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Abstract

In this Master thesis we extend the Standard Model with an additional U(1) gauge group
and an additional Higgs doublet with a lepton specific Z2 symmetry. This is used in a
gauged version of the Froggatt-Nielsen mechanism to describe the observed masses and
mixings among fermions. To reproduce these observables and satisfy the anomaly con-
straints posed by the new gauge symmetry methods from algebraic geometry are used. By
introducing three right-handed neutrinos, an anomaly-free model reproducing the observed
masses, PMNS matrix and Cabibbo mixing in the quark sector was found.
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Populärvetenskaplig sammanfattning

År 2012 hittade man Higgs boson vid LHC i CERN, den här partikeln är nyckeln för att
beskriva hur partiklar f̊ar sina massor i standardmodellen. Vad vi fortfarande inte vet, är
vilka massor partiklarna f̊ar. Detta måste mätas experimentellt och är inte n̊agot vi kan
teoretiskt förutsäga. Det visar sig att de observerade massorna är vitt skilda, vi har allt
fr̊an toppkvarkens massa: 172 GeV ≈ 3 ·10−25 kg till neutrinerna med en massa mindre än
1 eV ≈ 2 · 10−36 kg. För att försöka förklara varför de fundamentala partiklarnas massor
är s̊a olika använder vi den s̊a kallade Froggatt-Nielsen mekanismen. Den här mekanismen
bygger p̊a att vi introducerar en ny typ av laddning som vi kallar flavonladdning. Precis som
elektrisk laddning gör att partiklar växelverkar med fotoner, vilket vi till vardags upplever
som elektriska och magnetiska krafter, s̊a gör flavonladdning att partiklarna växelverkar
med vad vi kallar ett flavonfält. Om olika partiklar har olika flavonladdning kommer de
växelverka olika mycket med flavonfältet. Partiklar med stor flavonladdning växelverkar
mycket med flavonfältet och blir därför lättare än partiklar med mindre laddning som
växelverkar mindre med fältet. P̊a det här sättet kan vi förklara partiklarnas olika massor
med att de har olika flavonladdning.

Vi vill inte bara hitta uppsättningar med flavonladdningar som ger de observerade
massorna, utan det finns ocks̊a ett teoretisk villkor som är att teorin måste vara fri fr̊an
anomalier. Vad det här betyder är att det finns en uppsättning polynomekvationer som
laddningarna behöver satisfiera för att modellen ska vara konsistent. I praktiken ser vi
till att dessa villkor, tillsammans med de observerade massorna, blir uppfyllda genom att
använda metoder fr̊an algebraisk geometri. Att hitta laddningsuppsättningar som b̊ade är
anomalifria och ger de observerade massorna är sv̊art, vi utökar därför partikelinneh̊allet i
standardmodellen till att inneh̊alla en extra Higgsdublett och högerhänta neutriner. Med
dessa tillägg är det möjligt att ha en anomalifri modell som reproducerar alla massor och
nästintill all mixning i standardmodellen.
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1 Introduction

Today’s most complete model for describing Nature’s fundamental interactions is the Stan-
dard Model (SM). Despite its tremendous success, there is a sense of incompleteness about
this theory. Most striking is that it does not account for gravity nor the now well-established
neutrino masses and oscillations. Including the neutrinos, the Standard Model has 26 free
parameters that have to be decided by measurements. Among these 26 parameters are the
12 fermion masses and eight mixing angles. Nine of the masses are generated by the Higgs
mechanism, the three remaining neutrino masses have unknown origin. The only fermion

Figure 1: The different fermion masses in the Standard Model shown by generation. Taken
from [1].

1



with mass of the same size as the vacuum expectation value of the Higgs boson is the top
quark (Fig. 1). The other quark and charged fermion masses are clearly smaller than the
top quark’s mass. Since all the fermion masses are free parameters in the SM, there is no
known fundamental reason for this mass hierarchy. In addition to this, the neutrino masses
are many order of magnitudes smaller than the other fermion masses. This, together with
the fact that we have not observed any right-handed neutrinos, are the reasons why it
seems likely that neutrinos have their own mass generating mechanism.

One way of describing the mass hierarchies among the quarks was proposed by Froggatt
and Nielsen in [2]. They used a global U(1) symmetry and a set of very heavy fermions to
this end. In this thesis, we will take on a similar approach but with a U(1) gauge symmetry.
In addition to this new symmetry, we also add a Higgs doublet and impose a lepton specific
Z2 symmetry. The Z2 symmetry guarantees that the two Higgs doublet will not generate
any flavor changing neutral currents and the only choice of Z2 symmetry consistent with all
the other conditions of our models is the lepton specific (where one Higgs double couples
to the quarks and the other to the leptons). We call the charge associated with this new
gauge symmetry for flavon charge, this is assigned to all fermions and to the two Higgs
doublets.

When a symmetry of a theory is broken due to quantum effects, we say that the sym-
metry is anomalous. If one of a theory’s gauge symmetries is anomalous, the theory will be
inconsistent; unitarity will break and non-physical degrees of freedom might become phys-
ical. For the gauge anomalies to vanish, the charges have to satisfy certian homogeneous
polynomial equations; the anomaly conditions. In addition to the anomaly conditions
for the flavon charges, we have the Froggatt-Nielsen conditions, which dictate the neces-
sary relations between the charges to reproduce the observed masses and mixings. The
Froggatt-Nielsen constraints are linear non-homogeneous polynomials. These polynomial
equations make it natural to treat this problem in the context of algebraic geometry. By
using Gröbner bases the problem is heavily reduced, and in our specific cases it often
reduces to finding rational points on a curve.

This thesis is organized as follows. In the next section we discuss gauge anomalies in
field theory and derive the constraints in different cases. In Section 3 we describe both
the computational algebraic methods and theoretical results about existence of rational
and integer charges. The physics of mass generation, two-Higgs doublet models and the
Froggatt-Nielsen mechanism are described in Section 4. By adding a gauge group, the
phenomenology of the gauge sector will change, this is discussed in Section 5. The results
are described in Section 6 and some concluding remarks are given in Section 7.
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2 Anomalies in Field Theory

Anomalies are the key to a deeper understanding of quantum field theory.
-Reinhold A. Bertlmann [3]

The Lagrangian in quantum field theory does not know if it describes a classical or quantum
field theory. Therefore, a symmetry that is manifest in the Lagrangian may be broken by
quantum effects, when this happens, we say that the symmetry is anomalous. When the
involved symmetries are gauge symmetries, anomalies make the theory inconsistent since
unitarity will break down and unphysical degrees of freedom will become physical. In
this section we will study what constraints must be satisfied for a gauge theory to be
anomaly-free. We will begin with discussing some fundamental aspects of Lie groups,
then in Section 2.2 we derive the chiral anomaly from transformation of the path integral
measure. In Section 2.3 we discuss the geometric and analytic meaning of the anomaly in
terms of the Atiyah-Singer index theorem. We then relate the anomaly to triangle diagrams
in Section 2.4 and study the anomaly cancelation in the Standard Model in Section 2.5.
Finally we derive the constraints for the Standard Model extended with one U(1) gauge
symmetry and right-handed neutrinos to be anomaly-free.

2.1 Lie groups

Lie groups are a special class of groups that define smooth manifolds with a smooth group
operation, for a general reference see e.g. [4]. Let G be a Lie group with neutral element
1, then any element U ∈ G may be written as

U = exp(iθaT a) · 1 (2.1)

(summation over a implied) where θa are numbers and T a are the group generators. The
generators of a Lie group generate an algebra called the Lie algebra, g, defined by the
bracket relation

[, ] : g× g→ g

[T a, T b] 7→ ifabcT c (2.2)

where fabc are known as the structure constants. A Lie group is Abelian if and only if
fabc = 0. We will only be interested in the classical matrix Lie groups (U(N), SU(N), etc.),
in these cases the Lie algebra can be identified with the tangent space at the neutral
element, the elements of the Lie algebra may then be thought of as matrices and it therefore
makes sense to interpret the bracket as a commutator relation

[T a, T b] = T aT b − T bT a. (2.3)

A Lie group has infinitely many representations, but the two most important are; the
fundamental and the adjoint representation. The simplest non-trivial representation is
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the fundamental representation, for SU(N) it is the set of unitary N × N matrices with
determinant 1, this corresponds to a Lie algebra generated by traceless Hermitian N ×
N matrices. Let φi be an element on which the fundamental representation acts, the
infinitesimal group action is then given by

φi → φi + iαa(T afund)ijφj (2.4)

with αa real numbers.
For SU(2) the fundamental representation is generated by the Pauli matrices, we in-

troduce the convention

T a = τa =
σa

2
(2.5)

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.6)

These matrices satisfies the Lie algebra relation [T a, T b] = iεabcT c where εabc is the totally
anti-symmetric symbol (ε123 = 1). Another well-known example is SU(3) where we have
T a = 1

2
λa with λa being the Gell-Mann matrices.

Above we divided the Pauli and Gell-Mann matrices with two, this is a specific choice
of normalization of the generators which in general is arbitrary. We will normalize the
structure constants by ∑

c,d

facdf bcd = Nδab. (2.7)

Once this is choosen the normalization of the generators is also fixed since [T aR, T
b
R] =

ifabcT cR must hold for any representation R. For the fundamental representation of SU(N)
this means that the generators are normalized to

tr(T aT b) =
1

2
δab. (2.8)

When the generators are written as T a, with no representation R specified, we will always
mean the fundamental representation. In the fundamental representation of SU(N), a
product of the generators satisfies

T aT b =
1

2N
δab +

1

2
dabcT c +

1

2
ifabcT c (2.9)

where dabc = 2tr[T a{T b, T c}] is a totally symmetric group invariant and {, } denotes the
anti commutator. Using this relation one can also show

tr[T aT bT c] =
1

4
(dabc + ifabc). (2.10)

The other useful representation is the adjoint representation, this representation acts
on the vector space spanned by the generators themselves. Since SU(N) has N2 − 1
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generators, this is an N2 − 1 dimensional representation. The matrices describing this
representation are defined by (T aadj)

bc = −ifabc, e.g. for SU(2) we explicitly have

T 1
adj =

0
0 −i
i 0

 , T 2
adj =

 0 i
0

−i 0

 , T 3
adj =

0 −i
i 0

0

 . (2.11)

In the spirit of mathematics, we would like to have basis-independent ways of characterizing
the representations. One such invariant is the quadratic Casimir C2(R) defined by

T aRT
a
R = C2(R) · 1. (2.12)

To evaluate the quadratic Casimir we define the following inner product on the generators

tr(T aRT
b
R) = T (R)δab (2.13)

where T (R) is called the index of the representation. For the fundamental and adjoint
representations we have

T (fund) = TF =
1

2
, T (adj) = TA = N. (2.14)

By putting a = b in the inner product and summing over a we obtain

d(R)C2(R) = T (R)d(G) (2.15)

where d(R) is the dimension of the representation (d(fund) = N and d(adj) = N2− 1) and
d(G) is the number of group generators, for SU(N), d(SU(N)) = N2 − 1. The quadratic
Casimirs for SU(N) can now be written as

CF = C2(fund) =
N2 − 1

2N
, CA = C2(adj) = N. (2.16)

Another invariant that characterizes SU(N) representations which will be usefull later
is the anomaly coefficient A(R) defined as

tr[T aR{T bR, T cR}] =
1

2
A(R)dabc = A(R)tr[T a{T b, T c}]. (2.17)

The anomaly coefficients satisfy some usfull properties:

• Conjugate representations satisfy A(R) = −A(R∗) and the anomaly coefficient there-
fore vanishes for real representations.

• A(R1 ⊕R2) = A(R1) + A(R2)

• A(R1 ⊗R2) = A(R1)d(R2) + d(R1)A(R2)
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2.2 Transformation of the path integral measure

One symmetry of the Lagrangian that is broken by quantization is the chiral symmetry.
In this section we will use Fujikawa’s approach [5] to anomalies and derive the Abelian
chiral anomaly from a transformation of the path integral measure. A rigorous derivation
should be performed in Euclidean space, here we will follow Weinberg [6] and proceed in
a less rigorous way and stay in Minkowski space. Let ψ(x) be a massless spin 1/2 fermion
field that interacts non-chirally with a set of non-Abelian gauge fields Aaµ(x). Moreover,
let U(x) be the local chiral transformation:

ψ(x)→ U(x)ψ(x) = exp(iα(x)γ5T )ψ(x) (2.18)

where α(x) is an arbitrary real function of x, T a general Hermitian matrix and γ5 =
iγ0γ1γ2γ3γ4. A chiral transformation acts in opposite way on left- and right-handed
spinors, where handedness is defined as the eigenstates of the γ5-matrix. Chiral trans-
foramtions are an example of a classically conserved Noether currents that may obtain
non-zero divergences due to quantum effects.

The fermionic part of the path integral measure transforms as

DψDψ → |J |−2DψDψ (2.19)

where J is the Jacobian detU . To write J on a useful form, we use the formal equality

J = detU = exp Tr logU (2.20)

which gives

J = exp

(
i

∫
d4x α(x)Tr[γ5T ]

)
. (2.21)

The trace in this equation vanishes, which implies that the transformation of the measure
becomes singular. To deal with this we have to introduce a regulator function, for the
regularization to be gauge invariant we choose the function

e(i /D)2/M2

(2.22)

where Dµ = ∂µ − iAaµT a is the covariant derivative for the fermions interacting with Aaµ
and M a large mass we will take to infinity at the end. For computational convenience,
we also introduce the one-particle Hilbert space {|x〉} so we may write

U(x) = 〈x|U(x̂) |x〉 . (2.23)

The Jacobian is now

J = lim
M→∞

exp

(
i

∫
d4x α(x)Tr

[
〈x| γ5Te(i /D)2/M2 |x〉

])
(2.24)

We are now going to examine the trace in detail, beginning with using the equality

(i /D)2 = −D2 +
i

4
[γµ, γν ]F

µν
a T a = −D2 +

1

2
σµνF

µν . (2.25)
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The trace may now be split into

lim
M→∞

Tr

[
〈x| γ5Te−D2/M2

exp

(
(σµνF

µν)2

4M2

)
|x〉
]

(2.26)

For a trace of γ-matrices multiplied with γ5 to be non-zero we need at least four γ-matrices.
Since /D

2
only contains products of two γ-matrices, the leading term in the expansion of the

second exponential will be of order 1/M4. Expanding the second exponential to leading
order, and ignoring the background gauge field in the other exponential, yields

lim
M→∞

Tr

[
〈x| γ5Te−∂2/M2 1

2!

(
σµνF

µν

2M2

)2

|x〉

]
. (2.27)

The bra-ket now only affects e−∂
2/M2

which is calculated by Wick-rotation as follows:

〈x| e−∂2/M2 |x〉 =

∫
d4k

(2π)4
ek

2/M2

= i

∫
d4kE
(2π)4

e−k
2
E/M

2

= i
M4

16π2
(2.28)

We now have

lim
M→∞

i
M4

16π2
Tr

[
γ5T

1

2!

(
σµνF

µν

2M2

)2
]

= i
1

128π2
Tr
[
γ5T (σµνF

µν)2
]

=− 1

32π2
εµναβF a

µνF
b
αβTr[TT aT b] (2.29)

where we have used Tr[γ5[γµ, γν ][γα, γβ]] = 16iεµναβ. Using this for the trace in the Jaco-
bian yields

J = exp

(
−i
∫
d4x

1

32π2
α(x)εµναβF a

µνF
b
αβTr[TT aT b]

)
(2.30)

This result may be associated with an anomalous axial current. Assume we have the
path integral

Z =

∫
DψDψ exp

[
i

∫
d4ψ(i /Dψ)

]
. (2.31)

Under the chiral transformation defined in the beginning of this section, the action trans-
forms as ∫

d4xψ(i /Dψ)→
∫
d4x

[
ψ(i /Dψ) + α(x)∂µJ

5µ
]

(2.32)

where J5µ = ψγ5Tγµψ. Joining this with the transformation of the measure, the trans-
formed integral becomes

Z =

∫
DψDψ exp

[
i

∫
d4x + ψ(i /Dψ) + α(x)

{
∂µJ

5µ +
1

16π2
εµναβF a

µνF
b
αβTr[TT aT b]

}]
(2.33)

By varying the exponent with respect to α(x) we obtain the operator equation

∂µJ
5µ = − 1

16π2
εµναβF a

µνF
b
αβTr[TT aT b]. (2.34)
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2.3 Geometry and anomalies

Anomalies is an extremly profound concept in quantum field theory. Although originally
calculated from perturbation theory [7, 8], the anomaly is in fact a non-perturbative topo-
logical effect. If this was not the case, anomalies would not be of the same importance since
they would then change at every order in perturbation theory. Going to Euclidean space-
time, we will be able to connect anomalies to the famous Atiyah1-Singer index theorem
[9, 10, 11].

We introduce the Euclidean fourth coordinate x4 = ix0 and perform a Wick rotation.
In Euclidean space the Dirac operator i /D is Hermitian and therefore has an orthonormal
set of spinor eigenfunctions φm:

i /Dφm = λmφm (2.35)

with the normalization completeness relations:∫
d4xEφm(x)†φn(x) = δmn,∑

m

φm(x)φ†m(y) = δ4(x− y)1. (2.36)

We assume here that T and i /D commute so we also have Tφn = tnφn. If we now return to
the Jacobian from the previous section, we can write it as

J = lim
M→∞

exp

(
i

∫
d4xE α(x)Tr

[
γ5Te(i /D)2/M2

∑
m

φm(x)φ†m(x)

])

= lim
M→∞

exp

(
i

∫
d4xE α(x)

∑
m

[
tme

λ2m/M
2 {
φ†m(x)γ5φm(x)

}])
(2.37)

By the exact same type of calculations as we did in the previous section, the Jacobian
becomes

J = exp

(
−i
∫
d4xE α(x)

1

32π2
εEijklF

a
ijF

b
klTr[TT aT b]

)
(2.38)

where i, j, k, l are Euclidean indices going from 1 to 4 and εEijkl is the totally anti-symmetric
tensor with εE1234 = 1.

Without the regulator function, the Jacobian becomes

J = exp

(
i

∫
d4xE α(x)

∑
m

[
tmφ

†
m(x)γ5φ(x)

])
(2.39)

and we are now going to study the properties of the sum in more detail. Given the
eigenvalue problem i /Dφm(x) = λmφ(x), there is the associated problem:

i /Dγ5φm(x) = −λmγ5φm(x). (2.40)

1Michael Atiyah was awarded the Fields Medal in 1966 for, among other things, the proof of the index
theorem for elliptic operators.
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For λm 6= 0 this means that φm(x) and γ5φm(x) are eigenfunctions to the same Hermitian
operator but with different eigenvalues, they are therefore orthogonal:∫

d4xE φ†m(x)γ5φm(x) = 0. (2.41)

In the case of λm = 0, φm(x) and γ5φm(x) are eigenfunctions with the same eigenvalue.
These eigenfunctions, called zero-modes, are not generally paired in a specific way. But
since γ5 anti-commutes with i /D, they may be chosen to be simultaneous orthogonal eigen-
functions φn+ and φn− of i /D with eigenvalue zero and of γ5 with eigenvalues +1 and -1
respectively:

i /Dφn+ = 0, γ5φn+ = φn+

i /Dφn− = 0, γ5φn− = −φn− (2.42)

The sum in the Jacobian may now, thanks to the orthogonality relation for λm 6= 0, be
written as∑

m

tmφ
†
m(x)γ5φm(x) =

∑
n+

tn+

(
φ†n+(x)φn+(x)

)
−
∑
n−

tn−

(
φ†n−(x)φn−(x)

)
(2.43)

Using the normalization of φm(x), integrating the above equation gives∫
d4xE

∑
m

tmφ
†
m(x)γ5φm(x) =

∑
n+

tn+ −
∑
n−

tn−. (2.44)

In the special case that T is the identity matrix, these sums becomes the number of zero-
modes n+ and n− with eigenvalues ±1 for γ5. The difference n+ − n− is the index of the
the Dirac operator:

index i /D = n+ − n− (2.45)

Combining this with the result in Eq. (2.38) we get

index iD+ = − 1

32π2

∫
d4xE εEijklF

a
ijF

b
klTr[T aT b] (2.46)

which is the Atiyah-Singer index theorem. In this way we may regard the anomalous
current ∂µJ

5µ as a local index theorem. This shows how the anomaly, initially determined
from local fields and perturbation theory, is connected to the topology of the gauge field
configuration.

2.4 Triangle diagrams

The above calculation using Fujkawa’s approach gave us the Abelian chiral anomaly for
gauge theories with non-chiral gauge interactions. To deal with the non-Abelian chiral
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case, it might be easier to take another approach and derive the anomaly from triangle
diagrams. We define the one-loop three-point function

Γµναabc (x, y, z) = 〈Ω|T{Jµa (x), Jνb (y), Jαc (z)} |Ω〉 (2.47)

for massless left-handed fermions ψ interacting with gauge bosons Aµa , A
ν
b , A

α
c . The leading

order contributions to this function are the diagrams

Jµa

Jαc

Jνb

+ Jµa

Jαc

Jνb

. (2.48)

The anomalous contribution comes from calculating the divergence of Γµναabc . As discussed
above, the anomaly is a topological non-perturbative result and the contributions from
one-loop diagrams is the only contribution [12]. Even though Γµναabc is convergent and thus
independent of the labelling of the momentum in the fermion loop, the divergence of Γµναabc

(which contains the anomalous contribution) involves divergent integrals that do depend
on this labelling. This gives us a freedom to choose which current should be anomalous,
but not enough freedom to remove the anomaly completely.

Calculating the divergence of Γµναabc with the fermion momentum chosen so Jµa is anoma-
lous gives the anomalous contribution (see [6] chapter 22.3 for details):

∂µJ
µ
a = − 1

128π2
dabcεµναβF b

µνF
c
αβ (2.49)

where dabc = 2Tr[T a{T b, T c}]. The reason Tr[T a{T b, T c}] appears is that we calculate
the sum of the two triangle diagrams, each with contribution Tr[T aT bT c] and Tr[T aT cT b]
respectively. Using Eq. (2.10), the non-symmetric parts cancel and only Tr[T a{T b, T c}]
remains.

We have already derived an anomaly in Eq. (2.34), and would now like to see that our
new and more general result contains this. In a theory containing both left- and right-
handed particles the anomalous contribution from each of the two chiral states is different
because they couple to a chiral axial current. This current contains a γ5-matrix which
yields different sign for the two chiral states. In such a theory, we have

dabc = 2Tr[T aL{T bL, T cL}]− 2Tr[T aR{T bR, T cR}] (2.50)
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here the subscripts L and R denote the representation under which the left-handed and
right-handed fermions transform respectively. To obtain Eq. (2.34) we coupled an axial
current to two non-chiral gauge currents. For the axial current we have TL = −TR ≡ T and
for the non-chiral gauge currents we have T bL = T bR ≡ T b and T cL = T cR ≡ T c respectively.
Equation (2.49) now becomes

∂µJ
µ
5 = − 1

32π2
εµναβF b

µνF
c
αβTr[T{T b, T c}] (2.51)

which is the same as Eq. (2.34), if we use in Eq. (2.34) that the only part of Tr[TT bT c]
that contributes to the anomaly is the symmetric 1

2
Tr[T{T b, T c}].

2.5 Gauge anomalies in the Standard Model

Due to the electroweak interaction, the Standard Model is chiral and may therefore contain
anomalies. For the theory to be consistant the anomalies have to vanish, and this is the
case in the Standard Model thanks to an almost magical interplay between the lepton and
quark sector. The gauge group in the Standard Model: SU(3)QCD × SU(2)L × U(1)Y ,
have the associated currents JµQCD, J

µ
L and JµY . Quantum chromodynamics (QCD) is a

non-chiral theory and therefore couples equally to left- and right-handed fields so there is
no anomaly associated with SU(3)3QCD. The generators of SU(2)L are the Pauli matrices
τa = σa/2, these satisfy {τa, τ b} = 1

2
δab1 so

dabc = δbcTr[τa] = 0 (2.52)

so there is no SU(2)L × SU(2)L × SU(2)L(= SU(2)3L) anomaly. For SU(2)L × U(1)2Y we
have

dabc ∝ 2Tr[τa{1,1}] = 4Tr[τa] = 0 (2.53)

and in a similar way, any anomaly with one factor of SU(2)L or SU(3)QCD vanishes.
We must remember that even though quantum electrodynamics is a vector-like theory

and thus anomaly-free, the current JµY is not a vector current since it couples differently to
left- and right-handed fermions (this is an artefact from the electroweak unification). As
in the previous section, the left- and right-handed fermions will contribute to the anomaly
with different sign due to the γ5-matrices in the hypercharge current. We denote the
hypercharges in the Standard Model by YQ, Yu, Yd, YL and Ye for the quark doublet,
right-handed up singlet, right-handed down singlet, lepton doublet and charged right-
handed lepton singlet respectively.

Let us begin with the anomaly associated with U(1)3Y , the symmetric trace is now given
by

dabc ∝ Tr[Y L{Y L, Y L}]− Tr[Y R{Y R, Y R}] ∝
∑
F

(Y L
F )3 −

∑
F

(Y R
F )3 (2.54)

where the sums are over the left- and right-handed fermions respectively. If the difference
between these two sums is zero, the anomaly vanish. This gives the following constraint
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on the hypercharges:

A111 : 3(2Y 3
Q − Y 3

u − Y 3
d ) + 2Y 3

L − Y 3
e = 0 (2.55)

where the factor 3 in front of the quarks is a color factor and the factors of 2 represents
the doublets.

Let us now study the contribution from SU(3)2QCDU(1)Y . The generators of any SU(N)
satisfies (with our normalization in Eq. (2.14)) Tr[T aT b] = 1

2
δab, using this we get for the

symmetric trace

dabc ∝ 2δab

( ∑
F, color

Y L
F −

∑
F, color

Y R
F

)
(2.56)

where the sums are over the left- and right-handed colored states respectively. This
anomaly vanishes if

A331 : 2YQ − Yu − Yd = 0. (2.57)

The SU(2)2LU(1)Y anomaly is similar to the anomaly just calculated, but instead of
summing over all colored states, we sum over all left-handed states:

dabc = 2δab
∑
F

Y L = 2δab(6YQ + 2YL). (2.58)

This anomaly vanishes if
A221 : 3YQ + YL = 0. (2.59)

There is one more potential family of anomalies, those from triangle diagrams with
gravitons. In four-dimensional spacetime, the only possible gravitational gauge anomalies
are with two gravitons (g), the anomalous current will then have the divergence

∂αJ
α
a ∝ Tr[T a]εµναβRµνρσRαβρσ (2.60)

where Rµνρσ is the Riemann tensor. Since the trace of an SU(N) generator is zero, the
only possible gravitational anomaly is g2U(1)Y . Gravity couples to all fermions, so this
anomaly is simply the sum over all fermions:

Agg1 : 3(2YQ − Yu − Yd) + 2YL − Ye = 0. (2.61)

For the Standard Model to be anomaly-free, the hypercharges of the fermions thus must
satisfy:

A111 : 3(2Y 3
Q − Y 3

u − Y 3
d ) + 2Y 3

L − Y 3
e = 0

A331 : 2YQ − Yu − Yd = 0

A221 : 3YQ + YL = 0 (2.62)

Agg1 : 3(2YQ − Yu − Yd) + 2YL − Ye = 0

12



Fermion Qf T3 YL YR

νe, νµ, ντ 0 +1
2

-1 0
e−, µ−, τ− -1 −1

2
-1 -2

u, c, t 2
3

1
2

1
3

4
3

d, s, b −1
3
−1

2
1
3
−2

3

Table 1: Electric charge Qf , isospin T3 and hypercharge Y for the fermions in the Standard
Model.

These equations may easily be solved using the algebraic methods which will be presented
in Section 3. Using these methods here, we find that there are three distinct solutions for
the hypercharges:

YQ = −Ye/6, Yu = −2Ye/3, Yd = Ye/3, YL = Ye/2

YQ = −Ye/6, Yu = Ye/3, Yd = −2Ye/3, YL = Ye/2 (2.63)

YQ = 0, Yu = −Yd, YL = 0, Ye = 0

All these solutions depends on one free parameter: Ye in the two first and one of the quark
singlet charges in the second. This freedom comes from the fact that hypercharges always
appear together with the coupling g′. The object that needs to have a specific value is the
product Y g′, if the charge is made twice as large, this can be compensated by making the
coupling half as large. These solutions tell us that hypercharge, and thus electric charge,
has to be quantized. However, we can not determine the charges from first principles, we
have to use experiments to determine which of these three solutions corresponds to what
is observed in nature.

Let Q be the electric charge and T3 the third component of isospin. We adopt the
following normalization for hypercharge:

Y = 2(Q− T3). (2.64)

In Table 1 are the observed values of the different charges with this normalization. This
means that the correct solution for the anomalies is the first one:

YQ = −Ye/6, Yu = −2Ye/3, Yd = Ye/3, YL = Ye/2 (2.65)

with Ye = −2.

2.6 Extending the Standard Model

In this thesis we will work with an extension of the Standard Model where the gauge group
is SU(3)QCD × SU(2)L × U(1)Y × U(1)′. It will also be necessary for us to introduce
right-handed neutrinos, these may only interact with the new U(1)′ field and with gravity.
The hypercharges in the Standard Model are generation independent, we will need more
degrees of freedom than that, so we will have generation dependent U(1)′ charges. We
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denote these charges Qi, ui, di, Li, ei and νi which are the charges for the quark doublet,
the two quark singlets, the lepton doublet, the charged lepton singlet and the right-handed
neutrino fields where i is the generation index. The anomaly constraints for this model
may be derived in a similar way as for the SM and are given by:

A1′1′1 :
3∑
j=1

(
Q2
j − 2u2j + d2j − L2

j + e2j
)

= 0

A1′11 :
3∑
j=1

(Qj − 8uj − 2dj + 3Lj − 6ej) = 0

A331′ :
3∑
j=1

(2Qj − uj − dj) = 0 (2.66)

A221′ :
3∑
j=1

(3Qj + Lj) = 0

A1′1′1′ :
3∑
j=1

(
6Q3

j − 3u3j − 3d3j + 2L3
j − e3j − ν3j

)
= 0

Agg1′ :
3∑
j=1

(2Lj − ej − νj) = 0

where we have used that the quark part of Agg1′ is the same as A331′ .
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3 Algebraic Geometry

Given a diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: To devise a process according to which it can be

determined by a finite number of operations whether the equation is solvable in rational
integers.

-Hilbert’s 10th problem, David Hilbert [13]

Caution: In this section a field is a commutative ring with identity such that every ele-
ment has a multiplicative inverse.

For the mathematically oriented reader the mathematics introduced in the beginning of
this section should be familiar, see [14] for a general reference. But for this thesis to be
self-contained and accessible to a wider audience, the basic definitions will be given here.
In Section 3.2 and 3.3 some more advanced results from Diophantine geometry will be dis-
cussed (see [15] for a general reference) which might be of interest even for mathematicians.

In the following, let K denote a infinite field and K[x1, . . . , xn] the polynomial ring in
n variables over this field.

Definition 1. If f1, . . . , fs ∈ K[x1, . . . , xn] we call the set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0 ∀ 1 ≤ i ≤ s}

the affine variety defined by f1, . . . , fs.

It is clear from the definition that the affine variety is the set of solutions to the system of
polynomial equations: 

f1(x1, . . . , xn) = 0
...

...

fs(x1, . . . , xn) = 0

.

The algebraic object defining varieties are ideals:

Definition 2. A set I ⊆ K[x1, . . . , xn] is an ideal if it satisfies:

(i) 0 ∈ I

(ii) If f, g ∈ I, then f + g ∈ I

(iii) If f ∈ I and h ∈ K[x1, . . . , xn] then hf ∈ I

By the Hilbert basis theorem (Chapter 2§5, Theorem 4 in [14]), every ideal has a finite
generating set, that is, we may write every ideal in K[x1, . . . , xn] in the form

I = 〈f1, . . . , fs〉 =

{
s∑
i=1

hifi

∣∣∣∣∣ hi ∈ K[x1, . . . , xn] ∀ 1 ≤ i ≤ s

}
. (3.1)
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The connection between ideals and varieties is given by

I(V ) = {f ∈ K[x1, . . . , xn] | f(a1, . . . , an) = 0 ∀ (a1, . . . , an) ∈ V }
V(I) = {(a1, . . . , an) ∈ Kn | f(a1, . . . , an) = 0 ∀ f ∈ I}. (3.2)

For polynomials in one variable, K[x], it is natural to order the monomials they consist
of according to their degree, either increasing or decreasing. In several variables however,
there is no such natural ordering, let us choose the lexicographic ordering (LEX): x1 >
x2 > . . . > xn and xkj > xlj if k > l. In this ordering x1x3 > x552 since x1 > x2. With an
ordering, each polynomial has a well-defined leading term, i.e., the biggest monomial in
the polynomial. We define the ideal of leading terms as follows:

Definition 3. Let I ⊆ K[x1, . . . , xn] be an ideal other than {0}.
(i) Let LT (I) denote the set of leading terms of elements in I, i.e.

LT (I) = {cxα1
1 . . . xαn

n | ∃ f ∈ T such that LT (f) = cxα1
1 . . . xαn

n }

(ii) Let 〈LT (I)〉 denote the ideal generated by elements in LT (I).

All the above definitions are necessary when we now construct the key notion of computa-
tional algebraic geometry, that of Gröbner bases.

Definition 4. For a fix monomial order, a finite subset G = {g1, . . . , gt} ⊂ I, I an ideal,
is said to be a Gröbner basis if

〈LT (g1), . . . , LT (gt)〉 = 〈LT (I)〉 .
As the name suggests, a Gröbner basis is a basis for I and every ideal except {0} admits
such a basis [14]. One important application of Gröbner bases is that they eliminate vari-
ables and give the most reduced version of the system you are studying. If a variety is
described by polynomials containing different variables, the Gröbner basis of the ideal gen-
erated by these polynomials will consist of polynomials where one or many of the variables
have been eliminated. The following example clarifies this.

Example.
Consider the variety V(f1, f2, f3) ∈ C3 where

f1 = x2 + y2 + z2 − 1

f2 = x2 + z2 − y
f3 = x− z.

The ideal of this variety is I = 〈f1, f2, f3〉 ⊂ C[x, y, z] and we want to find all points in the
variety. To do this we calculate the Gröbner basis of I, which is

G = {4z4 + 2z2 − 1, y − 2z2, x− z}.
Note that the first term only consists of z’s, the zeros of this polynomial can be found by
standard techniques. These solutions can then be substituted one by one into the other
polynomials to find their zeros. The variety V(f1, f2, f3) ∩ R3 is visualized in Fig. 2.
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Figure 2: The intersection of these three surfaces is the variety given in the Gröbner basis
example restricted to R3.

3.1 Some abstract notions

It is often the case in geometry that life becomes easier if one adds “points at infitiy”, like
how we in complex analysis often prefer to work over the Riemann sphere rather than the
complex plane. Towards this end we introduce the notion of projective spaces.

Definition 5. The projective n-space Pn over K is the set of lines through the origin in
Kn+1. In symbols:

Pn =
Kn+1 \ {0}
∼

(3.3)

where ∼ is the equivalence relation defined by

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ (x0, . . . , xn) = λ(y0, . . . , yn) (3.4)

for some non-zero λ ∈ K.

The most familiar example is the previously mentioned Riemann sphere, which is the pro-
jective line P1 over C. As we defined affined varieties above, we may now define projective
varieties.

Definition 6. Let K be a field and let f1, . . . , fs ∈ K[x0, . . . , xn] be homogeneous polyno-
mials. We set

V(f1, . . . , fs) = {(a0, . . . , an) ∈ Pn |fi(a0, . . . , an) = 0 ∀ 1 ≤ i ≤ s}. (3.5)

V(f1, . . . , fs) is called the projective variety defined by f1, . . . , fs.
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Now that we have varieties we want to extend our toolbox to maps between varieties.
This is important for our study of algebraic curves later, especially the curves of genus 0.
Let us first introduce the notation A for the algebraic closure K.

Definition 7. Let X be a variety and x′ a point on X. A function f : X → A is regular
at x′ if there exists an open affine neighborhood U ⊂ X of x′, say U ⊂ An, and two
polynomials P,Q ∈ K[x1, . . . xn] such that Q(x′) 6= 0 and f(x) = P (x)/Q(x) for all x ∈ U .
The function f is regular on X if it is regular at every point of X. The ring of regular
functions on X is denoted O(X).

Note that the definition of regularity is local, this means that even though f may be regular
on all of X, there are in general no fixed polynomials P and Q such that f = P/Q at every
point on X. In general, one can write X as a finite union of affine open subsets Ui, and
one can find polynomials Pi, Qi such that f(x) = Pi(x)/Qi(x) for all x ∈ Ui.

Definition 8. Let x be a point on a variety X. The local ring of X at x is the ring of
functions that are regular at x, where we identify two such functions if they coincide on
some open neighborhood of x. This ring is denoted by Ox,X or simply Ox
Even more generally, we can define a ring of functions regular along a subvariety of X.

Definition 9. Let X be a variety and Y ⊂ X a subvariety. The local ring of X along
Y , denoted by OX,Y , is the set of pairs (U, f), where U is an open subset of X with
U ∩ Y 6= 0 and f ∈ O(U) is a regular function on U , and where we identify two pairs
(U1, f1) = (U2, f2) if f1 = f2 on U1 ∩ U2.

A special case of local rings are the function fields, denoted K(X), which are defined to
be OX,X , i.e. the local ring of X along X. We can now define maps between varieties.

Definition 10. A map φ : X → Y between varieties is a morphism if it is continuous,
and if for every open set U ⊂ Y and every regular function f on U , the function f ◦ φ is
regular on φ−1(U). A map is regular at a point x if it is a morphism on some neighborhood
of x.

We call such a map rational if it is a morphism on some non-empty subset of X. And
a birational map is a rational map with a rational inverse. Two varieties are said to be
birationally equivalent if there exists a birational map between them.

3.2 Algebraic curves

Thanks to the Gröbner basis, the problem of finding rational or integer charges that satisfy
the anomaly and Froggatt-Nielsen constraints reduces to finding rational or integer points
on algebraic curves. To make a systematic study of curves we would like to find some
classification of them, the most obvious way to do this is by their degree. However, from
an arithmetic point of view, this classification is insufficient. Take for example the two
affine curves

C1 : y2 = x5 + x4, and C2 : y2 = x5 + x. (3.6)
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These are both curves of degree five, a classification based on degree would then suggest
that these curves have the same arithmetic properties, e.g. existence of rational solutions.
As it happens, C1 has infinitely many solutions in rational x and y, while C2 only has
finitely many. It turns out that the interesting invariant of a curve is its genus g. For a
non-singular projective curve C, the genus is number the of handles of the Riemann surface
C(C).

Many curves are not smooth, e.g. y2 = x3 has a cusp at the origin. In general, a curve C
is a variety of dimension one, this means that its function field K(C) is algebraic over any
subfield K(x) generated by a non-constant function x ∈ K(C). We may therefore write
K(C) = K(x, y) where x and y are non-constant functions on C satisfying an algebraic
relation P (x, y) = 0. Now, let C0 ⊂ A2 denote the affine plane curve defined by P , and let
C1 ⊂ P2 denote the projective curve defined by ZdegPP (X/Z, Y/Z). By definition both C0

and C1 are birational to C, we call such curves models of C. Such models may very well
have singularities, like the affine curve y2 = x3. However, it turns out that all algebraic
curves have a smooth model:

Theorem 1. Any algebraic curve is birational to a unique (up to isomorphisms) smooth
projective curve.

Proof. See e.g. Fulton [16], Section 7.5 Theorem 3.

An algebraic curve and its smooth projective model can, at most, differ by a computable
finite set of points (points associated with singularities and at infinity). We may therefore,
without loss of generality, always assume that C is a smooth projective curve. For smooth
projective curves over any number field K we have the following trichotomy classified by
the genus g:

• g = 0:
Here we have two choices: either C(K) = ∅ or C(K) is non-empty which means
that C is isomorphic over Q to the projective line P1. Any such isomorphism defines
a parameterization of C(Q) in terms of rational functions in one variable, which is
easily computable. For example, all rational points on the unit circle x2 + y2 = 1 are
given by

(x(t), y(t)) =

(
1− t2

1 + t2
,

2t

1 + t2

)
(3.7)

for t ∈ P1(Q).

• g = 1:

Theorem 2. Mordell-Weil: For any Abelian variety the set of K-rational points
form a finitely generated group.

Proof. For the original proof for elliptic curves by Mordell, see [17], and for the
generalization to Abelian varieties by Weil, see [18].
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For K = Q this means that the only genus 1 curves with rational points are the
elliptic curves.

• g ≥ 2:
For these higher genus curves, Mordell [17] conjectured and Falting [19] later proved
that the set K-rational points is finite.

3.2.1 Genus zero

From the trichotomy we have that a smooth projective curve C over Q of genus zero has
infinitely many rational points (which we may describe by an explicit parameterization) if
it contains one rational point. Practically, given a curve we can ask a computer algebra
system such as Singular [20] or Macaulay 2 [21] to find the parameterization, if it does
not succeed, then there are no rational points. If we do not want to check if there exists
an explicit parameterization, we can also use the Hasse principle to check theoretically if
there are any rational points without having to actually find them.

For curves of genus zero there are also well-developed methods to find integer solutions.
This will be useful for us when we study neutrinos since integer charges will allow them to
have effective Majorana masses.

Let f(x, y) = 0 be an absolutely irreducible polynomial with integer coefficient defining
a plane curve of genus zero. By C we denote the projective model defined by F (X, Y, Z) =
0, where F (X, Y, Z) is the homogenization of f(x, y). We denote the algebraic closure of
Q by Q and function field of C by Q(C). For a point P on C the local ring is denoted
by OP (C) and Σ∞ is the set of discrete valuation rings at infinity. In [22], Poulakis and
Voskos gave an algorithm to explicitly find all integer solutions of f(x, y) = 0 for |Σ∞| ≥ 3.
They later extended this to |Σ∞| ≤ 2 in [23]. These cases differ since the latter may have
infinitely many integer solutions, while for |Σ∞| ≥ 3 there are only finitely many.

Let N be the degree of F (X, Y, Z) and remember that the existence of one rational
point on C is equivalent to the existence of a birational map over Q between C and P1.

Lemma 1. Let u(S, T ), v(S, T ), w(S, T ) ∈ Z[S, T ] be homogeneous polynomials of the
same degree with no common non-constant factor such that the correspondence

(S, T ) 7→ (u(S, T ), v(S, T ), w(S, T )) (3.8)

defines a birational map φ over Q of P1 → C. Then φ is a birational morphism of P1 onto
C and deg u(S, T ) = deg v(S, T ) = deg w(S, T ) = N. If (x : y : 1) is a non-singular point
of C(Q), then there exists s, t ∈ Z with s ≥ 0 and gcd(s, t) = 1 such that x = u(s, t)/w(s, t)
and y = v(s, t)/w(s, t).

Proof. See Poulakis and Voskos [22] Lemma 2.1.

Let φ be as above, then the correspondence f → f ◦ φ induces an isomorphism φ̃ over Q
between the function fields Q(C) and Q(P1).
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Lemma 2. The correspondence P → φ̃−1(OP (P1)) defines a bijection between the set of
zeros of w(s, t) and Σ∞.

Proof. See Poulakis and Voskos [22] Lemma 2.2.

What this lemma means is that the number of distinct zeros of w(s, t) is equal to |Σ∞|.
This is of practical importance if one wants to use the following theorem.

Theorem 3. The set C(Z) is infinite if and only if one of the following two conditions is
satified:

(i) Σ∞ consists of one element and C(Z) has at least one simple integer point.

(ii) Σ∞ consists of two elements which are conjugate over a real quadratic field and C(Z)
has at least one simple integer point.

Proof. See Poulakis and Voskos [23] Theorem 5.2.

For a curve with genus 0 we have thus learned that if it contains one rational point, we
may find a parameterization for all the infinitely many other rational points. For a curve
with |Σ∞| ≤ 2 we have found a way to determine if it has infinitely many integer points
or not.

3.2.2 Genus one

The only Abelian varieties over Q are the elliptic curves. Hence, to determine if a curve
of genus 1 has rational points one only has to check if it is elliptic. Any elliptic curve can
be written on Weierstrass normal form:

y2 = x3 + ax+ b. (3.9)

To test if a curve is elliptic in practice one could ask a high-level language, such as Maple,
to try to write the given curve on this form.

For integer solutions, we have Siegel’s theorem, that states for curves with genus ≥ 1
there are only finitely many integer solutions [24].
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4 Masses and Higgs physics

The advantage of this procedure over the elementary interpretation of the Dirac equations
is that there is no reason to presume the existence of antineutrons or antineutrinos.

-Ettore Majorana [25]

In the Standard Model (SM), all fermions and massive vector bosons obtain their masses
via the Higgs mechanism [26, 27, 28, 29]. Within the SM framework neutrino masses are
usually not treated, even though we know since many years that neutrinos are in fact
massive [30, 31, 32]. In 2012 the ATLAS [33] and CMS [34] experiment discovered a new
resonance around 125 GeV with properties resembling the expected properties of a Higgs
boson with that mass.

The electroweak sector of the SM is invariant under the SU(2)L×U(1)Y gauge group and
the Higgs mechanism provides a way of keeping the structure of these gauge interactions
invariant at high energies while also generating the masses for the W and Z bosons. The
Higgs mechanism is generated by a self-interacting complex scalar doublet whose CP -even
neutral component is the observed Higgs field which acquires a vacuum expectation value
(VEV) of v ≈ 246 GeV.

In the SM, the scalar SU(2)L doublet Φ generating the Higgs mechanism has the
potential

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (4.1)

For this potential to have a well-defined global minimum λ has to be greater than zero, and
moreover, if µ2 > 0 there is only one minimum obtained at Φ = 0 but if µ2 < 0 there is a
parametrized family of minima. All the minima for µ2 < 0 are equivalent, but a convenient
choice of minimum is

〈Φ〉 =
1√
2

(
0
v

)
. (4.2)

Since Φ is a complex doublet, it has four real degrees of freedom, three of which may be
gauged away (these three appears as longitudinal degrees of freedom for the W± and Z
bosons) while the fourth is the physical Higgs field. In this gauge (the unitary gauge) the
doublet is simply written as

Φ(x) =
1√
2

(
0

v + h(x)

)
(4.3)

where h(x) is the physical Higgs boson.
The Higgs mechanism is not only responsible for generating the masses of the elec-

troweak gauge bosons but it also generates the masses of the fermions via Yukawa inter-
actions. We denote the weak eigenstates of the SM fermions as

Qi
L =

(
UL
DL

)i
, LiL =

(
νL
EL

)i
, U i

R, Di
R, Ei

R. (4.4)

Using this notation the Yukawa interactions may be written as

− LY = Q
i

LΦ̃Y U
ij U

j
R +Q

i

LΦY D
ij D

j
R + L

i

LΦY L
ijE

j
R + h.c. (4.5)
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where Φ̃ = iσ2Φ
† is the Lorentz invariant conjugate, and Y U

ij , Y
D
ij , Y

L
ij are 3× 3 matrices

containing the Yukawa couplings. These interactions generate mass matrices looking as

MF
ij =

v√
2
Y F
ij , F = U,D,L. (4.6)

These mass matrices are in general complex and non-Hermitian, therefore, they have to be
diagonalized via biunitary transformations. For the quarks we have

mU = V U
L M

UV U†
R (4.7)

mD = V D
L M

DV D†
R (4.8)

where mU and mD are diagonal matrices containing the physical masses, e.g. mu = mU
11.

Since MU and MD are diagonalized by different biunitary transformations and the up- and
down-sector are mixed in weak interactions, the electroweak currents do not have to be
invariant under biunitary transformations. One can easily check that the electromagnetic
and neutral currents are invariant under these transformations. However, the charged cur-
rent gets changed by VCKM = V U

L V
D†
L known as the Cabibbo-Kobayashi-Maskawa (CKM)

matrix. This matrix encodes couplings between the different quark generations via W±

bosons.
A similar matrix, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, exists in the

lepton sector and encodes neutrino oscillations (we discuss neutrino masses in detail in
Section 4.3). These matrices are roughly [35]:

VCKM ≈

0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999

 , VPMNS ≈

0.85 0.50 0.17
0.35 0.60 0.70
0.35 0.60 0.70

 (4.9)

where the elements are the absolute values of each element.
As seen above, the CKM matrix is nearly diagonal and it can be parametrized by the

four parameters λ, A, ρ and η in the following way

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (4.10)

which is known as the Wolfenstein parameterization [36]. The parameters are

λ = sin θc = 0.225, A = 0.81, ρ = 0.13 and η = 0.35. (4.11)
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4.1 Froggatt-Nielsen mechanism

The observed mass hierarchy among quarks and leptons are not necessarily a problem,
the Yukawa couplings could be fundamental constants with values we just have to accept,
or their hierarchy could be an indication of new physics. In this thesis we use the latter
alternative and thus search for some new physics capable of explaining the observed hier-
archy. This is done by an extended version of the Froggatt-Nielsen (FN) mechanism [2].
In their original work Froggatt and Nielsen tried to explain the mass hierarchies using a
spontaneously broken global U(1) symmetry. Together with this symmetry one also have
to assume the existence of many super heavy vector-like2 fermions with different values of
the new “flavon” charge associated with the new U(1) symmetry. At the high energy scale
where these heavy FN-fermions live (we denote this scale ΛFN) the observed particles are
effectively massless and what we observe are just low energy tails of the physics defined at
this high scale. The heavy FN-fermions attain their masses through a Higgs mechanism
with a neutral Higgs scalar Φ′ whose dynamics we do not specify further. Now, assume that
the observed mass hierarchies are generated by a symmetry breaking mechanism caused
by a scalar field S (“flavon”) with flavon charge 1 attaining a VEV.

We denote the U(1)-charges Qi, ui, di, Li, ei and H where Q and L denotes the left-
handed quark and lepton doublets while u, d and e denotes the right-handed quark and
lepton singlets. Typical examples of the FN-mechanism are illustrated in Fig. 3. In Fig.
3(a) a right-handed down-type quark interacts with the SM Higgs doublet, but instead of
transforming into a right-handed quark as in a SM Yukawa interaction, a heavy FN-fermion
with mass ΛFN ∼ 〈Φ′〉 is generated. This fermion interacts with the flavon field and then
a right-handed quark is created. Evolving this process down to observable energy levels,
the low energy tail of the Froggatt-Nielsen interactions may be described by the symmetry
breaking parameter:

ε =
〈S〉
ΛFN

≈ 0.2 (4.12)

where ε ≈ 0.2 is choosen so we can identify the Wolfenstein parameter λ with ε. For the
U(1)-charge to be conserved in the process shown in Fig. 3(a), we realize that the U(1)-
charges must satisfy Qi − dj − H = 1 since we have the insertion of one flavon field. In
Fig. 3(b) we have the insertion of one conjugated flavon field and the charges must satisfy
Qi − uj + H = −1. We denote the number flavon insertions in a process nij, so in the
above cases we have Qi − uj + H = nij and Qi − dj −H = nij. There is some ambiguity
in the choice of S or S∗. We get around this by using S as our default field for insertions,
and if this leads to nij < 0 we interpret this as we should insert S∗ instead.

This means that the conservation of U(1)-charge determines the number of inserted
flavons. Since each inserted flavon generates a factor ε at low energies, this process may
be used to generate the observed hierarchy among the Yukawa couplings in the SM. The
Yukawa interactions in Eq. (4.5) may now be expressed as

Y F
ij = gFijε

|nij | (4.13)

2This means that the FN fermions do not contribute to the anomalies.
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djR

FL FR
diL

Φ′

S Φ

(a)

ujR

FL FR
uiL

Φ′

S∗ Φ̃

(b)

Figure 3: The Froggatt-Nielsen mechanism with one flavon insertion in the quark sector.
For the flavon charges in (a) to be conserved they must satisfy dj + H + nij = Qi where
nij = 1 in this case. In (b) we insert the conjugate field S∗ instead (just as an example).
For this process, the charges must satisfy uj −H + nij = Qi with nij = −1.

where gFij are complex random constants of order one and |nij| is the number of flavon
insertions needed for charge conservation. Considering a straight forward generalization of
the process in Fig. 3 gives the following expressions for the necessary number of insertions
for charge conservation:

Up− quarks : nij = Qi − uj +H, (4.14)

Down− quarks : nij = Qi − dj −H, (4.15)

Leptons : nij = Li − lj −H. (4.16)

These expressions are derived with insertions of S in mind. If nij becomes negative, it
means that we insert S∗ instead.

From the Wolfenstein parameterization of the CKM matrix in Eq. (4.10) it is clear
that, if we identify λ with ε, it has the leading order structure 1 ε ε3

ε 1 ε2

ε3 ε2 1

 . (4.17)

Froggatt and Nielsen showed that the entries of the CKM matrix goes as

V ij
CKM ∼ ε|Qi−Qj |. (4.18)

So to reproduce the CKM matrix we need the three constraints:

|Q1 −Q2| = 1, |Q2 −Q3| = 2, |Q1 −Q3| = 3. (4.19)

Or, if we impose some ordering on the Qi charges, say Q1 < Q2 < Q3, it is enough with
the two constraints:

Q2 −Q1 = 1 and Q3 −Q2 = 2. (4.20)
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Now going to the PMNS matrix (Eq. (4.9)), which will appear when the SM is extended
with massive neutrinos, we note that there is no clear ε-structure and all elements are almost
of order one. For the elements to not have any ε-suppression we impose the constraints

L2 − L1 = 0 and L3 − L2 = 0. (4.21)

The parameters in the PMNS matrix are therefore only determined by the random coeffi-
cients gij.

4.2 2HDM

The Higgs mechanism in the SM is mediated by the simplest possible scalar sector, one
SU(2) doublet. Since one scalar doublet is sufficient to explain all observed data there
is no real reason to extend the scalar sector to contain more fields. However, we do not
know of any fundamental reason for there to only be one scalar doublet, hence there could
very well be more scalar fields that we have yet to observe. One of the simplest possible
extension of the SM is the two-Higgs-doublet-model (2HDM) [37], which is the SM with
one extra scalar doublet, see ref. [38] for a review.

Denote the two Higgs doublets Φ1 and Φ2, then a general renormalizable potential can
be written as

V =m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c)

+
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

{
1

2
λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
(Φ†1Φ2) + h.c

}
(4.22)

where m2
11, m

2
22 and λ1,2,3,4 are real while m2

12 and λ5,6,7 may be complex which may cause
CP-violation. The VEVs of the two Higgs fields are given by

〈Φ1〉 =
1√
2
eiθ1
(

0
v1

)
, 〈Φ2〉 =

1√
2
eiθ2
(

0
v2

)
(4.23)

where it is also useful to define tan β = v2/v1. A particularly useful basis is the Higgs basis
where only one of the Higgs fields acquires a VEV. This basis is obtained from the generic
basis by a rotation of angle β:

H1 = cos βΦ1 + sin βe−iθΦ2,

H2 = − sin βΦ1 + cos βe−iθΦ2, (4.24)

where θ = θ2 − θ1. By defining v2 = v21 + v22 the VEVs in the Higgs basis may be written:

〈H1〉 =
1√
2
eiθ1
(

0
v

)
, 〈H2〉 =

(
0
0

)
. (4.25)

The two Higgs fields are complex doublets so in total there are eight real degrees of freedom;
three of which are the longitudinal degrees of freedom of the weak bosons and the remaining
five correspond to physical Higgs bosons: three neutral and one charged pair.
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4.2.1 Yukawa sector

The Yukawa interactions in 2HDM are given by

−LY =QLΦ̃1η
U
1 UR +QLΦ1η

D
1 DR + LLΦ1η

L
1ER

+QLΦ̃2η
U
2 UR +QLΦ2η

D
2 DR + LLΦ2η

L
2ER + h.c. (4.26)

where ηFi are the Yukawa couplings for F = U,D,L. This expression for the Yukawa
couplings is given in a generic basis, if we rotate it to the Higgs basis using Eq. (4.24) we
obtain

−LY =QLH̃1κ
U
0 UR +QLH1κ

D
0 DR + LLH1κ

L
0ER

QLH̃2ρ
U
0 UR +QLH2ρ

D
0 DR + LLH2ρ

L
0ER + h.c. (4.27)

where the new Yukawa matrices are given by

κU0 = cos β ηU1 + sin β
(
e−iθηU2

)
,

κD0 = cos β ηD1 + sin β
(
eiθηD2

)
, (4.28)

κL0 = cos β ηL1 + sin β
(
eiθηL2

)
,

and

ρU0 = − sin β ηU1 + cos β
(
e−iθηU2

)
,

ρD0 = − sin β ηD1 + cos β
(
eiθηD2

)
, (4.29)

ρL0 = − sin β ηL1 + cos β
(
eiθηL2

)
.

In this basis the H2 field has no VEV, meaning that the fermion masses are generated by
the couplings to the H1 field. As in the Yukawa sector in the SM the Yukawa couplings are
in general not diagonal and thus have to be diagonalized to yield the masses. We denote the
diagonalized Yukawa matrices κF and these are obtained via a bi-unitary transformation:

κF = V F
L κ

F
0 V

F †
R . (4.30)

The bare mass of, for example, the up quark is thus given by

mu =
v√
2
κU11 (4.31)

and similar expressions yield the masses for the remaining fermions. Now, applying the
same bi-unitary transformation to the ρ-matrices does not in general diagonalize them, i.e.

ρF = V F
L ρ

F
0 V

F †
R (4.32)

are in general not diagonal. This leads to flavor changing neutral currents (FCNC) at tree
level which are heavily suppressed in the SM and by experiments. On the other hand,
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Type UR DR LR ρU ρD ρL

I + + + κU cot β κD cot β κL cot β
II + − − κU cot β −κD tan β −κL tan β

III/Y + − + κU cot β −κD tan β κL cot β
IV/X + + − κU cot β κD cot β −κL tan β

Table 2: Different types of Z2-symmetric 2HDM models where Φ1 is assumed to be Z2-even
(i.e. have Z2-charge +1) and Φ2 is assumed to be Z2-odd. The right-handed fermions’ Z2-
charges are given in the FR columns and the ρF matrices in the three last columns. Note
that with a Z2-symmetry ρF ∝ κF which of course means that they are simultaneously
diagonalizable and thus there are no FCNC.

flavor changing charged currents, are well known and, as in the SM, described by the CKM
matrix

VCKM = V U
L V

D†
L . (4.33)

One way of suppressing the FCNC is to construct the theory such that only one of the
Higgs doublet couples to each type of fermion [39]. This can be achieved by imposing a Z2

symmetry on the theory, meaning that one of the Higgs doublets and some of the fermions
are Z2-odd while the other are Z2-even. The different models are summarized in Table 2
where we also note that the Type-II model is the same Higgs sector as in the Minimal
Supersymmetric Standard Model (MSSM).

4.3 Neutrino masses

In the Standard Model neutrinos are taken to be massless, however, a series of experiments
have now established the occurrence of neutrino oscillations implying that the neutrinos
are massless. The SM must therefore be extended to include neutrino masses. One way
of doing this is to let them get masses through the Higgs mechanism. Even though the
neutrino masses are not known, one may, from cosmological data and baryon acoustic
oscillations obtain an upper limit on the sum of neutrino masses3 [40, 41]:

3∑
i=1

mi < 0.170 eV, 95% CL. (4.34)

This total mass is many orders of magnitude smaller than any of the other masses generated
by the Higgs. It may therefore be the case that the neutrino masses are generated by
a different mechanism. An appealing way of obtaining the small neutrino masses is the
seesaw mechanism. For this mechanism to work it is necessary that neutrinos are Majorana
fermions, i.e. they are their own anti-particles.

For the neutrinos to have masses generated by the Higgs mechanism there has to exist
right-handed chiral states. If these right-handed neutrinos exist they have to be sterile in

3This limit might be too restrictive depending on the exact mass generating process.

28



all SM gauge interactions. However, as first discovered by Majorana [25], it is possible
to construct mass terms using only left-handed (or only right-handed) chiral states. This

comes from the observation that the charge-conjugate field ψcL = Cψ
T

L transforms like a
right-handed particle where ψL = PLψ = 1/2(1− γ5)ψ. We can now define the Majorana
field as

ψ = ψL + ψR = ψL + Cψ
T

L = ψL + ψcL (4.35)

which has the important implication that ψc = ψ, i.e., a Majorana particle is its own
anti-particle. A Majorana mass term constructed from the left-handed chiral neutrinos is
written as

LML = −1

2
MLνcLνL + h.c. (4.36)

and similarly for a right-handed state:

LMR = −1

2
MRνcRνR + h.c. (4.37)

With both left- and right-handed Majorana neutrinos we may also have Dirac masses:

LD = −mDνRνL + h.c. = −1

2
mD(νRνL + νcLν

c
R) + h.c. (4.38)

where we have introduced the mass terms for the charge-conjugated fields. This must be
the same mass as νRνL since the total fields are νL + νcL and νcR + νR. The total mass term
for the neutrinos is now given by

Lν = LML + LMR + LD

= −1

2
MLνcLνL −

1

2
MRνcRνR −

1

2
mD(νRνL + νcLν

c
R) + h.c.

= −1

2

(
νcL νR

)(ML mD

mD MR

)(
νL
νcR

)
+ h.c. (4.39)

Since νL carries hypercharge, ML = 0 for the SM neutrinos. In this case, the mass matrix
(for one generation) is equal to

M =

(
0 mD

mD MR

)
(4.40)

which, if MR >> mD, has the two approximate eigenvalues

m1 ≈
m2
D

MR

, m2 ≈MR (4.41)

where m1 << m2. This is the seesaw mechanism which in a natural way explains the
smallness of the neutrino mass. So if there exist some heavy right-handed neutrino states, it
becomes natural for the other neutrino states to be extremely light. The physical neutrinos
may now be written

ν ≈ (νL + νcL)− mD

MR

(νR + νcR), N ≈ (νR + νcR) +
mD

MR

(νL + νcL) (4.42)
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where the light physical neutrino, ν, almost entirely consists of the Majorana field con-
structed from the left-handed states, νL + νcL, whereas the heavy physical neutrino, N ,
almost entirely consists of the Majorana field constructed by the right-handed states. This
means that the physical states are Majorana particles. The above discussion gener-
alizes directly to multiple neutrino flavors with mD and MR becoming matrices.

Important for the possibility of Majorana masses is that the fields carry no quantum
number that has to be conserved. The only quantum numbers that are truly conserved in
the SM are the gauge charges, so for

νcRνR =
νR νcR

(4.43)

to be a fundamental vertex, νR must have all gauge charges equal to zero. However, we
will later use these right-handed states to cancel gauge anomalies by giving them a charge
under a new gauge group U(1)′. This means that this fundamental vertex will not conserve
this new charge; the flavon charge. If νR has integer flavon charge, we may couple it to
the Froggatt-Nielsen mechanism. This means that νcRνR would be a low-energy effective
operator comming from something looking like:

νR FL FR F ′L F ′R F
′c
R F

′c
L

F c
R F c

L νcR
Φ′ Φ′

S S

Φ
′

Φ
′

S S

where νR has flavon charge -2 and turns into a νcR with flavon charge 2. In the middle there
is a true Majorana fermion; the Froggat-Nielsen fermion F ′R, whose mass we denote MFN .

Later we will use three right-handed neutrinos νiR, i = 1, 2, 3, with integer flavon charges
νi. The effective Majorana mass matrix is then given by

M ij
R = MFNε

|νi|+|νj |, i, j = 1, 2, 3 (4.44)

where ε = 〈S〉 /ΛFN .
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5 Extending the SM gauge group

Gauge symmetries, both “global” (i.e. space-time independent) and “local” (space-time
dependent) became key issues in elementary particles. [...] The guiding principles in this

work were symmetry and elegance of the magnificent edifice that we call our universe.
And the most important symmetry was gauge symmetry.

-Gerard ’t Hooft [42]

Extending the SM gauge group SU(3)QCD × SU(2)L × U(1)Y with an additional spon-
taneously broken U(1)′ symmetry generates a new electrically neutral color-singlet gauge
boson Z ′. In general, when several U(1) groups are present kinetic mixing between the
gauge bosons becomes possible, however, at tree-level this mixing can be rotated away at
any given scale. Thus, kinetic mixing only has to be dealt with at loop-level.

The way the extra gauge group was added above is not unique; there are two op-
tions for the group structure and the symmetry breaking. One way is to start with the
gauge group SU(3)QCD × SU(2)W × U(1)Y × U(1)′ and break U(1)′ at some high scale
while breaking SU(3)QCD × SU(2)W × U(1)Y → SU(3)QCD × U(1)EM at the electroweak
symmetry breaking (EWSB) scale as in the SM. Another way is to consider the group
SU(3)QCD×SU(2)W ×U(1)1×U(1)2 and first break U(1)1×U(1)2 → U(1)Y at some high
scale and then proceed by electroweak symmetry breaking (EWSB). However, these two
possibilities are always equivalent by redefining the gauge fields and couplings [43].

Here we follow ref. [43], generalized to two Higgs doublets. The new gauge group U(1)′

is spontaneously broken by a complex scalar singlet S acquiring a VEV vS. We will later
take this field to be the flavon field mediating the Froggatt-Nielsen (FN) mechanism [2].
By redefining the U(1)′ coupling gZ we may set the charge of S under U(1)′ to be 1. We
also extend the Higgs sector to contain two Higgs doublets Φ1,2 with charges H1,2 under
U(1)′, so we have a 2HDM as discussed in Section 4.2. After symmetry breaking we thus
have mixing between Z and Z ′ bosons. The kinetic terms for S and Φ1,2 are obtained from
the covariant derivatives;∣∣∣∣(∂µ − ig2W µ − ig

′

2
Bµ
Y − iH1,2

gZ
2
Bµ
Z

)
Φ1,2

∣∣∣∣2 +
∣∣∣(∂µ − igZ

2
Bµ
Z

)
S
∣∣∣2 (5.1)

where W µ, Bµ
Y and Bµ

Z are the gauge fields with couplings g, g′ and gZ associated with
SU(2)W , U(1)Y and U(1)′ respectively. Denoting the VEV for the Higgs doublets v1 and
v2 respectively, the mass terms for the different fields, except W±, are

v21
8

(
gW 3µ − g′Bµ

Y −H1gZB
µ
Z

)2
+
v22
8

(
gW 3µ − g′Bµ

Y −H2gZB
µ
Z

)2
+
v2S
8
g2ZB

µ
ZBZµ (5.2)

after EWSB where v21 + v22 = (246GeV)2 . Introducing the quotient tan β = v2/v1 makes
it possible to express the Higgs’ VEVs as v1 = v cos β and v2 = v sin β. The mass-square
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matrix, which is twice the above expression, may now be written as:

M2 =
g2v2

4 cos θW

× U †
0 0 0

0 1 − cos2 β(H1 +H2 tan2 β)tz cos θW
0 − cos2 β(H1 +H2 tan2 β)tz cos θW (r + cos2 β[H2

1 +H2
2 tan2 β])t2z cos2 θW

U

(5.3)

where

U =

 cos θW sin θW 0
− sin θW cos θW 0

0 0 1

 (5.4)

and tz = gZ/g, tan θW = g′/g, r = v2S/v
2. If either of the Higgs have non-zero z1,2 the

diagonalization of the mass-square matrix will cause Z − Z ′ mixing. This mixing can be
characterized by an angle θ′. Together with the Weinberg angle θW defined above, the
gauge fields can be written in terms of the physical fields as Bµ

Y

W 3µ

Bµ
Z

 =

cos θW − sin θW cos θ′ sin θW sin θ′

sin θW cos θW cos θ′ − cos θW sin θ′

0 sin θ′ cos θ′

AµZµ

Z ′µ

 (5.5)

where A is the massless photon, Z the observed massive boson and Z ′ the unobserved
heavy boson. From the diagonalization we get that the mixing angle must satisfy

tan 2θ′ =
2 cos2 β(H1 +H2 tan2 β)tz cos θW

(r + cos2 β[H2
1 +H2

2 tan2 β])t2z cos2 θW − 1
(5.6)

and that the massive bosons’ masses are given by:

MZ,Z′ =
gv

2 cos θW

×
[

1

2
[(r + cos2 β[H2

1 +H2
2 tan2 β])t2z cos2 θW + 1]± cos2 β(H1 +H2 tan2 β)tz cos θW

sin 2θ′

]1/2
.

(5.7)

The MZ mass is given by taking the minus sign in the above expression. If (r+cos2 β[H2
1 +

H2
2 tan2 β])t2z cos2 θW > 1 then MZ′ > MZ and in the opposite case MZ′ < MZ .

We see here that the mixing disapears in the limit r >> 1, i.e. v2S >> v2, or in the
limit tz << 1, i.e. gZ << g, and in this case MZ′ = gZvS/2.

5.1 Running of the coupling constant

An important theoretical constraint on Z ′ physics is the possible existence of low-lying Lan-
dau poles. The renormalization group equation (RGE) at one-loop for the U(1)′ coupling
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gZ is
dαZ

d log µ2
= bα2

Z (5.8)

where αZ(µ2) = g2Z(µ2)/4π and b is the beta function containing the charges:

b =
1

4π

[
2

3

3∑
i=1

(
Q2
i + u2i + d2i + L2

i + e2i + ν2i
)

+
1

3

(
2

2∑
i=1

H2
i + 12

)]
(5.9)

where we sum all the fermion and Higgs charges and the term 12 is from the flavon [44].
Solving the RGE yields a Landau pole at

ΛLP = MZ′ exp

[
1

2bαZ(M2
Z′)

]
. (5.10)

This contrains the allowed flavon charges for given Z ′ parameters.
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6 Examples of models

The first point is that the enormous usefulness of mathematics in the natural sciences is
something bordering on the mysterious and that there is no rational explanation for it.

Second, it is just this uncanny usefulness of mathematical concepts that raises the
question of the uniqueness of our physical theories.

-Eugene Wigner [45]

In this section we give examples of different models, both anomalous and anomaly-free,
which to varying degree reproduce the observed masses and mixings. Using Dirac neutrinos
in Section 6.3.2 we manage to find an anomaly-free model describing all the observed masses
and mixing except mixing with the third generation in the quark sector.

To derive the Froggatt-Nielsen constraints we use the fermion masses at the Z-mass
from ref. [46]:

mu = 1.27 MeV ∼ ε7, md = 2.9 MeV ∼ ε7, ms = 55 MeV ∼ ε5,

mc = 0.62 GeV ∼ ε3, mb = 2.9 GeV ∼ ε2, mt = 172 GeV ∼ ε0, (6.1)

me = 0.5 MeV ∼ ε8, mµ = 103 MeV ∼ ε5, mτ = 1746 MeV ∼ ε3.

Since we are using a 2HDM model the VEVs that go together with the ε factors are
not 174 GeV as in the SM but rather 〈Φ1〉 = cos β 〈Φ〉 and 〈Φ2〉 = sin β 〈Φ〉 where Φ is
the SM Higgs doublet and Φ1,2 the 2HDM doublets. If we take tan β = 1, then cos β =
sin β = 1/

√
2 ≈ 0.7 which does not change the powers of ε from the SM. We will assume

this choice of tan β throughout this section. This is in no way a limitation of the method,
one may use any tan β as one likes, as long as the powers of ε are adjusted accordingly.

6.1 Anomaly-free model with irrational charges

In this model we only use the SM particle content together with two Higgs doublets. For
the theory to be anomaly-free the U(1)′ charges of the fermions must satisfy the anomaly
conditions in Eq. (2.66), for the model at hand they are given by:

A1′1′1 :
∑3

j=1(Q
2
j − 2u2j + d2j − L2

j + e2j) = 0

A1′11 :
∑3

j=1(Qj − 8uj − 2dj + 3Lj − 6ej) = 0

A331′ :
∑3

j=1(2Qj − uj − dj) = 0

A221′ :
∑3

j=1(3Qj + Lj) = 0

A1′1′1′ :
∑3

j=1(6Q
3
j − 3u3j − 3d3j + 2L3

j − e3j) = 0

Agg1′ :
∑3

j=1(2Lj − ej) = 0

(6.2)
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The Froggatt-Nielsen conditions are then given by:

mu : (Q1 − u1 +H2) + 7 = 0

mc : (Q2 − u2 +H2)− 3 = 0

mt : (Q3 − u3 +H2) = 0

md : (Q1 − d1 −H2)− 7 = 0

ms : (Q2 − d2 −H2) + 5 = 0 (6.3)

mb : (Q3 − d3 −H2)− 2 = 0

me : (L1 − e1 −H1)− 8 = 0

mµ : (L2 − e2 −H1)− 5 = 0

mτ : (L3 − e3 −H1)− 3 = 0

Here we have imposed a lepton specific Z2 symmetry on the two Higgs doublets. This
symmetry serves two purposes; first it removes FCNCs (Section 4.2) and secondly, it ensures
that the sum of all the variables in the quark mass conditions equals the SU(3)×SU(3)×
U(1)′ anomaly A331′ . The sign of the charges for the quarks are then chosen so that the
sum of all the coefficients equals zero:

+ 7− 3− 7 + 5− 2 = 0. (6.4)

With these choices, A331′ is naturally satisfied and thus becomes redundant. This might
seem convenient at first, but it is actually necessary to impose the lepton specific Z2

symmetry and choose the signs of the charges in this way for the ideal not to define an
empty variety. Lastly, we have to ensure that the charges reproduce the CKM matrix (Eq.
(4.9)), this is done by (Eq. (4.20)):

CKM1 : Q2 −Q1 − 1 = 0

CKM2 : Q3 −Q2 − 2 = 0

To find a possible set of charges that satisfies these 17 constraints we calculate the Gröbner
basis of the corresponding ideal using Sage [47]:

I = 〈A1′1′1,A1′11,A331′ ,A221′ ,A1′1′1′ ,Agg1′ ,mu,mc,mt,md,ms,mb,

me,mµ,mτ ,CKM1,CKM2〉
= 〈Q1 − 1/3 ·H2 + 8/9, Q2 − 1/3 ·H2 − 1/9, Q3 − 1/3 ·H2 − 19/9,

u1 − 4/3 ·H2 − 55/9, u2 − 4/3 ·H2 + 26/9, u3 − 4/3 ·H2 − 19/9,

d1 + 2/3 ·H2 + 71/9, d2 + 2/3 ·H2 − 46/9, d3 + 2/3 ·H2 − 1/9,

L1 − 2/3 · e3 − 1/3 ·H2 − 23/9, L2 + 5/3 · e3 + 13/3 ·H2 + 50/9, L3 − e3 −H2 + 1,

e1 − 2/3 · e3 + 2/3 ·H2 + 13/9, e2 + 5/3 · e3 + 16/3 ·H2 + 59/9,

e33 + 6 · e23 ·H2 + 317/30 · e23 + 12 · e3 ·H2
2 + 634/15 · e3 ·H2 + 1777/90 · e3+

8 ·H3
2 + 634/15 ·H2

2 + 1777/45 ·H2 − 6172/45, H1 −H2 + 4
〉

(6.5)
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Q1 -8/9 d1 -71/9 e1
2
3
e3 − 17

Q2 1/9 d2 46/9 e2 −5
3
e3 + 25

Q3 19/9 d3 1/9 e3 Eq. (6.8)
u1 55/9 L1

2
3
e3 + 23

9
H1 -4

u2 -26/9 L2 −5
3
e3 − 50

9
H2 0

u3 19/9 L3 e3 − 1 – –

Table 3: Irrational charges obtained for the SM with 2HDM and an additional U(1) gauge
symmetry. This set of charges is free from anomalies and satisfies the Froggatt-Nielsen
conditions for mass hierarchies and CKM matrix..

This ideal defines a one-dimensional variety which in principle could contain Q-rational
points. To check if this is the case, we study the second to last equation in the Gröbner
basis:

e33 + 6 · e23 ·H2 + 317/30 · e23 + 12 · e3 ·H2
2 + 634/15 · e3 ·H2 + 1777/90 · e3+

8 ·H3
2 + 634/15 ·H2

2 + 1777/45 ·H2 − 6172/45 = 0. (6.6)

This is a non-singular curve of genus one. The Mordell-Weil theorem (Theorem 2) tells us
that the set of K-rational points on Abelian varieties forms a finitely generated group. The
only one-dimensional Abelian varieties are the elliptic curves, and a curve is elliptic if and
only if it has genus one and one rational point. However, the above curve is non-elliptic and
we can therefore not find any rational charges. Since we have no hope of finding rational
points in this variety we might as well put H2 = 0 which simplifies the cubic equation to

e33 + 317/30 · e23 + 1777/90 · e3 − 6172/45 = 0 (6.7)

This equation has three algebraic solutions but only one real, the real solution is:

e3 =

(
11

16200

√
485967667

√
15 +

10871773

182250

) 1
3

+

47179

8100
(

11
16200

√
485967667

√
15 + 10871773

182250

) 1
3

− 317

90

≈ 2.56622573989773 (6.8)

All the other charges are either fractions or expressed in terms of e3, see Table 3. Irrational
charges are not frequently discussed in BSM models. This is because it becomes difficult
to embed them in a larger gauge group in a GUT [48]. But if we do not consider what
possible GUT this theory may come from, irrational charges are perfectly valid.

6.2 Anomalous model with rational charges

If the reader find the above result with irrational charges unsatisfactory, there are two ways
to get rid of them; we either add more particles (e.g. right-handed neutrinos) or we lift
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one of the anomaly conditions, of which we will do the latter in this section. Lifting one
of the anomaly conditions comes at a high price, there will now be an energy scale where
unitarity breaks down. To maximize the chance of obtaining rational solutions we remove
the cubic anomaly: A1′1′1′ .

4 This yields an effective field theory below the scale [49, 50]

MZ′

(
64π3

|g3ZA1′1′1′ |

)
(6.9)

where MZ′ is the mass of the new neutral boson and gZ its coupling. Assuming that
the Froggatt-Nielsen mechanism happens at a scale ∼ MZ′ , we need the factor in the
parenthesis to be bigger than one for the model to be valid.

Doing the calculations as above; with SM fermion content and two Higgs doublets
with lepton specific Z2 symmetry, the allowed charges form a two-dimensional variety
parametrized by e3 and H2:

〈Q1 − 1/3 ·H2 + 8/9, Q2 − 1/3 ·H2 − 1/9, Q3 − 1/3 ·H2 − 19/9,

u1 − 4/3 ·H2 − 55/9, u2 − 4/3 ·H2 + 26/9, u3 − 4/3 ·H2 − 19/9,

d1 + 2/3 ·H2 + 71/9, d2 + 2/3 ·H2 − 46/9, d3 + 2/3 ·H2 − 1/9,

L1 − 2/3 · e3 − 1/3 ·H2 − 23/9, L2 + 5/3 · e3 + 13/3 ·H2 + 50/9, L3 − e3 −H2 + 1,

e1 − 2/3 · e3 + 2/3 ·H2 + 13/9, e2 + 5/3 · e3 + 16/3 ·H2 + 59/9, H1 −H2 + 4〉 (6.10)

Every point on this variety given by rational H2 and e3 is clearly rational, we thus have
plenty of rational charges satisfying the FN conditions and all but the cubic anomaly. The
only constraint left is from possible unitarity breaking, the region of allowed charges is seen
in Fig. 4.

6.3 Anomaly-free model with Dirac neutrinos

6.3.1 No neutrino mixing

Instead of breaking one of the anomaly conditions we can add more fermions and try to
find rational charges that way. A natural choice, that also allows us to incorporate massive
neutrinos, is to add three right-handed neutrinos. In this way we may give the neutrinos
Dirac masses just as all the other fermions in the SM. Since right-handed neutrinos have
to be sterile with respect to the SM gauge interactions they only enter in the cubic and
gravitational anomaly:

A1′1′1′ :
3∑
j=1

(6Q3
j − 3u3j − 3d3j + 2L3

j − e3j − ν3j ) = 0

Agg1′ :
3∑
j=1

(2Lj − ej − νj) = 0 (6.11)

4One could also argue that this anomaly should not be included in the first place. Since it only contains
the unobserved Z ′ boson there could very well be particles only coupling to this boson and not to any SM
bosons, we would then have no idea what the anomaly condition actually would look like [6].
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Figure 4: The logarithm of the anomaly breaking parameter with gZ = 0.5. If this value
is bigger than zero unitarity breaks above the FN scale and the corresponding charges are
a good choice for the model.

The smallness and hierarchy of the neutrino masses are explained by a large number of
flavon insertions. Assuming normal hierarchy, mν1 << mν2 < mν3 we get the masses
mν3 ≈ 0.0506 eV and mν2 ≈ 0.0086 eV with mν1 arbitrary as long as it is much smaller
than the other two. These masses corresponds to 18 and 19 flavon insertion for mν3 and
mν2 respectively. We impose the FN mass constraints as:

mν1 : (L1 − ν1 +H1)− 21 = 0

mν2 : (L2 − ν2 +H1) + 19 = 0 (6.12)

mν3 : (L3 − ν3 +H1) + 18 = 0

The choice of 21 insertions for m1 is not arbitrary. Previously we chose the signs of the
quarks’ flavon charges such that the anomaly with SU(3) became redundant. Similarly
here, we chose the signs of the leptons’ charges and m1 such that the gravitational anomaly
becomes redundant.

Introducing neutrino masses means that we should also introduce neutrino mixing.
However, the constraints needed to reproduce the PMNS matrix conflicts with the con-
straint for the CKM matrix. In this section we will therefore not consider the PMNS
matrix but continue to ensure the CKM matrix. In the next section however, we will only
consider Cabibbo mixing in the quark sector and this allows for the PMNS matrix to be
reproduced.

Doing the calculation with SM particle content plus three right-handed neutrinos with
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two Higgs doublets with lepton specific Z2 symmetry yields the following variety of charges:

〈Q1 − 1/3 ·H2 + 1/8 · ν2 + 5/24ν3 − 3, Q2 − 1/3 ·H2 + 1/8 · ν2 + 5/24 · ν3 − 4,

Q3 − 1/3 ·H2 + 1/8 · ν2 + 5/24 · ν3 − 6,

u1 − 4/3 ·H2 + 1/8 · ν2 + 5/24 · ν3 − 10, u2 − 4/3 ·H2 + 1/8 · ν2 + 5/24 · ν3 − 1,

u3 − 4/3 ·H2 + 1/8 · ν2 + 5/24 · ν3 − 6,

d1 + 2/3 ·H2 + 1/8 · ν2 + 5/24 · ν3 + 4, d2 + 2/3 ·H2 + 1/8 · ν2 + 5/24 · ν3 − 9,

d3 + 2/3 ·H2 + 1/8 · ν2 + 5/24 · ν3 − 4,

L1 +H2 − 1/8 · ν2 − 7/8 · ν3 + 10, L2 +H2 − ν2 + 15, L3 +H2 − ν3 + 14,

e1 + 2 ·H2 − 1/8 · ν2 − 7/8 · ν3 + 14, e2 + 2 ·H2 − ν2 + 16, e3 + 2 ·H2 − ν3 + 13,

H1 −H2 + 4, ν1 − 1/8 · ν2 − 7/8 · ν3 + 35,

ν22 − 406/867 · ν2ν3 − 5720/867 · ν2 − 461/867 · ν23 + 16328/289 · ν3 − 239488/289
〉

(6.13)

This ideal defines a two-dimensional variety of allowed charges. To check if there are any
rational charges we look at the last equation in the Gröbner basis:

ν22 − 406/867 · ν2ν3 − 5720/867 · ν2 − 461/867 · ν23 + 16328/289 · ν3 − 239488/289 = 0
(6.14)

This equation defines a non-singular curve of genus zero in the ν2ν3-plane. For curves of
genus zero defined over Q there are only two options when it comes to the existence of
rational points, either there are none, or the curve is isomorphic to the projective line P1.
Such an isomorphism will always yield a rational parameterization of the curve. In this
case, all rational points on the above curve (Fig. 5) is described by

(ν2(t), ν3(t)) =

(
−461t2 + 48984t− 718464

1328t− 43264
,
867t2 + 5720t− 718464

1328t− 43264

)
. (6.15)

The allowed rational charges are now described by two parameters: t in the above equation
and one of the Higgs charges, say H2 for definiteness. This model generates the mass
matrices:

mu =

ε7 ε2 ε3

ε6 ε3 ε2

ε4 ε5 ε0

 , md =

 ε7 ε6 ε1

ε8 ε5 ε0

ε10 ε3 ε2

 ,

me =

 ε8 ε|10−
7
8
(ν2−ν3)| ε|7+

1
8
(ν2−ν3)|

ε|3+
7
8
(ν2−ν3)| ε5 ε|2+(ν2−ν3)|

ε|4−
1
8
(ν2−ν3)| ε|6−(ν2−ν3)| ε3

 , (6.16)

mν =

 ε21 ε|−14−
7
8
(ν2−ν3)| ε|−14+

1
8
(ν2−ν3)|

ε|16+
7
8
(ν2−ν3)| ε19 ε|−19+(ν2−ν3)|

ε|17−
1
8
(ν2−ν3)| ε|−18−(ν2−ν3)| ε18

 .
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Figure 5: The charges for ν2 and ν3 given by Eq. (6.15).

The off-diagonal elements in the lepton matrices have in general non-integer exponents and
are in that case zero. For some specific choice of t however, some of them may be integers,
but there is not enough freedom to reproduce the PMNS matrix.

There are two potential problems we have yet to address; large off-diagonal elements
in the mass matrices and Landau poles for gZ . A large off-diagonal element, like the 23-
element ε0 in md above, will have too much weight when calculating the masses which
causes the Froggatt-Nielsen mechanism to not work properly. That is, what is assigned to
be the masses in the input might not be the mass eigenstates of the generated matrices.
This can be dealt with by the gij factors in the matrices. Arguably, one now re-introduces
some fine tuning in the theory, but this will still be much smaller of an adjustment than
needed in the SM.

The energy scale of the Landau pole was derived in Eq. (5.10). For t = 0, the log-log
of the Landau pole normalized to the Z ′ mass is shown in Fig. 6. We see in this figure
that for couplings gZ < 0.1 the Landau pole poses no problem.

6.3.2 Neutrino mixing with only Cabibbo mixing

As mentioned earlier it is difficult to impose constraint to ensure recreation of both the
CKM and PMNS matrix. Since all elements in the PMNS matrix are relatively large while
some elements in the CKM matrix are very small (Eq. (4.9)) we choose here to only impose
Cabibbo mixing in the quark sector and rather ensuring the entire PMNS matrix. The
lack of hierarchy in the PMNS matrix translates to the constraints

PMNS1 : L1 − L2 = 0

PMNS2 : L2 − L3 = 0. (6.17)
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Figure 6: The energy scale of the Landau pole normalized to the Z ′ mass for Dirac neutrinos
with no recreation of the PMNS matrix and t = 0 in Eq. (6.15). Note that the line at 0
corresponds to ΛLP = 2.7MZ′ while the line at 5 corresponds to ΛLP = 2.85 · 1064MZ′ . For
couplings around 0.1 and smaller the Landau pole will never cause a problem.

Imposing this and only CKM1 gives the following Gröbner basis:

〈Q1 − 1/3 ·H2 + 2927/5484, Q2 − 1/3 ·H2− 2557/5484, Q3 − 1/3 ·H2 + 16637/5484,

u1 − 4/3 ·H2 − 35461/5484, u2 − 4/3 ·H2 + 13895/5484, u3 − 4/3 ·H2 + 16637/5484,

d1 + 2/3 ·H2 + 41315/5484, d2 + 2/3 ·H2 − 29977/5484, d3 + 2/3 ·H2 + 27605/5484,

L1 +H2 − 5669/1828, L2 +H2 − 5669/1828, L3 +H2 − 5669/1828,

e1 + 2 ·H2 + 1643/1828, e2 + 2 ·H2 − 3841/1828, e3 + 2 ·H2 − 7497/1828,

H1 −H2 + 4, ν1 + 40031/1828, ν2 − 33089/1828, ν3 − 31261/1828〉 (6.18)

which is parametrized by one of the Higgs charges, say H2 for definiteness. This model
generates the mass matrices:

mu =

ε7 ε2 0
ε6 ε3 0
0 0 ε0

 , md =

ε7 ε6 0
ε8 ε5 0
0 0 ε2


me =

ε8 ε5 ε3

ε8 ε5 ε3

ε8 ε5 ε3

 , mν =

ε21 ε19 ε18

ε21 ε19 ε18

ε21 ε19 ε18

 . (6.19)

The Landau pole, Eq. (5.10), for this set of charges is shown in Fig. 7.
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Figure 7: The energy scale of the Landau pole normalized to the Z ′ mass with only Cabibbo
mixing.

6.4 Anomaly-free model with Majorana neutrinos

To be able to give the neutrinos Majorana masses using the Froggatt-Nielsen mechanism,
it is necessary for the right-handed neutrino fields to have integer charges, see Section 4.3.
We use a setup very similar to the above case; SM particle content with three right-handed
neutrino fields and two Higgs doublets with a lepton specific Z2 symmetry. Here we assume
that the Dirac masses for the neutrinos are of the same magnitude as the other particles’
and with normal hierarchy:

mν1 : (L1 − ν1 +H1)− 3 = 0

mν2 : (L2 − ν2 +H1) + 2 = 0 (6.20)

mν3 : (L3 − ν2 +H1) + 1 = 0

and we also change the charged lepton mass conditions to

me : (L1 − e1 −H1) + 8 = 0

mµ : (L2 − e2 −H1)− 5 = 0 (6.21)

mτ : (L3 − e3 −H1)− 3 = 0

so that the coefficients in the neutrino and charged lepton conditions sum to zero individ-
ually. This, of course, also implies that they sum to zero together which means that the
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gravitational anomaly becomes redundant. The Gröbner basis for this ideal is:

〈Q1 + 1/3 ·H2 + 13/9 · ν1 − 13/18 · ν2 − 7/18 · ν3 + 89/9,

Q2 + 1/3 ·H2 + 13/9 · ν1 − 13/18 · ν2 − 7/18 · ν3 + 80/9,

Q3 + 1/3 ·H2 − 23/9 · ν1 + 16/9 · ν2 + 10/9 · ν3 − 157/9,

u1 + 4/3 ·H2 + 13/9 · ν1 − 13/18 · ν2 − 7/18 · ν3 + 152/9,

u2 + 4/3 ·H2 + 13/9 · ν1 − 13/18 · ν2 − 7/18 · ν3 + 53/9,

u3 + 4/3 ·H2 − 23/9 · ν1 + 16/9 · ν2 + 10/9 · ν3 − 157/9,

d1 − 2/3 ·H2 + 13/9 · ν1 − 13/18 · ν2 − 7/18 · ν3 + 26/9,

d2 − 2/3 ·H2 + 13/9 · ν1 − 13/18 · ν2 − 7/18 · ν3 + 125/9,

d3 − 2/3 ·H2 − 23/9 · ν1 + 16/9 · ν2 + 10/9 · ν3 − 175/9,

L1 −H2 − ν1 − 13/3, L2 −H2 − ν2 + 2/3, L3 −H2 − ν3 − 1/3,

e1 − 2 ·H2 − ν1 − 41/3, e2 − 2 ·H2 − ν2 + 13/3, e3 − 2 ·H2 − ν3 + 4/3,

H1 −H2 − 4/3,

ν21 − 126/95 · ν1ν2 − 82/95 · ν1ν3 − 101/285 · ν1 + 77/190 · ν22 + 61/95 · ν2ν3−
113/285ν2 + 27/190 · ν23 − 88/57 · ν3− 4722/95

〉
(6.22)

which defines a three-dimensional variety. To find integer points on this variety we look at
the last equation in the Gröbner basis (cleared to integer coefficients):

570ν21 − 756ν1ν2 − 492ν1ν3 − 202ν1 + 231ν22 + 366ν2ν3 − 226ν2+

81ν23 − 880ν3 − 28332 = 0. (6.23)

This is a surface, to use our methods developed for curves we fix ν3 and then systematically
vary it.

For ν3=0 the resulting curve is not parameterizable over the rationals, but over the
finite field extension Q(

√
1246), so there are not even any rational points on this curve.

For ν3=1 there is still only a parameterization over Q(
√

1246). However, for ν3 an
integer greater than one there seems to always exist integer solutions. These will be curves
of genus 0 with two point evaluations at infinity, by Theorem 3 there not only exist integer
solutions but actually infinitely many which may be described by a parameterization. Even
though there exists infinitely many integer solutions the smallest are usually of magnitude
1010 (with an accidental exception for ν1 = −17, ν2 = −43, ν3 = 3) and therefore not so
interesting from the viewpoint of a physicist.

Going now in the other direction, let us start with ν3 = −1, this curve is only parame-
terizable over Q(

√
1246). For ν3 < −1 there always exists a rational parameterization, but

integer points only exist for even integers. These integer solutions are usually of the order
1010 and above. One exceptional case is ν1 = −16, ν2 = −10, ν3 = −10 which defines the
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following Gröbner basis:

〈Q1 + 1/3 ·H2 − 19/9, Q2 + 1/3 ·H2 − 28/9, Q3 + 1/3 ·H2 − 49/9,

u1 + 4/3 ·H2 + 44/9, u2 + 4/3 ·H2 − 55/9, u3 + 4/3 ·H2 − 49/9,

d1 − 2/3 ·H2 − 82/9, d2 − 2/3 ·H2 + 17/9, d3 − 2/3 ·H2 − 67/9,

L1 −H2 + 35/3, L2 −H2 + 32/3, L3 −H2 + 29/3,

e1 − 2 ·H2 + 7/3, e2 − 2 ·H2 + 43/3, e3 − 2 ·H2 + 34/3,

H1 −H2 − 4/3, ν1 + 16, ν2 + 10, ν3 + 10〉 (6.24)

One of the Higgs charges is still a free parameter, we may for example choose this charge
so that the entire lepton sector has integer charges. Take for example H1 = 0, then the
complete set of charges is:

Q1 = 23/9, Q2 = 32/9, Q3 = 53/9,

u1 = −28/9, u2 = 71/9, u3 = 65/9,

d1 = 74/9, d2 = −25/9, d3 = 59/9,

L1 = −13, L2 = −12, L3 = −11, (6.25)

e1 = −5, e2 = −17, e3 = −14,

ν1 = −16, ν2 = −10, ν3 = −10

H1 = 0, H2 = −4/3

For this model the mass matrices are:

mu =

ε7 ε4 0
ε8 ε3 0
0 0 ε0

 , md =

ε7 ε4 0
ε6 ε5 0
0 0 ε2

 me =

ε8 ε4 ε1

ε7 ε5 ε2

ε6 ε6 ε3

 ,

mD =

ε3 ε3 ε3

ε4 ε2 ε2

ε5 ε1 ε1

 , M =

ε32 ε26 ε26

ε26 ε20 ε20

ε26 ε20 ε20

 , (6.26)

where mu and md represent the quarks, me the charged leptons, mD and M the Dirac resp.
Majorana mass matrices for the neutrinos.

Note that ε20 ∼ 10−14, so even if the Majorana mass were naturaly at the GUT scale,
the large number of flavon insertions forces the magnitude down to electroweak energies.
This means that there will not be a seesaw mechanism in this model.

In this model we have no handles on the PMNS matrix. In this example we were
also unable to use the seesaw mechanism to explain the small neutrino mass scale, the
Majorana masses was even smaller than the Dirac masses. What this example teaches us
is that there might exist integer solutions for the flavon charges, allowing for Majorana
masses, but these integers are usually so large so that they are not of interest. There might
be accidental smaller integer solutions, but even these yield small Majorana masses and
thus no seesaw mechanism.
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7 Conclusions and Outlooks

There’s a fine line between wrong and visionary. Unfortunately you have to be a visionary
to see it.

-Sheldon Cooper [51]

In this thesis we have explained the observed mass hierarchies and mixings using a gauged
U(1) Froggatt-Nielsen mechanism and two Higgs doublets. Using a gauge symmetry means
that the flavon charges not only have to generate the observed masses but also cancel all
gauge anomalies. This leads to a set of polynomial equations for the flavon charges to
satisfy. We impose a Z2 symmetry on the Higgs doublets to remove FCNCs. The only
choice of Z2 symmetry consistent with the anomaly and mass constraints is a lepton specific
Z2 symmetry. We also studied the position of the Landau pole for the new U(1) coupling
to make sure the model not becomes strongly coupled below the Froggatt-Nielsen scale. To
find charges that satisfies all the constraints from anomalies and reproduces the observed
masses and mixings, methods from algebraic geometry was used.

This succeeded very well, especially with Dirac neutrinos. For this case, the neutrino
mass differences and mixing angles, as well as the overall smallness of the neutrino masses,
could be explained. Also the masses for the SM fermions were completely reproduced
using only Cabibbo mixing in the quark sector. Since it was difficult to include a seesaw
mechanism in this framework, only giving the neutrinos Dirac masses is the minimalistic
most natural way of explaining the observed smallness and hierarchy.

There are many possible ways one could continue this work. One could, for example,
use different seesaw mechanisms or use some other additional gauge symmetry. However,
the most interesting direction to go is probably to use our parametrized solutions for the
charges and try to embed them into a larger GUT group, like for example SO(10).

What to really take away from this thesis is the extreme usefulness and power of
algebraic methods when dealing with these kind of problems. This thesis will hopefully
serve as a useful guide in how to use algebraic geometry when solving problems related to
anomalies and charges in, for example, BSM physics.
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