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Abstract 

Title: Automatic Gleason Classification of Prostate Cancer – Classification of Small Regions 

Author: Kasper Tall; Advisor: Anders Heyden; Assistant advisor: Ida Arvidsson 

Purpose: To classify the severity of a case of prostate cancer, physicians use the 10-grade 

Gleason score. The purpose of this Master’s thesis is to study how small dimensions of image 

crops affect the Gleason 5-classification capability of a machine learning system. In this 

thesis, two aspects of dimensionality have been taken into account when creating image crops, 

the image crop size and the degree of magnification.  

Methodology:  70 x 70 and 128 x 128 pixel images, both with a 40X magnification, were 

cropped from larger tissue images annotated at Skåne University Hospital (SUS), creating one 

data set for each image crop size. The networks trained on these data sets were as follows: a 

CNN-architecture, a CNN-architecture with an Inception-v4-module at the end, a ResNet-

architecture, and a CNN-architecture with an Inception-ResNet-v1-module at the end. 

Results: The ResNet-architectures performed the best on the created data sets, achieving 

mean 5-fold cross-validation accuracies of 91.9% and 96.5 % for the 70 x 70 and 128 x 128 

pixel images respectively. However, these architectures experienced temporary drops in 

accuracy. Furthermore, the modified CNN-networks could not be determined to definitely 

outperform the base CNN-networks. 

Conclusion: The results indicated that image crops of sizes larger than 70 x 70 when using a 

magnification of 40X were preferable for PCa-classification purposes. However, the 

classification effects of using different architecture designs were inconclusive.  

 

Keywords: Prostate cancer, Gleason grading, CNN, Inception, ResNet, Inception-ResNet  

 

  



3 

 

Populärvetenskaplig sammanfattning 

I medicinsk bildanalys används bilder föreställande bland annat cellprover för att träna 

program att känna igen vissa mönster, så kallad maskininlärning. Programmen, som kan 

variera i sin design, kan därefter användas för att automatiskt avgöra om prover visar på 

förekomst av allvarliga sjukdomar, så kallad klassificering. Programdesignen som används 

kallas även för arkitektur. Prostatacancer, en av de vanligaste formerna av cancer hos män, 

har tidigare studerats med hjälp av många olika maskininlärningstekniker. Men hur stora 

bilder behöver man egentligen för att träna sådana program? Denna fråga är värd att besvara 

för att kunna minska minnesåtgången och träningstiden för maskinlärningsprogram. 

I detta examensarbete har automatisk mönsterigenkänning av prostatacancerbilder av olika 

storlekar med 40 gångers förstoring studerats. De bilder som har använts har bestått av 

infärgade snitt av biopsiprover. Prostatacancerprover extraherade genom nålprover bedöms på 

en femgradig skala. Som ett första steg skapades därför mindre urklipp ur större 

prostatacancerbilder med olika grader av cancerspridning. Dessa bilder delades in i två 

kategorier, Gleason 5 (den mest elakartade typen av prostatacancer), respektive icke-Gleason 

5. För att träna maskininlärningsprogram med olika design på olika sorters bilder skapades 

även roterade och speglade varianter av urklippen. I syfte att undersöka storlekens påverkan 

på automatisk prostatacancergradering skapades uppsättningar av bilder med storlek             

70 x 70 respektive 128 x 128 pixlar. 

Maskininlärningsdesign kan anta olika form beroende på vad dess skapare vill att 

programmen skall fokusera på i bilderna. I detta examensarbete skapades arkitekturer 

baserade på ett flertal olika tekniker. Till vissa av dessa arkitekturer har även moduler 

baserade på andra tekniker lagts till och därigenom kombinerat olika tekniker. Metoder som 

har använts är bland annat detektering av bildmönster av olika omfång i samma bild samt 

tekniker för att förenkla mönsterigenkänningsprocessen. Totalt skapades sju olika sorters 

arkitekturer, baserade på fyra sorters maskininlärningsmetodologier. Varje arkitektur var 

specialdesignad för bilder av en viss storlek, förutom en arkitektur som kunde användas både 

för 70 x 70 och 128 x 128 pixels urklipp. 

Testresultaten för programmen visade att arkitekturer med större tränings- och testbilder 

uppnådde högre klassificeringsnoggrannhet. Dock kunde det ej bevisas att någon arkitektur 

garanterat presterade bättre än de andra. Anledningen till detta berodde på att de modifierade 

arkitekturerna uppvisade stora svängningar i noggrannhet under den tid då de tränades 

(testperioden). Arkitekturen med högst klassificeringsnoggrannhet var även instabilt då det 

led av kraftiga temporära minskningar i klassificeringsnoggrannheten. Undersökningar av 

felklassificerade bilder för de bästa arkitekturerna visade att dessa arkitekturer hade problem 

att klassificera bilder med låg kontrast eller med tätt intilliggande celler. 

I medicinska bilder kan det förekomma variationer i hur elakartade de cellulära mönstren är. 

Genom att skapa små bilder kan bilderna komma att spegla andra mönster än de som de 

ursprungliga bilderna är klassificerade som. Genom att träna arkitekturer på mindre bilder kan 

dessa arkitekturer därför komma att förknippa fel mönster med en viss sorts klassificering. 

Resultaten av detta examensarbete indikerar att användning av bilder större än 70 x 70 kan 

vara bättre lämpade för prostatacancerklassificering. Vad det gäller hur arkitekturdesign bäst 

anpassas till små bilder var resultaten dock oklara. Hur små bilder som kan användas för att 
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träna arkitekturer för att uppnå goda klassificeringsresultat samt vilken arkitekturdesign som 

ger bäst klassificeringsresultat återstår för framtida forskare att avgöra.  
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ANN:  Artificial neural network 

CNN:  Convolutional neural network 

DOGS:  Digital Pathology for Optimized Gleason Score in Prostate Cancer 

H&E:  Hematoxylin and Eosin 

MLP:  Multi-layer perceptron 

PCa:  Prostate cancer 

ReLU:  Rectified Linear Unit 

ResNet:  Residual neural network 

SGD:  Stochastic gradient descent 

SUS:  Skåne University Hospital 

SVM:  Support vector machine 
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1 Introduction 

1.1 Background 
Prostate cancer (PCa) is one of the forms of cancer that affects the most number of men in the 

world [1, 2, 3]. To grade how serious the occurrence of PCa is, the originally 10-grade 

Gleason scale is used. The modern version Gleason scale only includes scores between 6 and 

10. The grading in needle biopsies is determined as the sum of the most common and the 

highest scored PCa-patterns. These patterns were in the past scored on a scale from 1 to 5, 

where 1 indicated the most benign cancer-pattern, and 5 indicates the most malignant cancer-

pattern [4, 5]. Studies have, however, showed that the assessment of the Gleason score for the 

same PCa-sample varies between assessors [6]. For the purpose of developing a tool for 

automatic assessment of Gleason scores for PCa, Sweden’s innovation agency, Vinnova, is 

sponsoring research in computerized image analysis of Gleason grades in prostate biopsies. 

This research is done in the project “Digital Pathology for Optimized Gleason Score in 

Prostate Cancer” (DOGS). The DOGS-project is coordinated by the Institute for translational 

medicine at Lund University [7]. 

In image analysis studies of PCa, research has been done in areas such as registration, 

segmentation and classification, where Support vector machines (SVM), Random Forest and 

convolutional neural networks (CNN) have been used as classification systems [8, 9, 10, 11, 

12, 13, 14]. For SVMs, transfer learning has also been used in architecture construction [10].  

Within the DOGS-project, earlier master’s theses at Lund University have been centered on 

how Gleason score classification can be done with CNN-systems, with, and without the use of 

earlier segmentation in the classification process [15, 16, 17]. In classification studies using 

CNNs it is important to determine the dimensions of the images that a system is to be trained 

and tested on. Litjens et al. noted that small training images resulted in worse classification 

capability than if larger images were used [12]. Gummeson et al. has brought up classification 

of small regions as a potential area for future research [13]. 

1.2 Purpose 
The purpose of this thesis is to investigate how Gleason classification of PCa with the use of 

artificial neural networks (ANN) is affected by the size of histopathological images used for 

training and testing. In particular, we are to study how the classification of PCa with        

Gleason 5 patterns is affected by the use of histopathological images of small dimensions. 
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1.3 Delimitations 
In this master’s thesis, the histopathological images will come from only one source, Skåne 

University Hospital (SUS). Tissue images from different sources may differ with regard to 

appearance, a matter which will not be investigated in this thesis. The dimensionality aspect 

of small histopathological images will be studied by creating image crops with a large 

magnification factor (40X magnification), and by delimiting the size of said image crops. Any 

studies into the effects of contrast or color manipulation will not be undertaken. Furthermore, 

results of architecture tests will not be compared to those of any earlier PCa classification 

studies. The reasons for this is that the data sets used in this thesis have not been used in any 

previous study. 

1.4 Thesis sections 
This thesis will be divided in the following sections: Medical theory, Machine learning 

theory, Methodology, Results, and finally Discussion.   

In the section Medical theory, the anatomy of the prostate and how PCa is classified will be 

briefly introduced. In the section Machine learning theory, the theory behind machine 

learning in general and the architectures developed in this thesis in particular will be 

presented. In the section Methodology, the development environments used in this thesis will 

be explained, as well as how the data sets and architectures were constructed. The details of 

the constructed architectures will also be explained in this section. In the section Results, the 

results obtained when training and testing the constructed architectures on the data sets will be 

presented. Finally, in the section Discussion, the data sets and training-test results for the 

constructed architectures will be discussed, and suggestions for future research will be 

presented. 
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2 Medical theory 

2.1 The prostate 
The prostate gland, which is the largest of the human male’s five accessory sex glands, is 

itself composed of between 30 and 50 tubuloalveolar glands [18, 19, 20, 21, 22, 23]. The 

prostate consists to two-thirds of smaller glands and to one-third of fibromuscular stroma [19, 

22]. The prostate is, however, not very large, with its size comparable to that of a walnut and 

with a weight of approximately 20 g [21, 23, 24, 25]. The prostate is intersected by the urethra 

into which it secretes an alkaline fluid containing, amongst other things, proteolytic enzymes, 

and lipids. This secretion constitutes approximately 20 % of the male semen [18, 19, 20, 26, 

27, 28, 29, 21, 24, 23]. It has been suggested that the alkaline fluid of the prostate might 

increase the motility of sperm by counter-acting acids present in seminal fluid [27]. 

2.2 Prostate cancer 
In order to detect cellular structures in biopsy samples, the samples can be treated with 

different stains [19, 21, 23]. One stain used with PCa-samples is Hematoxylin and Eosin 

(H&E) [8]. In tissue samples stained with H&E, nuclei are colored blue, cytoplasm is colored 

red or pink, and muscles and collagen fibers are colored pink [19]. 

The 10-grade Gleason scale is used to determine the severity of PCa. Contemporary Gleason 

grading is, however, performed on a scale from 6-10. In needle biopsies, the sum of the most 

common and the highest PCa-patterns are added together to determine the Gleason score. 

Individual patterns were originally graded on a scale from 1 to 5, with the pattern score 

increasing the more malign the cancer pattern is (see Figure 1) [4, 5]. Large PCa tumors might 

spread from the prostate to the seminal vesicles or bladder. Lymph node, skeleton and 

vascular metastases might also occur [24, 25, 26]. 

Gleason patterns graded 1 or 2, have round shapes, with variations for grade 2 patterns, and 

are located close to each other. For patterns graded 1, the edge of the cluster of cells is 

definite, while patterns graded 2, have loose cell cluster edges. These two patterns are 

uncommon. Gleason 3 patterns, the most common Gleason pattern, are shape-wise irregular, 

with occurrences of small glands. This pattern may also include cribriform epithelium. As for 

the distribution, Gleason 3 patterns have irregular spaces between pattern occurrences and 

surround normal tissue structures. The pattern edges range from poorly defined to non-

existent [30]. 

Gleason 4 patterns are recognizable by sub-patterns, such as occurrences of large clear cells, 

tumor cells in stroma, and ragged parts of fused glandular epithelium. Cancer patterns with 

this score can be found infiltrating normal tissue structures. As for Gleason 5 patterns, they 

appear as cribriform or solid masses or as anaplastic glands with vacuoles. Gleason 5 patterns 

can be found intertwined with stroma [30]. 
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Figure 1. Gleason tissue image examples. (Upper left) Benign Gleason tissue image example, (Upper 

right) Gleason 3 tissue image example, (Lower left) Gleason 4 tissue image example, (Lower right) 

and Gleason 5 tissue image example.  
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3 Machine learning theory 

3.1 Artificial neural networks 
Some early attempts at machine learning were inspired by how the brain learns. The cellular 

units used for biological computation in the brain are called neurons. To denote the area of 

machine learning, the term artificial neural networks (ANN) has been used in the past [31, 32, 

33]. In machine learning, the term neuron is taken to mean an artificial computational unit. 

The mathematical neural model is as follows: 

 𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=1      (1) 

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘)      (2) 

In definition (1), 𝑗, 𝑘, 𝑥𝑗, 𝑚, and 𝑤𝑘𝑗 denote a specific connection to neuron, a specific 

neuron, the input signal from a certain neuron connection to a certain neuron, the total number 

of input signals, and the strength of a certain neuron connection, i.e. the weight, respectively. 

𝑢𝑘 denotes the sum of the products of all input signals and the respective weights applied to 

them. In definition (2), 𝜑, and 𝑏𝑘 denote how the amplitude of a certain neuron’s output  is to 

be limited, i.e. the activation function, and how the net input to the activation function is to be 

increased or decreased, i.e. the bias. Finally, 𝑦𝑘 denotes the output signal from a certain 

neuron [32, 33, 34, 35]. 

Networks consisting of several neurons, so-called multi-layer perceptrons (MLP), consist of 

an input layer, hidden layers, and an output layer. In these neural networks, each neuron in 

one layer is often connected to all other neurons in the next layer. Intermediate layers in a 

neural network are referred to as hidden layers (see Figure 2). The neural network output 

layer, the final layer, is used for representing the scores for the different classes an object can 

be classified as. For this reason, activation functions are sometimes not performed on the 

output layer [33, 36]. 

 

Figure 2. Multi-Layer Perceptron with two hidden layers. 

 

 

Input layer 

First hidden layer 

Second hidden layer 

Output layer 
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3.2 Architecture construction 

3.2.1 Miscellaneous architecture components 

To determine how a neural network is meant to work, different settings, so-called hyper 

parameters, are used [31, 37]. One important hyper parameter is the learning rate, which 

determines the size of the algorithm’s update-steps [31, 35]. Furthermore, when training a 

neural network architecture, it is important to decide on how large sets input data should be 

processed in, i.e. batch size [35]. To measure the number of times a piece of training data has 

been shown to a neural network architecture, the term epoch is used [38]. When connecting 

different layers in a neural network architecture, outputs from the layers can also be combined 

in various ways, e.g. through addition or concatenation [39]. 

3.2.2 Activation functions 

Various activation functions can be used in order to perform neural network activations. The 

Rectified Linear Unit (ReLU) activation function returns the maximum of 0 and the input, i.e.: 

         max (0, 𝑥)     (3) 

In (3), 𝑥 denotes the input [40, 35]. Another activation function is the logistic sigmoid 

activation function, which returns a real value between 0 and 1, defined as follows: 

          
1

(1+𝑒−𝑎)
     (4) 

In (4), 𝑎 denotes the sigmoid function slope parameter [32, 35, 36].  

The softmax activation function can be used when the goal is to obtain the probabilities for 

more than two classes of objects. This activation function normalizes a real-valued score 

vector with regard to all real-valued score vectors, thereby producing a classification 

probability score between 0 and 1 for a class. The class which obtains the highest score is the 

most likely to describe the object being classified by the neural learning architecture in 

question. The softmax activation function is defined in the following way: 

𝑒𝑊𝑖𝑥+𝑏𝑖

∑ 𝑒
𝑊𝑗𝑥+𝑏𝑗

𝑗

     (5) 

In the above activation function definition, 𝑊𝑖, 𝑥, and 𝑏𝑖 denote the weight matrix for object 

class 𝑖, the input vector, and the bias vector for object class 𝑖 respectively. Likewise, 𝑗,  𝑊𝑗, 

and 𝑏𝑗 denote the total number of object classes, the weight matrix for each object class, and 

the bias vector for each object class respectively [35, 36, 41]. 
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3.2.3 Loss functions and optimizers 

When training a neural network we want to minimize the value of the loss function, also 

known by other names such as the objective function or cost function. The loss function is a 

measure of how well network parameters, i.e. weights, lead to good results with respect to 

fixed labels for the training data. The concept of updating the weights such that the loss 

function is minimized goes by the name optimization and is performed with the help of 

optimizers. An example of a loss function is the cross-entropy loss function: 

𝐶 = −
1

𝑛
∑ ∑ [𝑦𝑗 ln 𝑎𝑗

𝐿 + (1 − 𝑦𝑗) ln(1 − 𝑎𝑗
𝐿)]𝑗𝑥    (6) 

In the above definition, the value of the cross-entropy loss-function (𝐶) is calculated for a 

network with multiple neurons in multiple layers. Input variables in the function are denoted 

as 𝑥. Furthermore, the notations 𝑦𝑗, and 𝑎𝑗
𝐿 denote the value we want the output layer neurons 

to take on and the values the output layers actually take on respectively. Finally, the notation 

𝑛 is used to denote the number of training data items [31, 41, 42, 43].  

To determine how to update weights we can compute the gradient of the loss function. The 

steeper the descent, the lower the loss. The technique of evaluating the gradient and then 

updating the weights is called gradient descent [31, 42, 43]. Instead of performing gradient 

descent for all training inputs another technique called stochastic gradient descent (SGD) can 

be employed. This technique is performed by estimating the gradient based on a limited 

random selection of training inputs, a so-called mini-batch, thereby speeding up the process. 

SGD can be expressed in the following way: 

∇𝐶 ≈
1

𝑚
∑ ∇𝐶𝑋𝑗

𝑚
𝑗=1     (7) 

In the above expression, ∇𝐶, 𝑚, 𝑗, and ∇𝐶𝑋𝑗
 denote the gradient, the total number of randomly 

chosen inputs, the notation for a specific batch, and the gradient for a specific mini-batch 

respectively [36, 42, 43]. 

Other than SGD, several other optimizers are available when constructing neural networks 

[44, 45]. One recently constructed stochastic optimizer is Adam. Among Adam’s advantages 

can be mentioned its capability for use with sparse gradients and the gradient rescaling 

invariance of its parameter update magnitudes [45]. Adam’s update rule, with ε, denoting the 

relative rounding floating point error, set to 0, is as follows: 

         𝛥𝑡 = 𝛼 ⋅ 𝑚̂𝑡/(√𝑣𝑡 + 𝜀)    (8) 

In (8), 𝛥𝑡, 𝛼, 𝑚̂𝑡, and 𝑣𝑡 denote the step taken between two timesteps, the stepsize, the 

moving average of the gradient, and the moving average of the squared gradient respectively. 

The stepsize is bounded in the following way:  

|𝛥𝑡| < 𝛼 ∙ (1 − 𝛽1)/√1 − 𝛽2 for (1 − 𝛽1) > √1 − 𝛽2, and  (9) 

|𝛥𝑡| < 𝛼 in cases when (9) does not apply.  (10) 

In the above boundary conditions, 𝛽1, and 𝛽2 denote the exponential decay rates for the first 

and second moment estimates [45]. 
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3.2.4 Back-propagation 

In order to calculate the gradient for optimizers, we can use a technique called back-

propagation. Back-propagation is performed by first calculating the outputs from neurons in a 

network, i.e. the so-called forward-pass. The gradients of the neurons in the network are then 

recursively calculated from the final to the initial layer, i.e. the so-called backward-pass [32, 

35, 42, 46]. The algorithm of back-propagation can be expressed in the following way: 

1. Determine the activation outputs for the first layer of the network (𝑎1). 

2. Compute the activation outputs from each layer of the network all the way to the final 

layer (𝑎𝐿). 

3. Compute the output error of the final layer (𝛿𝐿). 

4. Use the output error to successively compute the output errors for all layers in the 

network. 

5. Compute the gradients for the loss function (
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙  and 

𝜕𝐶

𝜕𝑏𝑗
𝑙) 

For the back-propagation algorithm, we express activation outputs for a specific layer 𝑙 as  

𝑎𝑗
𝑙 = 𝜑(∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘 + 𝑏𝑗
𝑙)    (11) 

In (11), 𝑤𝑗𝑘
𝑙 , 𝑎𝑘

𝑙−1, and 𝑏𝑗
𝑙 denote the weights between 𝑗:th input neuron and the 𝑘:th output 

neuron in the 𝑙:th layer of the network, the output activations for the 𝑘:th output neuron in the  

𝑙 − 1:th layer, and the bias for the 𝑗:th input neuron in the 𝑙:th layer respectively. 

Furthermore, 𝜑 and  𝑎𝑗
𝑙  denote the activation function and the activation output for the 𝑗:th 

input neuron. As definition (11) requires initial values for 𝑎1, we need to give this input in 

step 1.  To perform step 2 of the back-propagation algorithm, we use the intermediate 

expressions: 

𝑧𝑙 ≡ 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 and    (12) 

𝑎𝑙 = 𝜑(𝑧𝑙)     (13) 

In (12) and (13), 𝑧𝑙 denotes the weighted input to the layer 𝑙 neurons. For step 3 of the back-

propagation algorithm we use another expression for support: 

𝛿𝐿 = ∇𝑎𝐶 ⊙ 𝜑′(𝑧𝑙)    (14) 

In (14), 𝜑′(𝑧𝑙) and ∇𝑎𝐶 denote the derivative of the activation of the weighted input to the 

layer 𝑙 neurons, i.e. the change of the activation function for 𝑧𝑙, and a vector consisting of the 

partial derivatives of 
𝜕𝐶

𝜕𝑎𝑗
𝐿, i.e. how the loss function changes with respect to the output 

activations for the 𝑗:th input neuron in the output layer, respectively. Finally, 𝛿𝐿, the output 

error, is calculated through the element-wise product, i.e. the Hadamard product, of ∇𝑎𝐶 and 

𝜑′(𝑧𝑙). When we backpropagate the output error in step 4: we use the following expression: 

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) ⊙ 𝜑′(𝑧𝑙)   (15) 

The term (𝑤𝑙+1)𝑇 in (15) denotes the transposed weight matrix for layer 𝑙 + 1. The effect of 

(15) is that we use the output error from the next layer in the network in order to calculate the 
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output error of the preceding layer. In the final step of the back-propagation algorithm we use 

the following expressions in order to determine the gradients for the loss functions: 

𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙     (16) 

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1𝛿𝑗
𝑙    (17) 

In (16), 𝑏𝑗
𝑙 denotes the bias of the 𝑗:th input neuron in the 𝑙:th layer of the network. Thus, 

𝜕𝐶

𝜕𝑏𝑗
𝑙  

denotes the change of the loss function with respect to bias in the network. In (17), 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙  

denotes the change of the loss function with respect to weights in the network [42]. It is 

important to note that, when performing back-propagation, the error surface contains both 

global and local minima. If back-propagation gets stuck in local minima, weight changes will 

cause a worsening of the loss function [32]. 

3.2.5 Dropout and batch normalization  

A neural network can have problems with learning patterns in data. If a network learns 

random noise in training data, the network is said to be overfitting [35, 47, 48]. We can 

modify a neural network such that generalization error of the network, but not the training 

error, is reduced. Thereby, we introduce what is called regularization to the network. Dropout 

is a regularization technique used for decreasing overfitting. Dropout is performed by, for a 

temporary time, selecting a certain percentage of random neurons in a network that are to be 

active, with the rest of the neurons set to 0. Thus, the term dropout comes from the dropping 

of non-selected neurons [31, 35, 47, 48]. 

Batch normalization is another technique which can be used for regularization. It also allows 

for use of higher learning rates, thereby speeding up the learning process, as well as more 

latitude when initializing a network [48, 49]. The batch normalizing transform algorithm is 

defined in the following way:  

1. 𝜇𝐵 ←
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1  

2. 𝜎𝐵
2 ←

1

𝑚
∑ (𝑥𝑖 − 𝜇𝐵)2𝑚

𝑖=1  

3. 𝑥̂𝑖 ←
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

 

4. 𝑦𝑖 ← 𝛾𝑥̂𝑖 + 𝛽 ≡ 𝐵𝑁𝛾,𝛽(𝑥𝑖) 

In the first step, 𝑚, 𝑖, and 𝑥𝑖 denote the total number of input values, the notation for a 

specific input value, and a specific input value over a mini-batch (𝐵) respectively. 𝜇𝐵 denotes 

the mean for a mini-batch. In the second step, 𝜎𝐵
2 denotes the variance for a mini-batch. In the 

third step of the algorithm, 𝜖 denotes a constant used to increase the mini-batch variance’s 

numerical stability. In (3), 𝑥̂𝑖 denotes a specific normalized input value. In the final step, 𝛾 

and 𝛽 denote parameters used for scaling and shifting the normalized input value. Finally, 

𝐵𝑁𝛾,𝛽, and 𝑦𝑖 denote the Batch Normalizing Transform, and the linear transformation of a 

normalized input value respectively [49]. 
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3.3 Convolutional neural networks 
Convolutional neural networks (CNN) are a neural networks, which, in contrast to ANNs, 

which operate over input signals, take images as input. Convolution over a two-dimensional 

image can be expressed in the following way: 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛𝑚   (18) 

In the above expression, 𝑆(𝑖, 𝑗), 𝐼, and 𝐾 denote the result of the convolution, the two-

dimensional input image, and the weights respectively. Furthermore, 𝑚 and 𝑛 denote the 

extents of the x- and y-input values of an image [31, 34]. With respect to CNNs, weight sets 

are often referred to as a filter or kernel [34].  

CNNs make use of an idea called sparse connectivity. This idea is based on the recognition 

that interesting parts of an image, so-called features, can be detected with kernels much 

smaller than the images themselves. The memory needed to store parameters is thus smaller 

than if larger kernels would have been employed. The hyper parameter determining the size of 

input region each neuron is to be connected to is called the receptive field [31, 32, 34, 36].  

CNN-parameter sharing also allows images to be translationally equivariant, meaning that 

moving the input image results in the output image being moved equally much [31]. Another 

idea used in CNNs is parameter sharing, through which only one weight set for the whole 

image, instead of one weight set per image element, needs to be learned by a CNN. This 

decreases the memory needed for architecture model storage [31, 32, 34, 35, 36]. 

3.3.1 Padding and spatial CNN-calculation 

When performing operations on image volumes, a technique called zero-padding can be 

utilized. When using padding, zeros are added around the border of an image volume, which 

in turn allows us to control the size of spatial outputs [34]. The terms ‘valid’ and ‘same’ are 

sometimes used in connection with padding. The term ‘valid’ means that no padding should 

be applied. On the other hand, the term ‘same’ means that padding should be applied in such a 

way that the length of the output is the same as the length of the input [50, 51]. 

Convolutional layer output-parameters are calculated in the following manner for an input 

image volume with width 𝑊1, height 𝐻1, and depth (a third image dimension, e.g. the number 

of color channels of an image) 𝐷1: 

𝑊2 = (𝑊1 − 𝐹 + 2𝑃)/𝑆 + 1   (19) 

𝐻2 = (𝐻1 − 𝐹 + 2𝑃)/𝑆 + 1   (20) 

𝐷2 = 𝐾     (21) 

In the above definitions, the variables 𝐹, and 𝑃, denote the height and width of a square 

window used to capture a limited amount of numerical values, known as the spatial extent, 

and the number of zeroes added next to each adjacent entry of an image matrix respectively. 

In turn, 𝑆, and 𝐾, denote the lengths of the steps used to move the square capture window left-

to-right, top-to-bottom, i.e. stride, and the number of filters used on an image volume 

respectively. Finally, 𝑊2, 𝐻2, and 𝐷2 denote the width, height, and depth respectively of the 

output image volume [34]. 
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3.3.2 Pooling 

Pooling is a technique commonly used in CNNs. Pooling is used to substitute the numerical 

contents of a certain area with a different value, thereby decreasing the computations needed 

for the next step of image matrix-processing. As pooling summarizes the numerical content of 

a certain area, pooling translated versions of the specific area produces similar summarized 

results. Thus, pooling, to a certain degree, makes image matrices translationally invariant [31, 

34, 36]. Pooling output-parameters are calculated as follows: 

𝑊2 = (𝑊1 − 𝐹)/𝑆 + 1     (22) 

𝐻2 = (𝐻1 − 𝐹)/𝑆 + 1     (23) 

𝐷2 = 𝐷1      (24) 

In the above definitions, 𝑊1, 𝐻1, and 𝐷1 denote the width, height, and depth respectively of an 

input image volume. The variables 𝐹 and 𝑆, in turn, denote the spatial extent, and the stride 

respectively. Finally, 𝑊2, 𝐻2, and 𝐷2 denote the width, height, and depth respectively of the 

output image volume [34]. 

Different varieties of pooling exist. For the variant called ‘Max pooling’, the highest 

numerical value of the values contained in a rectangular area is used to represent the chosen 

numerical neighborhood as a whole. Likewise, for the pooling variant ‘Average pooling’, the 

average of the values in a certain rectangular area is used to represent the area’s overall 

numerical value (see Figures 3-4) [31]. 

 

Figure 3. Max pooling example with spatial extent 2 x 2 and stride 2 x 2. 

 

Figure 4. Average pooling example with spatial extent 2 x 2 and stride 2 x 2. 
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3.4 The Inception- and ResNet-architectures 
The Inception architectures are based on modules with convolutional operations. For the 

original Inception architecture, multiple interesting image clusters were captured by using 

convolutions of different sizes. However, 1 x 1 convolutional operations were performed 

before 3 x 3 or 5 x 5 convolutions in order to reduce the dimensions of input signals. A 

separate pooling track was also included due to earlier successful use of pooling in CNNs (see 

Figure 5) [52, 53]. 

 

 

Figure 5. Original Inception-module. 

 

Researchers made the Inception architecture computationally cheaper by factorizing spatial 

convolutions into smaller convolutions. As an example, a 3 x 3 convolution can be replaced 

by first using a 3 x 1 convolution and following this up with a 1 x 3 convolution (see Figure 

6). This architectural improvement has been included in evolved Inception-based 

architectures, such as Inception-v4 (see Appendix 1) [51, 53]. 

 

B: Base layer. 

C1: Convolutional layer. Kernel size: 1 x 1. 

C2: Convolutional layer. Kernel size: 3 x 3. 

C3: Convolutional layer. Kernel size: 5 x 5. 

P: Pooling layer.  

F: Filter concatenation layer. 
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Figure 6. Spatial 3 x 3 convolutional factorization example. 

 

In order to combat the problem of accuracy decreasing in deep networks, the ResNet-

architecture was developed. The ResNet-architecture tackles the aforementioned problem by 

fitting stacked nonlinear layers to a residual mapping. Mathematically, this is expressed in the 

following way: 

𝐹(𝑥) ∶= 𝐻(𝑥) − 𝑥     (25) 

In the above expression, 𝑥, 𝐻(𝑥), and 𝐹(𝑥) denote the identity, the desired underlying 

mapping, and the residual function respectively. Thus, the original mapping is expressed as  

𝐹(𝑥) + 𝑥 (see Figure 7) [54]. The techniques of the Inception- and ResNet-architectures have 

been combined in the Inception-ResNet-architectures, such as Inception-Resnet-v1. In order 

to stabilize training, a scaling factor is included in order to scale residuals in Inception-

ResNet-modules (see Figure 8 and Appendix 2) [51]. 
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Figure 7. ResNet-architecture residual learning building block. 

 

 

Figure 8. Inception-ResNet-module scaling scheme. 
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3.5 Results analysis 
The k-fold cross-validation technique can be utilized for training and testing on a small data 

set. When using this method the data set is divided into k subsets. Each data point is included 

in only one of these subsets. For each round of training, one subset is withheld for testing with 

the other subsets used for training. The number of training-validation runs performed is the 

same as the number of subsets, i.e. k. To obtain a measurement for the validation accuracy on 

the data set in question, the average over the validation accuracies across all k-runs can be 

used [31]. 

When testing for an illness, where the test results are either positive or negative, the 

specificity and sensitivity measurements can be used to determine the correctness for each test 

result in relation to the outcome. The sensitivity measurement is defined as the number of 

positive test results with positive outcomes in relation to the total number of positive and 

negative test results with positive outcomes. Likewise, the specificity measurement is defined 

as the number of negative test results with negative outcomes in relation to the total number 

of positive and negative test results with negative outcomes [55]. 
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4 Methodology 

4.1 Development environment 
In this thesis, two separate development environments have been used, a Windows 10 

environment and an Ubuntu environment. The purpose of this set-up has primarily been to 

save time by performing parallel training-test rounds. The Windows environment has been 

used to construct the architectures described in this thesis, as well as perform training-test 

rounds. The Ubuntu environment, in turn, has been used primarily to run training-test rounds. 

Construction, training, and testing of one architecture (ResNet) could only be fully done on 

the Ubuntu environment as this environment included more powerful GPU and RAM than the 

Windows environment, which was necessary for storage of the parameters of this architecture.  

The Windows environment utilized was Windows 10 Home version 1709, OS Build 

16299.371. The hard-ware specifications were as follows: Processor: AMD Ryzen 5 1400 

Quad-Core Processor @ 3.20 GHz, 4 Core(s), 8 Logical Processor(s); Graphics card: Nvidia 

GeForce GTX 1050.  

The programming was done in PyCharm 2017.3.3. (Community Edition). The language used 

for development was Python 3.6. For machine learning purposes, Keras 2.1.4 with 

Tensorflow-GPU 1.6.0 as back-end and CUDA Toolkit 9.0 were used [56, 57]. The following 

Python packages were used: imageio 2.2.0 numpy 1.14.1, matplotlib 2.2.0, scikit-learn 0.19.1, 

and scipy 1.0.0. The MATLAB version used on the Windows environment was MATLAB 

9.2.0.556344 (R2017a).  

The Ubuntu environment utilized was Ubuntu 16.04.3 LTS. The hard-ware specifications 

were as follows: Processor: Intel Xeon(R) CPU E5-2640 v3 @ 2.60 GHz x 16, Graphics card: 

Nvidia GeForce GTX Titan Z. The programming was done in PyCharm 2018.1 (Community 

Edition). The language used for development was Python 3.5. For machine learning purposes, 

Keras 2.1.5 with Tensorflow-GPU 1.7.0 as back-end and CUDA Toolkit 9.0.176 were used. 

The following Python packages were used: imageio 2.3.0 numpy 1.14.2, matplotlib 2.2.2, 

scikit-learn 0.19.1, and scipy 1.0.1. 

4.2 Data sets 
The images used to construct the data sets utilized in this thesis were derived from annotated 

H&E stained PCa tissue samples from Skåne University Hospital (SUS). The images in this 

data set numbered 2 675 for benign images, 922 for Gleason 3 images, 1 006 for Gleason 4, 

and 624 for Gleason 5 images in total. These images partly overlap with those used in Dataset 

A in [58]. Several data sets with image crops of various sizes and dimensions were created for 

testing purposes. Among these data sets, the four largest data sets were used for longer 

training-test runs to determine the specific hyper parameters of interesting architectures and to 

obtain final results for tests on the same architectures. These four largest data sets will be 

referred to as 9840_Random_70_Test, 9840_Random_128_Test, 

Fixed_9840_Random_70_Test, and Fixed_9840_Random_128_Test.  

All image data sets were composed of PCa image crops with 40X magnification. Each data 

set consisted of 9840 Gleason 5 image crops, and 9840 non-Gleason 5 image crops. The         

9 840 non-Gleason 5 image crops were sub-divided in the following way: 3 280 Gleason 4,    
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3 280 Gleason 3 image crops, and 3 280 benign image crops. For 9840_Random_70_Test and 

Fixed_9840_Random_70_Test, image crops with dimensions of 70 x 70 pixels were used. For 

9840_Random_128_Test and Fixed_9840_Random_128_Test, image crops with dimensions 

of 128 x 128 pixels were used. 

9840_Random_70_Test, and 9840_Random_128_Test were the first two larger data sets 

created. Fixed_9840_Random_70_Test, and Fixed_9840_Random_128_Test, were created 

when it was realized that 9840_Random_70_Test, and 9840_Random_128_Test were 

erroneously constructed, the errors and correction of which will be further explained later in 

this section. 

4.2.1 Original data sets 

Initially, image crops of different dimensions were surveyed. The first image data sets were 

constructed with image crops of dimensions 70 x 70 pixels as this restriction was deemed 

suitable for being able to obtain image crops with whole cells within the chosen cropping-

frame, if the frame was to be centered on said cells (see Figure 9). Images to crop were 

randomly selected. The image crops were then created by manually cropping the larger tissue 

images in MS Paint. Although the areas to be cropped were randomly selected, care was taken 

to avoid overlap between image crops as well as cropping of tissue background. Automatic 

creation of the small image crops was deemed as too complicated to implement due to the risk 

of accidentally cropping only white background or areas surrounding cells, thereby distorting 

the data sets. Large image crops were initially created such that both the widths and heights of 

the crops exceeded 70 pixels. This approach was later changed to a second approach which 

allowed for easier cropping and stricter control of image crop overlap. The second approach 

was to crop larger image crops such that they did not exceed 104 pixels in width (i.e. one 

pixel less than the width of one and a half image), but still had a height of 70 pixels or more. 

 

   

   

Figure 9. 70 x 70, 40 x magnification image crop examples. (Upper left) benign Gleason image crop 

example, (Upper right) Gleason 3 image crop example, (Lower left) Gleason 4 image crop example, 

(Lower right) and Gleason 5 image crop example.  
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To increase the number of image crops from a larger tissue crop, a sliding-window approach 

was used. The scripts needed for the image expansion procedure were developed and 

executed using MATLAB. For each part of the larger tissue crop in the sliding window’s 

focus, the image was rotated 90, 180, and 270 degrees. Furthermore, the non-rotated image, 

and the 90, 180, and 270 degree rotations were also flipped along the horizontal axis. Thus, 

from each image crop, seven rotated and/or mirrored variants were created. When an image 

crop had been rotated and/or mirrored, the sliding window was moved horizontally with a 

movement corresponding to half the window’s size, i.e. 35 pixels for a 70 x 70 pixel image 

crop. When the larger tissue crop would not cover the entirety of the sliding window, the 

sliding window would move down the height of an image in the larger tissue crop, i.e.          

70 pixels for a 70 x 70 pixel image crop. The image crop expansion procedure would continue 

until the sliding window would no longer be able to cover the entirety of a part of the larger 

tissue crop. 

In order to determine how much results could be improved if image crops of larger 

dimensions were used, image crops of dimensions 128 x 128 pixels were created                

(see Figure 10). These image crops were partly taken from the same large tissue images as the           

70 x 70 image crops. The image cropping procedure was performed in the same way as with 

the 70 x 70 image crops. However, the large image crops all had widths less than 192 pixels, 

and heights of 128 pixels or more. The sliding window approach used for the 70 x 70 image 

crops was reused with the 128 x 128 image crops, with the sliding window movement 

changed to 64. Similarly, when moving down the height of an image in the larger tissue crop, 

steps of 128 pixels were used. Due to the random selection of image areas to crop and the use 

of not exactly the same tissue images, the results for the tests on the 128 x 128 and                

70 x 70 image crops respectively were not completely comparable. 

 

To summarize, the initial large crops used to subsequently create 70 x 70 pixel image crops 

were created with widths greater than 70 pixels. For large crops with a width of 105 pixels or 

more, the sliding window thus created image crops with 50 % overlap with the image crops 

preceding and following it on the same row respectively. In contrast, the large crops with 

widths shorter than 105 pixels did not to allow for the sliding window to move half a window. 

This forced the sliding window to change row after the creation of rotated and/or mirrored 

image crop versions. As the sliding window moved 70 pixel vertically after a row change, the 

smaller image crops to be created on the following row did not overlap with those created on 

the previous row. Thus, the larger image crops created with the second cropping approach 

resulted in the creation of non-overlapping 70 x 70 pixel image crops. As a whole, the          

70 x 70 pixel image crops were a mix of partially overlapping and non-overlapping image 

crops. The 128 x 128 image crops, on the contrary, were only created using the second 

cropping approach, which meant that none of the 128 x 128 image crops overlapped.   
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Figure 10. 128 x 128, 40 x magnification image crop examples. (Upper left) benign Gleason image 

crop example, (Upper right) Gleason 3 image crop example, (Lower left) Gleason 4 image crop 

example, (Lower right) and Gleason 5 image crop example. 

 

For the 70 x 70 images, an initial pool of 10 560 Gleason 5 image crops,                                  

3 288 Gleason 4 image crops, 3 472 Gleason 3 image crops, and 4 584 benign image crops 

was created. For the 128 x 128 images, an initial pool of 11 160 Gleason 5 image crops,          

4 984 Gleason 4 image crops, 4 104 Gleason 3 image crops, and 3 520 benign image crops 

was created. The 128 x 128 image pool was later extended to 25 520 Gleason 5 image crops, 

22 568 Gleason 4 image crops, 12 312 Gleason 3 image crops, and 26 320 benign image 

crops. The initial and extended 128 x 128 image pools differed with respect to how benign 

image crops were created. For the initial pool, benign image crops were created with the 

intent that they should always contain whole or parts of cells. The extended pool was, in 

contrast, created with the intent that image crops should be varied, with some image crops 

containing cells or parts of cells, and others only the surroundings of cells, n.b. not the white 

background. The reason for this difference in construction of benign image crops was to 

increase the architectures’ capability to interpret the surroundings of cells as free of cancer. In 

contrast, the initial 128 x 128 pool, thus, gives a somewhat distorted view of benign tissue 

images. The extended 128 x 128 image pool was never used in training or tests due to time 

limitations.  

Small 70 x 70 and 128 x 128 image crops data sets used for initial architecture testing 

purposes were constructed by randomly sampling from the respective initial image pools. For 

each such data set, one folder for Gleason 5 and one folder for non-Gleason 5 images were 

created, with equally many image crops in each folder. Furthermore, the content of each non-

Gleason 5 image folder consisted of Gleason 4, Gleason 3, and benign image crops in equal 

proportion. Larger data sets were created by partly including image crops sampled for smaller 

data sets. Through successive data set construction procedures, the data sets 

9840_Random_70_Test, and 9840_Random_128_Test were finally created. 
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4.2.2 Corrected data sets 

At the end of the thesis process, an error in the data set generation was discovered. As the data 

sets 9840_Random_70_Test, and 9840_Random_128_Test included rotations and mirrored 

images, the final accuracy results might unintentionally have been inflated.  

During training and testing, a 5-fold cross-validation approach has been used. During each 

fold, four fifths of the image crops were used for training the constructed architectures, and 

the remaining fifth was used for testing. When training and testing on image crops using 

9840_Random_70_Test, and 9840_Random_128_Test, the training and test batches might, 

thus, have, to some degree, contained rotations and/or mirrored images for the same images. 

Thus, the architectures might have classified test images correctly based on memory of how 

training-variations of these images were classified. 

To achieve correct results as well as determine the effects of the erroneous data set 

generation, the data sets Fixed_9840_Random_70_Test, and Fixed_9840_Random_128_Test 

were constructed. These data sets were created by first creating five folders for              

Gleason 5 images, and five folders for non-Gleason 5 images (both numbered from 0 to 4). 

For each Gleason 5 folder, 246 Gleason 5 image crops were randomly selected from the initial 

70 x 70 and 128 x 128 image pools respectively. Likewise, 82 Gleason 4, Gleason 3, and 

Benign image crops respectively were randomly selected to each non-Gleason 5 folder. The 

image crops in these two data set were unique in the respect that no rotated nor mirrored 

versions of any individual image crops were included among the image crops.  

When the image folders had been created, the image crops in each folder were then rotated 

and mirrored, producing the same variations of an image as in 9840_Random_70_Test, and 

9840_Random_128_Test. Thus, each Gleason 5 and non-Gleason 5 image folder contained 

1968 image crops. Due to the random selection of constituent image crops, and the selection 

of only image crops which had not been rotated or mirrored, 9840_Random_70_Test and 

9840_Random_128_Test did not contain the exact same image crops as 

Fixed_9840_Random_70_Test and Fixed_9840_Random_128_Test respectively. Thus, the 

different rotated and mirrored versions of the same image crop were placed in the same 

folders. However, not all small image crops created from large image crops taken from the 

same tissue samples were allocated to the same folder. Also, not all small image crops created 

from the same large image crop were placed together in the same folder.  

At the very end of the thesis process, the discovery that overlap in some of the 70 x 70 pixel 

image crops might have affected the accuracy results of the constructed architectures was 

made. As not all 70 x 70 pixel image crops from the same large image crop were placed in the 

same folder, some image crops in training and test data had similar cellular patterns. The 

consequence of this was that the results for the architectures using 70 x 70 pixel image crops 

were inflated. Due to the late stage at which this error was realized, correction of the data sets 

was not possible. The 128 x 128 pixel image crops did, however, not overlap. Thus, image 

crop overlap caused no distortions for the results for the architectures using 128 x 128 pixel 

image crops. However, image crops created from different but neighboring large image crops 

might have borne some similarities to each other. By allocating such spatially proximate 
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images to the same folders, the accuracy results might have been inflated even for the 128 x 

128 pixel image crops. 

4.3 Construction of architectures 
To find promising architectures, small data sets were utilized for speeding up initial tests. As 

interesting architectures were discovered, training-test rounds with 9840_Random_70_Test 

and 9840_Random_128_Test were performed. The architectures and hyper parameters 

constructed through tests with the original data sets were then reused for the corrected data 

sets. 

When constructing the architectures, optimization of hyper parameters was also a key 

concern. The Inception-v4, Inception-ResNet, and ResNet architectures, on which the 

constructed architectures were modelled, take as input images of dimensions different from 

the ones used in this thesis, and also utilize specific learning rates and filter counts. In 

accordance with the goal of this thesis, to study how small-dimensional medical images can 

be automatically classified, the heuristic approach of successively performing short 

architecture tests, with changes in only a single hyper parameter at a time, was chosen. Hyper 

parameters, such as suitable epoch count, batch size, learning rate, and filter counts for each 

layer, were, thus, experimentally and approximately decided by comparing the results of 

training-test runs to each other. Furthermore, this approach was also used to determine 

suitable number of layers for the architectures constructed in this thesis.  

4.3.1 Architectures for the original data sets 

The architectures constructed for the 9840_Random_70_Test, and 9840_Random_128_Test 

sets were structured in the following manner: Images in a data set were randomized and a 

label set, denoting whether an image belonged to the Gleason 5-class or nor, was created. 

Preceding the architecture build, image crops, normalized between 0-255 in the red, green, 

and blue color channels, were randomly assigned to a training or test fold in a 5-fold cross-

validation manner in a for-loop using scikit-learn. For each iteration, 15 744 and                     

3 936 image crops were, thus, assigned as training and test images respectively. For the 

Gleason 5- and non-Gleason 5 image crops respectively, images were then copied to a 

training or test folder depending on the current fold selections. For every k-fold run, two 

training and two test folders were, thus, created and filled with image crops. After building 

the architecture, Keras’s flow-from-directory-function, using shuffling of images, was used to 

perform batch-wise training and testing on images in each of the four folders. Finally, 

statistics regarding sensitivity and specificity were captured for both training and test images.  

4.3.2 Architectures for corrected data sets 

As mentioned in the Data sets-sub-heading, the data sets 9840_Random_70_Test, and 

9840_Random_128_Test were constructed in a faulty manner. In order to compare the 

erroneously constructed data sets and the correctly constructed data set, a different approach 

was used in architecture construction for the corrected data sets. These new architectures were 

used for final accuracy measurements. The best hyper parameter settings and layer filter 

counts for the faulty data set architectures were reused for the new architectures.  

For Fixed_9840_Random_70_Test, and Fixed_9840_Random_128_Test respectively, the 

basis of the updated architecture construction was the five Gleason 5 and five                     
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non-Gleason 5 image folders. The contents of each such folder was fixed during all training-

test rounds. As with the original data sets, each iteration contained 15 744 training images and 

3 936 image test images. 

Instead of using scikit-learn to perform 5-fold cross-validation, a regular for-loop and a set-

counter incremented for each loop, starting at 0, was used. For each loop, images in the fixed 

Gleason 5 and non-Gleason 5 image folders were copied to a training or test folder. If the 

number of a folder coincided with the value of the set-counter, image crops would be moved 

to a test folder.  If the number of a folder differed from the value of the set-counter, the 

images therein would be copied to a training folder. Depending on the name of each folder, 

image crops would be copied to a folder for Gleason 5 or non-Gleason 5 images. As with the 

architectures for the original data sets, two training and two test folders were, thus, created 

and filled with image crops, once again normalized between 0-255 in the red, green, and blue 

color channels,  for each k-fold run. Furthermore, Keras’s flow-from-directory-function and 

statistics capturing were also used in the same way for both architectures, with the exception 

that the architectures for the corrected data sets also stored the classification of every image 

crop.  

Due to the different approaches used in creating the original and the corrected data sets, 

architectures constructed for use with the corrected data sets were trained and tested on more 

dissimilar image crops than architectures constructed for use with the old data set.  

4.4 Architecture overview 
The final constructed architectures were based on two main architectures, a CNN-architecture 

and a ResNet-architecture (See Appendices 3-5) [54, 59]. The CNN-architecture, using two 

parallel tracks, was tested by itself and as a stem with two different end-modules, adapted 

from other networks. The first of these end-modules was inspired by the Inception-C-module 

of the Inception-v4 network (See Appendices 6-7) [51, 59]. The second end-module used was 

inspired by the Inception-ResNet-C-module of the Inception-ResNet-v1-network (See 

Appendices 8-9) [51, 59]. The reason for only adding Inception-v4 and Inception-ResNet-v1 

end-modules to a base CNN-architecture was that the original Inception-v4 and Inception-

ResNet-v1 architectures were too large to reproduce on the available development 

environments. 

The number of filters in each layer of both the ResNet-architecture, and the end-modules used 

in conjunction with a CNN, were modified in order to work together with either the 70 x 70 or 

the 128 x 128 image crop data sets. All hyper parameters, except the number of epochs and 

learning rate, which varied between architecture types, were the same for the final 

architectures (see Table 1). 

The statistical calculations were performed with respect to the Gleason 5 image crops. Thus, 

the sensitivity measurement was used to determine the percentage of Gleason 5 image crops 

which was correctly classified. Likewise, the specificity measurement was used to determine 

the percentage of non-Gleason 5 images which was correctly classified. 
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Table 1. Hyper parameter settings for architectures with corrected data sets. 

Batch size 72 

Steps per epoch 218 

Optimizer Adam 

ε 0 

Decay rates β1 0.9 (Default Keras value)  

Decay rates β2 0.999 (Default Keras value)   

Learning rates for CNN-based architectures 0.0000875 

Epoch counts for 70 x 70 CNN-based 
architectures 

6 000 

Epoch count for 70 x 70 single-tracked CNN-
architecture 

1 000 

Epoch counts for 128 x 128 CNN-based 
architectures 

2 000 

Learning rate for ResNet-architectures 0.000034 

Epoch counts for ResNet-architectures 800 
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5 Results 

5.1 Results for the CNN-architectures 

5.1.1 Results for the CNN-architecture for the 70 x 70 data set 

The 6 000 epoch training-test round for the 70 x 70 data set CNN-architecture took 

approximately 105 hours to complete all 5 cross-validation folds. With respect to sensitivity, 

training and validation results surpassed 90.4 % and 87.2 % respectively for all iterations. The 

validation sensitivity for fold 4 was higher than those for the other four folds, approximately 

91.7 % versus sub-90 % for the other four folds. As for specificity, training results were above 

91.6 % (lowest for fold 3) for all folds, with folds 1, 4, and 5 having specificities above     

95.5 %. Likewise, the validation specificity for fold 3 was lower than the specificities for the 

other four folds (approximately 83.4 % versus above 89.4 % for the other four folds). 

The training and validation accuracies for the 70 x 70 CNN-architecture reached above     

91.1 % and 85.3 % respectively for all folds, with a mean validation accuracy of 

approximately 89 % (see Appendix 10 for accuracy plots). The mean number of correct 

Gleason 5 image crops was approximately 1 743 out of 1 968 test images, with approximately 

225 incorrect classifications. As for the non-Gleason 5 image crops, the mean number of 

correctly classified images was approximately 1 761, with approximately 207 

misclassifications. For the 70 x 70 CNN-architecture, approximately 9 % more Gleason 5 

images than non-Gleason 5 images were, thus, misclassified. 

 

5.1.2 Results for the CNN-architecture for the 128 x 128 data set 

2 000 epochs were used to train the 128 x 128 CNN-architecture. In total, the training-test 

rounds took approximately 69 hours to complete. For the 128 x 128 CNN-architecture, 

sensitivity training- and validation results exceeded 94 % and 87.7 % respectively for all 

folds. The highest validation sensitivity (fold 2) was 95%. As for specificity, training and 

validation results surpassed 90.4 % and 83.3 % respectively. The highest validation specificity 

(fold 5) was 93.1 %. 

The training and validation accuracies for the 128 x 128 CNN-architecture exceeded 93.9 % 

and 89.1 % respectively for all folds. The mean validation accuracy was approximately     

91.4 % (see Appendix 11 for accuracy plots). Compared with the 70 x 70 CNN-architecture, 

the 128 x 128 CNN-architecture had an approximately 2.4 percentage points higher mean 

validation accuracy. The mean number of correct Gleason 5 image crops were approximately 

1 816 out of 1 968 test images. Thus, approximately 152 Gleason 5 image crops were 

misclassified. As for the non-Gleason 5 image crops, approximately 1 780 images were 

correctly classified, with 188 non-Gleason 5 image crops misclassified. Thus, approximately 

24 % more non-Gleason 5 images than non-Gleason 5 images were misclassified. 
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5.2 Results for the CNN-architectures with Inception-v4-

modules 

5.2.1 Results for the CNN-architecture with an Inception-v4-module 

for the 70 x 70 data set 

The 6 000 epoch training-test round for the 70 x 70 Inception-v4 modified CNN-architecture 

took approximately 109 hours to complete all 5 cross-validation folds. With respect to 

sensitivity, training and validation results for the five folds ranged from above 89.9 % to 

above 95.7 %, and from approximately 84.5 % to approximately 93.1 % respectively. The 

validation sensitivity for fold 4 was approximately three percentage points higher than the 

second-highest validation sensitivity (93.1 % vs. 90.1%). As for specificity, training results 

were above 93 % for all folds, with the highest training specificity being approximately     

96.9 %. Validation specificity ranged from approximately 89.7 % to approximately 92.8 %. 

The training and validation accuracies for the architecture test reached above 92.6 % and   

87.7 % respectively for all folds. The mean validation accuracy for all five folds was 

approximately 89.9 % (see Appendix 12 for accuracy plots). The mean number of correct 

Gleason 5 image crops was approximately 1 741 out of 1 968 test images, with approximately 

227 incorrect classifications. As for the non-Gleason 5 image crops, approximately 1 796 

images were correctly classified, with approximately 172 misclassifications. Thus, the 

architecture misclassified approximately 32 % more Gleason 5 than non-Gleason 5 images. 

 

5.2.2 Results for the CNN-architecture with an Inception-v4-module 

for the 128 x 128 data set 

2 000 epochs were used to train the 128 x 128 Inception-v4 modified CNN. The training-test 

rounds took approximately 90 hours complete. With regard to sensitivity, training and 

validation results exceeded 93.6 % and 88.8 % respectively. The highest validation sensitivity 

was approximately 96.8 % (fold 2). With regard to specificity, training and validation results 

were above 87.5 % and 81.5 % respectively. The highest validation specificity was 

approximately 92.9 % (fold 1).  

As for the training and validation accuracy results, these exceeded 92.7 % and 89.1 % 

respectively. The mean validation accuracy was approximately 92 % (see Appendix 13 for 

accuracy plots). The mean number of correctly classified Gleason 5 image crops was 1 843 

out of 1 968 test images, with approximately 125 misclassifications. As for the non-Gleason 5 

images, approximately    1 777 images were correctly classified. Thus, approximately 191 

non-Gleason 5 images were incorrectly classified. Comparing the misclassification rates for 

the 128 x 128 Inception-v4 modified CNN-architecture, approximately 53 % more non-

Gleason 5 than Gleason 5 images were incorrectly classified. 
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5.3 Results for the ResNet-architectures 

5.3.1 Results for the ResNet-architecture for the 70 x 70 data set 

The 800 epoch training-test round for the 70 x 70 data set ResNet-architecture took 

approximately 33 hours to complete all 5 cross-validation folds. With respect to sensitivity, 

training and validation results surpassed 99.8 % and 89.5 % for all iterations. The validation 

sensitivity for fold 2 was lower than those for the other four folds, approximately 89.5 % 

versus more than 91.8 % for the other four iterations. As for specificity, training results were 

slightly worse than for training sensitivity, but still above 99.8 % for all iterations. Validation 

specificity results were lower than the corresponding sensitivity results, exceeding 85.4 % for 

all folds, but with only two folds exceeding 90 % (95.4% for fold 2 and 93.6 % for fold 5).  

The training and validation accuracies for the architecture test reached above 99.8 % and   

90.7 % respectively for all folds, with the mean cross-validation accuracy being 

approximately 91.9 % (see Appendix 14 for accuracy plots). The mean number of correct 

Gleason 5 image crops were approximately 1 835 out of 1 968 test images, with 

approximately 133 incorrect classifications. As for the non-Gleason 5 image crops, 

approximately 1 782 images were correctly classified, with approximately 186 

misclassifications. The architecture appeared to have had a harder time correctly classifying 

non-Gleason 5 images, with almost 40 % more misclassifications for non-Gleason 5 images 

than for Gleason 5 images. 

 

5.3.2 Results for the ResNet-architecture for the 128 x 128 data set 

The 800 epoch training-test round for the 128 x 128 data set ResNet-architecture took 

approximately 77 hours to complete all 5 cross-validation folds. Training sensitivity reached 

100 % for all folds. With regard to validation sensitivity, the results for all folds exceeded 

95.2 %, with the results for folds 1-3 exceeding 96.5 %. Validation sensitivity was the highest 

for fold 5 with sensitivity exceeding 97.5 %. With respect to specificity, the training results 

again reached 100 % for all folds. Validation specificity results were on the same level as the 

validation sensitivity results. Validation specificity for folds 2 and 4 were in the 95 %-range, 

(95 % and 95.8 % respectively). Folds 3 and 5 achieved slightly higher results (96.5 % and 

96.6 % respectively), and fold 1 had the highest validation specificity result (98 %). 

The training accuracies reached 100 % for all iterations. As for the validation accuracies, the 

results reached above 95.9 % for all iterations, with the mean cross-validation accuracy being 

approximately 96.5 % (see Appendix 15 for accuracy plots). This was approximately           

4.6 percentage points higher than the mean validation accuracy for the 70 x 70 ResNet-

architecture. The mean number of correct Gleason 5 image crops were approximately 1 901 

out of 1 968 test images, with approximately 67 misclassifications. The architecture was 

almost equally good at classifying non-Gleason 5 image crops, with a mean number of 

approximately 1 897 correct classifications, and 71 misclassifications. 
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5.4 Results for the CNN-architectures with Inception-ResNet-

v1-modules 

5.4.1 Results for the CNN-architecture with an Inception-ResNet-v1-

module for the 70 x 70 data set 

The epoch count for the 70 x 70 Inception-ResNet-v1 modified CNN was 6 000. The total 

time it took to perform the 6 000 epoch training-test rounds for all 5 cross-validation folds of 

the 70 x 70 Inception-ResNet-v1 modified CNN-architecture was approximately 104 hours.  

With respect to sensitivity, training and validation results for the five folds ranged from above 

97.9 % to 100 %, and from approximately 80.5 % to approximately 87.6 % respectively. The 

validation sensitivity for fold 3 was approximately three percentage points higher than the 

second-highest validation sensitivity (87.6 % vs. 84.6%). With regard to specificity, training 

results were above 99.9 % for all folds. Validation specificity ranged from approximately  

82.7 % to approximately 87.3 %. 

The training and validation accuracies reached above 98.9 % and 81.6 % respectively for all 

iterations. The highest validation accuracy was approximately 87 % for fold 3. The mean 

validation accuracy for all five folds was approximately 84.2 % (see Appendix 16 for 

accuracy plots). The mean number of correct Gleason 5 image crops were approximately       

1 637 out of 1 968 test images, with approximately 331 incorrect classifications. As for the 

non-Gleason 5 image crops, approximately 1 676 images were correctly classified, with 

approximately 292 misclassifications. Thus, the architecture misclassified approximately     

13 % more Gleason 5 than non-Gleason 5 images. 

 

5.4.2 Results for the CNN-architecture with an Inception-ResNet-v1-

module for the 128 x 128 data set 

The epoch count for the 128 x 128 Inception-ResNet-v1 modified CNN was 2 000. The total 

time for performing all 5 cross-validation folds was approximately 69 hours. Training 

sensitivity exceeded 95.4 % for all folds. For the validation sensitivities, the results for all 

folds were above 93 %, with the highest validation sensitivity reaching approximately 95.1 % 

(fold 2). As for training and validation specificities, the results exceed 94.5 % and 90.6 % for 

all folds. The highest validation specificity was achieved in fold 4 (95.1 %). 

The training and validation accuracies reached above 94.9 % and 92.7 % respectively for all 

folds. The highest validation accuracy was achieved in fold 3 (94.1 %). The mean cross-

validation accuracy for all five folds was approximately 93.3 % (see Appendix 17 for 

accuracy plots and Appendix 18 for a comparison of the architecture results for the original 

and corrected data sets). The mean number of correct Gleason 5 image crops were 

approximately 1 849 out of 1 968 test images, with approximately 119 images incorrectly 

classified. As for the non-Gleason 5 image crops, approximately 1 822 images were correctly 

classified, with approximately 146 images incorrectly classified. Thus, the architecture 

misclassified approximately 23 % more non-Gleason 5 than Gleason 5 images. 
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5.5 Misclassification examples 
Several architectures have been constructed in this thesis. For the purpose of being concise, 

and to exemplify misclassifications with an accurate architecture, only the ResNet-

architecture will be used to exemplify image misclassifications. Misclassified image crops 

examples of both size 70 x 70 and 128 x 128 have been covered in order to study 

misclassification differences related to differences in image crop dimensions.  

5.5.1 Misclassifications for the 70 x 70 data set 

To determine which image crops the 70 x 70 ResNet-architecture had the most difficulties in 

classifying correctly, the classification results for fold 5 were inspected. This fold had the 

highest validation accuracy, approximately 93.5 %, with the lowest difference between 

sensitivity and specificity (approximately 0.4 percentage points).  

The breakdown in misclassified non-Gleason 5 image crops for fold 5 was as follows:          

54 benign, 19 Gleason 3, and 52 Gleason 4. From this we can see that the Gleason 3 images 

were much easier to classify than the benign or Gleason 4 images. For many of the 

misclassified non-Gleason 5 images, several rotational or mirrored variations of the same 

image crop were all misclassified. However, there were also cases where only a single 

rotational or mirrored variant of the same image crop was incorrectly classified. In many 

cases, misclassified non-Gleason 5 images did not appear to differ from correctly classified 

non-Gleason 5 images. Some similarities between misclassified non-Gleason 5 images were, 

however, noted. Incorrectly classified non-Gleason 5 image crops commonly contained cells 

with low contrast against the surrounding tissue, or several clustered cells (see Figure 11). 

With regard to the Gleason 5 images, 132 of these images were incorrectly classified. As for 

the misclassified non-Gleason 5 images, it was common that many rotational or mirrored 

variations of the same image crop were incorrectly classified. Although, there were instances 

of only one variation of the same image crop being incorrectly classified. Misclassified 

Gleason 5 images were in many cases hard to differentiate from correctly classified     

Gleason 5 images. However, it was observed that incorrectly classified Gleason 5 images 

often depicted cells very close to each other, appearing as a few large cells, or depicted a few 

small cells (see Figure 11). 
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Figure 11. Misclassified image crops in the 70 x 70 data set. (Upper left) Gleason 3 image crop 

depicting cells with low contrast against tissue background, (Upper middle) Gleason 4 image crop 

depicting cells with low contrast against tissue background, (Upper right) benign image crop depicting 

several clustered cells, (Lower left) Gleason 3 image crop depicting several clustered cells, (Lower 

middle) Gleason 5 image crop depicting cells very close to each other, (Lower right) and Gleason 5 

image crop depicting a few small cells. 

 

5.5.2 Misclassifications for the 128 x 128 data set 

To determine which image crops the 128 x 128 ResNet-architecture had the most difficulties 

in classifying correctly, the classification results for fold 5 were inspected. This fold had the 

second highest validation accuracy, approximately 97.1 %, with a difference of approximately 

1 percentage point between sensitivity and specificity. The sensitivity-specificity difference 

for fold 5 was approximately 0.4 percentage points lower than the sensitivity-specificity 

difference for the fold with the highest validation accuracy.  

The breakdown in misclassified non-Gleason 5 image crops for fold 5 was as follows:          

22 benign, 27 Gleason 3, and 18 Gleason 4. The non-Gleason 5 images were all 

approximately equally simple for the architecture to classify. If we compare this breakdown 

with that of the 70 x 70 ResNet-architecture, we can see that the 128 x 128 architecture 

appeared to be better at classifying non-Gleason 5 images as a whole. The 128 x 128 ResNet-

architecture made approximately half as many non-Gleason 5 misclassifications as the          

70 x 70 architecture (67 vs. 125), and had a more even distribution of misclassifications 

between the three types of non-Gleason 5 image crops. 

For some image crops, only a single rotational or mirrored variant of a certain                    

non-Gleason 5 image crop was misclassified. However, for most of the misclassified non-

Gleason 5 images several rotational or mirrored variations of the same image crop were all 

misclassified. As with the 70 x 70 architecture, misclassified non-Gleason 5 images did in 

many cases not appear different from correctly classified non-Gleason 5 images. Some 

similarities between misclassified non-Gleason 5 images were noted. Incorrectly classified 

non-Gleason 5 image crops commonly contained several clustered cells or a small number of 
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cells located close to the borders of the image crops (see Figure 12). The misclassified benign 

image crops mostly consisted of variations of image crops with cells close to the borders of 

the image crops. Some misclassified Gleason 3 image crops also depicted cells close to the 

borders of the image crops. All misclassified Gleason 4 images, and the remainder of the 

benign and Gleason 3 image crops shared the similarity of depicting several clustered cells. 

The reason why the 128 x 128 ResNet-architecture had trouble classifying these image crops 

might have been that the patterns of lone cells or several chaotically spread-out cells are more 

common for malign PCa than benign PCa. 

With regard to the Gleason 5 images for the 128 x 128 ResNet-architecture, 48 of these were 

incorrectly classified. Compared with the Gleason 5 misclassifications for the                        

70 x 70 architecture, this was almost equal to three times fewer misclassifications                 

(48 vs. 132). For incorrect classifications, it was common that rotational or mirrored 

variations of the same image crop were also incorrectly classified. However, for some image 

crops only one variant was misclassified. Once again, misclassified Gleason 5 were in many 

cases hard to differentiate from correctly classified Gleason 5 images. Two similarities 

between misclassified Gleason 5 images were observed: first, that incorrectly classified     

Gleason 5 images often contained cells with low contrast, and, second, depicted cells very 

close to each other, appearing as a few large cells (see Figure 12). 

 

       

     

Figure 12. Misclassified image crops in the 128 x 128 data set. (Upper left) benign image crop 

depicting several clustered cells, (Upper middle-left) Gleason 3 image crop depicting several clustered 

cells, (Upper middle-right) Gleason 4 image crop depicting several clustered cells, (Upper right) 

benign image crop depicting cells close to the borders of the image, (Lower left) Gleason 3 image crop 

depicting cells close to the borders of the image, (Lower middle) Gleason 5 image crop depicting cells 

with low contrast, (Lower right) and Gleason 5 image crop depicting cells very close to each other. 
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6 Discussion 

6.1 Analysis 

6.1.1 Data set analysis 

In this thesis image crops have been created by, first, manually creating larger image crops in 

MS Paint and, second, automatically expanding these image crops using a sliding-window 

script. As the image crops were of small dimensions (70 x 70, and 128 x 128 respectively, 

both with 40 x magnification), not creating images crops depicting only the tissue surrounding 

cells nor image crops depicting only the background, became a priority matter. If the studies 

performed in this thesis are to be recreated with new image crops, the image cropping 

procedure could become a problem.  

Using a program which automatically subdivides a large tissue image into smaller image 

crops, image crops depicting only tissue surrounding cells might be created for             

Gleason 3-5 tissue samples. If these images are to be used, the architecture would have a 

harder time differentiating between benign or malign tissue. However, creating image crops 

with automatic scripts could save time and man power spent on manually creating initial large 

image crops. If the intent of cropping images is to automatically generate image crops of 

small dimensions, background color conditions should be included in the cropping algorithm. 

For instance, making it a requirement that the background color is not white for more than   

50 % of an image crop would stop the cropping program from creating image crops 

containing only the background. Similarly, conditions on color, and color changes could be 

used in order to hinder an automatic cropping program from creating image crops containing 

only tissue surrounding cells. 

The problem of automatic image cropping is, however, intrinsically connected to the 

dimensions (e.g. crop size and magnification) of the image crops and which tissue samples 

images are cropped from. If the dimensions of image crops are large (large crop size and 

small magnification), the classification objects would shift from the cellular level to the 

multicellular pattern-level. As this means a shift in which morphological patterns that are 

interesting to classify, the need for manual inspection, to avoid cropping only surrounding 

tissue, would disappear. As Gleason scoring is based on the histopathological appearance of 

samples, this would enable easier medical classification of image crops.  

If image crops with small dimensions are to be classified, the individual image crops give a 

limited view of how cells are clustered together and how far apart such clusters are, with the 

boon being that the shapes of individual cells is clearer than for image crops with lower 

magnification. Conversely, if image crops with large dimensions are to be classified, cellular 

patterns, including how much surrounding tissue there is between cells, and if cells lie close 

together, would be much easier to detect.  Likewise, the concentration of cells vs. surrounding 

tissue in tissue samples affects the need to manually check if image crops actually contain 

cells. 

Problems with the dimensions of the image crops were also suggested by the misclassification 

analyses. Looking at the misclassification results for the 70 x 70 and 128 x 128 ResNet-

architectures, we can see some common themes. The contrast of cells against tissue 

background, if there existed clusters of cells in an image, and if the cells were close enough to 
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each other to appear as a few large cells were similarities noted for both architectures. The 

problem of contrast signifies that differences in tissue staining practices might pose a problem 

if data sets consisting of images from multiple sources are used in medical image analysis. 

Even though color and contrast changes have not been used in this thesis, the misclassification 

analyses suggest that they might be of use in improving the accuracy of neural networks.  

That the number of cells and the distances between cells appeared to affect the classification 

capability of the ResNet-architectures suggested that the image crop sizes 70 x 70 and         

128 x 128 were too small. Creating images crops with larger sizes would lead to the 

possibility of more cells being captured in each image crop. Thus, a few differences in the 

overall cellular pattern of an image crop, such as clusters of cells, would not affect the overall 

classification of an image crop. 

Another problem with creating image crops of small dimensions is whether the image crops 

are labelled with the correct Gleason grade or not. In a large tissue sample, some parts of the 

tissue sample might have a different degree of malignancy than the overall classification of 

the tissue sample. If an architecture is trained on small image crops it might therefore learn to 

associate the wrong Gleason grade with a certain pattern. To solve this problem, professionals 

trained in classifying PCa could be involved in the creation of smaller image crops, either as 

responsible for creating image crops or in a verifying capacity. Another way to attenuate the 

risk of training an architecture on image crops with incorrect labels is to use image crops of a 

large size relative to the size of the tissue image. If a tissue image as a whole can be classified 

with a certain Gleason grade, a large image crop might depict several cellular patterns, where 

the majority of cellular patterns might have the same Gleason grade as the overall tissue 

score. Thus, malignancy variations across a certain tissue sample would not affect the 

correctness of annotations of image crops from said tissue sample. 

A problem related to spatial malignancy differences is overlap between image crops and 

similarity due to spatial proximity in general. As a portion of the 70 x 70 pixel image crops 

had a 50 % overlap with neighboring image crops from the same row on the larger crops, the 

architectures might have learned patterns in the training data partially existing in test data. 

Thus, similarity due to spatial proximity between overlapping images might have led to 

inflated accuracy results for the 70 x 70 pixel image crops. Image crops taken from regions in 

close proximity to each other might also have been similar to each other both with respect to 

cellular patterns and staining. This also means that small image crops created from a large 

image crop might have been similar not only to other image crops created from the same large 

image crop, but also to spatially proximate image crops created from other large image crops.  

As stated in the Methodology section, all rotated and mirrored versions of the same small 

image crops were placed in the same folder. However, all small image crops created from 

large image crops belonging to the same tissue sample were not allocated to the same folder. 

Furthermore, not all small image crops created from the same large image crop were placed in 

the same folder. Thus, the architectures might have been able to discern patterns for small 

image crops from spatially proximate large image crops or the same large image crop residing 

in the training folders. Even though the 128 x 128 pixel image crops did not overlap, training 

and test data might thus still have had similarities due to how image crops were allocated to 

the different folders.  
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In the case that multiple large tissue samples are available, small image crops created from 

tissue samples can be allocated to the same folders. If the available tissue samples are of 

different sizes, and the majority of small image crops are created from a small set of tissue 

samples, image crops generated from large tissue samples might need to be allocated to 

different folders. For such situations, small image crops spatially far apart from each other, 

i.e. created from large image crops not proximate to each other, could be placed in different 

folders. This could make the image crops in different folders more dissimilar, and not inflate 

the accuracy results due to spatio-cellular similarities between image crops in different 

folders. 

The data sets constructed in this thesis were also quite small, with 19 680 image crops created 

for each data set, where all of the images were taken from one source (SUS). The problem 

areas raised earlier under the “Data set analysis” heading might also have been exacerbated by 

the data set sizes. If a neural network is trained on a large amount of image crops from various 

sources, the system is exposed to a variety of different histopathological patterns. Certain 

cellular patterns common to the tissue images used in this thesis might have been easier for 

the constructed architectures to learn, thereby, making the constructed networks appear to be 

better at classifying PCa than if trained on a larger data set. 

6.1.2 Architecture analysis 

Analyzing the architectures constructed in this thesis, we can see that drop-out was not needed 

in order for the architectures to produce good results. The reason why drop-out was not 

needed might have been the level of hyper parameter optimization used in this thesis. As only 

images from SUS were used, and as the data sets in this thesis were quite small, heavy use of 

hyper parameter optimization might have made normalization aids, such as drop-out, 

unnecessary. However, if architectures are trained on data sets with larger disparities between 

images, e.g. arising from inter-hospital tissue sampling or staining differences, drop-out, or 

other normalization methods, might be needed in order for the architectures to be able to 

perform Gleason scoring with high accuracy. 

From the architecture designs, we can see that the 70 x 70 and 128 x 128 base CNN- and 

Inception-v4-modified CNN-architectures had no differences with regard to their respective 

filter counts per layer. As the 70 x 70 Inception-ResNet-v1-modified CNN-architecture 

suffered from design flaws, filter count comparisons with its 128 x 128 counterpart could not 

be done in a fair manner. In contrast, the ResNet-architectures differed with respect to filter 

counts, with the 70 x 70 version having slightly more filters per layer than the 128 x 128 

version. Thus, it did not appear as though scaling up an architecture for larger images would 

always require scaling of the filter counts per layer. Rather, the matter of filter scaling 

appeared to depend on the specific architecture utilized. For instance, a reason why the 

ResNet-architectures allowed for the filter counts per layer to be higher for smaller images 

could have been that more aspects of smaller images could have been inspected without 

creating a model too complex to successfully classify the image crops.  

Looking at the parameters needed to model the different architectures, we can see that the 

base CNN-architectures required much fewer parameters than the other architectures. 

Interestingly, the Inception-v4 architectures required the most parameters by a wide margin, 

with the ResNet-architectures at a distant second-place. In contrast, the Inception-ResNet-v1-

architectures required less than 20 times more parameters than the base CNN-architectures. 



43 

 

The need for few parameters to model the base CNN-architecture can be explained by its 

simple architecture, consisting of only two tracks with a small number of filters on each layer. 

Even though the Inception-ResNet-v1-architectures had several tracks, the filter counts in 

each layer were below 60 filters. The Inception-v4 architectures’ needs for large models 

might have been due to the multiple tracks of large filter layers in the Inception-v4 end-

modules. Likewise, the reason for the large parameter counts in the ResNet-architectures 

might have been the use of multiple modules consisting of layers with fairly large filter-

stacks. 

All the designed architectures, except the 70 x 70 Inception-ResNet-v1-CNN-architecture, 

achieved validation accuracies close to or above 90 % for the corrected data set. Comparing 

the validation accuracies for the properly designed architectures, we can see that the modified 

CNN-architectures achieved higher validation accuracies than the base CNN-architectures. 

We can also see that the 128 x 128 Inception-ResNet-v1 modified CNN-architecture 

performed better than the Inception-v4 modified CNN-architecture. However, both the         

70 x 70 and the 128 x 128 ResNet-architectures outperformed the other architectures in their 

respective data set categories. The 70 x 70 ResNet-architecture also performed nearly as good 

as the 128 x 128 Inception-v4 modified CNN-architecture.  

The explanation for the base CNN-architectures’ quite high validation accuracies might have 

been that the double-track design allowed for detection of many patterns and combinations of 

patterns. The main reason for this might have been the use of ReLU-activations in the 

convolution layers before the convolution outputs were added together in the addition layers. 

In turn, the reason why the Inception-v4 modified networks performed better than the base 

CNN-network might have been the addition of an Inception-module, inspecting images for 

different interesting patterns. Similarly, the 128 x 128 Inception-ResNet-v1 network might 

have produced better validation results than the corresponding 128 x 128 Inception-v4 

networks due to the inclusion of an Inception-ResNet-v1-module, utilizing both the Inception 

pattern scanning-technique and the ResNet-technique.  

As we can see from the validation accuracy plots, the ResNet-architectures quickly reached 

high levels of validation accuracy. The reason why the ResNet-architectures produced better 

validation results than the other networks might have been due to the special combination of 

ResNet-methodology and filter counts utilized for these architectures. The fast learning speed 

of the ResNet-architectures signaled that they could speedily identify interesting patterns in 

the images. However, the ResNet-networks also experienced massive temporary accuracy 

drops. These networks might, thus, have been more over-optimized than the other networks 

designed in this thesis. The optimization could have caused fast learning for some image 

batch combinations, with resultant validation accuracies increases, and for some image batch 

combinations resulted in validation accuracy drops. As the ResNet-architectures were 

instable, the most powerful network was the 128 x 128 Inception-ResNet-v1 architecture. 

Although the properly designed Inception-v4 and Inception-ResNet-v1 architectures gave 

better mean cross-validation accuracies than the base CNN-architectures, the inter-epoch 

validation accuracy variations for the modified CNN-architectures exceeded the differences in 

mean cross-validation accuracies between the CNN-architectures and the modified CNN-

architectures. Thus, it could not be concluded that adding the Inception-v4 or Inception-

ResNet-v1 modules to the end of CNN-architectures produced better validation accuracy 

results than the base architectures without any such modifications.  
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6.2 Conclusion 
The decision of which image crop dimensionality to use has ramifications on what a neural 

network can classify. In this thesis it is not purported that the dimensions selected for the 

image crops are the best fit for all automatic Gleason-classification situations. Using larger 

image crops with a different degree of magnification changes what medical information 

content as well as which cellular patterns that are analyzed. Creating image crops with large 

sizes might combat problems with malignancy variations in images, allowing for capture of 

image crops more representative of a tissue image’s overall classification. Better validation 

accuracy results for 128 x 128 architectures and the misclassification analyses indicated that 

using image crops larger than 70 x 70 pixels might yield better validation accuracies when 

using a magnification of 40X, supporting the important role image crop dimension selection 

plays.  

As for the effect of the constructed architectures on the validation accuracies, the results were 

unclear. Even though modifying CNN-architectures with Inception-v4 or Inception-ResNet-

v1 end-modules yielded higher mean cross-validation accuracies than the base CNN-

architectures by themselves, the differences between the base and the modified networks were 

dwarfed by the inter-epoch accuracy variations of the modified networks. The fact that the 

best networks, those of ResNet design, suffered from massive temporary drops in validation 

accuracy, further muddied the waters. 

This thesis has had an exploratory purpose to study PCa-classification for images of small 

dimensions. For this purpose, architectures were constructed with different designs and 

trained on image crops of different dimensions. For PCa-classification purposes, the results 

indicated that using image crops larger than 70 x 70 pixels when using a magnification of 40X 

might yield better validation accuracies. However, several questions still remain unanswered:  

Which dimensions are the most suitable for PCa-classification or classification of other 

medical disorders? Does dimensionality have to be adapted depending on the facility where 

tissue samples are created? Can tissue samples be classified using parallel architectures 

adapted for image crops with different dimensions? Which network is best suited for high-

accuracy image classifications? These questions are left for future researchers to answer. 

6.3 Suggestions for future research 
The focal point in this thesis has been on how small dimensions, herein exemplified with      

70 x 70 and 128 x 128, 40X magnification images, affect the classification of Gleason scores. 

This theme can be further delved into by creating smaller image crops from large image 

crops, the results of which can be compared with each other. Different degrees of 

magnification could also be taken into account. Accuracy results for different image crop 

sizes, e.g. 128 x 128 and 256 x 256, could then readily be compared with each other. Such an 

approach could provide researchers with more insight into how dimensionality and 

increases/decreases in image information affect classification results. This type of study could 

be performed with the same architectures as laid out in thesis, thus, using this thesis as a 

comparative basis, or other suitable architectures. Use of larger data sets when performing 

such tests could also more clearly show the viability of small region PCa-classification. 

In this thesis, transfer learning, using architectures pre-trained on histopathological images, 

has not been used for classification testing. Repeating the experiments performed in this thesis 
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but with architectures pre-trained on histopathological images might yield better results than 

those obtained in this thesis. To account for variations between histopathological images 

created at different facilities, the used image data set should consist of images from different 

sources. 

Apart from using another data set for transfer learning purposes, other architectures than those 

studied in this thesis, such as the full Inception-v4-, and Inception-ResNet-v1/v2-

architectures, and/or NASNet, could also be used in order to obtain inter-architecture 

comparison data [51, 60]. 

The classification studies performed in this thesis have been made through supervised 

learning with CNNs. A future avenue of small-dimensional histopathological sample 

classification could be the use of unsupervised learning. Furthermore, CNN-comparison 

studies between different kinds of carcinoma in varying dimensions could be made in order to 

determine the lowest dimensional bounds for practical use of automatic classification for the 

respective kind of carcinoma. 

As the architectures used in this thesis were not rotationally invariant, rotation and mirroring 

of base image crops was used extensively as compensation. To save time spent on creating 

rotated variations of image crops, capsule networks could be used to study how rotational 

invariance in machine learning architectures affects classification results [61, 62]. 
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Appendix 1. Original Inception-v4 Architecture 
 

 

Figure 13. Part 1-1 of the Inception-v4-stem. 

 

Aα-1: Convolutional layer. Filters: 32, kernel 

size: 3 x 3, stride: 2 x 2, padding: valid. 

Bα-1: Convolutional layer. Filters: 32, kernel 

size: 3 x 3, padding: valid. 

Cα-1: Convolutional layer. Filters: 64, kernel 

size: 3 x 3, padding: same. 

Dα-1: Max pooling layer. Kernel size: 3 x 3, 

stride: 2 x 2, padding: valid. 

Eα-1: Convolutional layer. Filters: 96, kernel 

size: 3 x 3, stride: 2 x 2, padding: valid. 

Fα-1: Filter concatenation layer. 

 

Bα-1 

Cα-1 

Aα-1 

Dα-1 

Fα-1 

Eα-1 
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Figure 14. Part 1-2 of the Inception-v4-stem. 

 

 

Figure 15. Inception-v4-A-module. 

  

Aα-2: Convolutional layer. Filters: 64, kernel 

size: 1 x 1, padding: same. 

Bα-2: Convolutional layer. Filters: 96, kernel 

size: 3 x 3, padding: valid. 

Cα-2: Convolutional layer. Filters: 64, kernel 

size: 7 x 1, padding: same. 

Dα-2: Convolutional layer. Filters: 64, kernel 

size: 1 x 7, padding: same. 

Eα-2: Filter concatenation layer. 

Fα-2: Convolutional layer. Filters: 192, 

kernel size: 3 x 3, padding: valid. 

Gα-2: Max pooling layer. Stride: 2 x 2, 

padding: valid. 

 

Eα-2 

Aα-2 Aα-2 

Bα-2 Cα-2 

Dα-2 

Bα-2 

Fα-2 Gα-2 

Eα-2 

Aα-3: Filter concatenation layer. 

Bα-3: Average pooling layer. 

Cα-3: Convolutional layer. Filters: 

96, kernel size: 1 x 1, padding: 

same. 

Dα-3: Convolutional layer. Filters: 

64, kernel size: 1 x 1, padding: 

same. 

Eα-3: Convolutional layer. Filters: 

96, kernel size: 3 x 3, padding: 

same. 

Bα-3 

Aα-3 

Cα-3 Dα-3 Dα-3 

Eα-3 Cα-3 Eα-3 

Eα-3 

Aα-3 
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Figure 16. Inception-v4-B-module. 

  

Aα-4: Filter concatenation layer. 

Bα-4: Average pooling layer. 

Cα-4: Convolutional layer. Filters: 

384, kernel size: 1 x 1, padding: 

same. 

Dα-4: Convolutional layer. Filters: 

192, kernel size: 1 x 1, padding: 

same. 

Eα-4: Convolutional layer. Filters: 

128, kernel size: 1 x 1, padding: 

same. 

Fα-4: Convolutional layer. Filters: 

224, kernel size: 1 x 7, padding: 

same. 

Gα-4: Convolutional layer. Filters: 

192, kernel size: 1 x 7, padding: 

same. 

Hα-4: Convolutional layer. Filters: 

256, kernel size: 1 x 7, padding: 

same. 

Iα-4: Convolutional layer. Filters: 

224, kernel size: 7 x 1, padding: 

same. 

Jα-4: Convolutional layer. Filters: 

256, kernel size: 7 x 1, padding: 

same. 

Bα-4 

Aα-4 

Cα-4 Dα-4 Dα-4 

Fα-4 Eα-4 Gα-4 

Iα-4 Hα-4 

Fα-4 

Jα-4 

Aα-4 



54 

 

 

Figure 17. Inception-v4-C-module. 

  

Aα-5: Filter 

concatenation layer. 

Bα-5: Average 

pooling layer. 

Cα-5: Convolutional 

layer. Filters: 256, 

kernel size: 1 x 1, 

padding: same. 

Dα-5: Convolutional 

layer. Filters: 384, 

kernel size: 1 x 1, 

padding: same. 

Eα-5: Convolutional 

layer. Filters: 256, 

kernel size: 1 x 3, 

padding: same. 

Fα-5: Convolutional 

layer. Filters: 256, 

kernel size: 3 x 1, 

padding: same. 

Gα-5: Convolutional 

layer. Filters: 448, 

kernel size: 1 x 3, 

padding: same. 

Hα-5: Convolutional 

layer. Filters: 512, 

kernel size: 3 x 1, 

padding: same. 

Bα-5 

Aα-5 

Cα-5 

Cα-5 

Aα-5 

Dα-5 Dα-5 

Eα-5 Fα-5 Gα-5 

Hα-5 

Fα-5 Eα-5 
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Figure 18. Inception-v4-Reduction-A-module. 

Aα-6: Filter concatenation 

layer. 

Bα-6: Max pooling layer. 

Kernel size: 3 x 3, stride: 2 x 

2, padding: valid. 

Cα-6: Convolutional layer. 

Filters: 384, kernel size: 3 x 

3, stride: 2 x 2, padding: 

valid. 

Dα-6: Convolutional layer. 

Filters: 192, kernel size: 1 x 

1, padding: same. 

Eα-6: Convolutional layer. 

Filters: 224, kernel size: 3 x 

3, padding: same. 

Fα-6: Convolutional layer. 

Filters: 256, kernel size: 3 x 

1, stride: 2 x 2, padding: 

valid. 

Aα-6 

Aα-6 

Cα-6 Dα-6 

Eα-6 

Fα-6 

Bα-6 



56 

 

 

Figure 19. Inception-v4-Reduction-B-module. 

  

Aα-7: Filter concatenation 

layer. 

Bα-7: Max pooling layer. 

Kernel size: 3 x 3, stride: 2 x 

2, padding: valid. 

Cα-7: Convolutional layer. 

Filters: 192, kernel size: 1 x 

1, padding: same. 

Dα-7: Convolutional layer. 

Filters: 256, kernel size: 1 x 

1, padding: same. 

Eα-7: Convolutional layer. 

Filters: 192, kernel size: 3 x 

3, stride: 2 x 2, padding: 

valid. 

Fα-7: Convolutional layer. 

Filters: 256, kernel size: 1 x 

7, padding: same. 

Gα-7: Convolutional layer. 

Filters: 320, kernel size: 7 x 

1, padding: same. 

Hα-7: Convolutional layer. 

Filters: 320, kernel size: 3 x 

3, stride: 2 x 2, padding: 

valid. 

Aα-7 

Aα-7 

Cα-7 Dα-7 

Fα-7 

Gα-7 

Bα-7 

Hα-7 

Eα-7 
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Figure 20. Full Inception-v4-architecture. 

  

P1-1 

P1-1: Part 1 of the Inception-v4-stem.  

P1-2: Part 2 of the Inception-v4-stem. 

P1-3: 4 x Inception-v4-A-module. 

P1-4: Inception-v4-Reduction-A-module. 

P1-5: 7 x Inception-v4-B-module. 

P1-6: Inception-v4-Reduction-B-module. 

P1-7: 3 x Inception-v4-C-module. 

P1-8: Average pooling layer. 

P1-9: Dropout layer (keep 0.8). 

P1-10: Softmax layer. 

P1-2 

Input (299 x 299 x 3) 

P1-3 

P1-4 

P1-6 

P1-7 

P1-8 

P1-5 

P1-9 

P1-10 
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Appendix 2. Original Inception-ResNet-v1 

Architecture 
 

 

Figure 21. Inception-ResNet-v1-stem. 

  

Aβ-1 Aβ-1: Convolutional layer. 

Filters: 32, kernel size: 3 x 

3, stride: 2 x 2, padding: 

valid. 

Bβ-1: Convolutional layer. 

Filters: 32, kernel size: 3 x 

3, padding: valid. 

Cβ-1: Convolutional layer. 

Filters: 64, kernel size: 3 x 

3, padding: same. 

Dβ-1: Max pooling layer. 

Kernel size: 3 x 3, stride: 2 

x 2, padding: valid. 

Eβ-1: Convolutional layer. 

Filters: 80, kernel size: 1 x 

1, padding: same. 

Fβ-1: Convolutional layer. 

Filters: 192, kernel size: 3 x 

3, padding: valid. 

Gβ-1: Convolutional layer. 

Filters: 256, kernel size: 3 x 

3, stride: 2 x 2, padding: 

valid. 

Bβ-1 

Cβ-1 

Convo

Dβ-1 

Eβ-1 

Fβ-1 

Gβ-1 
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Figure 22. Inception-ResNet-v1-A-module. 

  

Aβ-2: ReLU-activation layer.  

Bβ-2: Convolutional layer. Filters: 32, 

kernel size: 1 x 1, padding: same. 

Cβ-2: Convolutional layer. Filters: 32, 

kernel size: 3 x 3, padding: same. 

Dβ-2: Convolutional layer. Filters: 

256, kernel size: 1 x 1, padding: same, 

linear. 

Eβ-2: Addition layer. 

Bβ-2 

Aβ-2 

Bβ-2 

Cβ-2 

Cβ-2 

Dβ-2 

Eβ-2 

Aβ-2 

Bβ-2 

Cβ-2 
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Figure 23. Inception-ResNet-v1-B-module. 

  

Aβ-3: ReLU-activation layer.  

Bβ-3: Convolutional layer. Filters: 

128, kernel size: 1 x 1, padding: same. 

Cβ-3: 2D convolutional layer. Filters: 

128, kernel size: 1 x 7, padding: same. 

Dβ-3: 2D convolutional layer. Filters: 

128, kernel size: 7 x 1, padding: same. 

Eβ-3: Convolutional layer. Filters: 

896, kernel size: 1 x 1, padding: same, 

linear. 

Fβ-3: Addition layer. 

Bβ-3 

Aβ-3 

Bβ-3 

Cβ-3 

Dβ-3 

Eβ-3 

Fβ-3 

Aβ-3 
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Figure 24. Inception-ResNet-v1-C-module. 

  

Aβ-4: ReLU-activation layer.  

Bβ-4: Convolutional layer. Filters: 

192, kernel size: 1 x 1, padding: same. 

Cβ-4: Convolutional layer. Filters: 

192, kernel size: 1 x 3, padding: same. 

Dβ-4: 2D convolutional layer. Filters: 

192, kernel size: 3 x 1, padding: same. 

Eβ-4: Convolutional layer. Filters: 

1792, kernel size: 1 x 1, padding: 

same, linear. 

Fβ-4: Addition layer. 

Bβ-4 

Aβ-4 

Bβ-4 

Cβ-4 

Dβ-4 

Eβ-4 

Fβ-4 

Aβ-4 
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Figure 25. Inception-ResNet-v1-Reduction-A-module. 

 

 

Figure 26. Inception-ResNet-v1-Reduction-B-module. 

Aβ-5: Filter concatenation 

layer. 

Bβ-5: Max pooling layer. 

Kernel size: 3 x 3, stride: 2 x 

2, padding: valid. 

Cβ-5: Convolutional layer. 

Filters: 384, kernel size: 3 x 

3, stride: 2 x 2, padding: 

valid. 

Dβ-5: Convolutional layer. 

Filters: 192, kernel size: 1 x 

1, padding: same. 

Eβ-5: Convolutional layer. 

Filters: 192, kernel size: 3 x 

3, padding: same. 

Fβ-5: Convolutional layer. 

Filters: 256, kernel size: 3 x 

1, stride: 2 x 2, padding: 

valid. 

Aβ-5 

Aβ-5 

Cβ-5 Dβ-5 

Eβ-5 

Fβ-5 

Bβ-5 

Aβ-6: Previous layer. 

Bβ-6: Max pooling layer. Kernel size: 

3 x 3, stride: 2 x 2, padding: valid. 

Cβ-6: Convolutional layer. Filters: 

256, kernel size: 1 x 1, padding: same. 

Dβ-6: Convolutional layer. Filters: 

384, kernel size: 3 x 3, stride: 2 x 2, 

padding: valid. 

Eβ-6: Convolutional layer. Filters: 

256, kernel size: 3 x 3, stride: 2 x 2, 

padding: valid. 

Fβ-6: Convolutional layer. Filters: 

256, kernel size: 3 x 3, padding: same. 

Gβ-6: Filter concatenation layer. 

Bβ-6 

Aβ-6 

Fβ-6 

Eβ-6 

Gβ-6 

Cβ-6 

Eβ-6 Dβ-6 

Cβ-6 Cβ-6 
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Figure 27. Full Inception-ResNet-v1-architecture. 

  

P2-1 

P2-1: Inception-ResNet-v1-stem.  

P2-2: 5 x Inception-ResNet-v1-A-module. 

P2-3: Inception-ResNet-v1-Reduction-A-

module. 

P2-4: 10 x Inception-ResNet-v1-B-module. 

P2-5: Inception-ResNet-v1-Reduction-B-

module. 

P2-6: 5 x Inception-ResNet-v1-C-module. 

P2-7: Average pooling layer. 

P2-8: Dropout layer (keep 0.8). 

P2-9: Softmax layer. 

P2-2 

Input (299 x 299 x 3) 

P2-3 

P2-4 

P2-6 

P2-7 

P2-8 

P2-5 

P2-9 
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Appendix 3. CNN-architecture for the 70 x 70 and 

128 x 128 data sets 
 

The 70 x 70 and the 128 x 128 CNN-architectures used the same architecture structure with 

two tracks. The number of filter on the respective layers varied from 3, at the initial levels, to 

4, at the final levels (see Figures 28-30). The 70 x 70 architecture had a total of 1 031 

parameters, with all 1 031 of these being trainable parameters. On the other hand, the         

128 x 128 architecture had a total of 1 799 parameters, with all of them being trainable.  

To create a comparison architecture to the CNN-architecture, a single-tracked 70 x 70 version 

of the CNN-architecture was also constructed (see Figures 31-33). This architecture required      

648 parameters, with all of these parameters being trainable. In the double-tracked and single-

tracked CNN-architecture, ReLU-activations were performed in the convolutional layers 

before the addition layers. As max(o, x) ≠ x, the input to the addition layers were not linear. 

Thus, the double-tracked convolutional layers in the double-tracked CNN-architecture are not 

interchangeable with a single convolutional layer.  
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Figure 28. Section 1 of the CNN-architecture. 

  

A1-1 A1-1: 2D convolutional layer. Filters: 3, 

kernel size: 3 x 3, stride: 1 x 1, padding: 

same, activation function: ReLU. 

B1-1: Addition layer. 

C1-1: 2D max pooling layer. Pool size: 2 x 2. 

D1-1: 2D convolutional layer. Filters: 4, 

kernel size: 3 x 3, stride: 1 x 1, padding: 

same, activation function: ReLU. 

B1-1 

C1-1 

A1-1 

A1-1 

B1-1 

C1-1 

A1-1 

D1-1 

B1-1 

C1-1 

D1-1 

D1-1 

B1-1 

C1-1 

D1-1 
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Figure 29. Section 2 of the CNN-architecture. 

 

 

Figure 30. Full CNN-architecture. 

  

A1-2 A1-2: Flatten layer. 

B1-2: Dense layer. Output space dimensionality: 4, 

activation function: ReLU. 

C1-2: Dense layer. Output space dimensionality: 1, 

activation function: Sigmoid. 

B1-2 

C1-2 

S1-1 

S1-1: Section 1 of the CNN-architecture.  

S1-2: Section 2 of the CNN-architecture.  

 

S1-2 

70/128 x 70/128 x 3 image 
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Figure 31. Section 1 of the 70 x 70 data set single-tracked CNN-architecture. 

  

A2-1: 2D convolutional layer. Filters: 3, 

kernel size: 3 x 3, stride: 1 x 1, padding: 

same, activation function: ReLU. 

B2-1: Addition layer. 

C2-1: 2D max pooling layer. Pool size: 2 x 2. 

D2-1: 2D convolutional layer. Filters: 4, 

kernel size: 3 x 3, stride: 1 x 1, padding: 

same, activation function: ReLU. 

B2-1 

C2-1 

A2-1 

B2-1 

C2-1 

A2-1 

B2-1 

C2-1 

D2-1 

B2-1 

C2-1 

D2-1 
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Figure 32. Section 2 of the 70 x 70 data set single-tracked CNN-architecture. 

 

 

Figure 33. Full 70 x 70 data set single-tracked CNN-architecture. 

  

A2-2 A2-2: Flatten layer. 

B1-2: Dense layer. Output space dimensionality: 4, 

activation function: ReLU. 

C1-2: Dense layer. Output space dimensionality: 1, 

activation function: Sigmoid. 

B2-2 

C2-2 

S2-1 

S2-1: Section 1 of the 70 x 70 data set single-tracked CNN-

architecture.  

S1-2: Section 2 of the 70 x 70 data set single-tracked CNN-

architecture.  

S1-2 

70 x 70 x 3 image 
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Appendix 4. ResNet-architecture for the 70 x 70 

data set 
 

The architectures for the 70 x 70 and 128 x 128 ResNet-architectures differed in their layer 

filter counts. 70 x 70 ResNet-architecture filter counts on the respective layers varied from 63, 

at the initial levels, to 75, at the final levels (see Figures 34-39). The architecture had a total of 

507 180 parameters, with 506 850 of these being trainable parameters.  
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Figure 34. Section 1 of the 70 x 70 data set ResNet-architecture. 

  

A5-1 A5-1: 2D convolutional layer. Filters: 63, kernel size: 3 x 3, 

stride: 1 x 1, padding: valid, activation function: ReLU. 

B5-1: 2D max pooling layer. Pool size: 2 x 2. 

C5-1: 2D convolutional layer. Filters: 63, kernel size: 3 x 3, 

stride: 1 x 1, padding: same. 

D5-1: Batch normalization layer. 

E5-1: ReLU-activation layer. 

F5-1: Addition layer. 

 

B5-1 

C5-1 

D5-1 

E5-1 

C5-1 

D5-1 

E5-1 

C5-1 

D5-1 

F5-1 

E5-1 
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Figure 35. Section 2 of the 70 x 70 data set ResNet-architecture. 

 

A5-2 A5-2: 2D convolutional layer. Filters: 67, kernel size: 3 x 3, 

stride: 1 x 1, padding: valid, activation function: ReLU. 

B5-2: 2D max pooling layer. Pool size: 2 x 2. 

B5-2 
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Figure 36. Section 3 of the 70 x 70 data set ResNet-architecture. 

  

A5-2 
A5-3: 2D convolutional layer. Filters: 67, kernel size: 3 x 3, 

stride: 1 x 1, padding: valid, activation function: ReLU. 

B5-3: 2D convolutional layer. Filters: 67, kernel size: 3 x 3, 

stride: 1 x 1, padding: same. 

C5-3: Batch normalization layer. 

D5-3: ReLU-activation layer. 

E5-3: Addition layer. 

B5-3 

C5-5 

D5-3 

B5-3 

C5-3 

D5-3 

B5-3 

C5-3 

E5-3 

D5-3 
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Figure 37. Section 4 of the 70 x 70 data set ResNet-architecture. 

  

C5-4 

B5-4: 2D max pooling layer. Pool size: 2 x 2. 

C5-4: 2D convolutional layer. Filters: 75, kernel size: 3 x 3, 

stride: 1 x 1, padding: same. 

D5-4: Batch normalization layer. 

E5-4: ReLU-activation layer. 

F5-4: Addition layer. 

 

 

C5-4 

D5-4 

E5-4 

C5-4 

D5-4 

E5-4 

C5-4 

D5-4 

F5-4 

E5-4 

B5-4 
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Figure 38. Section 5 of the 70 x 70 data set ResNet-architecture. 

 

 

Figure 39. Full 70 x 70 data set ResNet-architecture. 

  

A5-5 A5-5: 2D average pooling layer. Pool size: 4 x 4.  

B5-5: Flatten layer. 

C5-5: Dense layer. Output space dimensionality: 1, 

activation function: Sigmoid. B5-5 

C5-5 

S5-1 

S5-1: Section 1 of the 70 x 70 data set ResNet-architecture.  

S5-2: Section 2 of the 70 x 70 data set ResNet-architecture.  

S5-3: Section 3 of the 70 x 70 data set ResNet-architecture.  

S5-4: Section 4 of the 70 x 70 data set ResNet-architecture.  

S5-5: Section 5 of the 70 x 70 data set ResNet-architecture.  
S5-2 

S5-3 

S5-4 

S5-5 

70 x 70 x 3 image 
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Appendix 5. ResNet-architecture for the 128 x 128 

data set 
 

The 128 x 128 ResNet-architecture had the following structure: Filter counts on the respective 

layers progressively increased from 58, at the initial levels, to 70, at the final levels (see 

Figures 40-45). The architecture had a total of 436 865 parameters, with 630 of these being 

non-trainable. 
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Figure 40. Section 1 of the 128 x 128 data set ResNet-architecture. 

  

A6-1 A6-1: 2D convolutional layer. Filters: 58, kernel size: 3 x 3, 

stride: 1 x 1, padding: valid, activation function: ReLU. 

B6-1: 2D max pooling layer. Pool size: 2 x 2. 

C6-1: 2D convolutional layer. Filters: 58, kernel size: 3 x 3, 

stride: 1 x 1, padding: same. 

D6-1: Batch normalization layer. 

E6-1: ReLU-activation layer. 

F6-1: Addition layer. 

 

B6-1 

C6-1 

D6-1 

E6-1 

C6-1 

D6-1 

E6-1 

C6-1 

D6-1 

F6-1 

E6-1 
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Figure 41. Section 2 of the 128 x 128 data set ResNet-architecture. 

 

A6-2 A6-2: 2D convolutional layer. Filters: 62, kernel size: 3 x 3, 

stride: 1 x 1, padding: valid, activation function: ReLU. 

B6-2: 2D max pooling layer. Pool size: 2 x 2. 

B6-2 
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Figure 42. Section 3 of the 128 x 128 data set ResNet-architecture. 

  

A6-2 
A6-3: 2D convolutional layer. Filters: 62, kernel size: 3 x 3, 

stride: 1 x 1, padding: valid, activation function: ReLU. 

B6-3: 2D convolutional layer. Filters: 62, kernel size: 3 x 3, 

stride: 1 x 1, padding: same. 

C6-3: Batch normalization layer. 

D6-3: ReLU-activation layer. 

F6-3: Addition layer. 

 

 

B6-3 

C6-5 

D6-3 

B6-3 

C6-3 

D6-3 

B6-3 

C6-3 

F6-3 

D6-3 
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Figure 43. Section 4 of the 128 x 128 data set ResNet-architecture. 

  

B6-4 

A6-4: 2D max pooling layer. Pool size: 2 x 2. 

B6-4: 2D convolutional layer. Filters: 70, kernel size: 3 x 3, 

stride: 1 x 1, padding: same. 

C6-4: Batch normalization layer. 

D6-4: ReLU-activation layer. 

E6-4: Addition layer. B6-4 

C6-4 

D6-4 

B6-4 

C6-4 

D6-4 

B6-4 

C6-4 

E6-4 

D6-4 

A6-4 
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Figure 44. Section 5 of the 128 x 128 data set ResNet-architecture. 

 

 

Figure 45. Full 128 x 128 data set ResNet-architecture. 

 

 

  

A6-5 A6-5: 2D average pooling layer. Pool size: 7 x 7.  

B6-5: Flatten layer. 

C6-5: Dense layer. Output space dimensionality: 1, 

activation function: Sigmoid. B6-5 

C6-5 

S6-1 

S6-1: Section 1 of the 128 x 128 data set ResNet-architecture.  

S6-2: Section 2 of the 128 x 128 data set ResNet-architecture.  

S6-3: Section 3 of the 128 x 128 data set ResNet-architecture.  

S6-4: Section 4 of the 128 x 128 data set ResNet-architecture.  

S6-5: Section 5 of the 128 x 128 data set ResNet-architecture.  
S6-2 

S6-3 

S6-4 

S6-5 

128 x 128 x 3 image 
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Appendix 6. CNN-architecture with an Inception-

v4-module for the 70 x 70 data set 
 

The number of filters on the respective layers for the 70 x 70 Inception-v4 modified CNN 

varied from 298 to 362 (see Figures 46-48). The architecture had a total of                         

1 963 347 parameters, with all of them being trainable. Thus, the 70 x 70 Inception-v4 

modified CNN-architecture required approximately 1 900 times more parameters to train than 

the base 70 x 70 CNN-architecture. 

 

Figure 46. Section 1 of the 70 x 70 data set CNN-Inception-v4-module architecture. 

  

A3-1: 2D average 

pooling layer. Pool size: 

4 x 4. 

B3-1: 2D convolutional 

layer. Filters: 298, kernel 

size: 1 x 1, stride: 1 x 1, 

padding: same. 

C3-1: 2D convolutional 

layer. Filters: 330, kernel 

size: 1 x 1, stride: 1 x 1, 

padding: same. 

D3-1: 2D convolutional 

layer. Filters: 298, kernel 

size: 1 x 3, stride: 1 x 1, 

padding: same. 

E3-1: 2D convolutional 

layer. Filters: 298, kernel 

size: 3 x 1, stride: 1 x 1, 

padding: same. 

F3-1: 2D convolutional 

layer. Filters: 346, kernel 

size: 1 x 3, stride: 1 x 1, 

padding: same. 

G3-1: 2D convolutional 

layer. Filters: 362, kernel 

size: 3 x 1, stride: 1 x 1, 

padding: same. 

H3-1: Addition layer. 

 

C3-1 

A3-1 

B3-1 C3-1 

A3-1 

D3-1 E3-1 F3-1 

G3-1 

E3-1 D3-1 

H3-1 
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Figure 47. Section 2 of the 70 x 70 data set CNN-Inception-v4-module architecture. 

 

 

Figure 48. Full 70 x 70 data set CNN-Inception-v4-module-architecture. 

  

A3-2 A3-2: Flatten layer. 

B3-2: Dense layer. Output space dimensionality: 1, 

activation function: Sigmoid. 

 B3-2 

S1-1 

S1-1: Section 1 of the CNN-architecture.  

S3-1: Section 1 of the 70 x 70 data set CNN-Inception-v4-

module-architecture.  

S3-2: Section 2 of the 70 x 70 data set CNN-Inception-v4-

module-architecture.  

 
S3-1 

70 x 70 x 3 image 

S3-2 
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Appendix 7. CNN-architecture with an Inception-

v4-module for the 128 x 128 data set 
 

As with the 70 x 70 Inception-v4 modified CNN, the number of filters on the respective layers 

for the 128 x 128 Inception-v4 modified CNN varied from 298 to 362 (see Figures 49-50). In 

total, the architecture had 1 963 347 parameters, with no non-trainable parameters. Compared 

with the 128 x 128 CNN-architecture, approximately 1 090 times more parameters were 

required to train 128 x 128 Inception-v4 modified CNN. 

 

Figure 49. Section 1 of the 128 x 128 data set CNN-Inception-v4-module-architecture. 

A4-1: 2D average 

pooling layer. Pool size: 

8 x 8. 

B4-1: 2D convolutional 

layer. Filters: 298, kernel 

size: 1 x 1, stride: 1 x 1, 

padding: same. 

C4-1: 2D convolutional 

layer. Filters: 330, kernel 

size: 1 x 1, stride: 1 x 1, 

padding: same. 

D4-1: 2D convolutional 

layer. Filters: 298, kernel 

size: 1 x 3, stride: 1 x 1, 

padding: same. 

E4-1: 2D convolutional 

layer. Filters: 298, kernel 

size: 3 x 1, stride: 1 x 1, 

padding: same. 

F4-1: 2D convolutional 

layer. Filters: 346, kernel 

size: 1 x 3, stride: 1 x 1, 

padding: same. 

G4-1: 2D convolutional 

layer. Filters: 362, kernel 

size: 3 x 1, stride: 1 x 1, 

padding: same. 

H4-1: Addition layer. 

 

C4-1 

A4-1 

B4-1 C4-1 

A4-1 

D4-1 E4-1 F4-1 

G4-1 

E4-1 D4-1 

H4-1 
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Figure 50. Full 128 x 128 data set CNN-Inception-v4-module-architecture. 

  

S1-1 

S1-1: Section 1 of the CNN-architecture.  

S4-1: Section 1 of the 128 x 128 data set CNN-Inception-v4-

module-architecture.  

S3-2: Section 2 of the 70 x 70 data set CNN-Inception-v4-

module-architecture.  

 
S4-1 

128 x 128 x 3 image 

S3-2 
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Appendix 8. CNN-architecture with an Inception-

ResNet-v1-module for the 70 x 70 data set 
 

The number of filter on the respective layers for the 70 x 70 Inception-ResNet-v1 modified 

CNN-architecture varied from 4 to 57 (see Figures 51-52). The total parameter count for the 

architecture was 16 629, with eight non-trainable parameters. Compared with the base          

70 x 70 CNN-architecture, the 70 x 70 Inception-ResNet-v1 modified CNN-architecture 

required approximately 16 times more parameters to train. 

 

Figure 51. Section 1 of the 70 x 70 data set CNN-Inception-ResNet-v1-module-architecture. 

  

A7-1: Batch normalization layer.  

B7-1: ReLU-activation layer.  

C7-1: 2D convolutional layer. Filters: 

57, kernel size: 1 x 1, stride: 1 x 1, 

padding: same, activation function: 

ReLU. 

D7-1: 2D convolutional layer. Filters: 

45, kernel size: 1 x 1, stride: 1 x 1, 

padding: same, activation function: 

ReLU. 

E7-1: 2D convolutional layer. Filters: 

49, kernel size: 1 x 3, stride: 1 x 1, 

padding: same, activation function: 

ReLU. 

F7-1: 2D convolutional layer. Filters: 

57, kernel size: 3 x 1, stride: 1 x 1, 

padding: same, activation function: 

ReLU. 

G7-1: Addition layer. 

H7-1: 2D convolutional layer. Filters: 

4, kernel size: 1 x 1, stride: 1 x 1, 

padding: same. 

I7-1: 2D average pooling layer. Pool 

size: 4 x 4. 
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A7-1 

B7-1 

D7-1 

E7-1 

F7-1 

G7-1 

H7-1 

G7-1 

I7-1 
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Figure 52. Full 70 x 70 data set CNN-Inception-ResNet-v1-module-architecture. 

  

S1-1 

S1-1: Section 1 of the CNN-architecture.  

S7-1: Section 1 of the 70 x 70 data set CNN-Inception-

ResNet-module-architecture.  

S3-2: Section 2 of the 70 x 70 data set CNN-Inception-v4-

module-architecture.  

 
S7-1 

70 x 70 x 3 image 

S3-2 
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Appendix 9. CNN-architecture with an Inception-

ResNet-v1-module for the 128 x 128 data set 
 

The number of filter on the respective layers varied from 4 to 56 (see Figures 53-54). The 

total parameter count for the architecture was 16 047, with 16 non-trainable parameters. The 

128 x 128 Inception-ResNet-v1 modified CNN-architecture required approximately 9 times 

more parameters than the base 128 x 128 CNN-architecture. 
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Figure 53. Section 1 of the 128 x 128 data set CNN-Inception-ResNet-v1-module-architecture. 

  

A8-1: Batch normalization layer.  

B8-1: ReLU-activation layer.  

C8-1: 2D convolutional layer. Filters: 

56, kernel size: 1 x 1, stride: 1 x 1, 

padding: same, activation function: 

ReLU. 

D8-1: 2D convolutional layer. Filters: 

44, kernel size: 1 x 1, stride: 1 x 1, 

padding: same, activation function: 

ReLU. 

E8-1: 2D convolutional layer. Filters: 

48, kernel size: 1 x 3, stride: 1 x 1, 

padding: same, activation function: 

ReLU. 

F8-1: 2D convolutional layer. Filters: 

56, kernel size: 3 x 1, stride: 1 x 1, 

padding: same, activation function: 

ReLU. 

G8-1: Addition layer. 

H8-1: 2D convolutional layer. Filters: 

4, kernel size: 1 x 1, stride: 1 x 1, 

padding: same. 

I8-1: 2D average pooling layer. Pool 

size: 4 x 4. 
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H8-1 
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Figure 54. Full 128 x 128 data set CNN-Inception-ResNet-v1-module-architecture. 

  

S1-1 

S1-1: Section 1 of the CNN-architecture.  

S8-1: Section 1 of the 128 x 128 data set CNN-Inception-

ResNet-module-architecture.  

S3-2: Section 2 of the 70 x 70 data set CNN-Inception-v4-

module-architecture.  

 
S8-1 

128 x 128 x 3 image 

S3-2 
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Appendix 10. Plotted results for the CNN-

architecture for the 70 x 70 data set 
 

From the accuracy plots (see Figure 55), we can see that training accuracy increased over all 

6 000 epochs. The validation accuracy peaked at around 89 % approximately on epoch 1 500. 

After epoch 1 500, validation accuracy began to decrease for folds 1 and 5, but stayed at 

approximately the same level for the other three folds. We can also see that the accuracies 

varied between epochs, with the training accuracies varying approximately 1 percentage point 

between epochs. For the validation accuracies, the corresponding accuracy variations between 

epochs were approximately 2-3 percentage points. 

 

 

 

Figure 55. 70 x 70 data set CNN-architecture 5-fold cross-validation fold training and validation 

accuracies. (Upper left) First set, (Upper right) Second set, (Middle left) Third set, (Middle right) 

Fourth set, (Lower left) Fifth set, (Lower right) and Mean training and validation accuracies for all 

five cross-validation folds of the 70 x 70 data set CNN-architecture. 



91 

 

 

The double-tracked CNN used as the CNN of choice in thesis, achieved quite high accuracy 

results for 70 x 70 images. To determine if use of a double-tracked CNN is to be preferred to 

a single-tracked version of the same architecture, a shorter 5-fold cross-validation test with a 

single-tracked version of the CNN-architecture was also performed. The single-tracked CNN-

test took approximately 17 hours to run.  

From the mean accuracy plot (see Figure 56) we can see that the mean training accuracy for 

the single-tracked CNN was still increasing in epoch 1 000, however, the mean validation 

accuracy had levelled out at approximately 81 % after epoch 900. If we compare the observed 

single-tracked CNN mean validation accuracy at this point with the validation accuracy for 

the double-tracked CNN at the same point, we can see that the double-tracked CNN had a 

higher validation accuracy. At epoch 1 000, we can see that the mean validation accuracy for 

the double-tracked CNN was approximately 87 %, six percentage points higher than the mean 

validation accuracy for the single-tracked CNN. The reason why the double-tracked CNN 

performed better than the single-tracked version has not been investigated in depth. One 

reason might have been due to the double-tracked architecture being able to detect more 

patterns and combinations of patterns. The reason for this could have been the use of ReLU-

activations on both tracks in the convolution layers before adding together the results of the 

convolutions in the addition layers. 

 

 

Figure 56. Mean training and validation accuracies for all five cross-validation folds of the 70 x 70 

data set single-tracked CNN-architecture. 
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Appendix 11. Plotted results for the CNN-

architecture for the 128 x 128 data set 
 

From the accuracy plots (see Figure 57), we can see that training accuracy increased for all 

2 000 epochs. The validation accuracy levelled out at approximately 90-91 % on epoch 1 000. 

We can also see that the inter-epoch accuracies varied. Training accuracies varied 

approximately 1 percentage point between epochs. As for the validation accuracies, the inter-

epoch accuracy variations were approximately 2-3 percentage points. 

 

 

 

 

Figure 57. 128 x 128 data set CNN-architecture 5-fold cross-validation fold training and validation 

accuracies. (Upper left) First set, (Upper right) Second set, (Middle left) Third set, (Middle right) 

Fourth set, (Lower left) Fifth set, (Lower right) and Mean training and validation accuracies for all 

five cross-validation folds of the 128 x 128 data set CNN-architecture. 

 



93 

 

Comparing the accuracy plots for the 70 x 70 and 128 x 128 CNN-architectures we can see 

that they behaved similarly. However, the 128 x 128 architecture learned faster than its         

70 x 70 architecture counterpart. The 128 x 128 CNN-architecture also achieved higher mean 

validation accuracy than the 70 x 70 architecture (91.4 % vs. 89 %). As the 70 x 70 and       

128 x 128 CNN-architectures were identical, differences in mean validation accuracy were 

caused by differences in size and information content in the 70 x 70 and the 128 x 128 data 

sets. 
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Appendix 12. Plotted results for the CNN-

architecture with an Inception-v4-module for the 

70 x 70 data set 
 

From the accuracy plots (see Figure 58), we can see that training accuracy increased over all 

6 000 epochs, except for folds 1 and 5, for which training accuracy had levelled out at     

epoch 6 000. As for the validation accuracy, accuracy levelled out at epoch 2 000. Training 

accuracies varied approximately 1 percentage point between epochs, while validation 

accuracies varied approximately 2-10 percentage points between epochs. 

Even though the 70 x 70 CNN-Inception-v4 architecture had a higher mean cross-validation 

accuracy than the 70 x 70 CNN-architecture (89.9 vs. 89 %), the difference in mean cross-

validation accuracies appeared to be lower than the variation in the 70 x 70 Inception-v4 

CNN-architecture mean training and validation accuracy plot. Thus, the 70 x 70 CNN-

Inception-v4 accuracy results and plots suggested that adding only the Inception-C-module of 

the Inception-v4 architecture to a CNN-architecture does not improve the classification 

capability of a CNN-architecture. 
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Figure 58. 70 x 70 data set CNN-Inception-v4-architecture 5-fold cross-validation fold training and 

validation accuracies. (Upper left) First set, (Upper right) Second set, (Middle left) Third set, (Middle 

right) Fourth set, (Lower left) Fifth set, (Lower right) and Mean training and validation accuracies for 

all five cross-validation folds of the 70 x 70 data set CNN-Inception-v4-architecture. 
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Appendix 13. Plotted results for the CNN-

architecture with an Inception-v4-module for the 

128 x 128 data set 
 

From the accuracy plots (see Figure 59), we can see that training accuracy increased for all 

2 000 epochs. As for the validation accuracy, accuracy levelled out within the 2 000 epochs, 

but variations were noted with respect to when accuracy levelled out (between epoch 250 and 

epoch 2 000). Training accuracies varied approximately 1 percentage point between epochs, 

while validation accuracies varied approximately 2-5 percentage points between epochs. As 

with the 70 x 70 CNN-Inception-v4 architecture, the differences in mean cross-validation 

accuracies between the 128 x 128 CNN-Inception-v4 architecture and the                            

128 x 128 CNN-architectures (92 vs. 91.4 %) appeared to be lower than the 128 x 128 CNN-

Inception-v4 architecture inter-epoch variation. Thus, the results for the 128 x 128 CNN-

Inception-v4 architecture also suggested that adding only the Inception-C-module of the 

Inception-v4 architecture to a CNN-architecture does not improve the classification capability 

of a CNN-architecture.  
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Figure 59. 128 x 128 data set CNN-Inception-v4-architecture 5-fold cross-validation fold training and 

validation accuracies. (Upper left) First set, (Upper right) Second set, (Middle left) Third set, (Middle 

right) Fourth set, (Lower left) Fifth set, (Lower right) and Mean training and validation accuracies for 

all five cross-validation folds of the 128 x 128 data set CNN-Inception-v4-architecture. 

 

Comparing the accuracy plots for the 70 x 70 and 128 x 128 CNN-Inception-v4 -architectures 

we can see that they behaved similarly. Three differences set the 128 x 128 architecture apart 

from the 70 x 70 architecture. These differences were lower inter-epoch variation (about half 

of the 70 x 70 architecture), faster learning, and higher mean cross-validation accuracy. 

Besides the slightly different architectures, the slightly higher mean cross-validation accuracy 

for the 128 x 128 CNN-Inception-v4 architecture compared with the 70 x 70 CNN-Inception-

v4 architecture (92 % vs. 89.9 %) could also be explained by differences in the two data set’s 

constituent images. 
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Appendix 14. Plotted results for the ResNet-

architecture for the 70 x 70 data set 
 

From the accuracy plots (see Figure 60), we can see that training accuracy reached above     

90 % before 20 epochs, and reached almost 100 % before 50 epochs, with the validation 

accuracy having exceeded 90 % before 50 epochs. Once these levels had been reached, 

neither training nor validation accuracies would increase anymore. We can also see that the 

training and validation plots sometimes experienced downward spikes before returning to the 

constant level. These downward spikes were fairly small for the training accuracies, at most 

decreasing five percentage points. The downward spikes for the validation accuracies, 

however, momentarily dramatically decreased, with decreases at most reaching approximately 

40 percentage points. 
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Figure 60. 70 x 70 data set ResNet-architecture 5-fold cross-validation fold training and validation 

accuracies. (Upper left) First set, (Upper right) Second set, (Middle left) Third set, (Middle right) 

Fourth set, (Lower left) Fifth set, (Lower right) and Mean training and validation accuracies for all 

five cross-validation folds of the 70 x 70 data set ResNet-architecture. 

 

The reason why the ResNet-architecture was able to achieve a high mean validation accuracy 

might have been due to the number of filters on each layer in the respective sections. As we 

can see from the accuracy plots, accuracy reached the highest levels quite fast. However, 

accuracy also momentary decreased, with the largest decreases being around 40 percentage 

points. The layer filter counts might have caused the architecture to quickly learn some image 

patterns, resulting in high accuracy readings. For other image crop combinations, the different 

filters might have focused on many varying image aspects, leading to momentary drops in 

accuracy. Heavy use of network optimization might, thus, have allowed the ResNet-

architecture to learn fast, but also made the architecture very bad at classifying some image 

crops. 



100 

 

Appendix 15. Plotted results for the ResNet-

architecture for the 128 x 128 data set 
 

From the accuracy plots (see Figure 61), we can see that the training accuracy reached above 

90 % before 20 epochs, and reached 100 % after about 75 epochs, with the validation 

accuracy having exceeded 90 % before 20 epochs. Once the highest accuracies had been 

reached, accuracies mostly stayed at these levels with temporary drops in accuracy. Training 

accuracy drops were fairly small, at most decreasing five percentage points. The validation 

downward spikes could, however, momentarily drop as much as approximately 46 percentage 

points.  

 

 

 

Figure 61. 128 x 128 data set ResNet-architecture 5-fold cross-validation fold training and validation 

accuracies. (Upper left) First set, (Upper right) Second set, (Middle left) Third set, (Middle right) 

Fourth set, (Lower left) Fifth set, (Lower right) and Mean training and validation accuracies for all 

five cross-validation folds of the 128 x 128 data set ResNet-architecture. 
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Comparing the accuracy plots for the 70 x 70 and 128 x 128 ResNet-architectures we can see 

that they changed in a similar manner. The two architectures differed in two ways, the        

128 x 128 architecture could reach higher validation accuracies and also learn faster than its 

70 x 70 architecture counterpart. As with the 70 x 70 ResNet-architecture, heavy optimization 

might have led the 128 x 128 ResNet-architecture to learn fast. In the same way as the          

70 x 70 ResNet-architecture had momentary drops in accuracy, the 128 x 128 ResNet-

architecture might also have had problems classifying some image combinations, leading to 

similar momentary drops in accuracy, due to focusing on certain patterns. The 70 x 70 and 

128 x 128 data sets differed with regard to sampled tissue images and cropped parts of the 

images. Thus, it was not possible to explain the 128 x 128 ResNet-architecture’s higher 

validation accuracy only based on the higher amount of information captured in each          

128 x 128 image crop. Images crops created for the 128 x 128 data sets, might also have 

contained distinct cell patterns more easily classifiable than the image crops for the                

70 x 70 data set. 
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Appendix 16. Plotted results for the CNN-

architecture with an Inception-ResNet-v1-

module for the 70 x 70 data set 
 

From the accuracy plots (see Figure 62), we can see that the training accuracy levelled out 

after 4 000 epochs. As for the validation accuracy, accuracy peaked at approximately epoch 

750, decreasing until levelling out at approximately epoch 5 000. Training accuracies varied 

approximately 1-3 percentage points between epochs, while validation accuracies varied 

approximately 2-8 percentage points between epochs. 

After 6 000 epochs, the 70 x 70 CNN-Inception-ResNet-v1-architecture had a much lower 

mean cross-validation accuracy than the 70 x 70 CNN-architecture (84.2 % vs. 89 %). Thus, 

adding the Inception-ResNet-v1-module to the end of the 70 x 70 CNN-architecture appeared 

to worsen the validation accuracy of the base CNN-architecture. Looking at the accuracy plots 

for the Inception-ResNet-v1-modified 70 x 70 CNN-architecture, the highest validation 

accuracy was approximately 90 % at epoch 750 for fold 1. However, the lower peak 

validation accuracies for the other fold, lead the mean cross-validation accuracy to peak at 

approximately 86 %. The validation accuracy peak at epoch 750 and the subsequent decrease 

in validation accuracy suggested that the architecture for the 70 x 70 CNN-Inception-ResNet-

v1-architecture was poorly optimized. 
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Figure 62. 70 x 70 data set CNN-Inception-ResNet-v1-architecture 5-fold cross-validation fold 

training and validation accuracies. (Upper left) First set, (Upper right) Second set, (Middle left) Third 

set, (Middle right) Fourth set, (Lower left) Fifth set, (Lower right) and Mean training and validation 

accuracies for all five cross-validation folds of the 70 x 70 data set CNN-Inception-ResNet-v1-

architecture. 
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Appendix 17. Plotted results for the CNN-

architecture with an Inception-ResNet-v1-

module for the 128 x 128 data set 
 

From the accuracy plots (see Figure 63), we can see that the training accuracy increased over 

all 2 000 epochs. The validation accuracy, on the other hand, levelled out between epoch 500 

and 1 500 for all iterations. Training accuracies varied approximately 1 percentage point 

between epochs, while validation accuracies varied approximately 1-10 percentage points 

between epochs. After 2 000 epochs, the 128 x 128 CNN-Inception-ResNet-v1-architecture 

had a slightly higher mean cross-validation accuracy than the 128 x 128 base CNN-

architecture 93.3 % vs. 91.4 %). However, the mean cross-validation accuracy differences 

between these two architectures was lower than the inter-epoch validation accuracy 

differences for the 128 x 128 CNN-Inception-ResNet-v1-architecture. Adding a CNN-

Inception-ResNet-v1-module to the end of a base 128 x 128 CNN-architecture did, thus, not 

appear to increase the validation accuracy. 
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Figure 63. 128 x 128 data set CNN-Inception-ResNet-v1-architecture 5-fold cross-validation fold 

training and validation accuracies. (Upper left) First set, (Upper right) Second set, (Middle left) Third 

set, (Middle right) Fourth set, (Lower left) Fifth set, (Lower right) and Mean training and validation 

accuracies for all five cross-validation folds of the 128 x 128 data set CNN-Inception-ResNet-v1-

architecture. 

 

Comparing the accuracy plots for the 70 x 70 and the 128 x 128 CNN-Inception-ResNet-v1-

architectures we can see that they changed in dissimilar manners. While the                           

70 x 70 architecture validation plots peaked before epoch 1 000, only to get worse results, the 

128 x 128 architecture validation plots improved, levelling out between epochs 500 and 

1 500. The 70 x 70 architecture learned faster than its 128 x 128 counterpart, although the   

128 x 128 architecture still learned quite fast, yielding validation accuracies exceeding 90 % 

before epoch 500. However, the 128 x 128 architecture could reach higher validation 

accuracies than the 70 x 70 architecture, and did not get worse with time.  
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Heavy hyper parameter optimization might have been a reason behind the fast learning of 

both CNN-Inception-ResNet-v1-architectures. Even though the 70 x 70 and 128 x 128 data 

sets differed with regard to the constituent tissue image samples, the differences in validation 

accuracy plots signaled that the 128 x 128 architecture had a better architecture design, not 

suffering from design flaws like its 70 x 70 counterpart. However, images in the                 

128 x 128 data set might also have contained more distinct cell patterns, besides containing 

more information. Data set differences might, thus, have given the 128 x 128 architecture a 

potential for higher validation accuracies than the 70 x 70 architecture, which potential was 

realized by an architecture better adapted to the dimensions of the input images. 
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Appendix 18. Comparison of the architecture 

results for the original and corrected data sets 
 

Comparing the mean cross-validation accuracies for the original and corrected data sets (see 

Tables 2-3), we can see that the accuracy results for the corresponding architectures were 

within 2 percentage points of each other. Both the 70 x 70 and the 128 x 128 validation 

accuracies for the ResNet-architecture were slightly higher for the original data sets than the 

validation accuracies for the corrected data sets. However, the validation accuracy results for 

the 128 x 128, CNN, Inception-v4-modified CNN, and the Inception-ResNet-v1-modified 

CNN, were higher for the corrected data sets than the corresponding results for the original 

data sets.  

Comparing the plots for the architectures using the original data sets (see Figure 64) with 

those for the architectures using the corrected data sets, we can see that the plots resembled 

each other with respect to both how accuracy changed and the final results. One difference 

between the plots for the original and the corrected data sets were the lower inter-epoch cross-

validation accuracy differences for the original data sets, particularly noticeable for the 

ResNet-architectures. We can also see that the plots for the architectures using the original 

data sets had levelled out for the ResNet-architectures but were still growing for the non-

ResNet-architectures. Thus, the higher validation accuracies for the corrected data sets could 

be explained by the fact that the training-test runs with the corrected data sets were performed 

until the validation accuracies levelled out, while the training-test runs with the original data 

sets were not run until validation accuracies could peak. 

Even though the architectures constructed with the faulty data sets might have had inflated 

validation accuracies, indicated by the results for the ResNet-architectures and the lower inter-

epoch cross-validation accuracy differences for the faulty data sets, the test results and plots 

of the two sets of architectures were very similar overall. Thus, we can see that reusing the 

hyper parameter settings and layer filter counts determined for the old architectures in the new 

architectures worked well. The reason why the architectures for the original and corrected 

data sets produced similar results might have been that the image crops selected for the 

original data sets were partly the same as those selected for the corrected data sets. Thus, the 

architectures sets might have been tested on partly the same images. Another reason might be 

due to low intra-tissue image variations. If the tissue images sampled from varied little with 

respect to each other, it would not matter much which image crops were selected as test 

images would all be similar to each other. 

 

Table 2. 5-fold mean cross-validation accuracies for architectures with original data sets. 

70 x 70 ResNet 93,3% 

128 x 128 CNN 90,4% 

128 x 128 CNN with Inception-v4-module 90,4% 

128 x 128 ResNet 97,6% 

128 x 128 CNN with Inception-ResNet-v1-module 91,4% 
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Table 3. 5-fold mean cross-validation accuracies for architectures with corrected data sets. 

70 x 70 CNN 89% 

70 x 70  CNN with Inception-v4-module 89,9% 

70 x 70  ResNet 91,9% 

70 x 70  CNN with Inception-ResNet-v1-module 84,2% 

128 x 128 CNN 91,4% 

128 x 128  CNN with Inception-v4-module 92% 

128 x 128  ResNet 96,5% 

128 x 128  CNN with Inception-ResNet-v1-module 93,3% 

 

 

 

 

Figure 64. Mean training and validation accuracies for all five cross-validation folds of the original 

data sets. (Upper left) 70 x 70 data set ResNet-architecture, (Upper right) 128 x 128 data set CNN-

architecture, (Middle left) 128 x 128 data set CNN-architecture with Inception-v4-module, (Middle 

right) 128 x 128 data set ResNet-architecture, (Bottom) and 128 x 128 data set CNN-architecture with 

Inception-ResNet-module. 


