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Abstract

The generation of induced pluripotent stem (iPS) cells from differentiated cells is a process
of great scientific interest due to the medical potential of such cells. This process (called
’reprogramming’ of cells) is however notoriously inefficient and still not very well under-
stood. Therefore studies that can help us understand the interactions and mechanisms
governing the reprogramming process are of great importance.

In part one of this project, we develop a Boolean network that is able to emulate the
full transition from mouse embryonic fibroblast (MEF) cells to iPS cells and show that it
can be used to predict real knockdown behavior with an overall accuracy of 83%. We also
establish a new way to accurately measure in silico reprogramming efficiency of Boolean
models.

Part two of this project involves the construction of a minimal dynamical systems model
for gene regulatory networks that is able to simulate the reprogramming process. We show
that this model accurately replicates certain key features in the cell reprogramming process
and predicts that factors exhibiting specific expression dynamics act as roadblocks for cell
reprogramming.

Overall, the results of the two parts of this project provide valuable insights on the cell
reprogramming process and help identify factors acting as roadblocks.



Populärvetenskaplig sammanfattning

Människokroppen är uppbyggd av olika typer av celler som exempelvis hudceller, nervceller
och fettceller. Generellt sett är dessa celler utformade för en väldigt specifik uppgift s̊asom
att utföra arbete (exempelvis muskelceller) eller att förse kroppen med struktur (exem-
pelvis benceller). Det finns en väldigt spektakulär typ av cell – s̊a kallade stamceller – vars
specifika syfte är att omvandlas till andra celltyper och det är via dessa celler som kroppen
har möjlighet att skapa sina olika celler. Processen som beskriver stamcellers överg̊ang
till andra celltyper kallas differentiering och är mycket intressant fr̊an ett medicinskt per-
spektiv eftersom den ger oss en viktig inblick i hur människokroppen fungerar. Nyligen
har forskare upptäckt en metod för att odla fram stamceller fr̊an differentierade celler i en
process som har blivit benämnd “omprogrammering” av celler. Genom att omprogram-
mera celler kan forskare allts̊a odla fram stamceller fr̊an exempelvis hudceller för att sedan
använda stamcellerna i medicinska applikationer s̊asom stamcellsterapier som har visat sig
framg̊angsrika vid behandling av exempelvis ALS eller Alzheimers sjukdom.

Ett av de största problemen med att odla fram stamceller via omprogrammering i en
labbmiljö är den l̊angsamma processen och den väldigt l̊aga effektiviteten. Dessa prob-
lem orsakas till stora delar av s̊a kallade “väghinder” som är ett samlingsnamn för olika
mekanismer som kan sakta ner eller p̊a olika sätt förhindra processen fr̊an att äga rum.
Exempel p̊a väghinder kan vara att ”sl̊a av” gener som inte har med stamceller att göra
eller motsvarande att ”sl̊a p̊a” gener som är relaterade till stamceller. Att identifiera dessa
väghinder och p̊a s̊a sätt underlätta framställandet av stamceller är en av de största ut-
maningarna för forskningen inom detta omr̊ade.

Detta projekt behandlar olika metoder för att hantera och upptäcka dessa väghinder. I
projektet utforskas olika matematiska modeller för omprogrammering som sedan används
för att identifiera möjliga väghinder i form av specifika geners beteende. Enligt organisatio-
nen Alzheimer’s Disease International lider för närvarande omkring 50 miljoner människor
världen över av n̊agon typ av demenssjukdom och andelen drabbade förväntas öka de
närmaste 30 åren. Parkinsons sjukdom, leukemi och ALS är andra exempel p̊a poten-
tiella behandlingsomr̊aden där stamcellsterapier har mycket potential. I det l̊anga loppet
är målet med forskningen inom detta omr̊ade att p̊a sikt utrota dessa folksjukdomar och
förhoppningsvis kan arbetet i detta projekt vara ett steg i rätt riktning.
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1 Introduction

Takahashi and Yamanaka demonstrated in 2006 that induced pluripotent stem (iPS) cells
can be cultivated from mouse embryonic fibroblast (MEF) cells in a process called re-
programming [1]. This process has since then been studied extensively due to the med-
ical potential of stem cells in fields such as regenerative medicine [2], drug development
[3], stem-cell therapies for treating e.g. Alzheimer’s disease [4] etc. In recent years, high-
throughput technologies have made it possible to gather large quantities of data effectively,
which has surged an increase of published studies [5]. However, our understanding of the
control process behind induced pluripotency and the generation of iPS is lagging behind.

A major issue with in vitro cell reprogramming is the extremely low efficiency and slow
kinetics of the process, often attributed to reprogramming obstacles collectively known as
’roadblocks’. Identifying potential roadblocks is critical for understanding the process and
improving its efficiency.

Fully understanding the process of cell reprogramming involves describing and mod-
elling the interactions and behaviors of the relevant genes inside the cell by constructing its
gene regulatory network (GRN). Two of the most common methods for this are Boolean
network (BN) models and dynamical systems models. BNs are mathematical structures
of nodes (representing genes) [6] where the value of each node takes on a value of either 1
(ON) or 0 (OFF) depending on whether or not the genes are being expressed. The interac-
tions between genes in a BN are modelled with Boolean functions. The dynamical systems
approach involves setting up a system of differential equations describing gene expression
level dynamics over time. By solving and evaluating these equations one can then infer
behaviors and characteristics of the GNR.

This project consists of two parts. In part one, the reprogramming process is modelled
by developing a BN and training it to reproduce experimentally observed constraints. To
help with this, a novel way of establishing the level of pluripotency of cells in silico is devel-
oped in order to measure the efficiency of cell reprogramming in simulations. Predictions
of potential roadblocking genes in the BN model are validated with respect to experimental
observations, showing an accuracy of 83%.

Secondly, we construct a simplified dynamical systems network which is used to model
the generation of iPS cells. Stochastic simulations of the simplified model reveals that
certain genes with a specific expression pattern exhibit roadblock-like behaviors.

2 Background

2.1 Gene Regulation

The central dogma of molecular biology describes the flow of genetic information within
an organism or biological system. Figure 1 shows a schematic illustration of this biological
process, in which the phrase gene regulation is a collective term for the transcription and
translation processes. An essential factor in this flow of information is the existence of
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transcription factors (TFs), which are proteins that control transcription of specific genes
by either turning transcription on (activating) or off (repressing) by binding or not binding
to corresponding binding sites on the DNA. It is often convenient to model the transcription
and translation processes as a single process with a single equation in order to simplify the
mathematical model.

The biological processes governing gene regulation are extremely complex and very
hard to fully understand because so many factors are at play. Therefore, approximations
and assumptions are necessary. For example, gene regulation is often modelled by a closed
system, even though this is certainly not the case for real biological systems.

Figure 1: Illustration of the flow of genetic information as stated by the central dogma
of molecular biology. Replication: DNA passes coded information by replicating via DNA
Polymerase. Transcription: coded information is passed on via RNA by RNA synthesis
governed by RNA polymerase. Translation: messenger RNA carries information on to
ribosomes where protein synthesis takes place. Proteins carrys no information themselves
but helps perform almost all biological tasks.

2.1.1 Gene Regulatory Networks

A gene regulatory network (GRN) is a set of molecular regulators controlling the gene
expression in cells and organisms. The expression of the genes is embodied by the presence
of their corresponding RNA, which in turn carries the information ’coded’ within them
required for synthesis of their corresponding proteins. Proteins and RNAs themselves
control most of a cells behaviors and mechanisms, which makes the study of regulatory
networks paramount in almost all areas of biology.
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Component genes in a GRN are conventionally expressed as nodes in a directed graph.
In such a graph the regulatory interactions are represented by its edges – for instance an
activating relation of gene B by gene A is represented by a directed arrow from A to B. A
repressing relation is typically represented by a directed blunted line.

Mathematical models for GRNs were proposed already in 1969 by Britten & Davidson
[8] as well as Kaufmann [9] in the same year. The role for these mathematical models
include [10]:

• Describing genetic regulations at a system level

• Enabling simulation of network behavior

• Predicting new structures and relationships

• Making it possible to analyze or intervene in the network through signal processing

The task of fully understanding genetic interactions is hard and countless studies have
been conducted in the matter. Several methods have been proposed to model gene in-
teractions, including coupled ordinary differential equations [11], Boolean networks [12],
stochastic gene networks [13], master equations [14], and all with their respective variations.

Boolean networks are one of the most extensively used frameworks due to their simple
yet powerful nature. Moreover, they have been proven to successfully describe real gene
regulatory relations such as the drosophilia segment polarity network [15].

2.2 Boolean Networks

A Boolean network (BN) is a mathematical structure β(V,E), built on a gene regulatory
network with V vertices (nodes) representing the genes and E directed edges representing
their interactions. At any given state or point in time each node has a value of either 0 or
1 i.e. on or off. The value of each node in the next state or point in time is determined by
the values of the parent nodes (incident-directed nodes, also called the predictor set) via
Boolean algebraic functions:

fi : {0, 1}pi −→ {0, 1} (2.1)

for node i with pi parents. As such, each node has a corresponding truth table associated
to it which completely determines its Boolean map fi.

One of the challenges of Boolean networks is determining the underlying Boolean func-
tions (i.e. filling in the truth table outputs) for each node – a process often called ’training’
the network. Many different types of Boolean network models have been developed for gene
regulation, including the general model [16], the AND/OR model [12], the strong-inhibition
model [17] and several different stochastic models [13][18].

A state in a Boolean network with n nodes is a vector of gene values (x1, ..., xn) and the
total number of states in such a network is accordingly 2n. Furthermore, the next state of
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a network can be updated either synchronously or asynchronously depending on whether
the nodes are updated all at the same time or not. If the output of a state is itself, i.e.

f(x1(t), . . . , xn(t)) = f(x1(t+ 1), . . . , xn(t+ 1)) (2.2)

that state is a single-state attractor. There are also attractor cycles which are irre-
ducible subsets of total state-space with the property that they cannot be exited once
entered. An attractors basin of attraction (or simply basin) is the set of all states which
inevitably end up in that attractor.

Note that the output of a BN is unique in the synchronous update, but not in the
asynchronous update. A consequence of this is that the attractor structures may differ
between the cases. To see this, consider a three-node BN with synchronous updates and
an attractor cycle 111→001→111→ . . . . This cycle cannot exist in the asynchronous case
because it requires multiple flips at the same time. On the other hand, all state-transitions
that can be made in the asynchronous case can also be made in the synchronous case. This
means that the single-state attractors are inevitably identical in both cases.

Studying basins of attraction is a staple task in the study of BNs because they have
been associated with cellular phenotypes in living organisms [19]. Furthermore, the size of
the basins are associated with the probability of a cell having a certain phenotype in real
organisms.

2.2.1 Boolean Maps

The Boolean algebraic function fi : {0, 1}pi −→ {0, 1} is a Boolean map from x ∈ {0, 1}pi
to x ∈ {0, 1}, which determines the state for node i with pi parents in the next instance
in time by xi(t+ 1) = fi(x1(t), . . . , xpi(t)). Every node in a GNR has its own parents and
Boolean function f . Conveniently, Boolean functions can be expressed in terms of logical
operators AND, OR, NOT etc., which can often elucidate relationships between variables.
For example, the logic gate AND activates only when variable A and variable B are active.
Its truth table is shown below

Table 1: Truth table of the logic AND gate.

A B AND(A, B)

0 0 0
1 0 0
0 1 0
1 1 1

When several inputs are present and compositions of Boolean functions are considered,
it gets increasingly complex because the internal order starts to matter. For example,
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AND(A,OR(B,C)) and AND(C,OR(A,B)) will not produce the same truth table. Simi-
larly, the order of the operators also matter such that OR(A,AND(B,C)) is not equal to
AND(A,OR(B,C)) etc.

Part of the success of BNs in biological modelling comes from the parallel that can be
drawn directly from logical operators to genetic regulation. If for instance a repressing
molecule binds to a receptor the describing logic is a NOT gate because transcription can
only be active when the molecule is not bound (NOT(A)=1 if and only if A=0). Similarly,
if transcription is active if either molecule A or molecule B is bound, the corresponding
logic operator is OR(A,B). This argument can be extended to other logic gates and be
applied to several inputs as well.

Sometimes it is of interest to make the discretization of values in the BN to more than
two levels. A discretization to k levels will transform the mapping to fi : {0, . . . , k}pi −→
{0, . . . , k} [10]. The benefit of this is the increased resolution of the model but it comes at
the heavy cost of computational efficiency; a k-level BN will have kn different states. With
such a discretization, the definition of the logical operators are updated to be consistent
with higher values. The three most common operators are defined as AND(x1, . . . , xn) :=
min(x1, . . . , xn), OR(x1, . . . , xn) := max(1, . . . , n) and NOT (x) := n − 1 − x in a multi-
leveled system.

2.2.2 Probabilistic Boolean Networks and Stochastic Modelling

Probabilistic Boolean networks (PBNs) have been developed to account for the self-evident
stochasticity in real-life molecular and genetic regulations. Gene regulation in real organ-
isms is not only subject to cellular noise but is also affected by external changes as well
as other genetic networks since they are not closed systems. A PBN is a composition of
several BNs in which each constituent BN is associated with a network selection probability
ci. At any given time only one BN determines the next state. Every time instant, there
is a switching probability q and every BN has its corresponding selection probability ci to
be chosen as the BN for the next update. Additionally, one may include a rate of random
gene perturbation p.

Probabilistic Boolean models are homogeneous Markov chains (MCs). This is perhaps
easier realized when thinking of the PBN in terms of its state transition probability ma-
trix T in which each state (row) has certain probabilities to transition to other states
(columns). The condition

∑2n

j=1 Tij = 1,∀i for probabilities in the transition probability
matrix together with the fact that transitions are independent of previously visited states
implies a MC. Since the transition matrix is the same in each time-step, the chain is ho-
mogeneous. The MCs are also ergodic because they have a finite and irreducible state
space with aperiodic states (in fact, gene perturbation alone is a sufficient condition for
this to be the case). Importantly, a consequence of this is that PBNs possess steady-state
distributions, which are unique long term behaviors independent of their initial states. The
study of steady-state probabilities is one of the most significant applications of PBNs for
gene regulatory networks [20].

PBNs will be used in this project in order to assess the stochastic behavior of the BN
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model.

2.2.3 Simulating Boolean Network Dynamics

There are two ways to simulate the dynamic time evolution of a BN in the synchronous
case. First, given a state x, one can look up the Boolean functions for each node directly
and compute its output with respect to the parent-nodes. In effect, this method revolves
around finding the corresponding row in each node’s truth table and saving the output
value.

The other method, sometimes called the matrix-based method, is more effective when
simulation time is very long (typically t� 2n). It utilizes the state transition matrix (TM)
of the BN, which holds the output state of each state in a 1×2n array for lexicographically
ordered states x ∈ {0, . . . , 2n}. However, this method requires computation of the TM,
which is not always practically feasible, especially for large BNs.

When a perturbation rate is introduced and/or there is a switching probability between
BNs in a PBN, the switch/perturbation occurs before matrix/table look-up. In the matrix-
based method, this enables computation of the time evolution of a PBN without having
to calculate its 2n × 2n transition probability matrix. Instead, if perturbation occurs, one
converts the integer state x ∈ {0, . . . , 2n} to its corresponding Boolean state x ∈ {0, 1}n,
makes the flip/flips, then makes the conversion back again.

One issue with modelling transcriptional dynamics with a BN is the choice of gene
perturbation rate p and network switching probability q. Previous studies have proposed
values of p = 0.01%−0.5% and q = 1%−20% in order to reflect the rarity of random gene
perturbation and change of biological context [10].

2.2.4 Markov Chain Analysis

With the Markov chain (MC) property of PBNs it is possible to conduct theoretical calcu-
lations of the long term behavior of networks. The transition probability matrix T of a MC
portray the transition probabilities from each state to every other state and is an important
item in Markov chain analysis. A MC with n genes possesses a stationary distribution π
if the probability distribution π = (π1, . . . , πn) is such that

π = πT (2.3)

for its transition matrix T and constraint
∑

i πi = 1. This implies π = πT n ∀n, in which
T n is the n-step probability matrix of the MC, i.e. its (i, j)-th element is the probability
to transition from state i to state j in n steps [10]. In other words, after starting from
the i-th state with probability πi, the probability of finding the MC in any state j after
an arbitrary number of steps is always πj. The distribution π∗ is called a steady-state
distribution if for all n and any initial distribution π the following holds:

π∗ = lim
n→∞

πT n (2.4)
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In practice, this means that the probability of being in any state j after a long time is
always π∗j regardless of the initial state. An ergodic MC will always posses a steady-state
distribution [10].

As previously mentioned, the steady state distributions of MCs are an important asset
in the study of GRNs because they are associated with cellular phenotypes in real organ-
isms. Finding and analyzing them may thus add valuable insights to the behaviour and
characteristics of such a system.

2.2.5 Computational Methods for Finding the Steady State Distribution

The analytical method for obtaining the steady state distribution above is reduced to find-
ing the solution to a system of linear equation with constraint

∑
i πi = 1. The following

algorithm, called the power method, can compute the steady state distribution π∗ for the
full state space [10]:

Input: Initial distribution π(0) = (π
(0)
1 , . . . , π

(0)
n ), transition probability matrix T ,

error tolerance δ∗.
Output: Steady-state distribution π∗.
k=0;
while δ < δ∗ do

Compute π(k+1) = π(k) · T ;
Set δ = ||π(k+1) − π(k)||;
Set k = k + 1;

end
Set π∗ = π;

Algorithm 1: Power method for obtaining the steady-state distribution. This method
iterates computations of the distribution π following the definition in Equation 2.4.

The problem with the method above is that it involves computation with large matrices
T of size 2n × 2n. Some authors have suggested approximation methods for computing
T [22], but the problem remains that sometimes T is even too large to be stored in a
conventional computer.

An alternative method for computing the steady-state distribution is with Monte-Carlo
simulations. These methods generate long time series of the PBN such that the frequency
of states approaches the steady-state distribution. In general, one needs to simulate at
least 10 ·2n ·p−1 steps in order to reach the steady state distribution [10], which is typically
far too many to be run in a convenient time frame. Therefore, it is customary to utilize
one of many ways to test the convergence of an empirical distribution [23, 24] and thence
approximate the steady-state distribution with the empirical distribution.
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2.3 Biochemical Dynamics and Kinetics

To make a quantitative model of a biochemical network, one has to define a system of
mathematical functions explicitly describing the interactions of its variables. The variables
represent molecular concentrations of for instance mRNA, enzymes, proteins, complexes
etc. There are a number of different ways one can go about defining the characteristics
of the system; variables can be discrete or continuous, dynamics can be deterministic or
stochastic, update rules can depend on internal or external factors and so on.

When modeling reaction kinetics, particularly transcriptional dynamics, there are a few
different standard approaches. Excluding stochastic and Boolean models, the two main
methods are the Michaelis-Menten [27] (with Hill formalism [28]) and the Shea-Ackers
approach [29]. The approaches use different methodologies to establish the dynamics but
the resulting governing equations of the systems end up being equivalent, as they necessarily
should.

In a dynamical systems approach, the equations governing the state variables of the
system are sets of ordinary differential equations (ODEs) describing the evolution of the
variables over time. The set of variables then defines the state of the system and the
system is said to be in a stationary state if the variables are in equilibrium (i.e. their time-
derivatives are zero), or have reached a stationary limit cycle (i.e. oscillating state). Just
as in any other dynamical system, stationary states can be stable or unstable depending on
if they attract or repel nearby perturbations. A benefit of defining the system dynamics in
this way is that the future behaviour of the system is unique and entirely known, given the
parameters and external factors do not change. Additionally, the resolution of a dynamical
systems model is higher than that of a Boolean networks model because the values of the
variables are not discretized.

2.3.1 The Shea-Ackers Formalism

The Shea & Ackers approach to modelling TF binding states is based on a statistical
physics view. All possible binding states (bound or unbound for all possible TFs and
potential complexes) definey a partition function and the transcription rate is proportional
to the probability of having an active transcribing state, i.e. Ptranscription = Zactive/Ztotal
where Z is the partition function, defined by

Z =
∑
σ1...σn

n∏
i

[TFi]
σie−∆Gσ/kbT . (2.5)

In this equation, the probability of having transcription factor i bound is proportional to
its concentration [TFi]. Each state has an associated free energy ∆Gσ and the states can
either be bound (σi = 1) or unbound (σi = 0). kb is the Boltzmann constant and T is the
temperature. Z is conventionally normalized such that the statistical weight of the state
where nothing is bound equals one. The products in this partition function accounts for the
different combinations for multiple TFs being bound at the same time. For instance, if TF1
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and TF2 being bound simultaneously is a possible state, the product of their concentrations
will be one term in the partition function.

The Shea-Ackers formalism assumes a homogeneous well-stirred solution such that the
concentrations are functions of time and not space. Additionally, the reactions are assumed
to occur in a deterministic manner, and the number of reactants is assumed to be of order
of magnitude much larger than one [30].

If the possibility for TFs to bind at multiple sites at the DNA is introduced, equation
2.5 becomes more responsive to changes in substrate concentrations, which is often evident
in real biological systems. Mathematically, this is modelled by the introduction of an
exponent, δi, in the concentration factors, called the Hill coefficient. By letting βi =
e−∆Gσ/kbT the equation becomes (excluding complex formation):

d[TFi]

dt
=

∑
iactive

βi[TFi]
δi

Z
(2.6)

The Hill coefficient reflects the degree of cooperativity between binding molecules such
that a high cooperativity results in a steep response. The constants βi are binding affinities
for the TFs which represent the rate of binding. To make the dynamics account for decay,
a concentration dependent decay term γ[TFi] is subtracted from the equation and the final
model equation is

d[TFi]

dt
=

∑
iactive

βi[TFi]
δi

Z
− γ[TFi] (2.7)

The challenge here is to approximate the model parameters from experimental data.
It is also clear that model complexity increases quickly with system size, making the
dynamical systems approach unsuitable for larger networks.

2.4 Stem Cells, Differentiation and Reprogramming of Cells

Stem cells are a specific type of cells which are characterized by their ability to self-renew
and their pluripotency. Their pluripotent property means that they have the potential to
differentiate, which means that they have the ability to transform into other cell types.
Self-renewal ensures that they can replicate indefinitely while still maintaining an undif-
ferentiated state. In adult organisms, stem cells play a crucial role in e.g. healing and
regeneration, which makes the study of stem cells critical for its potential applications in
medicine.

Initially discovered by Yamanaka as recently as 2006 (for which Yamanaka was awarded
the Nobel prize in medicine in 2012), artificial reprogramming of cells is a process where
induced pluripotent stem cells (iPS cells) are grown from mature cells such as fibroblast
cells [1]. Yamanaka demonstrated that this could be done with mice cells by exposing
(conventionally called overexpressing) the cells to the exogenous transcription factors Oct4,
Sox2, Klf4, and c-Myc. Since its discovery, cell reprogramming has been investigated
further and several ways to enhance its efficiency have been revealed, but the underlying
mechanisms of the process are still not very well understood.
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There is, however, a technical issue in the reprogramming process regarding the assess-
ment of a pluripotent stem cell. An iPS cell is by definition a cell which has re-gained
pluripotency but the problem is that there is no strict way of examining the pluripotent
property of the cells in vitro. Experimentally, researchers typically look at the morphology
of the cells and their ability to replicate, neither of which is present in any computational
model.

This project will be reliant on data from experiments (see Section 2.5) conducted with
certain pluripotency markers such as the Nanog green fluorescent protein (GFP) reporter
and the cell surface markers CD44 and ICAM1. It has been shown that pluripotent stem
cells have a high clonogenicity of Nanog GFP, which is transiently increased from virually
zero in the fibroblast stage. The Nanog-GFP colony forming potential (CFP) thus gives
an indication of how pluripotent the cells are. Additionally, the cell surface markers CD44
and ICAM1 have been shown to follow an ordered sequence of changes corresponding to
cell-stage transitions when reprogramming [32].

Maintaining pluripotency of cells in vitro requires culture environments which support
stable self-renewal. Currently optimized conditions include different combinations of cy-
tokine leukemia inhibitory factor (LIF) and two selective inhibitors CH and PD (collectively
known as 2i) [31]. In these conditions, cells homogeneously express pluripotency-related
factors and show no signs of differentiation. These three factors are therefore an integral
part in the reprogramming process.

2.4.1 Modelling Pluripotency and Overexpression

As mentioned in the previous section, neither the morphology of cells nor their ability to
replicate are typically modelled when researching pluripotency of cells in silico. Therefore,
previous researchers have instead looked at i.e. the expression levels of key pluripotency-
related factors such as Oct4 and Sox2 in order to establish pluripotency. One may then
assume that cells are pluripotent only if both Oct4 and Sox2 are expressed simultaneously
[31]. A problem with this is that there are dozens of pluripotency-related factors and not
all of them need to be present in a cell for the cell to actually be pluripotent.

This project will explore a novel way of looking at pluripotency of cells in silico akin to
the aforementioned Nanog-GFP CFP in vitro. Details of the procedures behind this will
be covered in the methods of section 4.

When it comes to modelling the overexpression of TFs the approach is different de-
pending on which framework is being used. In a dynamical systems framework one can
simply introduce an overexpression term α to the dynamical equations such that Equation
2.7 becomes

d[TFi]

dt
=

∑
iactive

βi[TFi]
δi

Z
− γ[TFi] + αi (2.8)

where αi is zero for non over-expressed factors and needs to be determined for the Yamanaka
factors.
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For Boolean networks there are two possibilities: either force the expression levels of
the overexpressed factors to a high expression state, or add new overexpression nodes in
the network for the overexpressed genes. The advantage of the latter is that it enables
distinction between the exogenous and endogenous transcription factors.

2.5 Experimental Background

This section covers two studies of GNRs that have provided experimental data that will
be used in this project. Results from both studies will be used as training data when
constructing the Boolean network model in the first part of this thesis. Additionally, gene
time-series data from the first study will be used as target values when constructing the
dynamical systems network in the second part.

The first study in particular proved extra useful because it studied the exact same
process that was modelled in this project, namely the generation of iPS cells from mouse
embryonic fibroblast (MEF) cells by over-expressing the reprogramming factors Oct4, Sox2
and Klf4. The second study only considered cells already in the iPS state, but nevertheless
provoided useful gene expression data.

2.5.1 Reprogramming Stage Transitions and Time-Series

This section covers results from the publication by O’Malley et al. from 2013 [32], which
provided valuable experimental insights and data. In their study they demonstrated that
reprogramming follows an orderly sequence of stage transitions marked by changes in cell
surface markers CD44 and ICAM1, and a Nanog-GFP reporter. They carried out RNA-
sequencing which suggested a binary classification of behaviors of pluripotency-related
genes in the reprogramming process: rapid (’early’ genes) or gradual (’late’ genes) up-
regulation. They also discovered transient up-regulation patterns for epidermis-related
genes which suggests that reprogramming is not simply a reversal of the differentiation
process.

Their results were incorporated in this project in two major ways. First, the different
stages in the reprogramming process were applied as attractors in the Boolean Networks
constructed in this thesis (see Section 4). Secondly, the gene expression patterns in the
different stages were used as time-series data for the optimization of parameters in the
dynamical system approach. It is important to understand how their results were produced
in order make accurate implementations of the results from a systems biology perspective.

The different stages between MEF and iPS are called 1NG-, 1NG+, 2NG-, 2NG+,
3NG- and 3NG+, where the ’NG-/+’ stands for whether the stage has high or low Nanog-
GFP expression. The integer 1-3 indicates which gate the cells are in. The different gates
are distinguished by the expression levels of ICAM1 and CD44:

1. Gate 1: low expression of ICAM1, high expression of CD44

2. Gate 2: low expression of ICAM1, low expression of CD44
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3. Gate 3: high expression of ICAM1, low expression of CD44

Cells tend to follow the transition MEF→ Gate1→ Gate2→ Gate3→ iPS when being
reprogrammed. The whole process from MEF to iPS can be seen in Figure 2. Cells
that have advanced to a new stage after a few days are sorted and re-plated repeatedly
until an iPS colony is achieved, which effectively disposes of the cells that are lagging
behind. A consequence of this is that there is no real time-series data. Nevertheless, the
expression of the pluripotency genes in the reprogramming stages will be used as a time-
series approximation since they still follow chronological order. Without sorting it takes
more than 20 days to get any iPS-like cells at all, and larger iPS colonies are rarely ever
formed.

An excerpt from the experimental expression levels in the different stages is shown
in Figure 3. The figure shows ensemble averages of expression levels of genes classified
into two groups: Early/E (Oct4, Sall4 and Tcfp1l1), and Late/L (Esrrb, Gbx2, Klf2, klf5,
Nanog and Sox2). Stat3 and Klf4 are displayed as a separate entry because they do not
quite follow this classification.

Figure 2: Experimental results from [32] illustrating the path from MEF cells to iPS cells
and the intermediate transitions from 1NG- to 3NG+ in between. The bottom-right areas
(Cd44+/Icam1-) are the first gate , the bottom-left areas (Cd44-/Icam1-) are the second
gate, and the upper-left areas (Cd44-/Icam1+) are the third gate. The green results of the
bottom row shows the cells Nanog-GFP colony forming potential. Note that NG+ cells
(i.e. cells with high Nanog-GFP CFP) do not appear until day 8. The cells are gate-sorted
and replated several times in the reprogramming process.
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Figure 3: Selection of experimental expression levels of genes in different reprogramming
stages extracted from [32]. This figure was created by averaging the expression levels of all
early (E; Oct4, Sall4, Tcfp2l1) and late (L; Esrrb, Gbx2, Klf2, Klf5, Nanog, Sox2) genes
together in two different series. It also displays Stat3 and Klf4 as a separate entry because
of their unique expression pattern.

2.5.2 Knockdown Studies and Culture Perturbations

This section covers the experimental findings of Dunn et al. [31]. In their publication they
tried to develop a minimal set of network interactions that could describe the propagation
of embryonic cell identity. They, too, employed a Boolean networks approach, but their
methods were different from the ones in this project. For this, they used an array of
experimental knockdown studies and culture perturbations as seen in Figure 4. Gene
knockdown (KD) is an experimental technique where the expression level of a specific gene
is reduced by blocking its transcription. Such studies produce valuable information of the
effects of KD, such as the role of specific genes or their relative importance. Different
cultures in this context refers to the different combinations of external factors cells are
cultivated in. These are the top three rows of Figure 4, i.e. different combinations of LIF,
CH and PD.

The main realization here is that right columns in Figure 4 correspond to experimen-
tally stable stem-cell states which should hence be present in the computational model as
stationary states. Therefore, these results will be used as training data for the BN model
in this project (see section 4.1.1).
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Figure 4: Experimental knockdown and culture perturbation results from Dunn et al. [31].
Every column pair (1-23) contains initial (left column) and final (right column) conditions
either after knockdown, overexpression or a change of culture.

3 Project Overview

This project is constituted by two separate approaches to model induced pluripotency: a
Boolean networks approach and a dynamical systems approach. Both approaches focus
on modelling the transition from MEF cells to iPS cells that occurs when cells are being
reprogrammed.

Central for both parts is the underlying genetic regulatory network topology of key
genes in the reprogramming process. This topology, which will be used as a basis for both
approaches, has been extracted from the ESCAPE database1. The network topology is
shown in Figure 5.

3.1 Part One: Modelling the Reprogramming Process With a
Boolean Network

The goal of this part is to model the full reprogramming process of MEF cells into iPS
cells with a BN and use the model to predict experimental outcomes. We construct the

1ESCAPE [5] is an open source data base containing experimental data from analysis of human and
mouse embryonic stem cells. It contains data from many recent diverse high-throughput studies including
chromatin immunoprecipitation followed by deep sequencing, genome-wide inhibitory RNA screens, gene
expression microarrays or RNA-seq after knockdown (KD) or overexpression of critical factors, immuno-
precipitation followed by mass spectrometry proteomics and phosphoproteomics studies. From these it is
possible to infer interactions between genes such as which genes are acticating/repressing which.
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Figure 5: The topology of the gene regulatory network governing induced pluripotency.
The genes and their interactions have been extracted from the ESCAPE database. A black
directed arrow represents an activating interaction and a red blunted arrow represents
repression. The nodes CH, LIF and PD are external culture nodes and thus have no
incoming connections to them.

BN model by training the network topology in Figure 5 with the data from O’Malley
et al. and Dunn et al. covered in Section 2.5. The BN model is additionally trained to
replicate observed reprogramming efficiencies in different culture conditions. Dynamical
simulations of gene KDs were then carried out and validated with additional experimental
data provided by our collaborators at Kaji lab (group of Professor Keisuke Kaji). The
result was a final BN that could accurately model the full reprogramming process and was
capable of predicting experimental outcomes.

3.2 Part Two: Extracting a Minimal Dynamical Systems Net-
work to Model Reprogramming

The motivation for this part of the project stems from the necessity of having simple
models to describe intricate systems. Simple models can eliminate the need for extensive
computations and furthermore increase our understanding of which the important regula-
tory players are. Therefore, we wanted to create a simplified dynamical systems model to
simulate the reprogramming process and use it to find crucial interactions and gain new
insights.
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3.3 Thesis Outline

Immediately following this overview, we will present the methods behind creating and
simulating the networks of both parts in this project. The methods section will be followed
by the simulation results together with discussions. The thesis ends with a summary in
the Conclusions and Outlook section.

4 Methods

4.1 Part One: The Boolean Network Approach

A Boolean network was applied on the genetic regulatory topology of Figure 5 and then
used to simulate the transition from MEF cells to iPS cells. The results are presented in
the next section. The following subsections describe the details of how the BN was created
and how it was used to simulate induced pluripotency.

4.1.1 Creating and Training the Boolean network

Experimental results from the studies covered in section 2.5.1 and 2.5.2 were used as
training data in the construction of the BN model. The training process is employed in
order to fill in appropriate output entries in the truth tables of the nodes in the network.
This is done such that the aforementioned results can be accurately reproduced when
simulating the reprogramming process. The full training process, which involves iteration of
several different intricate steps, is presented in Appendix A. The steps can be summarized
as follows:

• Enforce attractors by filling in appropriate truth table outputs for each node

• Determine residual outputs by evaluating fitness of logical operators

• Compute network attractors and basins and train with respect to reprogramming
efficiency (see Section 4.1.2 below)

In the last point above the network is trained to replicate the difference in reprogram-
ming efficiencies observed in different culture conditions (i.e. different combinations of LIF,
CH and PD). This requires a method for computing the efficiency of reprogramming in
silico which will be introduced in the section below.

4.1.2 Quantifying Reprogramming Efficiency

This section will introduce a measurement of reprogramming efficiency in silico similar
to the experimental Nanog-GFP CFP. As stated in Section 2.4, Nanog-GFP CFP can be
used as a measure of how pluripotent cells in a culture are and can thus also be used as
an indicator of cell reprogramming efficiency. If cells are quick to gain pluripotency, the
efficiency of reprogramming is high and vice versa.
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Previous researchers have used for instance specific attractor basins, such as the iPS-
state basin, for similar tasks [19], which completely disregards the structure and behavior
of the overall state space. Our method aims to bypass this problem by considering the full
state space of the BN.

To accurately evaluate the global behavior of the BN, we devised a general distance
measure from the iPS state, which will be called iPS proximity, which incorporates the
basins of all attractors and their respective distances to the iPS state. The iPS proximity
P for a BN with n nodes and M attractors with basins bm and Hamming distances1 dm
from the iPS state was defined as

P =
M∑
m=1

5(20− dm)
bm
3n

(4.9)

The iPS-proximity can be interpreted as an average basin-weighted distance for the
attractors in the BN to the iPS state attractor. The factor 1/3n normalizes the value of
the iPS-proximity over the total number of states in a tree-level discretized system with n
nodes (see Appendix A regarding the choice of a three-leveled discretization). The equation
ensures that a BN will have an iPS proximity of 100 if the iPS state attracts all of state
space and an iPS proximity of zero if the MEF state attracts all of state space (because
the Hamming distance between the iPS state and MEF state was 20 in the model that
was developend in this project). In a BN in which the MEF state is the only attractor the
variables will hence take on the values M = 1, d1 = 20 and b1 = 3n.

The iPS-proximity was hence used to quantify the simulated reprogramming efficiency
and compared with experimental values for Nanog-GFP CFP. It will also be used in the
validation process of the network covered in the next section.

4.1.3 Validating the Boolean Network

Validation of the BN was carried out in order to establish if the BN could reliably simulate
the reprogramming process. This was done by simulating KD effect on the reprogramming
efficiency of the BN in different cultures, then validating with similar experiments in vitro.
The validation data set was provided by our experimental collaborators at Kaji lab, who
conducted cell reprogramming experiments with KD of the relevant genes in the network.

4.1.4 Stochastic Analysis of the Boolean Network

By introducing a gene perturbation rate p, stochastic simulations was carried out and
steady state distributions were obtained by means of Markov chain (MC) analysis. Es-
tablishing stochastic behavior is important when modelling real biological systems. The
steady state distribution is a more ’real’ estimate of the behavior of the BN because it takes

1The Hamming distance between two integer arrays of the same length is the sum of the pair-wise
absolute differences of their entries.
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into account random fluctuations and transition probabilities, which are always present in
real biological systems.

Markov chains were created by continuously simulating stochastic updates of the BN
until they reach the steady state distribution as indicated by the convergence test covered
in Appendix B. The iPS proximity of the distributions were then calculated with Equation
4.9, but with the average distance of the total MC to the iPS state instead of the distances
from the individual basins.

The important detail in the stochastic analysis is the choice of the gene perturbation
rate p which was chosen to be p = 0.05. A summary of the rationale behind this choice is
presented in Appendix C.

4.2 Part Two: The Dynamical Systems Approach

In order to extract a minimal network from the topology in Figure 5 we employed a
bottom-up approach; we started from the simplest imaginable network and successively
added modifications to see if it would be enough to encompass the interesting dynamics of
reprogramming. Each iteration involved the following four steps:

• Merging different combination of nodes of the topology together to make a simplified
network

• Setting up the dynamical equations of the network

• Determining model parameters via optimization

• Simulating deterministic and stochastic behavior

The procedures in each individual step are covered in detail in Appendix D.
If the behavior of the network then matches the key features of reprogramming, it

may be a sufficient model to describe and predict reprogramming characteristics. The key
features we wanted to address were the stability of the two states corresponding to MEF
and iPS cells, and the regulation patterns of certain pluripotency-related genes.

The classification of genes with respect to their expression patterns was covered briefly
in Section 2.5.1. To recapitulate, the three main patterns of interest for pluripotency-genes
in the model were:

1. Gradual up-regulation of genes related to the iPS state, called late genes.

2. Rapid up-regulation of genes related to the iPS state, called early genes.

3. Transient down-regulation of other genes.

Networks that could accurately reproduce these behaviors were deemed potential candi-
dates to model the generation of iPS cells.
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5 Results and Discussion

5.1 Training Results for the Boolean Network

Given the gene regulatory network topology in Figure 5, the regulatory logic was learned
following the procedures covered in the previous section with the help of the gene expression
data presented in Section 2.5. The result was an ensemble of thousands of valid BNs with
different regulatory functions. The training process was therefore extended to train the
BNs with respect to experimental reprogramming efficiencies in terms of simulated iPS-
proximity.

The experimental data of reprogramming efficiency in different culture conditions is
shown to the left in Figure 6. The same figure also shows the iPS-proximity of the best
performing BN. Recall that different culture conditions correspond to different combina-
tions of CH, LIF and PD (input nodes in Figure 5), of which the culture with CH and PD
together is called 2i. As evident from the figure, the BN could reproduce the effects of the
real dynamics in the way that LIF is the most efficient reprogramming culture and 2i is
the least efficient. The combination of them, 2i+LIF, is somewhere in between. The only
difference is that the differences are greater in the experimental results.

The reasons for the small differences in the simulated case could be due to the few
inbound connections from the external culture nodes CH, LIF and PD in the BN. There
are only a total number of five interactions among them, one of which is only regulating
the ’leaf’-gene1 Tbx3. For the 2i+LIF and 2i cultures there are only two connections that
differ (see Figure 5). This suggests that there could be important connections from CH,
LIF or PD missing in our topology.

A majority of the BNs did in fact not capture the observed differences between the
cultures at all, indicating again that the impact of CH, LIF and PD may be underestimated
in our model. The network results presented in Figure 6 is the greatest similarity from
among dozens of different trained BNs. Since the observed culture differences are so large,
one should expect at least some of the trained BNs to reflect this, which was not the case.
Another possible explanation for this is that the genes downstream CH/LIF/PD, such as
Stat3 or MEK, ought to have more influence over the rest of the network. The influence
of individual genes in the BN were not considered in this project, but is something that
could be of interest in future research.

1Leaf-genes are genes which do not impact the other genes in the network (i.e. they do not have any
outgoing connections).
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Figure 6: Training results showing reprogramming efficiencies of three different cultures
(2i+LIF, LIF and 2i) in the experimental case (left) and simulated case (right). The ex-
perimental values are in terms of the normalized Nanog-GFP colony forming potential and
the simulated values for the Boolean network are in terms of the iPS-proximity (Equation
4.9).

5.2 Validation Results for the Boolean Network

The BN above which was confirmed to reproduce the experimental colony efficiencies was
selected for validation. This was carried out by predicting knockdown (KD) behavior of
the BN and letting experimental collaborators perform the same studies experimentally.
The predicted KD behaviors of the BN are displayed in Figure 7 (upper panel) together
with the experimental results (lower panel).

The resemblances between the two cases are striking: almost all of the gene KDs have
the predicted effect. All predictions are accurate in the 2i+LIF culture, and a total of only
four KDs are predicted incorrectly in the LIF and 2i cultures put together, resulting in an
overall accuracy of roughly 83%.

A closer look at the 2i+LIF culture, which was the one most similar to the experi-
ments, is shown in Figure 8. There are no qualitative differences in this culture. The only
difference between the predicted and experimental results comes from the level of which
Nanog impacts reprogramming: the effect of Nanog KD seems to be more severe in the
experimental case.
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Figure 7: Computed reprogramming efficiencies of knockdowns in the Boolean network
(BN, top) compared with experimental knockdown reprogramming efficiencies (bottom).
The BN efficienciess are in terms of the iPS-proximity (Equation 4.9) and experimental val-
ues are in terms of the Nanog-GFP colony forming potential. Bar-labels indicate knocked
down genes. With an overall prediction accuracy of 83%, the results show clear similarities
between the BN predictions and experimental results, indicating that the BN model is in
fact representative of the real gene-regulatory circuitry.

Many important remarks can be made regarding the results of the BN model in relation
to previous studies:

• The severe effects of Klf4 KD are to be expected since expression of Klf4 is required
for both self-renewal and pluripotency in embryonic stem cells (unless a substitute is
introduced e.g. forced expression of Tfcp2l1) [33, 34, 35].

• While Klf2-KD stem cells have the ability to survive in LIF-conditions, they are also
known to perish in 2i [36]. This is in line with both simulation and experiments (with
the exception of simulated Klf2 KD in 2i culture).
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• Nanog is considered a core element of the pluripotent transcriptional network and
Nanog KD has been shown to induce differentiation in embryonic stem cells [33]. It
is thus reasonable to expect Nanog KD to greatly impair reprogramming efficiency,
which was indeed the observation in our results with the sole exception of the simu-
lated 2i+LIF culture. In this culture, the effect was only moderate.

• Embryonic stem cells cultivated in 2i+LIF have been shown to tolerate singular loss
of key TFs such as Nanog, which is consistent with our simulations (albeit not evident
from the experimental results) [35, 37].

• The unaffected reprogramming efficiency of Tbx3 KD demonstrates that both sim-
ulations and experiments reflect the fact that Tbx3 is not necessarily required as a
regulator in a model for pluripotency [31].

• The severe effects of KD in the 2i culture compared to 2i+LIF agrees with the
observation that 2i+LIF is more robust to genetic perturbations than the 2i culture
[31].

• Increased Nanog and Oct4/Pou5f1 expression has been reported as a consequence of
Tcf3 KD, consistent with both simulation and experiments since Nanog and Oct4 are
key reprogramming factors and should thus increase reprogramming efficiency [38].

Figure 8: Knockdown predictions of the Boolean network (left) compared with the experi-
mental results (right) in the 2i+LIF culture. Bar-labels indicate knocked down genes. The
predictions are very similar to experiments, with the only difference between the two being
the quantitative effects of Nanog knockdown.

Furthermore, by construction, the BN is consistent with the fact that Oct4/Pou5fl and
Sox2 are indispensable when it comes to maintaining pluripotency since this behavior was
already applied in the training process.

Note that the inter-culture differences are in general greater in the experimental case as
was also observed in the non-KD training results in figure 6, indicating that the impacts of
the input nodes (CH, LIF and PD) are still lower than intended. Modifying the influence
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of individual nodes on-demand can be challenging from a computational standpoint, but
is certainly something that can be investigated in future research. It is also possible that
there are other valid BNs which mimic this behavior more accurately since the full set of
possible BNs was not evalued exhaustively (see Appendix A).

The only significant disagreements between the predicted and experimental results are
the predictions of Tcf3 & Tcfp2l1 in LIF, and Klf2 & Klf5 in 2i. The high agreement
between simulation and experiments indicate that the BN is in fact representative of the
real gene-regulatory circuitry, and can reliably be used to predict experimental outcomes.

Furthermore, the predictive results presented above validates the usage of iPS-proximity
as a means of gauging reprogramming efficiency and the pluripotency of cells in silico. It
is likely that the faulty predictions are due to factors such as defective regulatory logic or
missing connections rater than inherent flaws of the iPS-proximity.

5.3 Results of Stochastic Simulations of the Boolean Network

To validate the BN in terms of its stochastic behavior, the steady-state distribution of the
network was computed. The reprogramming efficiencies of the deterministic model are not
enough to fully gauge the BN validity because real-life dynamics exhibit stochasticity. The
stochastic reprogramming efficiencies are displayed and compared with the experimental
results in Figure 9. The agreement between the stochastic and deterministic predictions
are extremely high – only two predictions differ (Klf5 and Tcfp2l1 in 2i). Consequently,
the remarks made in the previous section are applicable to the stochastic case as well.
Importantly, this solidifies our BN as a reasonable model of cell reprogramming.

The only inaccurate predictions are the impact of Tcf3 and Tcfp2l1 in LIF and Klf2
and Tcfp2l1 in 2i. Since Klf2 in 2i was incorrectly predicted in the deterministic case as
well, it is likely that the regulatory logic behind Klf2 is flawed.

Note that the differences in between cultures are now greater, making the stochastic
results even more similar to the experimental results in this aspect, which alleviates perhaps
the greatest drawback of the deterministic simulations.

It is worth noting that the steady state distribution is heavily dependent on the gene
perturbation rate p. For a high enough p, the distributions will look exactly the same.
On the other hand, a biologically sensible p is typically very small to reflect the rarity of
gene perturbation. The simulations above were carried out for a gene expression rate of
p = 0.05 (this choice is covered in Appendix C).
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Figure 9: Simulated stochastic steady-state knockdown profiles of the Boolean network
(top) in terms of iPS-proximity (eq. 4.9) together with the experimental knockdown results
(bottom) in different cultures. Bar-labels indicate knocked down genes. Bar-labels indicate
knocked down genes. The predictions show great agreement with the experimental results,
indicating that the BN model also reliably simulates stochastic behaviors.

Overall, the results covered here suggests that the iPS proximity presented in Equation
4.9 is a very good indicator of the reprogramming efficiency of a BN even in the stochastic
case. The only apparent drawback of it seems to be that it requires computation of the
basins for all attractors in the deterministic case, which is not always practical for very
large state-spaces (e.g. very large networks or more than three discretization levels).

5.4 The Minimal Dynamical Systems Model

The minimal dynamical systems model that still could encompass the full process of re-
programming is presented in Figure 10. This network managed to produce the three key
behaviors of the reprogramming process: two stable states corresponding to MEF cells and
iPS cells, early or late up-regulation of specific pluripotency-related genes, and gradual
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down-regulation of other genes. The model does not distinguish between individual genes
with similar expression patterns and instead models them together as ensemble-nodes.

The gene-expressions of the nodes in the network throughout the reprogramming pro-
cess is shown and compared with experimental results in Figure 11. It is clear from the
figure that the model accurately describes the time-evolution of pluripotency-related genes
in reprogramming cells.

Figure 10: The proposed model for a minimal dynamical systems network that is still able
to reproduce key aspects of the reprogramming process. Genes with similar characteristics
are bundled together and considered as single pluripotency-nodes. Genes labelled with
a plus sign are the reprogramming factors which are overexpressed in order to promote
reprogramming.

Figure 11: Simulated (left) and experimental (right) expression levels of genes in the repro-
gramming process. Note that the experimental results are for stages in the reprogramming
process rather than a real time-series. The results show how the simple network in Figure
10 is able to produce the experimentally observed expression levels.

Figure 12 demonstrates the network’s bistable nature in both the stochastic and the
deterministic case. In a reasonable model for reprogramming, both MEF cells and iPS
cells must exhibit stable dynamics both stochastically and deterministically. As seen in
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the figure, this is indeed how the network behaves, which indicates that this network is an
adequate model of the transcriptional network.

(a) (b)

(c) (d)

Figure 12: Stability of states in the dynamical system. (a) A deterministically stable low-
expression state corresponding to MEF cells. (b) After over-expression is added, the MEF
cells reprogram into high-expression iPS cells by increasing the expression of the early and
late pluripotency-related factors (see Figure 10). (c) A stochastically stable low-expression
MEF state demonstrating that cells do not reprogram spontaneously. (d) Stochastic sta-
bility of the high-expression iPS state demonstrated after introducing overexpression.
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Figure 13: Long term stochastic behavior of the network in Figure 10. The results show
very large long term fluctuations of the late pluripotency genes, suggesting that late genes
may be reprogramming roadblocks.

In order to make reliable stochastic simulations like the ones in Figure 12 above, appro-
priate values for the initial conditions has to be determined. This is because the stochastic
algorithm simulates individual molecular reactions such that the scale is no longer arbi-
trary (the available experimental data was normalized in relation to a specific housekeeping
gene). The details and results of this scaling process is covered in Appendix E.

Long term stochastic simulations of the behavior of the network is presented in Figure
13. Interestingly, the results show very large long term fluctuations of the late pluripotency
genes, suggesting that late genes may be reprogramming roadblocks. One can interpret
the pluripotency of the network as being required to have late-gene expression levels above
a certain threshold. This threshold then constitutes a barrier which the system has to
stochastically overcome, thus being a reprogramming roadblock. A follow-up on these
results where individual genes were separated from the late node in order to identify indi-
vidual road-blockers is presented in Appendix F.

By comparing the previous experimental results shown in the lower panels of Figures 7 &
9 with the genes included in the late node, we may find indications of specific genes acting as
roadblocks. Notably, KD of the late gene Nanog severely impacts reprogramming efficiency,
suggesting that Nanog may be a major reprogramming barrier. A similar conclusion can
be drawn for the Klf5 gene, which also impacts reprogramming, although to a lesser extent,
when knocked down.

All of the above results indicate that the reprogramming process may be adequately
modelled as a simple minimal model rather than a vast network of connections and inter-
actions.
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5.5 More Training Data May Severely Improve Boolean Network
Performance

One issue with the training process of the BN was the lack of detailed gene expression
data for the reprogramming process in different cultures. The studies covered in Section
2.5 provided invaluable training data for the network, but as with any training process,
the more data the better. As mentioned in the section covering the construction of the
BN (Appendix A.2), only about 99% of the truth table outputs had been determined after
the initial training process. More training data would improve this ratio and perhaps even
eliminate the need to add random attractors throughout state space (see Appendix A.4).

5.6 Threshold Boolean Functions and Other Functions Such as
XOR are Disregarded

When determining the regulatory logic functions for genes in the network, only permuta-
tions and compositions of the functions AND, OR and NOT were considered (see Appendix
A.2). This means that other Boolean functions which may be just as important and bio-
logically feasible are not considered at all. For example, the exclusive OR (XOR) Boolean
function likely exist within mammalian gene regulatory networks. In addition, Boolean
functions which require several but not specific inputs to activate, so called threshold
Boolean functions, are also missed. Such functions have been proposed to specifically exist
within the pluripotency circuitry and could perhaps enhance simulation accuracy [43].

5.7 Knockdown of Overexpressed Klf4

One thing that may seem peculiar is the simultaneous KD and overexpression of Klf4
in the experimental validation studies in the results of Section 5.2. This can be done
experimentally because the exogenous Klf4 is separate from the endogenous Klf4. The
endogenous Klf4 is then knocked down as usual, but in order to not have the exogenous
Klf4 interfere with the endogenous KD, the exogenous Klf4 is then removed. The effect
of this is that Klf4 KD severely impairs reprogramming efficiency, since Klf4 is one of
the overexpressed factors promoting reprogramming. This is done in the same way in the
Boolean approach, resulting in the same effect. This should not be too surprising because
a stable iPS state was never enforced in this condition (since there were no data points
having Klf4 KD with which the BN could be trained; see Appendix A).

6 Conclusions and Outlook

In this thesis we have modelled the generation of induced pluripotent stem (iPS) cells
from mouse embryonic fibroblast (MEF) cells which takes place when exposing MEF cells
to reprogramming factors. We have constructed a Boolean network (BN) by an intricate
training scheme and used it to predict experimental knockdown outcomes to an overall
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accuracy of 83%. This suggests that the BN can be used for predictions and identifying
genes which act as roadblocks in the reprogramming process.

We have suggested a quantitative measure for pluripotency and reprogramming effi-
ciency of BNs and shown using experimental validation data that this quantity is indeed
representative of the efficiencies of in vitro reprogramming in different culture conditions.

Additionally, we demonstrated by modelling the reprogramming process with dynamical
systems that the process can be modelled by a simple network of interactions rather than
a vast circuitry of connections. We have used this model to predict that certain genes with
a specific type of expression pattern, called ’late’ genes, are more likely to be roadblocking
genes. These genes include Esrrb, Gbx2, Klf2, Klf5, Nanog and Sox2. According to our
results, particularily Nanog (along with Klf4), and to a lesser extent Klf5, seems to be the
major factors.

A next task from here could be to further improve the BN by enforcing behaviors
that were not in line with validation data. One way to investigate this could be to look
at quantitative measurements of the BN structure such as the influence or sensitivity of
specific genes. Another possibility is to look at how the BN performs in conjunction with
other BNs in the form of a PBN. Such studies could assist in eventually defining a complete
description of the reprogramming process.
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A The Boolean Network Training Procedure

Several toolboxes and software packages have been developed for application of BNs [39,
40, 41], but due to the specific control requisites in this project we opted to not use
these predefined packages and instead developed an independent system. For instance, we
wanted to be able to make simulations with trinary logic, where each node can take one of
three values (0, 1, or 2) instead of the standard binary logic. This choice is based on the
following two reasons:

• Decreased similarity between prescribed attractor states – with only two levels of
logic, some experimentally observed states becomes virtually indistinguishable from
one another because of reduced variability in the gene expression levels. Increasing
the resolution prevents this.

• Observed barriers in the reprogramming process (called roadblocks) can possibly be
due to some genes not reaching their maximum expression levels, thus being stuck
in an intermediate state (i.e. with an expression level of 1 compared to a maximum
of 2). We wanted to be able to capture this kind of behavior which cannot be done
in binary logic.

The way overexpression of genes was modelled in the BN was by implementing addi-
tional overexpression-nodes. These nodes inherited their interactions from their endoge-
nous counterparts, but cannot be reduced below a value of two when overexpression is
active.

Overall, training and validation of the BN is a fairly long process in which some steps
may not seem very straight forward. To help the reader keep track, a flowchart of the pro-
cess is presented in Figure 14. The flowchart illustrates the whole process from initializing
the BN topology to producing quantitative results. The individual steps are gone through
in detail below.

A.1 Implementing a Topology, Prescribing Attractors and Cre-
ating Truth Tables

The first part of the training process is filling in the truth tables (TTs) of the nodes in
the BN. For this, training data sets are needed, which were provided by the previously
mentioned studies of O’Malley et al. [32] and Dunn et al. [31] covered in Section 2.5.

BN attractors were created out of the observed reprogramming stages in the O’Malley
study. It is likely that the stages in their experiments should correspond to attractors in
the network because the cells typically stay in each state for a while before transitioning
to other stages. Although the average time the cells tend to stay in one stage varies
between stages, the general trend is that they do not transition directly from MEF to iPS.
The stages can be applied directly to the BN as attractors because the O’Malley study
includes exact gene expression values for each of the stages. Their data was also already
discretized/clustered (by K-means clustering) into the three different expression levels.
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Figure 14: Flowchart of the BN training procedure. TT=truth table, TM=transition
matrix (used to calculate attractors and basins). The iPS-proximity is calculated via
Equation 4.9. All the steps are described in detail in this appendix. After training is
finalized, the BN is validated with respect to new validation data sets.

The way the attractors are implemented is by filling in the appropriate TT output for
each gene. As an example, consider a three-node network where we want the attractor
state (011). Let each node have both other nodes as input. All three nodes then have
TTs in the form of Table 2. To apply an attractor state of (011), fill in the corresponding
output values for each node, i.e. f1(1, 1) = 0, f2(0, 1) = 1 and f3(0, 1) = 1.

It is important to note that there is no guarantee that all attractor states are compatible
with each other. If, for instance, we also wanted to make an attractor state out of (111) in
the above example, the attractors would clash. This is because that would require f1(1, 1)
to be equal to 0 as well as 1, which is not possible.

From the O’Malley paper, there were six different intermediate attractors (labelled
1NG-, 1NG+, 2NG-, 2NG+, 3NG- and 3NG+) apart from the predominant MEF-state
and iPS-state attractors. All of these were implemented in each of the three different
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Table 2: Truth table layout for a node with two inputs.

x1 x2 Output

0 0 f(0, 0)
1 0 f(1, 0)
0 1 f(0, 1)
1 1 f(1, 1)

cultures. However, all of these attractors were not compatible with each other; for instance
the NG+ and NG- variants of each attractor were particularly close to each other, with
only two gene expression level differences. This led us to discard some attractors until all
of them could fit. In the end, only the 3NG- and 1NG- stages were compatible with the
MEF and iPS states simultaneously.

A similar routine was used to implement the knockdown studies and culture pertur-
bations from Dunn et al. [31]. Their publication contains initial and final conditions for
changes of culture as well as KD of genes (see Figure 4). The final conditions in their
results are states where the network has stabilized and should thus be attractors in the
BN. However, the binarized data in the Dunn study is potentially problematic for the tri-
nary logic employed in this project. The binary values (0,1) were therefore translated into
(0,2) in the trinary case. If the data from Dunn would then clash with the attractors from
O’Malley, the clashing values were changed to 1 instead. If a clash would still occur after
that, the O’Malley study was given priority over Dunn since the data from the O’Malley
study was obtained by studying the transition from MEF to iPS whereas the Dunn study
is only for cells already in the iPS stage.

At this point we have created truth tables for each node such that the BN will inherit
the attractor structures of the experimental training data. However, the truth tables are
incomplete because not all the outputs are filled in. The next part of the training process
address this issue.

A.2 Determining Logical Operators and Filling the Truth Tables

This section covers the process of filling in the remaining truth table outputs left from the
previous section. The goal here is to make the nodes of the network behave in a biologically
sensible way in cases which the training data from O’Malley and Dunn did not explicitly
cover.

From the previous step in the training process there were about seven different attrac-
tors enforced in all three cultures. This means that only 336 truth table outputs were
determined since there are 16 dependent genes in the network. Compared to the total
number of TT outputs, this translates to roughly 0.9%, and another 99.1% of the TTs has
yet to be filled in. The next step in the training process is filling in these missing values.

As mentioned in Section 3.1 Boolean operators such as AND, OR and NOT have direct
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implications in a biological transcription process. There are of course other logic gates
as well but in order to keep the model as simple as possible we wanted to minimize the
number of logic gates to consider, and therefore only considered the gates AND, OR and
NOT.

The idea here is to determine which logical operators, and which permutations and
compositions of them, are in best agreement with the 336 TT outputs. The rest of the
outputs are then filled in according to these functions. In the case of repression, the
function was set to NOT by default (i.e. if A represses B then NOT(A) was set as the
input to B rather than just A). Then, all the possible combinations and perturbations of
the two remaining operators were tested exhaustively. The fitness s of each combination
was calculated as the sum of absolute differences between the TT outputs and the logic
function outputs, i.e.

sf =
∑
k

|TTk − f(x
(k)
1 , . . . , x(k)

pi
)| (A.10)

for logic function f and gene i with pi parents where the sum goes over rows in the TT.
For most genes there were a handful of different functions with the same fitness value.

In these scenarios, one of them were selected arbitrarily as the generator function for the
rest of the TT. This means however that there are several different BNs which up to this
point are equally valid.

The exogenous over-expression nodes were excluded from this training process. Instead
the rules for them were set to follow their endogenous counterpart.

After this is done, all the genes have their TTs fully determined. From this point on,
simulations of the behavior and dynamics of the BN is therefore possible.

A.3 Computing Transition Matrices, Attractors and Basins

The purpose of computing the transition matrices (TMs) is to later use them to calculate
the attractors and their basins of attractions. As previously stated, the attractors and
their basins are paramount in the study of GNRs because they are associated with specific
phenotypes. This section covers the methods for computing the TMs and using them to
calculate the attractors and their basins.

Computing the TM of the BN means filling in the entries of the 1 × 3n array of state
transitions, where entry i holds the next integer state x ∈ {1, . . . , 3n} for the output state
i. The first thing to note here is that only dependent genes are included when counting
the dimension n of the network. This means that the culture-nodes CH, LIF and PD (see
Figure 5), as well as the over-expression nodes of exogenous Oct4, Sox2 and Klf4, are not
included because they are static. Furthermore, the nodes Tcf3, Cd44 and Icam1 actually
have no outgoing connections and will hence not impact the next state of the BN (they are
so called leave-nodes). The task of computing the TM is thus reduced to computing its 313

entries instead of the original 319. This is done separately for the three different cultures.
The following two algorithms were implemented to compute all single state and cyclic

attractors and their respective basins:
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Input: Transition matrix TM .
Output: All single state and cyclic attractors.
Generate an array a of size 3n for integer states x ∈ {0, . . . , 3n} containing
information whether or not state ai has been visited before. Initialize all ai’s to
zero;

for each state i = 1 to 3n do
if ai = 1 then

continue;
else

Look up successor states for i repeatedly and set their corresponding a’s to 1
until a previously visited state is reached. If the same state is visited twice
in a row, that state is a single-state attractor. If the visited state is one of
the successor states of ai, the visited state is the start of a cyclic attractor.
If neither is true, the state is not an attractor.

end

end
Algorithm 2: Finding Single-state and Cyclic Attractors.

Input: Transition matrix TM , state x of which the basin is computed.
Output: Basin of attraction B for state x.
Find all TM entries with state x as output and save them in an array a;
Initialize B to the number of states in a;
Initialize a counter diff which counts the number of new states in every generation;
while diff 6= 0 do

Find all TM entries with states in a as an output. Save them in an array b;
Set diff to length of a minus length of b;
Set B = B + diff ;
Set a = b;

end
Algorithm 3: Finding the basin of attraction of a single state. The algorithm com-
putes all pre-images of a specific state with also includes ones that are part of a cyclical
attractor, such that only one state of a cyclic attractor is needed to compute its basin.

There are several other ways of computing attractors and basins without using the TM,
which could be useful because computing the TM can be very computationally tedious.
Take for instance the general reverse algorithm; it computes the basin for a given state
by effectively running the updates backwards (the algorithm is presented in Appendix
G). This algorithm was implemented to our BN early in the process, but it turns out
that this algorithm is extremely slow for states with very large basins. The algorithm is
also incapable of finding unknown attractors which may be very dominant over the BNs
behavior.
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Following these procedures of computing the attractors and their basins, all of the
relevant information of the structure of the BN is known. The thing that remains is
evaluation of the BN’s performance.

A.4 Evaluating the Boolean Network Behavior

Now that all the attractors and their corresponding basins are known we can evaluate the
BN by looking at its structure or comparing its dynamics to real experimental observations.
If the BN is not in line with the desired behaviors, modifications are made and the training
process is started over.

Initial studies of the BN after computing its attractors and their basins revealed that
it is incredibly attracted to the iPS state – the basin of the iPS state was composed
of an astounding 99.9% of state space. Because this is not in line with the fact that
reprogramming is a very cumbersome process, modifications were made to the BN in
order to change the basins. This was successfully achieved by adding random attractors
throughout the state space with the same procedures as in Appendix A.1.

Another issue with the BN was that it didn’t reflect the differences that had been
previously observed in reprogramming efficiency between cultures. To account for these,
the goal was to make the basin of the iPS state larger in cultures which were better at
reprogramming and vice versa. We discovered that the basins in the different cultures
could be made dissimilar by slightly changing the expression level of specific genes between
cultures. For instance, the MEK gene could be modified from zero in all three cultures to
0, 1 and 2 when the attractors are implemented (see Appendix A.1). We tried to limit the
changes to genes which were directly impacted by the culture nodes, namely MEK, Tcf3
and Stat3. In the end, the following changes were decided upon:

• MEK expression level changed to 0/2/1 for all states in cultures 2i+LIF/LIF/2i

• Stat3 expression level changed to 2/2/0 for all states in cultures 2i+LIF/LIF/2i

• Tcf3 expression level changed to 1/2/0 for all states in cultures 2i+LIF/LIF/2i

The changes above follow from intuitive arguments for the expression levels of the genes
in relation to their connections. For example, the MEK gene should not be on when PD is
on and LIF is off because PD represses MEK and LIF activates it. This step successfully
diversified the basins, but didn’t manage to change them in the desired manner (2i, which
is the least effective culture, had the largest iPS basin by far).

Finally, an activating relation of Nanog by Stat3 was implemented in the topology of
the BN, which managed to produce the desired culture differences.
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B The Kolmogorov-Smirnoff Test for Testing Conver-

gence

To test whether the Monte-Carlo updates of the Boolean network had approached the
steady state-distribution, the Kolmogorov-Smirnoff test (or KS-test for short) was used to
test the convergence. The test checks whether two empirical distributions differ enough
to conclude that they come from different probability distributions. The idea is that, if
the Markov chain (MC) is stationary, two distributions π(t1) and π(t2) are the same for
arbitrary times t1 and t2. The KS-statistic for a MC is defined as

D =
1

M
max
s

∣∣ M∑
m=1

1{x≤s}(x
(mt)
1 )−

M∑
m=1

1{x≤s}(x
(mt)
2 )

∣∣ (B.11)

where the indicator function 1{x≤s}(x) equals one if x ≤ s for lexicographically ordered

states x ∈ {0, . . . , 2n} and zero otherwise. In other words,
∑M

m=1 1{x≤s}x
(mt)
n is the cumu-

lative visits to states lower than s in the Markov chain xn of length M . The KS-statistic
can be used to build confidence bands of the underlying distribution. By defining

Fn =
1

M

M∑
m=1

1{x≤s}(x
mt
n ) (B.12)

the Dvoretzky–Kiefer–Wolfowitz inequality gives bounds for the probability that the
random function F1 differs from the random function F2 by an amount greater than ε for
a given constant ε > 0 like so:

P (

√
nm

n+m
max
x
|F1(x)− F2(x)| > ε) ≤ 2e−2ε2 , (B.13)

for two empirical distributions F1 and F2 of length n and m. If ε is chosen such that
α = 2e−2ε2 , the null hypothesis1 is rejected at level α if

√
nm
n+m

maxx |F1(x) − F2(x)| ≥ ε.

For instance, at a significance level of α = 0.05 and distribution lengths n = m = 103 the
largest difference between the distributions has to be greater than roughly 0.06 in order to
reject the null hypothesis.

To get two quasi-independently and identically distributed samples for the test, one
can select two samples x

(t1,t1+∆m,...,t1+∆M)
1 and x

(t2,t2+∆m,...,t2+∆M)
2 for t1 < t2 and t2 − t1 6=

∆m, 0 < ∀m < M [10].

1The null hypothesis in this case is that F1 and F2 comes from the same underlying distribution
function.
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C The Gene Perturbation Rate in Stochastic Simula-

tions

This appendix covers the choice of the gene perturbation rate p which is used when simulat-
ing stochastic BN behavior. The choice of p = 0.05 comes from comparing the perturbation
matrix of a binary system with that of a trinary system (see Appendix A for details about
the use of trinary logic). The transition probability matrix of a BN has been shown to be
the sum of two separate matrices, of which only one is related to gene perturbation: the
perturbation matrix [22].

The perturbation matrix of a binary system is defined as

A = ph(x1,x2)(1− p)n−h(x1,x2)1x1 6=x2 (C.14)

for n genes and Hamming distances h(x1, x2) between states x1 and x2, which translates
to

A = p
2h(x1,x2)
2 (1− p2)2n−2h(x1,x2) (C.15)

in a trinary system. In the trinary case the distances from a high to a low expression value
is two rather than one, and one can preserve the transition probability from a high to a
low state by letting

p
h(x1,x2)
1 (1− p1)n−h(x1,x2) ∼ p

2h(x1,x2)
2 (1− p2)2n−2h(x1,x2) (C.16)

for the binary perturbation rate p1 and the trinary perturbation rate p2. This can be
solved for p1 ≈ 0.0025 (a suitable level for a binary system according to [10]) resulting in
a perturbation rate p2 ≈ 0.05 in the trinary system.
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D The Dynamical Systems Approach: Detailed Pro-

cedures

This appendix covers the four steps of the selection process for finding a minimal dynamical
systems network. Iteration of these steps for several different network topologies finally
resulted in the simplified network that is covered in the results of secction 5.4.

D.1 Merging Nodes of the Topology Together to Make a Simpli-
fied Network

To create a simplified network, a bottom-up approach was employed where the simplest
imaginable network was tried first and then gradually elaborated upon. First off, it is easy
to see that a network with a single node can’t possibly capture any interesting dynamics.
However, with more nodes being added, the potential dynamics becomes exponentially
more complex. For instance, [42] has shown that a simple genetic bistable switch can be
constructed in E. Coli bacteria with just two dynamic nodes.

When merging nodes, the independent nodes are left out (CH, LIF and PD), and the
other nodes are bundled together and modelled collectively. This means that the bundle-
node inherits all the incoming and outgoing interactions from all of its component nodes
to create a new topology. The genes Tcf3 and MEK were also separated from the merging
process because they are not strictly related to pluripotency. As an example of how this
can look, see Figure 15 below.

Figure 15: An example of a simplified topology of the GRN in Figure 5.

By trying out many different topologies and assessing their behaviors according to the
steps that follow, a final topology could later be decided upon, which most accurately
replicated experimental data. This final topology is the one presented in Figure 10 in the
results of Section 5.4.
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D.2 Setting up the Dynamical Equations of the Network

After obtaining a simplified topology, the network were modelled by following the Shea-
Ackers formalism covered in Section 2.3.1. This entails setting up the system of ODEs in
the form of Equation 2.8 which governs the dynamics of the network.

For example, the equations describing the final topology in Figure 10 are set up as
follows:

d[E]

dt
=

β1[E]δ1 + β2[L]δ2 + β3[S3K4]δ3

1 + β1[E]δ1 + β2[L]δ2 + β3[S3K4]δ3 + β4[Tcf3]δ4
− γ[E] + α1 (D.17)

d[L]

dt
=

β1[E]δ1 + β2[L]δ2 + β3[S3K4]δ3

1 + β1[E]δ1 + β2[L]δ2 + β3[S3K4]δ3 + β5[MEK]δ5
− γ[L] + α2 (D.18)

d[S3K4]

dt
=

β2[L]δ2 + β3[S3K4]δ3 + LIF

1 + β1[E]δ1 + β2[L]δ2 + β3[S3K4]δ3 + LIF
− γ[S3K4] + α3 (D.19)

d[Tcf3]

dt
=

β4[Tcf3]δ4

1 + β4[Tcf3]δ4 + CH
− γ[Tcf3] (D.20)

d[MEK]

dt
=

β5[MEK]δ5 + LIF

1 + β5[MEK]δ5 + LIF + PD
− γ[Tcf3] (D.21)

D.3 Determining Model Parameters Via Optimization

Before solving the system of ODEs, suitable parameters in the dynamical equations must be
set up. These include the binding affinities β, the Hill coefficients δ, the decay constants γ,
and the over-expression constant α (if applicable) for every equation in the system. These
are determined by optimizing the solutions to the analytically ODEs toward a target func-
tion with respect to some objective function. Time series for gene expressions throughout
the reprogramming process data provided by the O’Malley study were used as the target
function. In other words we seek the parameters which minimizes the difference between
the analytically solutions and the experimental time series. A standard root mean square
error was used as the objective function, defined by

RMSE(p) =

√∑N
t ([C]

(exp)
t − [C(p)]

(model)
t )2

N
. (D.22)

for a set of parameters p and an experimental series of measurements of length N .
To model reprogramming, the system is required to be at least bistable with one stable

MEF-state and one stable iPS-state. This type of behavior is enforced by following these
two steps during optimization:

1. Compute non-overexpressed stability concentrations. This state should correspond
to the MEF state, then
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2. If the expression levels of any of the iPS genes are higher than a designated ’MEF-
threshold’, set the objective function value to infinity.

The threshold value was chosen to be 20% of the lowest iPS-state target value. These
two steps forces the system to posses a stable state with low pluripotency-gene expression
levels, namely a MEF-like state. It doesn’t directly impact the existence of an iPS-state,
which is instead addressed by the high target values in the target function (i.e. the exper-
imental time series).

The method above makes the objective function discontinuous which in turn makes
gradient-based optimization algorithms such as global search and multistart solvers un-
usable. Furthermore, it creates plateaus of undesired high-objective-function values in
the function landscape which makes simulated annealing approaches sub par to other non
gradient based algorithms such as pattern searches or genetic algorithms. The chosen
optimization algorithm was therefore a hybrid pattern-search/genetic algorithm, which
searches the state space for a starting location with a genetic algorithm and then switches
to pattern-search (see the MATLAB documentation on patternsearch for additional in-
formation).

When implementing these algorithms with MATLAB it is useful (although not required)
to set parameter bounds for the algorithm to search within. The choices of the parameter
bounds are discussed in the subsection below.

D.3.1 Optimization-Parameter Bounds

The following are the thought-processes behind selecting the parameter bounds for the
optimization of the parameters in the dynamical systems approach:

Binding affinity (β): The lower bound for the concentration coefficients was set to zero,
meaning that the specific promoter doesn’t have to be bound in order for transcription to
occur. The upper bound was set to 20 because values above this produced saturated
concentrations far higher than the target values.

Hill coefficients (δ): A lower bound for the Hill coefficients was set to 1 which corre-
sponds to a standard linear response. The upper bound was set to five because a value of
five and higher is tantamount to just a step function.

External factors (CH, LIF, PD): The range for the external factors was set to [0,
100]. The lower bound means that the external factor is not present and the upper bound
was set because at 100 the equation then effectively reaches the limit limx→∞

x+...
1+x+...

.

Decay coefficient (γ): Gamma is perhaps the most important of the parameters because
it controls the time resolution of the dynamic variables. It dictates the probability per unit
time that a TF will decay. Within this project we assumed that this was constant and
the same for all TFs. A suitable range for gamma was deemed to be [0.05, 0.2] due to the
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fact that lower or higher values produced saturation concentrations very far off the target
values.

Over-expression factor (α): When over-expression is present a value of α = 0 makes
no sense because it means that there is no overexpression. Alpha started to affect the
dynamics at a value of about 0.01, which was therefore set to the lower bound. An alpha
value over one made the concentrations saturate well over the target values and thus 1 was
thus set as the upper alpha bound.

An additional detail in the optimization sense is the ’TFINAL’ parameter of the ode45

MATLAB function which dictates the time up to which the function is integrating the sys-
tem of ODEs. Of course, the system must have enough time to reach a steady state, but
too much time skews away the interesting dynamics in the plots. This was counteracted
by running until the standard deviations of the expression levels for the last ten steps were
beneath a value of one.

D.4 Simulating Deterministic and Stochastic Behavior

The last step of the selection process is simulating the dynamics of the network and as-
sess whether the topologies are biologically reasonable. Both stochastic and deterministic
simulations were carried out in order to fully grasp the behavior. Deterministic results are
obtained easily by solving the system of ODEs of concentrations, which in this project was
done by applying the MATLAB function ode45 which uses a fourth order Runge-Kutta so-
lution method. It was assumed that the accuracy of this method was good enough because
the most important results were qualitative rather than quantitative.

For an illustration of how a network behaves deterministically and how the stability of
the MEF and iPS states can be confirmed at this stage, see Figure 16. The figure shows
the stable MEF and iPS states of the network in Figure 15 and demonstrates how the
theoretical background of the stability of states can be visualized in terms of the nullclines.
It is also apparent from Figure 16(c) that the late and early genes do not exhibit their
desired behavior, which led us to discard this particular network.

Stochastic behaviors of the dynamical systems were simulated by the Gillespie algorithm
which is covered in the section below.

D.4.1 The Gillespie Algorithm for Stochastic Dynamics

The Gillespie algorithm is the most widespread stochastic algorithm for modeling enzyme
reactions. Mathematically, it uses dynamic Monte Carlo steps to decide the next type of
reaction to occur based on the different reaction rates. Thereof each reaction has a separate
rate associated with it which is typically linked to the concentration of the respective
promoting gene/enzyme/protein. This results in a continuous time Markov Chain (MC)
with a probability density function described explicitly by
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P (τ, µ) = a0(X)e−a0(X)τ︸ ︷︷ ︸
factor related to
elapsed time

· aµ(cµ,X)

a0(X)︸ ︷︷ ︸
factor related to
next reaction

(D.23)

for a state space X with rate functions aµ(cµ,X) and a0(X) =
∑

µ aµ(cµ,X), where cµ
is the concentration of reactant µ. Formally, this PDF describes the probability that the
next reaction will be a µ-reaction and occur within a time interval (t, t+ τ) given a state
X at time t. The rate function is calculated for each reactant from Equation 2.7 with the
important difference that the last decay term γ[TFi] is considered as a separate reaction
and thus have a µ-index of its own.

The algorithm draws τ and µ from the PDF by generating uniformly distributed random
numbers r1, r2 ∈ [0, 1] and letting

τ =
1

a0

ln
1

r1

(D.24)

and

µ = argmin
µ

(a0r2 ≤
µ∑
i=1

ai). (D.25)

The algorithms is presented below. The choice of tmax is naturally such that the system
has enough time to reach a stable state.

Input: Initial concentrations X0, maximum time tmax.
Output: Time series for concentrations X, array of timestamps s.
Set t = t0;
Compute aµ and a0 for the state X;
while t < tmax do

Generate τ and µ using Equations D.24 and D.25;
Update the time t = t+ τ and add t to s;
Update concentrations xµ = xµ ± 1;
Update aµ and a0 for the new state X;

end
Algorithm 4: The Gillespie algorithm for stochastic dynamics. Because the process is a
continuous time Markov chain the time in between the reactions varies, thereby bringing
about the need to store the reaction timestamps. The choice of xµ plus or minus one
depends on if the decay or creation reaction was drawn.
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(a) (b)

(c) (d)

Figure 16: Deterministic dynamic results of the network in Figure 15. (a) A stable MEF
state with low expression of early (E) and late (L) pluripotency genes without overexpres-
sion. (b) Nullclines of the system without overexpression. The lines cross at stationary
states which show both a stable low-expression MEF state and a stable high-expression
iPS state. (c) Transition from MEF to the iPS state after turning overexpression on. (d)
Nullclines for the system with overexpression on demonstrating the loss of stability of the
MEF-state in the lower left corner. In this particular network, the expression levels of the
early and late genes are virtually indistinguishable, which confirms an unsuitable topology.
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E Scaling Discrepancy of Stochastic and Determinis-

tic Dynamical Simulations

An important difference between the stochastic and deterministic simulations is that the
sccale of the stochastic simulations of the Gillespie algorithm is no longer arbitrary because
the algorithm simulates individual reactions. In contrast, the deterministic solutions to the
ODEs are in terms of of concentration levels which are normalized in relation to a specific
housekeeping gene. This means that the optimized parameters might not find themselves
suitable in the stochastic context. For instance, the MEF state can be stochastically
unstable even though it’s deterministically stable if slight perturbations cause the system
to exit the state stochastically. From a biological perspective, the MEF state ought to
be extremely stable because MEF cells do not spontaneously reprogram from just being
plated in culture conditions. In other words,

lim
t→∞

([E]t + [L]t) ∼ 0 (E.26)

for a biologically feasible system without overexpression.
Consequently, the scale-dependence of the behavior of the network was investigated.

A comparison between two different scales can be seen in Figure 17. In general, smaller
scales tend to be less stable and more chaotic than larger ones (because the relevance
of the production/decay of the reactants gets bigger as their total number decreases).
On the other hand, a too large scale would be biologically irrelevant. Ideally, the scale
would match the experimentally measured concentrations but the problem is that the
experimental values are normalized in relation to a specific housekeeping gene.

In the end, the scale of subfigures (e-h) was chosen for the stochastic simulations because
the standard deviation of the reactants quite closely matched experimental results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17: Deterministic and stochastic simulations of the network in Figure 10 with
two different scales. E and L represents early and late pluripotency genes respectively.
The first four figures (a-d) show low target concentrations and the last four figures (e-h)
show high target concentrations. (a & e) deterministic stability of the MEF-state without
overexpression. (b & f) deterministic iPS states. (c) Stochastic simulations of the non-
overexpressed dynamics showing the system in an iPS-like state indicating a stochastically
unstable MEF state. (g) stochastic stability of MEF at a higher scale. (d & h) Stochastic
simulation of the overexpressed dynamics showing stable iPS states.
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F Roadblock Investigation of Late Genes in the Min-

imal Network

This appendix covers the further investigation of the roadblock behavior of the late-node
in the minimal network in hopes of identifying roadblocking culprits of the late genes. In
this section, the late genes were separated from the late node one by one and looked at
separately. If individually separated genes would inherit the large fluctuations while the
rest of the late genes would not, that specific gene would likely be a roadblocking gene.
Figure 18 presents the results. The results are summarized below together with some
important remarks:

• Different optimizations were carried out for every new separation. The difference from
the previous network is that there’s an extra target time-series for the separated node.
However, because all separated genes were from the late node, the target values for
the optimization didn’t change a lot between the different cases. This results in a lot
of similarity in the figures.

• Separating Esrrb failed to produce a stochastically stable MEF state altogether,
suggesting that this network is not realistic.

• The only gene that actually fluctuated more than the late node after separation was
the one of the Nanog-separated network. This network did however not manage to
reproduce the early and late behaviors of different genes.

• Separating Sox2 did not capture the late-like dynamics of Sox2, presumably because
Sox2 is itself overexpressed, which forces it to a high value quickly.

• The separated nodes for Esrrb, Gbx2 and Klf2&5 all had lower fluctuations than the
Late node, suggesting that these are not roadblocking genes.

In conclusion, Esrrb, Gbx2 and Klf2&5 were the only genes with lower fluctuations
than the late node itself, possibly suggesting that these genes are not roadblocks. Nanog
was the only gene which displayed larger fluctuations when separated from the late node.
Unfortunately, the Nanog-separated simulations obliterate the early/late node behavior,
making this particular model inapplicable as a model of real dynamics. The same loss of
early/late behavior can be observed for the Sox2-separated simulations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 18: Deterministic and stochastic simulations after separating the Esrrb (a & b),
Gbx2 (c & d), Klf2 together with Klf5 (e & f), Nanog (g & h) and Sox2 (i & j) nodes
from the network in Figure 10. The purpose here is to uncover which genes are roadblocks
by looking at their fluctuations compared to the late node itself. However, most of the
networks demonstrate unrealistic behavior.
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G The General Reverse Algorithm for Finding Basins

of Attraction

The general reverse algorithm was applied early in the BN approach in this project in
order to assess the validity of different BNs. However, the algorithm is extremely slow
when calculating basins for states with very large basins (basins in our project could reach
sizes of around 1.5 million states) and was therefore abandoned in favor of other quicker
algorithms.

The algorithm was originally developed for random BNs in the form of cellular automata
[44], but can be applied in the context of gene regulatory networks as well. In effect, the
algorithm runs the network backwards in time. One setback with it was originally that
backwards trajectories in general diverged for cellular automata, but fortunately this is not
the case for gene regulatory networks.

The algorithm works in the following manner:

Input: InitialState, T ruthTable, ParentStates, CultureCondition
Output: All pre-images of state InitialState
for i=1 to number of nodes2 do

remove all rows from TruthTable(i) which do not agree with InitialState;
remove all rows from TruthTable(i) which are not of the current
CultureCondition;

end
Create an empty array Stack of candidate pre-images;
Choose an initial node n;
for i ⊆ rows in TruthTable(i) do

add the values of i to a new row of Stack in columns ParentStates(n);
end
for i=2 to number of nodes do

for j=1 to length of Stack do
for k=1 to length of TruthTable(i) do

if row k of TruthTable(i) is compatible with row j of Stack then
merge the rows into Stack;

else
continue;

end

end

end

end
Algorithm 5: The General Reverse Algorithm for finding pre-images of a specific state.
The algorithm returns all possible pre-images of state InitialState as rows of the matrix
Stack.
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In short, the algorithm creates a stack of possible pre-images by considering the viable
inputs for one additional node at a time; first two nodes together, then tree nodes together,
then four, etc., until all nodes are considered. If the stack at any given point is reduced
to zero, the input state has no pre-images – it is a garden state. To compute the basin,
simply repeat the algorithm for all pre-images until none are left. Note that if Stack still
contains any empty entries after the algorithm is done, these entries can attain all allowed
value configurations. This is the case for leave-nodes because they have no feed-in edges
to impact the next state.

Keep in mind that the order in which the nodes are considered is completely arbitrary.
Wuensche stated in his original publication that for the most efficient computation, the
order should correspond to the greatest overlap of wiring schemes. But in fact, we can
increase the efficiency even further by clever arrangement of the nodes. Firstly, we establish
that nodes which are being repressed impose more restrictions on the possible input values
than those who are not. Secondly, we note that nodes with few parents are quicker to
be fully considered than nodes with many parents (this may seem rather obvious, but in
the original publication researching cellular automata all the nodes had the same number
of parents). By considering these points, we managed to decrease the computation time
roughly four-fold compared to only considering the overlap.
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