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Abstract

In empirical economics, the generalized method of moments (GMM)

is one of the most widely used methods for estimating models with fixed

effects, such as the dynamic panel model. For the dynamic panel model,

the two most widely used GMM-based estimators are the so-called dif-

ference GMM and system GMM estimators. However, it is typically the

case that such estimators are asymptotically biased of order N−1. To

remedy this problem, this thesis extends the half-panel jackknife (HPJ)

estimator of Dhaene and Jochmans (2015) to GMM models with fixed

effects and O(N−1) bias. In theory, this should reduce asymptotic bias

from O(N−1) to O(N−2). The Monte Carlo results show that the HPJ

gives satisfactory finite-sample bias improvements only for the difference

GMM. For the system GMM, using the HPJ results in bias reductions

only under very special circumstances.
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1 Introduction

A panel data set contains observations of sample size N , collected during mul-

tiple time periods, T . If fixed effects are present, it may be the case that the

maximum likelihood estimator (MLE) of the parameter of interest is inconsistent

and biased of order O(T−1), when the number of time periods T is fixed while

the number of cross-sectional units N grows large. In recent years, researchers

have developed methods for reducing this bias for at least one order of magni-

tude, that is, from O(T−1) to O(T−2). Most of these papers have covered the

case without exogenous covariates − examples include analytical approaches by

Lancaster (2002), Hahn and Kuersteiner (2004), and Arellano and Bonhomme

(2009). Moreover, there are several non-analytical methods for bias correction,

often based on the jackknife, a classical resampling technique from statistics.

These include, for the MLE, the delete-one panel jackknife of Hahn and Newey

(2004) and the split-panel jackknife (SPJ), which was proposed by Dhaene and

Jochmans (2015). The latter approach is particularly appealing due to its rel-

ative simplicity, and it was extended to the case with O(T−1 + N−1) bias by

Fernández-Val and Weidner (2016), and to the case with with weakly exogenous

covariates by Chudik et al. (2018).

However, for estimators based on the generalized method of moments (GMM)

of Hansen (1982), it is often the case that under endogenity, the bias is instead

O(N−1). The most prominent example of a GMM-based model with O(N−1)

bias is the so-called dynamic panel model, which is characterized by the inclu-

sion of the lagged dependent variable as a regressor, in addition to possible

exogenous covariates. Due to the popularity of this model in empirical research,

it is important that the bias is reduced. Consequently, bias minimization has

been the topic of several papers in the dynamic panel literature. Choi et al.

(2010) consider the recursive mean adjustment (RMA), while Lee et al. (2017)

and Zhang and Zhou (2018) use the jackknife instrumental variables estima-

tion (JIVE) of Angrist et al. (1999), which eliminates the bias by removing

observations in the construction of the instrument matrix. Although this last

method has proved to be successful in reducing finite-sample bias, it is not as

computationally attractive as the SPJ.

The purpose of this thesis is thus to extend the SPJ approach to GMM.

Specifically, I consider the simplest form of SPJ, namely the half-panel jack-

knife (HPJ). In theory, the HPJ should reduce the GMM bias from O(N−1)
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to O(N−2). The focus is on the dynamic panel model, and I will particularly

consider the difference GMM estimator of Arellano and Bond (1991), as well as

the system GMM of Blundell and Bond (1998), which are the two empirically

most common GMM estimators of dynamic panel models.

The Monte Carlo results reported in the thesis shows that the HPJ con-

siderably reduces both the finite-sample bias as well as the standard error of

the difference GMM. However, the effect on the system GMM is minor. For

large values of N , when the uncorrected estimates already have a very low bias,

the HPJ actually increases finite-sample bias. For the so-called continuously

updating system GMM, which is a variant of the GMM known for its low finite-

sample bias, the HPJ leads to increased bias, and no significant reduction in

the standard errors. Regardless of which of the GMM-based estimators is used,

the jackknife approach results in the point estimate of the parameter of interest

increasing in value vis-à-vis the uncorrected estimates.

The reminder of the thesis is organized as follows. Section 2 introduces the

GMM estimation technique, as well the dynamic panel model and its corre-

sponding GMM-based estimators. Section 3 describes the Monte Carlo design.

Section 4 presents the results of the simulation study. The thesis concludes with

Section 5.

Finally, a word on notation. Throughout this thesis, a sequence of random

elements {XN} is said to be Op(1) if it is bounded in probability (tight), i.e. if

it for every ε ∈ R+ exists an integer M <∞, such that P(||XN || ≤M) > 1− ε
for each N ∈ N. Conversely, XN = Op(YN ) means that XN/YN is bounded

in probability. The notation op(1) means that the sequence {XN} converges in

probability to zero. I use O(·) to denote the order of the function. The symmet-

ric matrix B is said to be positive semi-definite (p.s.d.) if the quadratic form

z′Bz is non-negative for all nonzero column vectors z. I use the abbreviation

cdf for the cumulative density function. The notation ||A|| denotes the norm

tr(A′A)1/2 for an arbitrary matrix A, and A⊗B denotes the Kronecker prod-

uct of the matrices A and B. I use
a.s.−−→ to denote almost sure convergence,

P−→ denotes convergence in probability, and
L−→ denotes convergence in law (in

distribution). All other symbols are defined on site.
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2 Theory

The structure of this section is as follows. Section 2.1 introduces the GMM

estimation technique, while Section 2.2 discusses the issue of GMM bias. Section

2.3 is on the dynamic panel model. Section 2.4 introduces the HPJ for the GMM,

and Section 2.5 discusses the bootstrap approach for calculation of standard

errors used in the Monte Carlo analysis. Finally, Section 2.6 describes briefly

the jackknife interpretation of the continuously updated estimator.

2.1 GMM estimation

Let (D, d) be a metric space, and let the panel data {zit} ≡ {yit, xit} for i =

1, . . . , N and t = 1, . . . , T , be an i.i.d. random sample in Rs. Assume that {zit}
was generated by a stationary and ergodic stochastic process defined on the

probability space (Ω,A, P ), where Ω is the sample space, A is a σ-algebra of

random events, and P is a probability measure on A. The sample is drawn from

an unknown probability distribution G0. Our goal is to estimate the unknown

parameter θ0 ∈ Θ ⊂ Rk, for which int(Θ) 6= ∅, and Θ is assumed to be compact.

The parameter θ0 could be a scalar or a vector. Denote by B(θ, ξ) an open ball

in Θ of radius ξ centered at θ, and by L(θ) a nonstochastic Borel measurable

population objective function, for which supθ∈ΘL(θ) < ∞. We assume that

there exists θ0 ∈ Θ : ∀ξ > 0, infθ/∈B(θ0,ξ) L(θ) > L(θ0). Hence, θ0 must uniquely

minimize L(θ) over Θ. The sample equivalent of L(θ), which puts mass N−1 at

each sample point, is denoted by LN (θ), for which it holds that supθ∈Θ |LN (θ)−
L(θ)| P−→ 0. Let αi be a scalar individual effect, which is unobserved by the

researcher. Fixed effects are standard in empirical economics, and a considerable

share of the econometrics literature is, thus, focused on ameliorating fixed effects

models. An example of a sample objective function is the average log-likelihood

function,

LN (θ) =
1

NT

T∑
i=1

T∑
t=1

logfit(yit|xit; θ, α̂i(θ)) (1)

where α̂i(θ) = arg supαi

1
T

∑T
t=1 logfit(yit|xit; α̂i, θ). This is then used to con-

struct the maximum likelihood estimator θ̂ML of θ0,

θ̂ML = arg sup
θ∈Θ

LN (θ)
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For fixed T , it holds that θ̂ML is inconsistent for θ0, i.e. plimN→∞θ̂ML 6= θ0.

More specifically, for T large, we can write plimN−→∞(φ̂ML−θ0) ≈ −(1+θ)/(T−
1). This is known as the incidental parameter problem (Neyman and Scott 1948),

because it is caused by the presence of the individual effects α1, . . . , αN . The

incidental parameters problem therefore leads to a bias, that is of order T−1, or

O(T−1).

Alternatively, if

∀i : E [g(zi;αi, θ)] ≡
∫
g(zi;αi, θ) dG0 = 0 (2)

denotes a set of moment equalities, where g : Rs × Θ → Rm, m ≥ k, is a

known (up to θ) real-valued measurable map, with zi = (zi1, . . . , ziT )′, and

WN (θ) : Θ→ Rm×m is a random weighting matrix, LN (θ) could be the GMM

objective function with continuously updating weighting matrix (Hansen et al.

1996),

LN (θ) = ḡN (θ)′WN (θ)+ḡN (θ) (3)

where ḡN (θ) ≡ ḡN (zi;αi, θ) = 1
N

∑N
i=1 g(zi;αi, θ). The notation A+ denotes

the Moore-Penrose pseudoinverse of the arbitrary matrix A. The weighting

matrix is continuosly evaluated at the parameter values used for the moments,

and hence, updated for each iteration. The GMM estimator θ̂GMM of θ0 is given

by

θ̂GMM = arg inf
θ∈Θ

LN (θ) (4)

However, an empirically more common strategy for the weighting matrix is to

use a two-step approach. Let WN be a p.s.d. matrix, such as the identity

matrix. Let also ΛN (θ) = N−1
∑N
i=1 [gi(θ)g

′
i(θ)], where gi(θ) = g(zi;αi, θ).

Then, a preliminary estimate of θ0 is given by θ̇ = arg infθ∈Θ ḡN (θ)′W−1
N ḡN (θ).

The so-called two-step GMM estimator (Hansen 1982) is then constructed by

using the objective function

LN (θ) = ḡN (θ)′ΛN (θ̇)−1ḡN (θ) (5)

and using (4) to obtain the final θ̂GMM . I shall refer to the first mentioned

variant of the GMM estimator, which utilizes a parameter-dependent weighting

matrix, as the continuously updated estimator (CUE). Note that the weighting

matrix in the two-step estimator is not a function of the parameter θ, unlike

WN (θ). This also means that the first-order conditions (FOCs) associated with
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(3) and (5) will not be the same, since θ appears in three terms in the CUE

specification. However, Pakes and Pollard (1989) show that, when θ0 ∈ int(Θ),

and given that WN (θ)
P−→ W , ||WN (θ0)|| = Op(1) and supθ∈Θ||WN (θ)−1|| =

Op(1), the CUE is consistent if the two-step estimator is consistent. Criteria for

consistency of the GMM is discussed in some additional detail in the Appendix.

By Theorem 2.1 of Newey and Smith (2004), the CUE is a special case of

the so-called generalized empirical likelihood (GEL) estimator (cf. Smith 1997).

Let ρ(τ) be a scalar function, and T be an open interval containing zero. Let

also ΥN ≡ ΥN (θ) = {υ : υ′gi(θ),∈ T , i = 1, . . . N}. The GEL estimator is the

solution to the saddle point problem

θ̂GEL = arg inf
θ∈Θ

sup
υ∈ΥN

N∑
i=1

ρ [υ′gi(θ)] (6)

If ρ(τ) = − 1
2τ

2− τ , we obtain the CUE 1. The GEL representation of the CUE

is of particular relevance when decomposing the bias of the GMM, as in Section

2.2 of this thesis.

2.2 Bias of the GMM

In models with endogenity, for instance in dynamic panel models with fixed

effects, the GMM may be subject to bias. To discuss this in some more detail,

we need some additional regularity assumptions, apart from those already es-

tablished for consistency and asymptotic normality. Let ∇j be a vector of the

j:th partial derivative with respect to θ, and let be Y be a neighborhood around

θ0.

Assumption 1. θ̂GMM is consistent and asymptotically normal.

Assumption 2. ∃ (W , ζ(z)) : WN = W+N−1
∑N
i=1 ζ(zi), where E [ζ(zi))] = 0

and E
[
|ζ(zi)|6

]
<∞, and W is p.s.d.

Assumption 3. Let ϕ(z) with E
[
ϕ(zi)

6
]
<∞ be such that on Y, ∃: ∇jg(z, θ)

satisfying supθ∈Y ||∇4g(z, θ)|| ≤ ϕ(z) ∀z and for j ∈ [0, 4], and ||∇4g(z, θ) −
∇4g(z, θ0)|| ≤ ϕ(z) ||θ − θ0|| ∀ θ ∈ Y.

Let Γ be the Jacobian matrix, i.e. Γ = E [∂gi(θ0)/∂θ], let Λ = E [gi(θ0)gi(θ0)′].

1Another popular estimator, the empirical likelihood (EL) of Qin and Lawless (1994) and
Imbens (1997), is a special case of the GEL with ρ(τ) = log(1− τ) and T = (−∞, 1)
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Now, define the following matrices:

Σ = (Γ′ΛΓ)−1 Ξ = (Σ′ΓΛ)−1 V = Λ−1 −Λ−1ΓΣΓ′Λ−1

Let ej be the j:th column of the identity matrix, and define Γi = Γi(θ) =

∂gi(θ)/∂θ, M = (Γ′W−1Γ)−1Γ′W−1 and Λ̄θj = E {∂ [gi(θ0)gi(θ0)′] /∂θj}. Let

also a = (a1, . . . , am)′, where each element is aj = tr
{
ΣE

[
∂2gij(θ0)/∂θ∂θ′

]}
/2,

and gij(θ) is the j:th element of gi(θ). Then, we can decompose the GMM bias

(Newey and Smith 2004; Anatolyev 2005) according to

θ̂GMM − θ0 = B1 +B2 +B3 +B4 (7)

where

B1 = Ξ [−a+ E(Γ′iΞgi)] /N

B2 = −ΣE(Γ′iV gi)/N

B3 = ΞE(gig
′
iV gi)/N

B4 = −Ξ

p∑
i=1

Λ̄θj (M −Ξ)′ej/N

Each of the four terms in (7) have their own interpretation. The term B1 is

the bias for a GMM estimator with the optimal covariance matrix (cf. Remark

2 of Theorem 2 of the Appendix), B2 arises from the estimation of Γ and B3

is the bias arising from the estimation of Λ. B2 will be zero if the Γi’s are

constant, whereas B3 will be zero if the third moments are zero. However, both

are typically nonzero under endogenity. Finally, the term B4 arises from the

choice of the first-step estimator, and is zero if W is a scalar multiple of Λ.

It is important to note that the bias is now O(N−1), and not O(T−1) as in

the ML case. This means that we cannot use the HPJ estimator of Dhaene and

Jochmans (2015) for GMM-based models without adjustment. The infeasibility

of the HPJ has not been addressed in previous literature, and is, thus, the

motivation behind this thesis.

Turning to the CUE, recall that it is a special case of the GEL estimator

with ρ(τ) = − 1
2τ

2 − τ . Now, let ρj(τ) = ∂ρj(τ)/∂τ j and ρj = ρj(0). It is

easy to verify that for the CUE, ρ1 = ρ2 = −1 and ρ3 = 0. Given that ρ(τ) is

four times differentiable, and the fourth derivative is Lipschitz continuous in a
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neighborhood of zero, it holds for the GEL that (Newey and Smith 2004),

θ̂GEL − θ0 = B1 +
(

1 +
ρ3

2

)
B3 (8)

provided that Assumptions 1 and 3 are satisfied. Hence,

θ̂CUE − θ0 = B1 +B3 (9)

Thus, using the CUE eliminates the bias arising from the Jacobian and from the

preliminary estimator. 2 As a consequence of the reduction in asymptotic bias,

the CUE is associated with lower finite-sample bias, which is of great importance

in econometrics. The standard errors are typically also lower. However, due

to the low bias and variance of the CUE, it tends to be oversized and thus

unreasonable to use for testing purposes (cf. Hsiao et al. 2002).

2.3 GMM estimation of dynamic panel models

In this thesis, the focus is on one of the empirically most important panel models,

the dynamic panel model. It can be described by

yit = αi + φ0yi,t−1 + uit (10)

I shall assume throughout this section that 0 < |φ0| < 1, E[αi] = 0, E[α2
i ] = σ2

α,

and that uit ∼ IID(0, σ2
u) with E[|uit|8] < ∞. It is further assumed that the

initial observations yi0 = Op(1) are observed.

There are two classes of GMM estimators of dynamic panel models with fixed

effects, the difference GMM of Arellano and Bond (1991), and the system GMM,

which is due to Arellano and Bover (1995) and Blundell and Bond (1998). The

main reason for the introduction of the GMM in the dynamic panel literature

is the endogenity problem associated with the model. Since yit depends on

αi, and αi is the same for all time periods, the explanatory variable yi,t−1

also depends on αi. However, historically, the first remedies to the endogenity

problem were not based on the GMM. Anderson and Hsiao (1981) suggested

using lags of the dependent variable as instruments. Taking the first-difference

to get rid of the fixed effects, the suggestion is to use ∆yi,t−2 as an instrument

for ∆yi,t−1, which is uncorrelated with ∆ui,t given that the errors are serially

2A slightly more formal description of the impact of CUE estimation on the Jacobian can
be found in Donald and Newey (2000).
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uncorrelated. However, as was first noted by Holtz-Eakin et al. (1988), this

approach is inefficient, since not all information is used. For example, for t = T ,

the first-differenced model can be written

yi,T − yi,T−1 = φ(yi,T−1 − yi,T−2) + ui,T − ui,T−1 (11)

for which the instruments yi1, yi2, . . . , yi,T−2 can be utilized. For t = 3, . . . , T

and s ≥ 2, the (T − 1)(T − 2)/2 moment conditions can be compactly written

E[yi,t−s∆uit] = 0 (12)

Now, define the instrument matrix Zi as

Zi =


yi1 0 0 . . . 0 . . . 0

0 yi1 yi2 . . . 0 . . . 0
...

...
... . . .

... . . .
...

0 0 0 . . . yi1 . . . yi,T−2

 (13)

By construction of this matrix, the last row (corresponding to t = T ), consists

of zeros and all available instruments for the final time period. Let ∆ui =

(∆ui3, . . . ,∆uiT )′ be the vector of first-differenced errors. Using this notation,

the moment conditions can be written

E[Z ′i∆ui] = 0 (14)

Because the term in brackets in (14) corresponds to g(·) in Section 2.1, Arellano

and Bond (1991) construct a GMM-based estimator of φ0 based on the above

moment conditions as the solution to

φ̂AB = arg inf
φ∈Φ

(
1

N

N∑
i=1

∆u′iZi

)
WN

(
1

N

N∑
i=1

Z ′i∆ui

)
(15)

where Φ is the compact set of all possible parameters. However, it was shown

by Arellano and Bover (1995) that the Arellano-Bond estimator significantly

underestimates φ0 when the true value is close to unity, and that the bias starts

to increase already when φ0 = 0.8. In order to remedy this problem, Arellano

and Bover (1995) and Blundell and Bond (1998) introduce (T − 1)(T − 2)/2

10



additional moment conditions, namely

E[πit∆yi,t−s] = 0 (16)

for t = 3, . . . , T , where πit = αi + uit. The joint moment conditions, consisting

of (14) and (16), can be compactly written in matrix form as

E[Z̃ ′iπ
∗
i ] = 0 (17)

where Z̃i = diag(zi,∆yi2,∆yi3, . . . ,∆yi,T−1), π∗i = (∆ui, πi)
′, where ∆ui is

as defined previously and πi = (πi3, . . . , πiT )′, for i = 3, . . . , N . Using these

moment conditions, the Blundell-Bond estimator φ̂BB of φ is the solution to

the optimization problem

φ̂BB = arg inf
φ∈Φ

(
1

N

N∑
i=1

π∗i
′Z̃i

)
WN

(
1

N

N∑
i=1

Z̃ ′iπ
∗
i

)
(18)

An asymptotically optimal weighting matrix can be estimated by

WN =

(
1

N

N∑
i=1

Z̃ ′i∆̂ui∆̂ui
′
Z̃i

)−1

(19)

where ∆̂ui are the first-differenced residuals obtained from the one-step estima-

tor. If the uit’s are homoscedastic, the efficient GMM estimator can be obtained

in one-step, using instead the weighting matrix

W1N =

(
1

N

N∑
i=1

Z̃ ′iHZ̃i

)−1

(20)

where H is the tridiagonal matrix

H =



2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0
...

...
...

...
...

0 0 0 −1 2


(21)

There are other ways of improving the finite-sample properties of the GMM es-

timator of φ, in addition to just adding more moment conditions. As described
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in Section 2.1, instead of fixing the weighting matrix in each stage of the estima-

tion, the CUE alters the weighting matrix as the value of φ̂ is changed during the

minimization process. Formally, the minimization problem with Blundell-Bond

moment conditions can now be written

φ̂CUE = arg inf
φ∈Φ

(
1

N

N∑
i=1

π∗i
′Z̃i

)
WN (φ)

(
1

N

N∑
i=1

Z̃ ′iπ
∗
i

)
(22)

Hence, the weighting matrix is now a function of φ. However, since the weighting

matrix is updated in each iteration, there cannot exist a closed-form solution

to the minimization problem in (22). The following theorem establishes the

asymptotic properties of two-step Arellano-Bond and Blundell-Bond estimators

of φ0.

Theorem 1. As N and T →∞, the following asymptotic results regarding the

two-step Arellano-Bond and Blundell-Bond estimators of φ0 hold.

(i) φ̂AB
P−→ φ0 if (log T 2)/N → 0

(ii) φ̂BB
P−→ φ0 if (log T 2)/N → 0

(iii)
√
NT

[
φ̂AB − φ0 + (1+φ0)

N

]
L−→ N

(
0, 1− φ2

0

)
if (log T 2)/N → 0 and

T/N → c (0 ≤ c <∞)

(iv)
√
NT

[
φ̂BB − φ0 + 1

N
(1+φ0)(r+1+φ0)

2(r+1)

]
L−→ N

(
0, 1−φ2

0

)
if (log T 2)/N → 0

and T/N → c (0 ≤ c <∞)

Proof. See Álvarez and Arellano (2003) for (a) and (c), and Hayakawa (2015)

for (b) and (d). �

Although it is clear from the discussion in Section 2.1 that φ̂CUE
P−→ φ0, the

closed-form expression for asymptotic bias of the CUE is unknown to the liter-

ature.

As with any estimator, efficiency is an important property. Hahn and Kuer-

steiner (2002) show that for the more general case when yit in (10) is a vector, the

error terms uit are i.i.d., and φ̂ is an arbitrary estimator of φ0, the Cramér-Rao

lower bound on the variance of vec(φ̂− φ0) is Ω⊗Ψ−1, where Ω = E(sits
′
it)
−1

and sit = ∂ logfit(yit|xit; θ, αi(ω)/∂θ, and Ψ = Ω + φ0Ωφ
′
0 + φ2

0Ω(φ′0)2 + . . . .
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Under the assumption that the elements of the sequence {uit} are multivariate

Gaussian, it follows that the limiting distribution of
√
NTvec(φ̂ − φ0) cannot

be more concentrated than N (0,Ω⊗Ψ−1), which for the univariate case corre-

sponds to N (0, 1− φ2
0). Hence, for an unbiased estimator, 1− φ2

0 is the lowest

possible asymptotic variance.

From parts (iii) and (iv) of Theorem 1, it is clear that both the Arellano-

Bond and Blundell-Bond estimators are biased. The source of the GMM bias

in the dynamic panel case is the fact that the GMM is an instrumental variable

(IV) estimator, in which instruments are used to eliminate correlations between

the regressors and the errors. Since this technique involves taking cross-sectional

averages, the resulting correlations between sample moments are O(N−1). If

T is fixed, there is no asymptotic bias, because the scale factor is proportional

to
√
N . However, if T and N increase simultaneously, so that N/T → c 6= 0

(as in Theorem 1), the scale factor becomes to
√
NT , which is asymptotically

equivalent to
√
cN . This leads to an asymptotic bias of order

√
c.

Considering that the difference and system GMM are asymptotically biased,

there have been a number of studies on the finite-sample performance of these

estimators. Research by Blundell et al. (1998), and Hayakawa and Pesaran

(2015) show that the two-step system GMM is to be preferred vis-à-vis the two-

step difference estimator, as the finite-sample bias tends to be lower. However,

whereas the finite-sample bias of the system GMM is lower, the size tends to

be higher than the difference GMM, which makes it unsuitable for testing pur-

poses. Hayakawa and Pesaran (2015) find that the continuously updated BB

GMM has almost zero bias even for low values of N and T . However, this leads

to severe oversizing, a problem that increases with T and decreases with N .

Mehic (2017) considers highly persistent panels, and finds that the oversizing

problem for the CUE is exacerbated as φ increases towards unity, although the

power is also increasing with φ.

It is well-known that using many instruments leads to size distortions, and

it is a feature present in many types of IV models (Staiger and Stock 1997; Bun

and Windmeijer 2010). In the dynamic panel setting, this translates into severe

oversizing in the system GMM, which utilizes more moment conditions. Us-

ing an adjusted covariance matrix developed by Newey and Windmeijer (2009)

mitigates the size distorsion slightly, although the problem is still pronounced

when N is low (cf. Hayakawa and Pesaran 2012). A further note on the weak

instrument problem in the dynamic panel case and how it can be remedied is

given in Roodman (2009). Recent research has established that using only one
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lag of the dependent variable as instrument eliminates the asymptotic bias for

the difference estimator (Hsiao and Zhou 2017). Nevertheless, there is a con-

siderable knowledge gap on the weak instruments problem for dynamic panels,

especially for the system GMM. Thus, the Monte Carlo approach of this thesis

utilizes all available instruments.

2.4 The SPJ

This section introduces the SPJ in detail. To the best of this author’s knowledge,

this paper is the first to consider the SPJ for models with O(N−1) bias. Let θ̂

be an estimate of an unknown parameter θ0. To be consistent with the existing

literature on the subject, let θ̂ = θN (p) be the estimator associated with the

entire sample N , and p be an N × 1 vector with mean µ such that p − µ =

Op(N
−1/2). The Taylor approximation of order k associated with θN (p) can be

written

θN,k =

N∑
s=0

1

s!

{[
(p− µ)′

∂

∂p

]s
θN (p)

}
p=µ

(23)

Then, by Theorems A1 and A2 of Sargan (1976), it holds that

E
(
|θN (p)j |

)
= E

(
|θN,k(p)j |

)
+O(N−γk) (24)

for γ > 0 and suitably large k. Hence, we can approximate j:th moment of

θN (p) by the j:th moment of θN,k(p), a property used in the jackknife resampling

technique.

The jackknife was introduced in statistics by Quenouille (1949). Originally

used to approximate serial correlations, its current use is primarily for bias-

reduction. Split the N observations into m samples of length l, so that N =

m × l. In its most basic form (cf. Quenouille 1956), the jackknife estimator

θ̂Jack of θ0 is given by

θ̂Jack =
m

m− 1
θ̂ − 1

m2 −m

m∑
i=1

θ̂li (25)

where θ̂li is the estimate of θ0 formed by using the i:th subsample. If for the

vector p the expansion

E(p) = µ+
q1

N
+O(N−2) (26)
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holds for some constant q1, a similar expansion yields

E(θ̂) = θ0 +
r1

N
+O(N−2) (27)

and

E(θ̂li) = θ0 +
r1

N/m
+O

(
(N/m)−2

)
(28)

for some constant r1. Taking expectations in (25) and substituting (27) and

(28) into the resulting equation, yields

E(θ̂Jack) = E

[
m

m− 1
θ̂ − 1

m2 −m

m∑
i=1

θ̂li

]

=
m

m− 1

(
θ0 +

r1

N

)
− 1

m2 −m

m∑
i=1

(
θ0 +

r1

N/m

)
+O(N−2)

= θ0 +O(N−2) (29)

Thus, if the bias is O(N−1), the jackknife reduces the bias to O(N−2). Note

also that the bias reduction is invariant to the choice of m.

The simplest jackknife approach, the HPJ, sets m = 2. This means splitting

the sample vector into two parts. Consider again the panel case where we

want to estimate the unknown parameter φ0, where φ0 could be the AR(1)

autoregressive coefficient described by (12). Slightly abusing notation, we may

partition the panel {1, . . . , N} into two half-panels, S1 = {1, . . . , N/2} and

S2 = {N/2 + 1, . . . , N}, given that N is even3. Let φ̄1/2 ≡ 1
2 (φ̂S1 + φ̂S2). Then,

the HPJ estimator of φ0 can be written

φ̂HPJ ≡ 2φ̂GMM − φ̄1/2 (30)

Since the bias reduction is invariant with respect to the choice of the subsample

length m, we can deduce that the HPJ reduces the asymptotic bias from O(N−1)

to O(N−2).

This approach is an extension of the SPJ for O(T−1) bias MLE described by

Dhaene and Jochmans (2015) to the case when the bias is O(N−1). However,

whereas it is straightforward to split the panel into two parts when the bias

is O(T−1), as the time series observations are ordered sequentially, there is no

natural ordering when the panel is split with respect to the cross-sectional units.

3For the sake of simplicity, I will not discuss the case when N is odd.
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Hence, whereas it in the original case only exists one possible way to split the

panel, there are C =
(
N
N/2

)
= N !

[(N/2)!]2
combinations in the case considered in

this thesis. For computational ease, Fernández-Val and Weidner (2016) suggest

to instead average over J randomly chosen cross sectional partitions, where

0 < J << C, in order to obtain an estimate of φ̄1/2
4.

2.5 Calculation of standard errors

To calculate the standard errors associated with the jackknifed estimates φ̂1/2,

note that

Var(φ̂1/2) = 4 Var(θ̂GMM ) + Var(φ̄1/2)− 4 Cov(θ̂GMM , φ̄1/2). (31)

Whereas the first two terms on the right-hand side of this equation are known,

Cov(θ̂GMM , φ̄1/2) is unknown. This problem can remedied by using the boot-

strap approach of Kapetanios (2008), which is the method applied by Dhaene

and Jochmans (2015). Again suppressing the ”T” subscript for notational con-

venience, let z ≡ (z1, . . . , zN ) denote the original panel and ż ≡ (zd1, . . . , zdN )

denote the bootstrap panel, where {d1, . . . , dN} are i.i.d. draws with replace-

ment from {1, . . . , N}. Then, the variance of the bootstrap distribution can be

shown to be a consistent estimate of Var(φ̂1/2), and its associated coverage rates

to be asymptotically equal to the desired significance level α.

2.6 Jackknife interpretation of the CUE

One final note is that by construction of the CUE, it can be seen as a jackknife

estimator in itself. This was shown by to Donald and Newey (2000). To see

that the CUE can be written as a jackknife estimator, we consider again the

general expression for the CUE described by (5), namely that the estimator is

the solution to

arg inf
θ∈Θ

ḡN (θ)′WN (θ)+ḡN (θ) (32)

The FOC associated with the above optimization problem can be shown to be

Γ̃′W−1
N ĝ − ĝ′W−1

N ΛNW
−1
N ĝ = 0 (33)

4Hence, we obtain J estimates of φ̄1/2. The average of these J estimates is then used in
(30).

16



where Γ̃ = ∂gN (θ̂)/∂θ, ΛN = ΛN (θ̂), WN = WN (θ̂), and ĝ = gN (θ̂). Now, let

Γ̃i be the i:th element of Γ̃ and B̂ = W−1
N ΛN , where ΛN = N−1

∑N
i=1

[
gi(θ̂)g

′
i(θ̂)

]
,

and Ûi = Γ̃i − B̂ĝi, where ĝi is the i:th element of ĝ. By using the property∑N
i=1 Ûiĝ

′
i/N = 0, we may write (33) as

0 = (Γ̃− B̂′ĝ)′W−1
N ĝ

=

(
1

N

N∑
i=1

Ûi

)′
W−1

N ĝ

=
1

N2

N∑
i=1

N∑
j=1

Û ′jW
−1
N ĝi

=
1

N2

N∑
i=1

N∑
j 6=i

Û ′jW
−1
N ĝi

=
1

N

N∑
i=1

 1

N

N∑
j 6=i

ÛjW
−1
N

 ĝi (34)

Equation (34) shows that the CUE is indeed a jackknife estimator of the ’delete

one observation’ type.

3 Monte Carlo setup

This section will briefly describe the Monte Carlo (MC) procedure. The model

of interest is

yit = (1− φ0)αi + φ0yi,t−1 + uit (35)

where uit ∼ N (0, σ2
i ). I consider σ2

i ∼ U(0.5, 1.5), so that E[σ2
i ] = 1 and

V[σ2
i ] = 1/12, as well as σ2

i ∼ U(1, 3), so that E[σ2
i ] = 2 and V[σ2

i ] = 1/3.

Individual effects are generated according to αi = (λ−1)/
√

2, where λ ∼ χ2(1),

so that E[αi] = 0 and V[αi] = 1. For the initial observations yi0, I set yi0 =

αi/(1− φ0) + ui0, where ui0 ∼ N [0, 1/(1− φ2
0)]. The autoregressive parameter

is varied according to φ0 ∈ {0.50, 0.80}. The number of MC replications is set

to 500, while the number of cross-sectional partitions, J, is set to 50. When

calculating the standard errors for the jackknifed estimators, the number of

bootstrap replications is set to 25.

The parameterization in (35), where the individual effects are multiplied by

(1 − φ0), is a standard approach in the literature when dealing with almost
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non-stationary data (cf. Han and Phillips 2013; Bun et al. 2017). Without this

correction, the individual effects would have too much of an impact on the MC

results when the true value φ0 is close to unity, e.g. when φ0 = 0.80.

4 Results

N T φ0 φ̂AB φ̂HPJAB φ̂BB φ̂HPJBB φ̂CUE φ̂HPJCUE

Parameter estimates
20 5 0.50 0.3526 0.4651 0.4727 0.5012 0.5029 0.5451
20 5 0.80 0.6414 0.7675 0.7469 0.7836 0.8805 1.0535
50 5 0.50 0.4557 0.5243 0.5045 0.5237 0.5169 0.5374
50 5 0.80 0.7495 0.8170 0.7860 0.8225 0.8168 0.8649
100 5 0.50 0.4680 0.5074 0.5010 0.5139 0.5083 0.5147
100 5 0.80 0.7664 0.8004 0.7938 0.8181 0.8106 0.8346
100 10 0.50 0.4758 0.5033 0.4994 0.5147 0.5024 0.5124
100 10 0.80 0.7755 0.8067 0.7963 0.8264 0.8102 0.8378

Bias
20 5 0.50 -0.1474 -0.0349 -0.0273 0.0012 0.0029 0.0451
20 5 0.80 -0.1586 -0.0325 -0.0531 -0.0164 0.0805 0.2535
50 5 0.50 -0.0443 0.0243 0.0045 0.0237 0.0169 0.0374
50 5 0.80 -0.0505 0.0170 -0.0140 0.0225 0.0168 0.0649
100 5 0.50 -0.0320 0.0074 0.0010 0.0139 0.0083 0.0147
100 5 0.80 -0.0336 0.0004 -0.0062 0.0181 0.0106 0.0346
100 10 0.50 -0.0242 0.0033 -0.0004 0.0147 0.0024 0.0124
100 10 0.80 -0.0245 0.0067 -0.0037 0.0264 0.0102 0.0378

Standard errors
20 5 0.50 0.1759 0.1184 0.0861 0.0438 0.0886 0.0937
20 5 0.80 0.1856 0.1240 0.0824 0.0383 0.0928 0.0877
50 5 0.50 0.1460 0.1254 0.0904 0.0690 0.0897 0.0691
50 5 0.80 0.1434 0.1270 0.0928 0.0674 0.0948 0.0702
100 5 0.50 0.1134 0.1047 0.0741 0.0647 0.0740 0.0643
100 5 0.80 0.1083 0.1022 0.0822 0.0671 0.0822 0.0678
100 10 0.50 0.0362 0.0243 0.0245 0.0140 0.0244 0.0140
100 10 0.80 0.0323 0.0220 0.0234 0.0129 0.0230 0.0130

Table 1: Parameter and standard errors estimates with σ2
i ∼ U(0.5, 1.5).

Tables 1 and 2 below present the results. Table 1 corresponds to the case with

unit variance, whereas the results in Table 2 correspond to σ2
i ∼ U(1, 3). Con-

sider first bias correction using the two-step AB estimator, the results of which

are given in the columns φ̂AB and φ̂HPJAB , respectively, in Tables 1 and 2. With-

out correction, the AB estimator is severely biased. However, it is clear that,
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N T φ0 φ̂AB φ̂HPJAB φ̂BB φ̂HPJBB φ̂CUE φ̂HPJCUE

Parameter estimates
20 5 0.50 0.3646 0.4768 0.4613 0.5013 0.4846 0.5470
20 5 0.80 0.5717 0.7171 0.7247 0.7671 0.9429 1.1832
50 5 0.50 0.4599 0.5251 0.4974 0.5216 0.5113 0.5387
50 5 0.80 0.7202 0.8120 0.7826 0.8294 0.8153 0.8777
100 5 0.50 0.4711 0.5083 0.4985 0.5156 0.5083 0.5209
100 5 0.80 0.7491 0.8001 0.7902 0.8189 0.8089 0.8394
100 10 0.50 0.4782 0.5035 0.4985 0.5169 0.5017 0.5162
100 10 0.80 0.7665 0.8041 0.7926 0.8254 0.8024 0.8292

Bias
20 5 0.50 -0.1354 -0.0232 -0.0387 -0.0387 -0.0154 0.0470
20 5 0.80 -0.2283 -0.0829 -0.0753 -0.0329 0.1429 0.3832
50 5 0.50 -0.0401 0.0251 -0.0026 0.0216 0.0113 0.0387
50 5 0.80 -0.0798 0.0120 -0.0174 0.0294 0.0153 0.0777
100 5 0.50 -0.0289 0.0083 -0.0015 0.0156 0.0083 0.0209
100 5 0.80 -0.0509 0.0001 -0.0098 0.0189 0.0089 0.0394
100 10 0.50 -0.0218 0.0035 -0.0015 0.0169 0.0017 0.0162
100 10 0.80 -0.0335 0.0041 -0.0074 0.0254 0.0024 0.0292

Standard errors
20 5 0.50 0.1768 0.1198 0.0863 0.0452 0.0874 0.1378
20 5 0.80 0.2209 0.1424 0.0872 0.0448 0.0945 0.0844
50 5 0.50 0.1423 0.1328 0.0876 0.0655 0.0870 0.0674
50 5 0.80 0.1779 0.1695 0.0944 0.0654 0.0940 0.0676
100 5 0.50 0.1103 0.1035 0.0707 0.0594 0.0706 0.0596
100 5 0.80 0.1357 0.1231 0.0785 0.0630 0.0776 0.0626
100 10 0.50 0.0348 0.0234 0.0245 0.0140 0.0243 0.0139
100 10 0.80 0.0372 0.0249 0.0236 0.0133 0.0230 0.0127

Table 2: Parameter and standard errors estimates with σ2
i ∼ U(1, 3).

regardless of the value of σ2
i , the HPJ provides significant bias reduction. When

N is large, the corrected estimates are very close to the true values. However,

for N = 20, the bias is still relatively large in absolute terms.

Turning to the two-step BB estimator, we see that the nonadjusted version,

although almost always underestimating the true parameter value, is consider-

ably closer to the true value compared to the two-step AB. For N ≥ 50, we see

that, both for σ2
i ∼ U(0.5, 1.5) and σ2

i ∼ U(1, 3), the absolute bias is lower with

the non-adjusted version. Hence, for the two-step BB, the HPJ only performs

under very special circumstances - namely the case when the sample size is very

low.

For the CUE, the precision of the non-adjusted estimator φ̂CUE is, with a
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few exceptions, excellent. Since using HPJ increases the estimate of φ0, the

HPJ CUE estimator actually increases bias. Another interesting point is that,

except for in a minority of cases considered, there is no improvement in terms of

bias when using the unadjusted CUE as opposed to the unadjusted two-step es-

timator. Since the CUE is a jackknife-type estimator in itself (as demonstrated

in Section 2.6), it appears that the ”extra” jackknifing deteriorates the perfor-

mance of the estimator by increasing the estimate of φ0.

Two conclusions hold regardless of which of the three estimators is con-

sidered. First, neither the unadjusted nor the HPJ estimates improve as T

increases. This is clear as T is increased from 5 to 10 with N = 100, and is con-

sistent with the discussion in Section 2.4. Second, the general results, namely

that the HPJ decreases bias only for the difference estimator, and in very special

cases also the the system two-step estimator, hold regardless of the value of φ0

and σ2
i .

Consequently, the half-panel jackknife approach gives in satisfactory finite-

sample bias reduction only when using the Arellano-Bond two-step GMM, and

for very low combinations of N and T with the Blundell-Bond two-step estima-

tor. In the other cases, as well as in all cases when using the CU Blundell-Bond

GMM, the HPJ approach is not effective in reducing finite-sample bias.

However, using HPJ reduces the standard errors compared to the non-

adjusted estimators, particularly for the two-step estimators. It should be noted

that the reduction in standard errors was even greater than the one seen in the

JIVE estimator by Zhang and Zhou (2018). In sum, the reduction in both

bias and standard errors makes the HPJ very attractive for the AB two-step

estimator and for the BB two-step in the small-sample case. However, for the

BB two-step with moderate N , as well as for all cases with the CUE, the per-

formance of the HPJ is not particularly impressive, despite the reduction in

standard errors. Also, regardless of which estimator is being corrected, the ad-

vantages with the HPJ must be weighed against the additional computational

effort required to construct this estimator.

5 Concluding remarks

The purpose of this thesis has been to study the performance of the half-panel

jackknife (HPJ) in reducing the O(N−1) asymptotic bias associated with GMM

estimators with fixed effects, focusing on the AR(1) dynamic panel model with-
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out exogenous covariates. Considering the additional computational effort as-

sociated with constructing the HPJ, it is of importance that the bias reduction

is significant.

The results show that for the Arellano-Bond two-step estimator, the bias re-

duction is considerable. Together with a large reduction in the standard errors,

the HPJ is a potentially valuable alternative to other bias-reducing methods

proposed in the literature, such as the JIVE and the RMA. For the two-step

Blundell-Bond estimator, the bias reduction is negligible except for very low

values of N , although the results showed a considerable reduction in standard

errors for all combinations of N and T . However, for the CUE estimator, the

HPJ approach actually increases the finite-sample bias, and the associated stan-

dard errors are generally close to those of the non-corrected estimator.

As with any study, there are a number of limitations. By construction of the

jackknifed estimators, there is a certain degree of randomness which is likely to

be effected by the number of cross-sectional partitions. Furthermore, it is not

clear, at least not to this author, why the jackknife exclusively leads to the es-

timates of the autoregressive parameter increasing vis-à-vis the non-jackknifed

estimates.

Two questions could be of interest for future research. Firstly, it could

be valuable to examine the effect on bias of the numbers of instruments used.

As mentioned in Section 2.3, research indicates that at least for the difference

GMM, there is some finite-sample bias reduction when only one lag of the depen-

dent variable is used as instrument. Additionally, it would be useful to extend

the HPJ GMM to include exogenous covariates, which has hitherto only been

done for the MLE.

21



References
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Appendix: Consistency and asymptotic normal-

ity of the GMM

The large sample theory in this appendix is based on Pakes and Pollard (1989).

A similar outline for the semiparametric case is given in Chen et al. (2003).

Since the results in this section are not exclusively valid for GMM estimators of

panel models, consider the more general case where the data z = (z1, . . . , zN )′

are an i.i.d. sample from Rs, and are subject to the same regularity conditions

described previously for the panel data {zit}.

Theorem 2. Under the following conditions,

(i) ||gN (θ̂GMM )|| ≤ op(1) + inf
θ∈Θ
||gN (θ̂)||

(ii) inf
||θ−θ0>δ||

||g(θ)|| = op(1), ∀ δ > 0

(iii) sup
θ∈Θ

||gN (θ)−g(θ)||
1+||gN (θ)||+||g(θ)|| = op(1)

θ̂GMM
P−→ θ0, where θ0 is the unique θ0 ∈ Θ for which g(θ0) = 0.

Proof. Omitted. �

Let {δN} = op(1) be a sequence of positive numbers. Theorem 2 below gives

the conditions for asymptotic normality.

Theorem 3. Let θ̂GMM
P−→ θ0, where θ0 is the unique θ0 ∈ Θ for which g(θ0) =

0. Then, if the following conditions are satisfied,

(i) θ0 ∈ int (Θ)

(ii) ||gN (θ̂GMM )|| ≤ op(N−1/2) + inf
θ∈Θ
||gN (θ̂)||

(iii) sup
||θ−θN ||<δN

||gN (θ)−g(θ)−gN (θ0)||
N−1/2+||gN (θ)||+||g(θ)|| = op(1)

(iv)
√
NgN (θ0)

L−→ N (0,Λ).

(v) g() is differentiable at θ0 ∈ Θ, and the matrix Γ exists for θ ∈ Θ, is of full

column rank, and is continuous at θ = θ0.

√
N(θ̂GMM − θ0)

L−→ N (0,Φ), where Φ = (Γ′WΓ)−1Γ′WΛWΓ(Γ′WΓ).

Proof. Omitted. �
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Remark 1 (Identification assumption). Note that for consistency, it is not

required that θ0 ∈ int (Θ), i.e. θ0 can be anywhere in Θ. However, for asymptotic

normality, we impose this condition. For a discussion on estimation when the

true parameter is on a boundary of the parameter space, see Andrews (2002).

Remark 2 (Optimal weighting matrix). For the two-step GMM, the choice

W = Λ−1 minimizes the asymptotic variance. It is straightforward to show

that, for this particular case, Φ reduces to (Γ′ΛΓ)−1. For a proof that this is

actually the smallest possible asymptotic variance, see e.g. Pesaran (2015, p.

232).

Note that for condition (iii) of Theorem 2 to be satisfied, it must hold that G is

P−Donsker, where G = {g(θ) : θ ∈ Θ}, while condition (iii) of Theorem 1 will

be satisfied if G is P−Glivenko-Cantelli. To understand the difference between

these two classes, introduce the following concepts. If again z1, . . . , zN denotes a

random sample from a distribution P on (D, d), the empirical distribution PN is

defined as PN = N−1
∑N
i=1 δzi , where δzi is the degenerate distribution, which

has cdf Fδ(zi, k0) = 1 if zi ≥ k0, and 0 else. Given a Borel measurable function

f : D → R, let PN f = N−1
∑N
i=1 f(zi) and P f =

∫
fdP , be the expectation

under the empirical measure and expectation under P . Let f ∈ F , where F is a

class of measurable functions. If F satisfies supf∈F |PNf−P f |
a.s.−−→ 0, then F is

said to be P−Glivenko-Cantelli. On the other hand, if GN =
√
N(PN−P )

L−→ G,

where G is a tight Gaussian process, F is said to be P−Donsker. Hence, asymp-

totic normality depends crucially on the P−Donsker property.

In turn, whether G is P−Donsker or not is related to its covering and

bracketing numbers. To see this, introduce some additional notation. First,

for r ∈ [1,∞), let Lr(P ) be the space of measurable real-valued functions

f : D → R. Then, the covering number N(ε,F , Lr(P )) is the minimal num-

ber of balls of radius ε in Lr(P ) needed to cover F 5. The bracketing num-

ber N[](ε,F , Lr(P )) is the minimal number of ε-brackets needed to cover F ,

where an ε-bracket with respect to the metric d in Lr(P ) is a pair of functions

l, u ∈ Lr(P ) with l(X) ≤ u(X) and d(l, u) ≤ ε.
Then, if

∫∞
0

√
logN[](ε,F , L2(P ))dε <∞, the class of measurable functions

F is P−Donsker (Ossiander 1987). It also possible to use the covering number

to establish the P−Donsker property. Denote by F the envelope of F (an enve-

lope for F is a function F such that |f | ≤ F for allf ∈ F), for which it holds that

5Let B be a (closed) ball in Rk. A collection B of closed balls in Rk is a cover of the set
A ⊂ Rk if A ⊂

⋃
B∈B B.
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∫
F 2 < ∞, and by Q the class of all finitely discrete probability measures on

(D, d). If
∫∞

0
supQ∈Q

√
logN(ε||F ||Q,2,F , L2(Q))dε <∞, then F is P−Donsker

(Koltchinskii 1981; Pollard 1982). Since Θ ⊂ Rk is closed and bounded, the cov-

ering and bracketing numbers of Θ are known; Andrews (1994) shows that the

GMM estimator θ̂GMM of θ0 indeed satisfies the Ossiander condition 6. Hence,

G = {g(θ) : θ ∈ Θ} is P−Donsker.

6Theorem 3 of Chen et al. (2003) gives the same conclusion for the semiparametric case.
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