P. africana under climate change scenarios. However, there is a 

substantial loss in range than actual gain in all climatic scenarios (Table 7 and 8). This 

shows that most of the areas currently predicted as suitable will not be suitable in the 

future in all EAM forests. RCP 8.5 scenario records larger loss in range for P. 

Africana compared to RCP 4.5 for both Mid-century 2041-2070 (2055) and Late-

century 2071-2100 (2085). Among the EAM forests Udzungwa, Rubeho, West 

Usambara, Ukagaru, Uluguru, East Usambara, and South Pare forests will lose much 

more suitable habitats for P. africana compared to other forests under all climate 

change scenarios. Generally, a loss in range can be observed in the higher altitudes for 

P. africana while a gain in range is smaller to follow any clear pattern for all climatic 

scenarios.  

 

On the other hand, future predictions showed that P. africana has high possibilities to 

gain new habitats only at Ukaguru for RCP 4.5 and 8.5 scenarios in the Mid-century 

(Table 6) while in the Late-century P. africana has high possibilities to gain new 

habitats in Ukaguru and Uluguru forests under the same climatic scenarios (Table 8). 

For instance, in Ukaguru a gain in range can be observed towards moderate elevation 

in areas with moderate temperature for both Mid-century and Late-century under RCP 

4.5 and RCP 8.5 scenarios (Figure 9). In Uluguru forest a gain in range can be 

observed towards low elevation in the eastern areas with low temperature for Late-

century under RCP 8.5 scenario only (Figure 9). Also a substantial loss in range for 

both Ukaguru and Uluguru can be observed towards higher elevation in the areas with 

low temperature for both Mid-century and Late-century under all climatic scenarios 

(Figure 9 and 10).  Therefore, P. africana has significant possibilities to lose current 

habitats than to gaining new habitats in all climatic scenarios (Table 7 and 8).  

 

 

 



Table 7: Potential areas (Km2) of range expansion or contraction of P. africana in the EAMs for Mid-century under RCP 4.5 and RCP 8.5 scenarios 

            Current 2018                           2055 RCP4.5                         2055 RCP8.5  

Name Unsuitable Suitable Unsuitable Suitable Gain Loss Unsuitable Suitable Gain Loss 

North Pare 407 95 399 58 0 45 399 48 0 55 

South Pare 1924 306 1932 167 0 131 1932 126 0 172 

West Usambara 2085 1076 2079 697 18 367 2095 348 2 716 

East Usambara 1021 169 1009 17 0 164 1009 8 0 173 

Nguu 1458 0 1458 0 0 0 1458 0 0 0 

Nguru 2365 121 2360 74 1 51 2355 57 6 68 

Ukaguru 2938 455 2796 190 136 271 2744 162 188 299 

Uluguru 2742 439 2740 272 0 169 2740 223 0 218 

Malundwe 18 1 18 0 0 1 18 0 0 1 

Rubeho 7504 906 7523 21 15 851 7526 1 12 871 

Udzungwa 20569 4552 20631 1029 7 3454 20638 517 0 3966 

Mahenge 2751 17 2751 0 0 17 2751 0 0 17 

TOTAL 45782 8137 45696 2525 177 5521 45665 1490 208 6556 
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Table 8: Potential areas (Km2) of range expansion or contraction of P. africana in the EAMs for Late-century under RCP 4.5 and RCP 8.5 scenarios 

            Current 2018                           2085 RCP4.5                         2085 RCP8.5  

Name Unsuitable Suitable Unsuitable Suitable Gain Loss Unsuitable Suitable Gain Loss 

North Pare 407 95 399 51 0 52 399 28 0 75 

South Pare 1924 306 1932 150 0 148 1932 45 0 253 

West Usambara 2085 1076 2090 636 7 428 2097 226 0 838 

East Usambara 1021 169 1009 13 0 168 1009 1 0 180 

Nguu 1458 0 1458 0 0 0 1457 0 1 0 

Nguru 2365 121 2356 66 5 59 2331 40 30 85 

Ukaguru 2938 455 2825 171 107 290 2799 84 133 377 

Uluguru 2742 439 2740 258 0 183 2579 147 161 294 

Malundwe 18 1 18 0 0 1 18 0 0 1 

Rubeho 7504 906 7521 8 17 864 7531 0 7 872 

Udzungwa 20569 4552 20636 719 2 3764 20638 25 0 4458 

Mahenge 2751 17 2751 0 0 17 2751 0 0 17 

TOTAL 45782 8137 45735 2072 138 5974 45541 596 332 7450 
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Figure 7: Maps showing change in potential distribution of P. africana EAM for Mid-century under RCP 4.5 and RCP 8.5 scenarios 

Expansion and contraction 2055 RCP 4.5 Expansion and contraction 2055 RCP 8.5 
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Figure 8: Maps showing change in potential distribution of P. africana EAM for Late-century under RCP 4.5 and RCP 8.5 scenarios 

Expansion and contraction 2085 RCP 4.5 Expansion and contraction 2085 RCP 8.5 
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Figure 9: Maps showing zoom out of loss and gain to Uluguru and Ukaguru against the 

top predictor variables (maximum temperature warmest month and elevation) for Mid-

century under RCP 4.5 and RCP 8.5 scenarios 
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Figure 10: Maps showing zoom out of loss and gain to Uluguru and Ukaguru against the 

top predictor variables (maximum temperature warmest month and elevation) for Late-

century under RCP 4.5 and RCP 8.5 scenarios 

 

 

 

 

 

 

 



35 

 

4.0 Discussion 

4.1 Inference from Model Evaluation 

Models for P. africana performed better than random, with average test AUC values 

of 0.97. This AUC values indicates that the models for P. africana performed optimal 

discrimination of suitable versus unsuitable habitats. AUC is a measure of model 

performance and varies from 0 to 1 (Fielding and Bell, 1997). An AUC value of 0.50 

indicates that model did not perform better than random whereas a value of 1.0 

indicates perfect discrimination (Swets, 1988).  According to Philips et al. (2006), a 

perfect model should contain a set of environmental variables that sufficiently 

describes all parameters of the fundamental niche relevant to its distribution at the 

spatial scale of the model. 

 

4.2 Potential distribution of P. africana 

Distribution of plants is generally influenced by their physiological tolerance to 

climatic factors (Woodward, 1992). Modelling results indicate that climate-related 

variables have a significant contribution to the distribution of P. africana. From 

Jackknife test it can be observed that the climatic variables appear to have the most 

useful information to predict the potential distribution of P. africana followed by 

topographic and soil variables (Figure 3).  The maximum temperature of warmest 

month showed highest predictive contribution and useful information to predict 

current and future potential distribution of P. africana in the EAM forests. Elsewhere, 

higher temperatures are reported to induce shifts in plant species towards altitudinal 

gradients and cause change in species composition (Telwala et al., 2013). Platts 

(2012) and Chitiki (2014) revealed that climatic variables mainly temperature has 

significant contribution to the distribution of tree species in the EAMs. Therefore, it 

can be concluded that in EAM forests climatic variables are important in defining 

current and future distribution of P. africana apart from topographical and soil 

variables only.  

 

 Climate is an important determinant of tree species distribution, but its effects are 

mediated through soils, and topographic features (Lo et al., 2010). Climate, 

topography and soils as environmental predictors can exert direct or indirect effects 

on species along a gradient. They can act as limiting factors, by controlling species 

eco-physiology (e.g. temperature, water, soil composition) (Boisvenue and Running, 
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2006). Temperature changes have a direct influence on the processes that determine 

local weather, chiefly precipitation, wind and the frequency and/or intensity of 

extreme weather events (IPCC, 2007). Moreover, at the continental scale, climate 

plays a major role in determining plant distribution, while at local and regional scales 

vegetation patterns are more strongly related to edaphic and topographic factors 

(Lafleur et al., 2010). Hence, single or combined results of climatic changes will drive 

changes in forest ecosystem resources, site conditions, disturbances, and individual 

trees (Williamson et al., 2009). 

 

4.3 Climate Change Effects on P. africana 

The study found that the projected distribution of P. africana under climate scenarios 

showed considerable effects. Results revealed that there could be some range 

expansion and contraction under different climate scenarios. In all scenarios there will 

be a larger range reduction than a range increase indicating decline of suitable habitats 

for P. africana (Table 7 and 8). A gain in range can be observed in the higher 

altitudes which suggest a shift toward higher altitudes for P. africana and thus, 

confirm findings from other studies which suggest an altitudinal movement of species 

under climate change (Araujo et al., 2006 and Girardello et al., 2009). Furthermore, it 

is known that species will move poleward with changes in climate (Araujo et al., 2006 

and Girardello et al., 2009) but extent of change for study species does not follow 

northward movement of species under climate change suggesting that the study area 

is small to notice such movement. Elsewhere, northward shift of species’ suitable 

habitats resulting from warming climates has also been observed for freshwater 

organisms (Hickling et al., 2005), as well as terrestrial organisms (Hickling et al., 

2006; Chen et al., 2011). 

 

Moreover, with warming trends, plant species are anticipated to track the changing 

climate and shift their distributions to the extent that resource availability and suitable 

conditions allow (Berry et al., 2002). Hence, warm-adapted and generalist species, 

which have a high dispersal ability (Hering et al., 2009), are forecasted to gradually 

replace cold-adapted species, which in turns are at risk of losing their suitable habitats 

(Jacobsen et al., 2012), and eventually suffer from a loss of regional genetic diversity 

(Pauls et al., 2013). Climate change is one of the most significant challenges to 

biodiversity and affects all organisms (Bellard et al., 2012). Changes have already 
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been observed in different regions around the world, including geographical range 

reduction of the Namib Desert tree Aloe (Foden et al., 2007), habitat reduction of 

some trees of Eastern arc mountains (Philips, 2012) and Mediterranean habitat (e.g 

boreal tree species (Castro et al., 2004), and impacts to plant diversity in Europe 

(Thuiller et al., 2005). 

 

4.4 Management implications 

Results of this study revealed that climate change is expected to have a great 

impact on the distribution of P. africana around the EAM forests. In-situ long-term 

monitoring trends of the distribution, including recruitment and regeneration, should 

be sought. Institutions responsible for research in the country and public universities 

can take an interest in long-term monitoring of this species. In the future, it is likely 

suitable habitats for P. africana will be altered and lost enormously due to climate 

change. It is, therefore, crucial to supplement in-situ conservation actions with ex-situ 

interventions such as establish gene banks, botanical gardens and captive breeding to 

enhance the survival of P. africana. This raises a need to collect genetic materials 

especially in areas where there is threat of extinction. These can be stored in the gene 

banks for preservation, and future use as need be. In areas where species grow but 

occur outside protected areas; efforts should be elevated to promote tree retention on 

farms, or advocate further planting. The economic value of the tree should be 

promoted to encourage ex-situ conservation. Promotion of the tree planting and 

retention adjacent to protected areas will ensure conservation in the forest-farmland 

interface, to allow flow and exchange of genetic material (Dawson et al., 2017). 

 

4.5 Limitations of the study 

 The study relied only on observed presence records which are easy to acquire 

to predict the potential distribution of P. africana, recognizing that absence 

data are rarely available or reliable. However, absence data were replaced with 

background data, which are a random sample of the available environment in 

MaxEnt modelling. 

 Selection of environmental or climatic variables to be included in the species 

distribution modelling can potentially introduce bias. To minimize such bias 



38 

 

only variables with low correlation and ecological importance for P. africana 

were only included in the model. 

 Quality and resolution of the climate data as well as interpolation techniques  

from point data to raster grids can be sources of error when modelling of the 

spatial distribution of species. To minimize such error climate data with 

resolutions that fit ecological studies at local scales (up to 1 km) were acquired 

and used for this study. These climate data (ensemble mean), downscaled 

using 18 pairwise combinations of 5 RCMs driven by 10 GCMs. 
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5.0 Conclusion and Recommendations 

5.1 Conclusion 

When considering the results generated from species distribution modelling climatic, 

topographic and edaphic factors are important predictors in predicting species 

distribution. Climatic variables showed high effects on the potential geographical 

distribution of P. africana in the EAM followed by topographic derivatives and soils 

soil factors. Moreover, projected future distributions of P. africana show that there 

will be more contraction of suitable habitats than expansion under all climatic 

scenarios in the EAM.  For instance, Udzungwa, West Usambara, Uluguru, Ukagaru 

and South Pare Forests will lose much more suitable habitats for P. africana than 

gaining.  P. africana has high possibilities to gain new habitat within Uluguru, West 

Usambara, Ukaguru, Nguru and Rubeho Forests when compared to other forests 

Generally, plants from moderate altitude and climate (e.g. P.africana) will suffer 

more habitat loss from climate change compared to others (Khanum, et al., 2013). 

Conservation action is, therefore needed  to conserve this species. 

 

5.2 Recommendation 

This study recommends the following: 

 From the study findings, it is observed that the current and future potential 

distribution of P. africana in the EAMs to a large extent is influenced by 

climatic variables. Therefore it is advised that there should be on-going field 

monitoring of P. africana. This can be an effective tool in tree species 

restoration and conservation planning. 

 Since different conservation strategies may be required for conservation of 

vulnerable species due to climate change within the ecosystem, this study 

recommends the use of produced current and future suitable habitat maps to 

help set priorities to restore natural habitats for the species observed with 

decreasing suitable habitats. This will as well enhance more effective 

conservation and management of the ecosystem. 

 Despite the fact that climate change poses crucial challenges for forest 

biodiversity such as P. africana.  Climate change issues have not been fully 

addressed in national forest policies in Tanzania. Therefore, it is advised to 
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integrate climate change strategies and plans relevant to forests into existing 

forest policy framework and other sectoral frameworks that influence forests.  

 Because this study has generated valuable information for conservation 

management of P. africana. Findings from this study can be applied to 

identify new areas where P. africana is likely to spread for planting and 

conservation in those areas where current and future condition for P. africana 

is suitable.  
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