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Abstract

The connection of devices to the internet is referred to as Internet of Things (IoT).
By using IoT distributed network of devices will be able to communicate with
each other. The management and forming of distributed applications is, however,
very complex since IoT uses devices that have different capabilities and that do
not have the same communication protocols. Calvin is an open source applica-
tion environment developed by Ericsson that provides a distributed cloud for IoT.
The distributed cloud can help to achieve low latency by using parallel processing
nodes. Calvin is built upon the actor model, using the methodology dataflow pro-
gramming. Using Calvin’s programming model, the different parts of the system
are represented by actors that are used to isolate and abstract functionality. Actors
communicate with each other by message passing, however there is a network of
runtimes that handle the actual dataflow. Several runtimes are applied in every de-
vice that will be used in IoT to get metadata about the capabilities of the devices
and to get more generic and reusable actors [1].

In Calvin the scheduler is responsible for data transport and for triggering actor
actions on in-data. The scheduler is necessary for execution of applications for
each runtime. The current scheduler is a basic Non-Preemptive (NP) scheduler with
limited knowledge because it only uses local information, such as what data has
arrived from other runtimes, the rules for triggering an action, and the output data
that will be sent forward to other actors whether they are local or remote. The aim of
the master thesis is to improve Calvin’s current scheduler. A new scheduling policy
called Round Robin will be implemented and compared with the current Non-
preemptive scheduling policy with respect to latency. A dynamic sorting part will
be added to Calvin’s scheduler and implemented for the two scheduling policies.
The result of this thesis shows that the new strategies named New Non-Preemptive
and New Round Robin are beneficial to use when most actors are not busy for every
function call.

Keywords: Calvin, Internet of Things, Dataflow programming, distributed ap-
plication, Actor model, scheduling, Round Robin, Non-preemptive.
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1
Introduction

The internet has yet to reach its full potential and in the near future the 5G tech-
nology will be a reality. Therefore, a lot of companies are interested in connecting
everything to the internet. The connection of devices to the internet is referred to
as Internet of Things (IoT). By using IoT distributed network of devices will be
able to communicate with each other. The management and forming of distributed
applications are very complex since IoT uses devices that have different capabili-
ties and that do not have the same communication protocols. This problem can be
addressed by an application that is available for all distributed resources and is used
as one environment.

Calvin is an open source application environment developed by Ericsson and
provides a distributed cloud for IoT. The distributed cloud can help to achieve low
latency by using parallel processing nodes. There are other frameworks developed
for IoT, however, Calvin simplifies the work for the application developer. The
runtime conceals a lot of the complex work and the application developer does not
need to concern about things like actor migration or message passing [1]. Calvin is
built upon the actor model, using the dataflow programming methodology. By using
Calvin’s programming model, the different parts of the system are represented by
actors that are used to isolate and abstract functionality. Actors communicate with
each other by message passing, however there is a network of runtimes that handle
the actual dataflow. A runtime is applied in every device that will be used in IoT
to get metadata about the capabilities of the devices and to get more generic and
reusable actors.

In Calvin the scheduler is necessary for execution of applications for each run-
time. It is responsible for data transport and for triggering actor actions on in-data.
The scheduler that is used now is a basic Non-Preemptive (NP) scheduler that only
uses local information such as what data has arrived from other runtimes, the rules
for triggering an action, and the output data that will be send forward to other actors
whether they are local or remote. The purpose of this master’s thesis is to improve
Calvin’s scheduler. A strategy to improve Calvin’s scheduler is for example to use
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Chapter 1. Introduction

non-local information such as information from the neighbor runtimes. Information
from other runtimes can help to find the right actors to fire, without trying to fire
all available actors. This will help to produce tokens in less time and therefore the
problem with end-to-end latency can be reduced.

1.1 The Aim and Research Questions

The aim of the master thesis is to improve Calvin’s current scheduler. Instead of
trying to fire all available actors in the scheduler the new strategy will find and
fire only actors that have the most probability to reduce latency. A new schedul-
ing policy called Round Robin will be implemented in the Calvin Scheduler and
a dynamic sorting part will be added to Calvin’s scheduler and implemented for
the scheduling policies (Non-Preemptive and Round Robin). All three strategies:
Round Robin, Non-Preemptive with dynamic sorting part (New Non-Preemptive)
and Round Robin with dynamic sorting part (New Round Robin) will be compared
with the current scheduling policy (Non-Preemptive) with respect to latency.

1.2 A Sketch of an Approach

The approach of the thesis was to begin by studying Calvin and its internals, in par-
ticular the scheduler. The next step was to create a test scenario with constraints on
application performance and design one or more applications for the test scenario.
Instrumenting the code was essential to obtain necessary information. The require-
ments of the test scenario were addressed by devising a new scheduling strategy.
The last stage was to compare the new scheduling strategy to the current scheduling
strategy.

1.3 Delimitations

This thesis will focus on Calvin’s scheduler and the other parts of Calvin will not
be evaluated. Several scheduling policies could have been implemented to improve
Calvin’s scheduler, however, to adapt the work to the given time frame, in this the-
sis it has been chosen to only implement one scheduling policy (Round Robin).
Furthermore a dynamic sorting part will be added. The improvement of Calvin’s
scheduler will be measured locally with respect to latency while, other changes due
to the changed scheduling policy will not be considered. More over, the security of
Calvin will not be mentioned in this thesis. During this thesis Calvin was constantly
under development which also limited the work that was able to be done during the
time period.
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1.4 Outline of the Report

1.4 Outline of the Report

Methodological approaches are presented in chapter 2. The theory of internet of
things and programming frameworks that are necessary to understand in the thesis
are described in Chapter 3 and Chapter 4. Information about the scheduler is pre-
sented in Chapter 5. Chapter 6 contains the implementation of the new scheduler
with comparison to the current scheduler in addition to possible future work.
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2
Methodological Approaches

Six main methodological approaches have been used in this thesis: I. Literature re-
view aimed at understanding internet of things, the structure and function of Calvin
and the different parts of it (mainly the scheduler) and understanding programming
and implementations in Python. II. Practical understanding of Calvin and its sched-
uler was important to detect a new strategy for improving the scheduler and to fa-
cilitate the implementation. III. Checking the code in the scheduler to make sure
it works correctly and checking the behaviour of the strategy to assure it behaves
as expected. IV. Calculate the time that was spent on different parts of the code to
analyze the distribution of time and in this way finding possible errors. V. Testing of
the new strategy to see if it fulfills the desired criteria. VI. Run the new schedulers
and store the data for analyzing.

2.1 Theoretical understanding

In the beginning of the project the focus was on understanding the background to
Calvin to get a clearer vision of the necessity of an improvement of Calvin’s sched-
uler. Before starting to work with Calvin it was also necessary to understand the
structure of Calvin, the different parts that it is built of and how they function. All
this information was gained from Ericsson’s webpage about Calvin and by litera-
ture search. The databases used for the literature search were primarily LOVISA
and Google. Since Calvin implementation and actors are written in Python it was
also essential to understand Python and Python libraries to be able to use it. The
theoretical information about Python was collected by literature review and online
tutorials.

2.2 Practical understanding

The next step was to collect practical comprehension to know how to use the theo-
retical knowledge. In order to understand Calvin,s practice was made on the tutorials
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2.3 Understanding the Scheduler using Logging and Print

and examples available in the open source. Simple applications were also built to
apply the knowledge. After understanding how Calvin in total functions it was im-
portant to focus on the scheduler and obtain more detailed and advanced knowledge
about it. Simulation of how the scheduler works and some simple exercises were
made to understand Python and the main task of the scheduler.

2.3 Understanding the Scheduler using Logging and
Print

After understanding the principle of the scheduler from the simulation it was time
to work with the real Scheduler. Logging and print was the way to check what
every method did in the Scheduler to make sure it worked correctly. During the
development of new strategies for the scheduler logging and print was used to assure
that the strategy behaved as expected. If the strategy did not behave as wanted it was
rejected and a new strategy was developed.

2.4 Python Profiling

Sometimes the Scheduler and the Strategies behaved strange also when there were
no syntax errors. Additionally, the error could not always be captured using Logging
and print and then it was useful to use Python Profiling. With Python profiling the
time that was spent on different parts of the code could be calculated which made
it possible to know on what part of the code most time was spent. With this infor-
mation the search area for the error could be reduced, for instance if the profiling
shows that the most time was spent when the scheduler was sleeping then it was
effective to focus on what makes the scheduling sleeping so much etc.

2.5 Calvin Tests

After a new strategy has been developed there are 999 tests in Calvin that the new
strategy must pass through to see if it fulfills the desired criteria to function in
Calvin. Going through the tests was the last and most difficult stage to pass. This
was where the most ideas fail, and the next step is to either go through the idea and
the code to try to correct it or if the idea is wrong the only way is to start all over
again.

2.6 Run and store the data

When a new scheduler strategy passes through all the tests it was time to run the
scheduler with the chosen scenario (See fig. 2.1). The data that is needed was col-
lected by first running the new strategy with Round-Robin and then running the new
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Chapter 2. Methodological Approaches

strategy with Non-Preemptive scheduler policy. The time it takes for 5000 tokens to
pass the actor proc was stored for every 1,2,5,10,20,30,40,50 and 100 applications
for each scheduler. To analyze the data the sum and the mean value were calculated.

Component: Load
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add
math.Compute
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result

b

/1/

out

state
flow.Init
in     out

source
std.Trigger

    data

source_state
flow.Init

in     out

load
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in     out

proc
misc.TimeTokens
token     time

sink
io.Print

token     

Figure 2.1 Test scenario with source of type std.Trigger.
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3
Internet of Things

Internet of things (IoT) started in 1999 and refers to the connection of devices to
the internet. The connection can be of both simple everyday devices such as a lamp
or an alarm-system and more advanced devices such as a vehicle or an industrial
robot [2]. With IoT very distributed network of devices will be able to communicate
with each other and with humans. This increase of embedded systems in devices
for integration of communication will lead to a larger general usage of the internet
[2]. A crucial condition for the concept of IoT to work is that the devices must use
a mutual method to connect to each other. The intention of IoT is to facilitate the
interaction of devices in a secure way by using IT-infrastructure. With the use of
IoT, devices will be easier to recognize and identify. Furthermore, with the ability
to retrieve information from the internet the adaptive functionality of devices will
be simplified [3].

IoT uses a lot of heterogeneous environments which means that the environments
have different capabilities and use different communication protocols. This makes
forming and handling distributed applications a very complex task to solve due to
the applications developers need to consider both the platform and the communi-
cation protocols. It will be helpful if there was an application which reaches all
distributed resources and is used as one environment. The developed applications
must be able to use the available resources from other shared environments at the
same time and that applies to the cloud infrastructure as well [4].

The possibility to execute code at different places simplifies the formulation of
many real-world problems and makes it easy to implement the functionality of
these problems [1]. Figure 2.1 shows how the different components of IoT are
related and how IoT works. The IoT device, in this case an autonomous car and an
industrial robot are connected to the internet. Data and analysis flow from and to
the IoT device and to a remote control like for instance a tablet. The remote control
is also connected to Wi-Fi. Data can also be sent to a storage device such as the
cloud. A router enables the connections to Wi-Fi.
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Chapter 3. Internet of Things

Figure 3.1 Internet of Things. A sketch of how the different components of IoT
are related and how IoT works.
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4
Programming Framework

Programming frameworks are platforms used to develop software applications. The
purpose of programming frameworks is to be a foundation for building standardized
code for applications or modules. Therefore, different problems in the development
process can be decreased [5].

4.1 Actor Model

Calvin is an Actor based system. The Actor model is a model of computation which
is designed to handle situations with high degree of parallelism, in particular to
handle the concurrency problem. The Actor model was introduced by Hewitt et al
in 1973 [6] [7]. There are other systems that use the Actor model such as CAL
and the Ptolemy II project [8]. The paper "Native actors" describes the actor as an
appropriate concept for multi-core processing [9].

4.2 Python

In Calvin, implementation and actors are written in the open source scripting lan-
guage Python. Python is a very simple language with a very large library of add-on
modules. Traditional compiled languages like for instance C and C++ tend to be
faster than Python but they are not as easy to use as Python and therefore require
more programming experience. These program languages need to use expensive li-
braries of software packages which makes it very difficult to scale for usage in small
devices with limited storage capacity [10]. Python is beneficial for fast application
development such as Calvin because it has dynamic typing and binding. Addition-
ally, its high-level built in data structures make it suitable. Python is not complicated
nor difficult to understand which makes it easy to use. [11].

4.2.1 Python Profilers
Sometimes it is very useful to measure the execution time of a particular part of the
program. In Python the profile interfaces give a deterministic profiling of the pro-
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Chapter 4. Programming Framework

gram. There are three implementations of the profiling interface which the Python
standard library offer: cProfile, Profile and Hotshot. Monitoring all function calls
and returns, as well as all exception events, is called deterministic profiling. Fur-
thermore, the intervals between the events have precise timings. For deterministic
profiling in Python it is not necessary with instrumented code because during ex-
ecution there is an interpreter. The interpreter adds overhead to the execution. The
profiling adds much less overhead than the interpreter therefore this is less expen-
sive. The statistic profiling can be used to identify bugs, inline-expansion, hot loops,
high level errors in the selection of algorithms etc. There are some limitations, for
instance the underlaying clock ticks at a rate of 0.001 s, which means that it takes
some time before the profiler’s call gets the time of the clock and the event will be
captured. This will produce some errors due to the latency [12].

4.2.2 Python test
The reason to write test code for the original applications is to ensure that the code
behaves as expected. It makes the development of the code easier, for instance
adding more features. There is a type of errors that the developer can make that
Python cannot catch during the compilation stage which can end up with the code
behaving very strange without knowing where the error is. Therefore, the tests can
be used once more to ensure that the code behaves as expected after the change. Also
using tests is required nowadays more than before because of the security reasons.
The defect code can for instance expose sensitive data or allow hackers to access
private areas. [13]. In Calvin there are many tests that the new scheduler must pass
to ensure that the new strategy will not affect the rest of Calvin negatively and to
know if the new scheduler behaves as expected.

4.3 Distributed Cloud

A Calvin application consist of different parts (Actors) combined together. Calvin
has an unique property that enables a distributed cloud for IoT, which means that
some actors that are part of an application can be executed on different devices.
This property allows the user to choose the most beneficial device to execute these
particular parts of the application. This will be helpful to minimize the latency e.g.
if the specific part migrates to another hardware which has much higher computing
speed than the original one, or if the migrated part needs more computing power
than the rest of the application then it will be beneficial to migrate for instance to
the cloud. Hence, Calvin supports executing parts of its applications on different
devices with different hardware and communication methods that use different pro-
tocols. This makes it possible for the application developer to focus on other things
[14].

18



4.4 Calvin’s internal parts

4.4 Calvin’s internal parts

Calvin is an open source application environment that was designed by Ericsson
to simplify development of IoT applications. Calvin’s purpose is to simplify the
application design by separating and isolating the functionality and the metadata.
The benefit of using Calvin is that the Calvin runtimes scale well and can run on tiny
devices as well as on full compute power available in the cloud. Calvin is built upon
the actor model, using the dataflow programming methodology. By using Calvin’s
programming model, the different parts of the system are represented by actors and
there is no distinction between for example cloud and device or server and client
because they all share the same paradigm. The location of deployment in Calvin
applications is not relevant if the right hardware is used. There is no need to change
the code if an application is moved to another computer or device.

4.4.1 Runtimes
All the devices that are using Calvin will have Calvin runtimes executing in them.
The purpose of runtimes is to get metadata about the capabilities of the devices
and to get more generic and reusable actors. Calvin consists of both a development
framework for application developers and a runtime environment for handling the
running application.

4.4.2 Actors
Actors are used to isolate and abstract the functionality for instance by performing
a computation or sensing a quantity. The runtimes execute dataflow applications
by means of actors connected to a dataflow graph. Actors communicate with each
other by message passing. An actor receives data objects called tokens from other
actors to the in-port(s). The actor can also produce tokens to the out-port(s) to send
out to other connected actors, however, the network of runtimes handles the actual
dataflow. This will lead to applications adapting and scaling as required by duplicat-
ing actors or changing the location of another actor to another runtime. Every actor
has inputs and outputs, the inputs and the outputs have each one a buffer with a lim-
ited size. Every in-port and out-port in an actor have an endpoint that connects two
actors together when the applications run locally in the same device. For instance,
an actor A is connected to actors B and C. The endpoints of actor A are found by
manipulating the endpoints to get the actors B and C that are connected to actor
A. Each actor has many first in first out (FIFO) in-and out-ports and it needs input
data to produce the output. Calvin’s actors can migrate between the run-times at the
same time as the program is running to be able to write applications that will adjust
to changing conditions [1].

4.4.3 Action
Executing an actor can be described as a chain of discrete stages that might lead to
consuming tokens from the in-port and producing tokens to send out. Producing or
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Chapter 4. Programming Framework

consuming tokens change the internal state of the actor, this process is performed
by an action. Only one action can be executed at a time [15]. Figure 4.1 shows
a sketch of an actor with two actions. The actor has two inputs and two outputs.
Tokens arrives to the inputs where they will be stored in FIFO buffers waiting to be
processed. Once action a has finished then action b will be executed because action
b has a lower priority than action a. The priority is assigned in action_priority as
seen in Listing 4.1, for instance the action_priority = (a, b) which means that action
a has higher priority than b. The produced tokens will be sent to the buffers in the
out-ports.

1 from c a l v i n . a c t o r . a c t o r i m p o r t Actor , manage , c o n d i t i o n , c a l v i n s y s ,
s t a t e g u a r d

2

3 c l a s s L i s t _ t o _ f i l e ( Ac to r ) :
4 " " "
5 S t o r e d a t a i n a l i s t t h e n s e n d s t o a f i l e a f t e r a number o f

d a t a i s s t o r e d i n t h e l i s t
6 I n p u t :
7 t o k e n : d a t a t o w r i t e
8 " " "
9 @manage ( [ " numbers " ] )

10 d e f i n i t ( s e l f ) :
11 s e l f . numbers = [ ]
12 d e f w r i t e _ t o _ f i l e ( s e l f , x ) :
13 wf=open ( " i n p u t . t x t " , " a " )
14 f o r l i n e i n x :
15 wf . w r i t e ( s t r ( l i n e ) )
16 wf . w r i t e ( " \ n " )
17 wf . w r i t e("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
18 wf . w r i t e ( " \ n " )
19 wf . c l o s e ( )
20 @condi t ion ( a c t i o n _ i n p u t = [ ' token ' ] )
21 d e f a d d _ t o _ a _ l i s t ( s e l f , t o k e n ) :
22 s e l f . numbers . append ( t o k e n )
23 i f ( l e n ( s e l f . numbers ) == 100000) :
24 s e l f . w r i t e _ t o _ f i l e ( s e l f . numbers )
25 s e l f . numbers = [ ]
26 a c t i o n _ p r i o r i t y = ( a d d _ t o _ a _ l i s t , )

Listing 4.1 List_to_ f ile

4.4.4 Scheduler
The scheduler is responsible for data transport, and for triggering actor actions on
in-data. It is necessary for execution of applications for each runtime. The scheduler
which is used now is a simple Non-Preemptive scheduler with limited knowledge
because it is only using local information such as what data has arrived from other
runtimes, the rules for triggering an action, and the output data that will be sent
forward to other actors whether they are local or remote.

20



4.4 Calvin’s internal parts

Figure 4.1 A sketch of an Actor with state and two actions[16]

4.4.5 Migration
In Calvin the actors communicate via the in and out ports which means there is no
other way to influence the state of an actor. This property makes the actor isolated
from the others in the application and that is the key to why the actors can be
moved (migrated) separately to other runtimes without interrupting the application
execution or making any changes to the functionality of the application [14].

There are two ways to initiate a migration, the first one is manually by sending
a command using a Calvin Control API to the runtime that we want to migrate an
actor from. The other possibility of migration is automatic migration of an actor/ac-
tors and that is done by the runtime itself to achieve the best performance [16].
There are many local or external factors that will trigger the runtime to migrate
some parts of an executed application. It can be a high load on the runtime or
deploying actors to the runtime such that it exceeds the capacity of the runtime to
hold all actors together. An external factor can be a hardware or network change
[14].

4.4.6 Capabilities and Requirements
The capabilities of Calvin are the properties and abilities of the runtime or of the
device that the runtime is implemented on. The capabilities in Calvin can be stored
either by a central repository or a secure distributed hash table (DHT). The decision
of which of these two implementations to select depends on the configuration. Ca-
pabilities are information taken from the device that the runtime is running on. For
instance, a camera that produces images. This information is considered as capabil-
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Chapter 4. Programming Framework

ity and up on that the information about location, ownership is also considered as a
kind of capability.

For Calvin to work there are some requirements that must be fulfilled. The choice
of actor will decide the requirements that must be fulfilled for the application since
the actor has different requirements on the runtime. The requirements can be for
example the presence of a timer, the ability to measure temperature, or access to a
file system etc. The applications also have requirements on the properties like for
instance a certain runtime or a specific location [17].

4.4.7 Calvin on Graph Level
A Calvin application consists of a number of actors that are connected to each
other. The actors are already predefined and exist in the actor library, but it is easy
to write a new actor if it is necessary, for instance to collaborate with new hardware
or to include some features that are in some actor collection. By adding the new
actor to the library, it becomes available to use by other actors and reuse it in other
applications. An actor’s task is doing a simple operation on the received data from
one or more inputs and to write the results to one or more outputs. Connecting ac-
tors together leads to building complex applications that can perform complex tasks.

By running Calvin runtime on an IoT device concurrency problems can be eas-
ily handled since different applications are available on the same device at the same
time. Parts of the applications can be distributed on different devices since Calvin
supports distributed applications.

Executing Calvin on different types of devices means that Calvin has to deal with
different communication types, protocols and features. At this level these different
problems are hidden from the application developers and the different devices are
treated as one type [1].

An example of a Calvin application on graph level is showed in Figure 4.2. The
application contains a component called Load which is a group of standard actors
that can be treated as one actor. The last actor is not a standard one, it is written
to save results in a list and then after the saved results reach a specified number
they are sent to a file. The application task in Figure 4.2 computes the time a token
spends inside the component Load, by computing the time difference between two
actors. One token is sent to Load and then to the actor time_delta and another actor
is sent directly to time_delta. The results are temporary saved in a list and when the
number of stored results reaches 100 000 they are sent to a file.

Figure 4.2 describes what every actor do in the application. The first actor is a
standard actor called Source. Source is of type std.Trigger and it sends out tokens
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every 0.5 seconds. The tokens arrive to Load and time_0 at the same time. The
actors time_0 and time_1 are of type time.Timestamp which receives a token and
sends out a time stamp on seconds form. Time_delta is of type math.Compute
which will compute the difference between the times-stamps from time_0 and
time_1. The actor Sink will send every 100 000 results to a file. The component
Load consists of two actors: state and add, that are connected with each other in a
loop. State is of type f low.Init and has a pre-defined initial value as shown in the
script in Listing1. As soon as the application is started the data, which will be zero,
is sent to add. When state receives new data it will be sent back to the in-ports in
add. Add is of type math.Compute and its only task is to add the tokens from the
in-ports a and b. Listing 1 also contains the code for instantiating the actors and
connecting the together.

1 component Load ( ) i n −> o u t {
2 s t a t e : f low . I n i t ( d a t a =0)
3 add : math . Compute ( op ="+" )
4

5 . i n > / 1 / add . a
6 s t a t e . o u t > add . b
7 add . r e s u l t > s t a t e . in , . o u t
8 }
9

10 s o u r c e : s t d . T r i g g e r ( t i c k = 0 . 5 , d a t a = t r u e )
11 t ime_0 : t ime . Timestamp ( )
12 t ime_1 : t ime . Timestamp ( )
13 l o a d : Load ( )
14 t i m e _ d e l t a : math . Compute ( op ="−")
15 s i n k : i o . L i s t _ t o _ f i l e ( )
16

17 s o u r c e . d a t a > t ime_0 . t r i g g e r , l o a d . i n
18 l o a d . o u t > t ime_1 . t r i g g e r
19 t ime_1 . t imes t amp > t i m e _ d e l t a . a
20 t ime_0 . t imes t amp > t i m e _ d e l t a . b
21 t i m e _ d e l t a . r e s u l t > s i n k . t o k e n

Listing 4.2 Application example

4.4.8 Calvin on Actor Level
The actors are written in Python using the actor class from Calvin as a base to build
an actor, from actor class imports python-decorators: actor, manage, condition,
calvinsys and stateguard. In the example in Listing 4.2 only the imports: actor,
manage and condition are necessary. Actor is needed as an argument in the class
List_to_ f ile(Actor). Actor is the base class of all actors and should always be
included, while manage, condition and stateguard are python-decorators that are
used to simplify development.
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Component: Load
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Figure 4.2 Calvin application shown on the graph level.

At migration attributes of the actor are automatically managed and the runtime
gets information about the attributes by manage. In order for an action to be exe-
cuted, tokens must be available for in-ports and there must be space available for
tokens in out-ports. Condition shapes the ports that fulfill these requirements [18].

The code example for the actor List_to_ f ile shown in Listing 4.2 consists of
all the doc-string which includes the description of the tasks that the actor will do
and the names of the in-ports and the out-ports. In this example there are no out-
puts and therefore it is not necessary to add any output description. Manage takes
the numbers list as attribute. As shown in the code Manage uses the init method
to inform the system, for instance which state of the actor must be serialized on
migration [18]. The Write_to_ f ile method is needed to open, write data and then to
close the file. The next decorator is condition which specifies the needed input data
and the required output space. If not both input and output conditions are fulfilled
the action cannot be fired [18].

The Add_to_a_list method is used to append the new token to the list and check
if the length of the list is 100 000 because then the list will be emptied and the
Write_to_ f ile method is called. Action_priority contains the conditions that are
needed to make sure that the action with the highest priority will be ready to fire
[18]. In this case the actor only contains one action.

Listing 4.3 shows the python code inside the standard actor Trigger. The actor
has two parameters: tick and data. Data is produced every tick seconds. The
Trigger has two actions start_timer and trigger. The start_timer action has higher
priority than trigger. This means that the start_timer will first call the function
start and then when it is finished the trigger will start. The state changes when
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start initializes a new timer.

stateguard decorator, comes before the condition decorator. The stateguard dec-
orator improves the criteria for selection an action for instance depending on the
internal state of the actor it decides whether to allow the action to run or not.[18].
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1 from c a l v i n . a c t o r . a c t o r i m p o r t Actor , manage , c o n d i t i o n , s t a t e g u a r d
2

3 c l a s s T r i g g e r ( Ac to r ) :
4 " " "
5 Pass on g i v e n _ d a t a _ e v e r y _ t i c k _ s e c o n d s
6 O u t p u t s :
7 d a t a : g i v e n d a t a
8 " " "
9

10 @manage ( [ ' t i c k ' , ' d a t a ' , ' s t a r t e d ' ] )
11 d e f i n i t ( s e l f , t i c k , d a t a ) :
12 s e l f . t i c k = t i c k
13 s e l f . d a t a = d a t a
14 s e l f . t i m e r = None
15 s e l f . s t a r t e d = F a l s e
16 s e l f . s e t u p ( )
17

18 d e f s e t u p ( s e l f ) :
19 s e l f . use ( ' c a l v i n s y s . e v e n t s . t i m e r ' , s h o r t h a n d = ' t i m e r ' )
20

21 d e f s t a r t ( s e l f ) :
22 s e l f . t i m e r = s e l f [ ' t i m e r ' ] . r e p e a t ( s e l f . t i c k )
23 s e l f . s t a r t e d = True
24

25 d e f w i l l _ m i g r a t e ( s e l f ) :
26 i f s e l f . t i m e r :
27 s e l f . t i m e r . c a n c e l ( )
28

29 d e f d i d _ m i g r a t e ( s e l f ) :
30 s e l f . s e t u p ( )
31 i f s e l f . s t a r t e d :
32 s e l f . s t a r t ( )
33

34 @ s t a t e g u a r d ( lambda s e l f : n o t s e l f . s t a r t e d )
35 @condi t ion ( [ ] , [ ' d a t a ' ] )
36 d e f s t a r t _ t i m e r ( s e l f ) :
37 s e l f . s t a r t ( )
38 r e t u r n ( s e l f . da t a , )
39

40 @ s t a t e g u a r d ( lambda s e l f : s e l f . t i m e r and s e l f . t i m e r . t r i g g e r e d )
41 @condi t ion ( [ ] , [ ' d a t a ' ] )
42 d e f t r i g g e r ( s e l f ) :
43 s e l f . t i m e r . ack ( )
44 r e t u r n ( s e l f . da t a , )
45

46 a c t i o n _ p r i o r i t y = ( s t a r t _ t i m e r , t r i g g e r )
47 r e q u i r e s = [ ' c a l v i n s y s . e v e n t s . t i m e r ' ]

Listing 4.3 A standard actor Trigger [19]
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4.5 Building Applications for the Test Scenario

For this project two scenarios have been used for analysis. The scenarios are very
simple applications and consist of five components: source, source_state, load, proc
and sink (See Figure 2.1).The source for the first scenario is of type std.Trigger
and the source for the other scenario is of type std.Counter. The components work
as follows:

1. Source:
Source is an actor of type std.Trigger or std.Counter. The source of type
std.Trigger will send tokens every pre-decided time period [19]. For this project the
pre-decided time is 0.5 seconds. The source of type std.Counter will send tokens
with no time delay.

2. Source_state:
The tokens from the source will reach the source_state that is of the type f low.Init
which is used to send an initial data [19]. The quantity of tokens that will be sent
can be chosen by specifying the parameter nbr in the f low.Init. For instance, nbr =
1 for the Round Robin scheduling policy since only one token at a time is needed
and nbr = 4 for the Non-Preemptive scheduling policy since 4 actors at a time are
needed.

3. Load:
The tokens from the source_state will reach the load which is a component of ac-
tors. Load consists of two actors; add and state. Add is of the type math.Compute
which will add data from a and b inports [19]. State is of the type f low.Init which
is the same type as source_state. By connecting the actors as in Figure 2.1 a loop is
created which will delay add from producing tokens.

4. Proc:
The token will continue from load to the actor proc which is of the type
misc.TimeTokens. Proc will measure the time taken to consume N tokens. N is
the number of tokens and in this case it was chosen to be 5000 tokens.

5. Sink:
Proc will send the data to sink which is of the type io.Print. Proc will print the total
time of producing 5000 tokens for this scenario. The data is then analyzed at the
end of the project (See figure 2.1).
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1 component Load ( ) i n −> o u t {
2 s t a t e : f low . I n i t ( nbr =4 , d a t a =0)
3 add : math . Compute ( op ="+" )
4 . i n > / 1 / add . a
5 s t a t e . o u t > add . b
6 add . r e s u l t > s t a t e . in , . o u t
7 }
8 s o u r c e : s t d . T r i g g e r ( t i c k = 0 . 5 , d a t a =1)
9 s o u r c e _ s t a t e : f low . I n i t ( nbr =4 , d a t a =0)

10 p roc : misc . TimeTokens (N=5000)
11 l o a d : Load ( )
12 s i n k : i o . P r i n t ( )
13 s o u r c e . d a t a > s o u r c e _ s t a t e . i n
14 s o u r c e _ s t a t e . o u t > l o a d . i n
15 l o a d . o u t > p roc . t o k e n
16 p roc . t ime > s i n k . t o k e n

Listing 4.4 Scenario written in Calvin script
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4.6 Related Frameworks

4.6.1 Capecode
Capecode is a modeling environment for building IoT applications and code gen-
erators with a block diagram editor [20]. Composing heterogeneous devices and
services in IoT is simplified by Accessors [21]. Capecode is a configuration of
Ptolemy II. Ptolemy II is an open source software that supports actor-based sys-
tems. [22].

Capecode is built from the three components Nashorn, Ptolemy II and Vert.x. The
first component, Nashorn is a JavaScript engine that provides full access to Java and
runs on the Java virtual machine. JavaScript is a scripted, gradually-typed language
and Java is a strongly-typed object-oriented language. By combining Java and
JavaScript, Nashorn contributes with an environment that benefits programming.
Additionally, the networking and I/O libraries of Java simplifies building inter-
faces to devices. The second component, Ptolemy II makes importing accessors
available from the default library of actors or from other libraries (any index.json
file included directory/website with a list of available accessors). In Ptolemy II
composing accessors is done by Vergil which is a graphical block diagram. Vergil
is also responsible for building swarmlets that makes it possible for mixture of
accessors with usual Ptolemy II actors. The third component, Vert x is a library for
event-driven programming.

If the function that is needed is not provided by an accessor or an actor in the
Ptolemy II library an example of the JavaScript actor may be used to build an own
actor or accessor. JavaScript actors are sometimes a better option than accessors
like for instance if the functionality is not host-specific [23].

Usage of the actor model in CapeCode allows events like for instance scaling,
migration and load balancing to be managed on a fine-grained level. This is pos-
sible by preventing the internal state from changing unless it is responding to an
event or data [17].

4.6.2 AWS Lambda
Amazon Web Services Lambda (AWS Lambda) is a platform that manages IoT.
AWS Lambda enables usage of third party library of own choice and supports mul-
tiple languages including Java, Node.js, C# and Python.

AWS Lambda runs the code in response to several events and is a server-less
computing. After supplying the code, the administrations of the compute resources
such as maintenance of server and operating system, automatic scaling and code
monitoring are all automatically managed by AWS Lambda.
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The code in Lambda are also known as Lambda functions and before they can
run they must be triggered by an AWS resource like for instance Amazon Simple
Storage Service (Amazon S3) buckets or Amazon DynamoDB tables. The lack
of affinity to the infrastructure by the code makes it possible for AWS Lambda
to quickly launch the necessary amount of copies of the code to measure the rate
of incoming events. Compute to data can be added to AWS Lambda as it passes
through the cloud due to extension of other AWS services with custom logic [24].

Several AWS Lambda functions can process the same events with Amazon Ki-
nesis that receives data with events and store them for 24 hours. After processing
the incoming events an AWS Lambda function provides low-latency access by
storing the event data in a table in Amazon DynamoDB. DynamoDB changes a
configuration value to enable the necessary table capacity to be provisioned. For
devices to regain data from DynamoDB they need to call a synchronous interface
that is allowed by another AWS Lambda function. A third AWS Lambda function
provides cost effective and lasting archival by storing data in Amazon S3 which also
facilitates the access of the data for analysis. Analysis of data is done by Amazon
Elastic MapReduce (EMR) that runs the events from DynamoDB and S3 [25].

4.6.3 Node-RED and Distributed Node-RED
Node-RED is an IoT environment that is based on data-flow programming concept,
which provides a browser-based flow editor. The application developers can easily
build complex applications by using Nodes (In Calvin they are called Actors). The
Node-RED Integrated Development Environment (IDE) was created first as open
source at IBM 2013. JavaScript script language is used to write nodes for Node-
RED platform [26]. JavaScript functions can be created in the editor using a text
editor.The Node-Red runtime is built on Node.js [27].

Node.js is an event-driven I / O framework based on the JavaScript engine V8.
It is created to write scalable network applications such as web servers. The pro-
gramming language used is JavaScript that is executed on the server side. In node.js,
almost no functions are performed that directly block I / O. This prevents deadlock
from occurring. It is handled through callbacks, instead of waiting for a result from
I / O, Node.js can execute another code in the meantime. When I / O is completed,
the callback reference is called and the result is handled [28]. Node.js is a light
weight framework which can run on low cost devices such as Raspberry Pi and
other tiny devices that can be connected to the internet.

Node-RED uses the flow-based programming model. It is possible to quickly
build applications in a simple way for instance by using a graphical drag and drop
interface. This is possible due to the control of the data movement through an ap-
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plication and the well-defined interfaces between the components[17].

The distributed Node-RED extends the existing IoT data flow-based systems by
creating a platform appropriate to execute on a range of run time environments, and
supports data flows that can be partitioned manually. The distributed Node-RED
supports automatic dynamic sorting and distribution of data flows based on partici-
pating resource capabilities and constraints required by the developer around cost,
performance and security.

4.6.4 Main Differences from Calvin Platform
There are three main factors that makes Calvin different from the other platforms
that exist today:

◦ Calvin allows greater flexibility in where computations are made, and deci-
sions taken.
◦ Calvin separates between the different stages of application life-cycle which en-
ables each part to focus on their own specialities.
◦ Requirement-based deployment of applications allows for a greater level of auto-
matic control [17].
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5
Scheduling of Dataflow
Models

5.1 Scheduling Policies

There are several simple and advanced scheduling policies for actors that are us-
ing a single core such as Non-Preemptive, Round Robin and other policies. Non-
Preemptive and Round Robin are well-known and they are implemented in many
systems of different types [15].

5.1.1 Non-Preemptive
Non-Preemptive (also known as cooperative scheduling) is a scheduling algorithm
that keeps firing the same actor as long as it has available space in the outgo-
ing buffers and the required tokens in the in-ports. When these conditions are no
longer fulfilled the next actor in the queue will be fired [15]. (See Listing 4.1).
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1 d e f _ f i r e _ a c t o r _ n o n _ p r e e m p t i v e ( s e l f , a c t o r ) :
2 " " "
3 Try t o f i r e a c t i o n s on a c t o r on t h i s r u n t i m e .
4 R e t u r n s b o o l e a n t h a t i s True i f a c t o r f i r e d
5 " " "
6 # F i r s t make s u r e we a r e a l l o w e d t o run
7 i f n o t a c t o r . _ a u t h o r i z e d ( ) :
8 r e t u r n F a l s e
9 # R e p e a t e d l y go ove r t h e a c t i o n p r i o r i t y l i s t

10 done = F a l s e
11 a c t o r _ d i d _ f i r e = F a l s e
12 w h i l e n o t done :
13 d i d _ f i r e , ou tpu t_ok , e x h a u s t e d = a c t o r . f i r e ( )
14 a c t o r _ d i d _ f i r e | = d i d _ f i r e
15 i f n o t d i d _ f i r e :
16 # We r e a c h e d t h e end of t h e a c t i o n l i s t w i t h o u t ANY

f i r i n g d u r i n g t h i s round
17 # => h a n d l e e x h a u s t i o n and r e t u r n
18 a c t o r . _ h a n d l e _ e x h a u s t i o n ( e x h a u s t e d , o u t p u t _ o k )
19 done = True
20 r e t u r n a c t o r _ d i d _ f i r e

Listing 5.1 The Non preemptive scheduling policy

5.1.2 Round Robin
Round Robin is another scheduling algorithm that spends the same amount of
time at each action. After it is done with one action it starts with another one
and repeats this process until there are no actions left. By shortening the time
spent on the actions the performance of Round Robin can be improved. How-
ever, the time spent on each action cannot be too short because then the system
will not be able to handle the fast switching of actions [30]. In this thesis there
is however no need to concern about the length of time since a new actor will
not be executed until the first actor is finished, no matter how long time it takes
because it is not allowed to interrupt an execution of an action. After an action
has been executed all the other actors in the actor list that are going to be fired
must be fired once before the first actor can be fired again [15]. (See Listing 4.2).
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1 d e f _ f i r e _ a c t o r _ R o u n d R o b i n ( s e l f , a c t o r ) :
2 " " "
3 Try t o f i r e a c t i o n on a c t o r on t h i s r u n t i m e .
4 R e t u r n s b o o l e a n t h a t i s True i f a c t o r f i r e d
5 " " "
6 # F i r s t make s u r e we a r e a l l o w e d t o run
7 i f n o t a c t o r . _ a u t h o r i z e d ( ) :
8 r e t u r n F a l s e
9 d i d _ f i r e , ou tpu t_ok , e x h a u s t e d = a c t o r . f i r e ( )

10 i f n o t d i d _ f i r e :
11 # => h a n d l e e x h a u s t i o n and r e t u r n
12 a c t o r . _ h a n d l e _ e x h a u s t i o n ( e x h a u s t e d , o u t p u t _ o k )
13 r e t u r n d i d _ f i r e

Listing 5.2 The Round Robin scheduling policy

See the code in Listing 6.1 which calls the methods f ire_actor_round_robin and
f ire_actor_Non_Preemptive.

Figure 5.1 ABC Scenario

Figure 6.1 is a simple scenario used to illustrate how the code for Non-preemptive
and Round Robin scheduling policies work.

All actors (for instance A, B and C in Figure 6.1) that are ready to fire will be
collected in the class NewScheduler (that will be further explained in Chapter 6).
NewScheduler class consists of different methods and the method that collects all
the actors is called Strategy. From Strategy the actors will be sent forward one by
one to another method, Non−Preemptive. The first step in the Non-Preemptive
scheduling policy is to initiate done and actor_did_ f ire to f alse (See Listing 5.1).
In line 12 in Listning 5.1 while loop will run until done is true. In the while loop
the actors will be fired via actor.fire() method. Did_ f ire is a local variable which
will store the boolean value that it will receive from actor.fire(). If the actor did fire
then did_ f ire is true and the while loop will keep running until did_ f ire is f alse.
Done will be true which means that the end of the actions list has been reached for
the actor and the while loop will be stopped. The method will return either to true
or f alse (See Listing 5.1). In the scenario in Figure 6.1 the first actor is actor A
and when it reaches while loop it will stay there until all actions are processed. will
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be stuck in the while loop until all actions are processed. This will happen for the
actors B and C too.

The code for Round Robin scheduler policy is even more simple than for Non-
Preemptive. The actors will be sent one by one to a method, called Round Robin
(See Listing 5.2). The Round Robin method will only try to fire the actor once
before it will move on and try to fire the next actor. Whether or not the actor did fire
successfully the Round Robin method will return a value as soon as it has tried to
fire the actor (true means it fired and f alse means it did not fire).

5.2 Scheduler

In the future there will be a limitation in ability to produce faster processes since
the processes are decreasing in size. This has caused an increased awareness of
dataflow programming in recent years. The concurrency makes it more difficult
to create an efficient design for the applications on these new processes. Dataflow
programming is useful since it solves the efficiency problem [31].

Instructing a network of actors calls dataflow program, each actor represent an
isolated computational kernel. The actors are connected with each other by buffers.
In Calvin the buffers have a limited capacity to store tokens and it has been pre-
decided that each buffer will only contain maximum 4 tokens, scheduling policy
and the buffer size need to be computed because they affect the efficiency. [31].

5.3 The Current Scheduler

There are three different situations that can prevent an actor to produce tokens con-
tinuously. The first situation is that every actor has FIFO in- and out-ports. The
actors need indata to produce tokens but not all indata come in at the same time, so
before firing the actor the scheduler must wait until all indata arrives. The second
situation is when an actor waits for an event to occur, for example when a button is
pressed and sends the data to the actor. The third situation is when a timer is used to
send data repeatedly at a certain time. The scheduler is very important for the appli-
cation execution, for every runtime it is responsible for data transport and triggering
actor actions on indata. The current scheduler is a very simple Non-Preemptive (NP)
scheduler. It knows what data has arrived from other runtimes, the rules for trigger-
ing an action, and the output data to be passed on to other actors whether they are
local or remote. The scheduler consists of a BaseScheduler class, which includes a
subclass that is called SimpleScheduler. SimpleScheduler uses BaseScheduler and
the BaseScheduler contains the following important methods:

• Run(self): The system starts.
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• Stop (self): The system exits.

• strategy(self): The scheduling part will be in this method.

• watchdog(self): If there is nothing to schedule then the watchdog will be
called.

• insert_task(self, what, delay): This method will insert tasks in time order.

• _schedule_next(self, delay, what): This method will schedule the next task in
the queue.

• _process_next(self): Here the tasks will be processed.

• _fire_actors(self, actors): The method will try to fire actions on a list of actors.

• _fire_actor(self, actors): The method will try to fire actions on an actor. it will
be called from the _fire_actors method.

The new strategies will be based on SimpleScheduler class. It contains the follow-
ing methods:

• tunnel_rx(self, endpoint): This method calls self.insert_task when a token is
received on an endpoint.

• tunnel_tx_ack(self, endpoint): When it has successfully received an ACK
on the sent token it will call the methods self.monitor.clear_backoff and
self.insert_task.

• tunnel_tx_nack(self, endpoint): When it received an NACK on sent token it
will call the methods self.monitor.set_backoff and self.insert_task.

• schedule_calvinsys(self, actor_id=None): If it receives a token from a sensor
then it will call the self.insert_task.

• strategy(self): It will try to fire all actors all the time.

• watchdog(self): It will send a log and calls self.insert_task.

The SimpleScheduler is a very simple scheduler which will try every enabled actor
in the runtime, and it works as following:
1) Get a list over all enabled actors e.g. if we have an application which consist of
two actors so these actors will be enabled.
2) SimpleScheduler uses Non-Preemptive policy which as mentioned before will
try to fire every actor to produce tokens.
3) The scheduler will try to send all produced tokens from all actors.
If there is nothing else scheduled, the watchdog will be activated.
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Implementation of the New
Scheduler

6.1 New scheduling strategy

The main idea of the new strategy is that instead of trying to fire all actors every
time, the scheduler will be called to make sure that the most appropriate actor/actors
will be fired. The scheduler will sort the available actors dynamically which means
that it will pick the actors that are necessary to fire. The scheduler chooses the
actors that have received all the necessary tokens.

For instance assume that there are three actors A, B and C, where A is connected to
B and B is connected to both A and C. The first time the scheduler will try to fire
all actors (A, B and C). The next time the scheduler will find and fire actors that are
connected to the actors that were just fired. This means that in this case the sched-
uler will try to find actors that are connected to the actors A, B and C. If only actor A
were fired the previous time, then the scheduler will put actor B to the list of actors
that will fire next, since actor B is the only actor that is connected to actor A. After
actor B has been fired the scheduler will put the actors that are connected to actor B
(that is A and C) to the list of actors that will be fired next and so on see Figure 6.1.

Figure 6.1 The idea of how the new strategy works.
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NewScheduler is a class that consists of several methods (see Listing 6.1). The
most important methods are schedule_calvinsys and strategy. Schedule_calvinsys
includes actors that will be processed as soon as they have reached the next_round
list. For instance, if the actor is a button then it is important to process the button
as soon as it is pressed. The strategy method will be called with no delay via
insert_task method. If the this_round list in the strategy method is empty, then
all actors will be added in this_round list. The produced tokens will be sent via
monitor.communicate to the out ports. Did_ f ire_actors is a list that collects only
the actors that have been fired of all the actors in this_round list. Next_round list
collects the actors that are connected to the actors in did_ f ire_actors via out-port.
The strategy method will be called again via insert_task method and so on.

1 c l a s s NewScheduler ( S i m p l e S c h e d u l e r ) :
2 d e f _ _ i n i t _ _ ( s e l f , node , a c t o r _ m g r ) :
3 s u p e r ( NewRoundRobinScheduler , s e l f ) . _ _ i n i t _ _ ( node , a c t o r _ m g r )
4 s e l f . n e x t _ r o u n d = s e t ( )
5 s e l f . t h i s _ r o u n d = s e t ( )
6 s e l f . e n d p o i n t s = [ ]
7

8 d e f s c h e d u l e _ c a l v i n s y s ( s e l f , a c t o r _ i d =None ) :
9 " " " Incoming p l a t f o r m e v e n t " " "

10 i f a c t o r _ i d :
11 t r y :
12 a c t o r = s e l f . a c t o r _ m g r . a c t o r s [ a c t o r _ i d ]
13 i f a c t o r . e n a b l e d ( ) :
14 s e l f . n e x t _ r o u n d . add ( a c t o r )
15 e x c e p t :
16 p a s s
17 s e l f . i n s e r t _ t a s k ( s e l f . s t r a t e g y , 0 )
18

19 d e f s t r a t e g y ( s e l f ) :
20 s e l f . t h i s _ r o u n d = s e l f . n e x t _ r o u n d
21 s e l f . n e x t _ r o u n d = s e t ( )
22

23 # New_St ra tegy
24 i f s e l f . t h i s _ r o u n d == s e t ( ) :
25 # a l l a c t o r s t o f i r e
26 s e l f . t h i s _ r o u n d = s e l f . a c t o r _ m g r . e n a b l e d _ a c t o r s ( )
27 s e l f . e n d p o i n t s = s e l f . m o n i t o r . e n d p o i n t s
28 # Communicate
29 d i d _ t r a n s f e r _ t o k e n s = s e l f . m o n i t o r . communicate ( s e l f . e n d p o i n t s

)
30

31 # i d s from a c t o r s d i d f i r e
32 d i d _ f i r e _ a c t o r s = [ a c t o r f o r a c t o r i n s e l f . t h i s _ r o u n d i f s e l f

. _ f i r e _ a c t o r _ n o n _ p r e e m p t i v e ( a c t o r ) ]
33 _ log . i n f o ( " Did f i r e a c t o r s : \ n%s \ n%s " % ( s t r ( [ a c t o r . _name f o r

a c t o r i n s e l f . t h i s _ r o u n d ] ) , s t r ( [ a c t o r . _name f o r a c t o r i n
d i d _ f i r e _ a c t o r s ] ) ) )

38



6.2 Results

34 # g e t n e x t a c t o r s we want t o f i r e n e x t
35 s e l f . nex t_ round , s e l f . e n d p o i n t s = s e l f . g e t _ n e x t _ a c t o r s (

d i d _ f i r e _ a c t o r s )
36 # Repea t i f t h e r e was any a c t i v i t y
37 a c t i v i t y = d i d _ t r a n s f e r _ t o k e n s o r boo l ( d i d _ f i r e _ a c t o r s )
38 n = t ime . t ime ( )
39 _ log . i n f o ( " a c t i v i t y %s %s " % ( a c t i v i t y , s t r ( [ ( t [ 0 ] − n , t [ 1 ] .

__name__ i f h a s a t t r ( t [ 1 ] , " __name__ " ) e l s e " o t h e r " ) f o r t i n
s e l f . _ t a s k s ] ) ) )

40 i f a c t i v i t y :
41 s e l f . i n s e r t _ t a s k ( s e l f . s t r a t e g y , 0 )
42

43 d e f g e t _ n e x t _ a c t o r s ( s e l f , a c t o r s ) :
44 n e x t _ a c t o r s = s e t ( )
45 e n d p o i n t s = [ ]
46 f o r a c t o r i n a c t o r s :
47 f o r o u t p o r t i n a c t o r . o u t p o r t s . v a l u e s ( ) :
48 e n d p o i n t s . e x t e n d ( o u t p o r t . e n d p o i n t s )
49 f o r oep i n o u t p o r t . e n d p o i n t s :
50 t r y :
51 n e x t _ a c t o r s . add ( oep . p e e r _ p o r t . owner )
52 e x c e p t :
53 p a s s
54 r e t u r n n e x t _ a c t o r s , e n d p o i n t s

Listing 6.1 The NewScheduler

6.2 Results

The total time for producing 5000 tokens for the different scenarios are used to
analyze the behavior of the current scheduling policy, Non-Preemptive. The results
have been compared to the results of the Round Robin Scheduling policy and to the
new strategies using Non-Preemptive and Round Robin with dynamical sorting. The
results are plotted for when 1, 2, 5, 10, 20, 50 and 100 applications run at the same
time.
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Figure 6.2 shows the result of using Source of type std.Trigger with delay of
0.5 seconds and nbr = 1. The new strategies using dynamical sorting for both
Round Robin Scheduling policy and Non-Preemptive Scheduling policy take much
less time to produce 5000 tokens than Non-Preemptive and Round Robin without
dynamical sorting, independently on the number of application.

Figure 6.2 Using std.Trigger(0.5), n=5000 Tokens and nbr = 1
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In Figure 6.3 nbr is changed to 4. As seen in the figure the time increases if more ap-
plications are running. The mean time of Round Robin and Non Preemptive increase
much more than the mean time of the new strategies when increasing the number of
the applications that run at the same time which can be seen in Figure 6.2 and Figure
6.3.

Figure 6.3 Using std.Trigger(0.5), n=5000 Tokens and nbr = 4
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Figure 6.4 shows the results of using the Source Actor of type std.Counter and
nbr = 1.
The time for all four strategies increase as the number of running applications in-
creases, but they do not increase as fast as when using std.Trigger. For instance if
we compare the Non-Preemptive at 100 applications we see that the highest mean
time is approximately 1.8 minutes when using std.Trigger and 0.12 minutes when
using std.Counter.

Figure 6.4 Using std.Counter, n=5000 Tokens and nbr = 1
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In the last Figure 6.5 the mean time for all four strategies increase, but for Non
Preemptive with dynamical sorting the mean time begins to decrease after 50 appli-
cations instead of increasing. This was unexpected and can be caused by a bug or
that something went wrong during the collection of data.

Figure 6.5 Using std.Counter, n=5000 Tokens and nbr = 1

Another way to analyze the behaviour of the different strategies is by analyz-
ing the Profile results. What we get of the profile results is the number of the
calls for a specific function, the total time the function takes to do a specific
job (for this thesis a job is letting 5000 tokens pass through all actors for 10
application runs in the same time). The profile also measures the cumulative
time spent in a specific function. Appendix 6.6 shows the results of three func-
tions: Strategy _fire_actor_once or _fire_actor_non_preemptive and communi-
cate. The three functions are approximately what the strategy part consists of in
the scheduler. The results are analyzed by comparing the different ncalls, tot-
time and cumtime for every function compared to the Non-Preemptive schedul-
ing policy. Note the Different scale for Figures.6.2 and 6.5. Figures 6.6 to 6.10
shows the graphs of the results of profiling when the source actor in the sce-
nario is of type std.Trigger. Figures 6.11 to 6.15 shows the graphs of the re-
sults of profiling when the source actor in the scenario is of type std.Counter.
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When using Source Actor type std.Trigger the total time strategy almost remained
the same for nbr = 1 and nbr = 4 for Round Robin and for New Non-Preemptive. The
total time strategy is slightly higher for nbr = 1 (1,394) compared to nbr = 4 (1,383)
for New Round Robin. There is a significant difference between the total time strat-
egy for nbr = 1 (1,397) and nbr = 4 (1,297) for Non-Preemptive (See Figure 6.6).
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Figure 6.6 Results from the profiling, using std.Trigger as a source
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When using Source Actor type std.Trigger the nCalls strategy and the cumula-
tive time strategy are almost the same for nbr = 1 and nbr = 4 for Round Robin.
The nCalls strategy and the cumulative time strategy are slightly higher for nbr = 1
compared to nbr = 4 for New Round Robin (170636 and 202,213 for nbr = 1 ver-
sus 167324 and 195,478 for nbr = 4), New Non-Preemptive (173258 and 207,220
for nbr = 1 versus 170242 and 211,436 for nbr = 4) and Non-Preemptive (40690
and 317,619 for nbr = 1 versus 52130 and 102,793 for nbr = 4) (See Figure 6.7).
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When using Source Actor type std.Trigger the nCalls communicate and the total
time communicate are almost the same for nbr = 1 and nbr = 4 for all four schedul-
ing strategies. The nCalls communicate and the total time communicate are lower
for New Round Robin compared to the other three scheduling strategies (See Figure
6.8).
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Figure 6.8 Results from the profiling, without nCalls strategy and cumulative time
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When using Source Actor type std.Trigger the total time fire actor and the cumula-
tive time communicate are lower for New Round Robin and New Non-Preemptive
compared to Round Robin and Non-Preemptive. (See Figure 6.9 and Appendix).
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Figure 6.9 Results from the profiling, without nCalls and total time communicate
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When using Source Actor type std.Trigger the nCalls fire actor is the same for
all four scheduling strategies for both nbr = 1 and nbr = 4. The cumulative time
communicate is lower for New Round Robin and New Non-Preemptive com-
pared to Round Robin and Non-Preemptive (See Figure 6.10 and Appendix).
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When using Source Actor type std.Counter the nCalls fire actor almost remained
the same for nbr = 1 and nbr = 4 for new Round Robin. The nCalls fire actor is much
higher for nbr = 1 (732578) compared to nbr = 4 (379792) for Round Robin. There
is a significant difference between the nCalls fire actor for nbr = 1 (266067) and nbr
= 4 (109867) for new Non-Preemptive, and we can see that it has the lowest value of
the whole graph for both nbr = 1 and 4. The nCalls fire actor is much higher for nbr
= 1 (725333) compared to nbr = 4 (192717) for Non-Preemptive (See Figure 6.11).
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When using Source Actor type std.Counter the nCalls strategy and nCalls
communicate are lowest for Non-Preemptive nbr = 4 (See Figure 6.12).
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Figure 6.12 Results from the profiling, without nCalls fire actor
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When using Source Actor type std.Counter new Round Robin have higher cu-
mulative time strategy, cumulative time fire actor and cumulative time com-
municate for both nbr = 1 and nbr = 4 compared to Round Robin. The cu-
mulative time strategy and the cumulative time fire actor are higher for Non-
Preemptive nbr = 1 compared to New Non-Preemptive nbr = 1, but almost
the same for Non-Preemptive nbr = 4 compared to New Non-Preemptive nbr
= 4. The cumulative time communicate is the lowest for Non-Preemptive
nbr = 4 comparing to all the other scheduling strategies (See Figure 6.13).
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When using Source Actor type std.Counter new Round Robin have higher
cumulative time communicate and total time communicate for both nbr
= 1 and nbr = 4 compared to Round Robin. The cumulative time com-
municate is slightly higher for Non-Preemptive with nbr = 1 and slightly
lower for Non-Preemptive with nbr = 4 compared to New Non-Preemptive
with both nbr = 1 and nbr = 4. The total time communicate is almost
the same for New Non-Preemptive and Non-Preemptive (See Figure 6.14).
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When using Source Actor type std.Counter Non-Preemptive have the highest total
time fire actor compared to all the other scheduling strategies. Round Robin with
nbr = 1 have higher total time fire actor than New Round Robin. The total time
strategy is pretty much the same for both New Round Robin (nbr = 1 and nbr
= 4) and Round Robin (nbr = 1 and nbr = 4). Non-Preemptive with nbr = 1 has
higher total time strategy compared to New Non-Preemptive (See Figure 6.15).
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6.3 Discussion

The new strategy using Round Robin Scheduling policy and the new strategy using
Non-Preemptive Scheduling policy take much less time to produce 5000 tokens
independently on the application quantity when using source of type std.Trigger
with nbr = 1 and 4 than the other two Round Robin and Non-Preemptive scheduling
policies. This is because the New strategy choses the right actors that will be fired
as described in Section 5.2 instead of trying to fire all available actors. As seen in
Figure 6.3 when changing nbr to 4 it means that there are four tokens that will arrive
to the actor inport at the same time instead of just one token at a time. That means
that the in-port queue for an actor will be full and the system will not be able to send
four new tokens until the previous four tokens have been processed and the queue is
empty again. It seems like the new strategies are much better than Non-Preemptive
and Round Robin when it is some time delay between the sent tokens.

In the other situation when using a source actor of type std.Counter there is no
time delay between the received tokens. It means that 5000 tokens are trying to be
pushed through the whole application as fast as possible. In the plot for nbr = 1 in
Figure 6.4 it can be seen that the New Non-Preemptive has less steep slope than
the other three slopes. For nbr = 4 the new Round Robin has a greater slope than
the other three which means that it takes longer time. The New Non-Preemptive
does not behave as expected because its slope decreases as the quantity of running
applications increases. The reason for this unexpected behaviour is unknown and
when the collection of data and plotting was repeated the result remained the same.
Therefore, profiling is used to ensure that the results are reliable.

In general it can be seen from Figure 6.6 to Figure 6.10 that the total time for
strategy, fire actor and communicate functions for New Round Robin and New
Non-Preemptive are lower than for Round Robin and Non-Preemptive. This means
that the new strategies are better because they produce 5000 tokens in less time
when we use std.Trigger as a source since the system has not much load on it which
means the actors are not busy all the time. In Figure 6.7 the nCalls strategy and
the cumulative time strategy are much higher in the new strategies than in Round
Robin and Non-Preemptive and that is because Round Robin and Non-Preemptive
try to fire every available actor, while the new strategies try to fire only a few actors
that have the highest probability to be fired. It takes more calls to strategy to find
the actors that actually can be fired. It can be seen that Figure 6.6 to Figure 6.10
consist with Figures 6.2 and 6.3.

The other scenario when using std.Counter as a source has a property that the
actors are always busy. The total time for strategy, fire actor and communicate
functions are compared with each other in Figures 6.11 to 6.15. For all strategies it
can be seen that the sum of all the Non-Preemptive total times for nbr = 4 is 1,639
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which is lower than the sum of all the total times for New Non-Preemptive which
is 1.8 see Figure 6.15. From Figure 6.9 it can also be seen that Non-Preemptive has
the lowest cumulative total time and from Figure 6.13 it can be seen that it has the
lowest cumulative time strategy as well. Figure 6.12 shows that Non-Preemptive
also have the lowest nCalls strategy and nCalls communicate. This means that the
Non-Preemptive is best when the actors have much to do.

6.4 Conclusion

New Non-Preemptive and New Round Robin are beneficial to use when the most
actors are not busy for every strategy function call. This applies when std.Trigger
is used as a source because there is a time delay between the tokens and the system
will not need to wait for the actors to process the tokens because the actors will
have enough time to process them. However, when std. Counter is used as a source
it is more beneficial to use Non-Preemptive scheduling policy as a strategy because
in this situation the actors will be busy all the time and skipping search after the
best actors to fire will save more time to process the tokens.

6.5 Future Work

There are a lot of possibilities for future work in the different areas of Calvin. For
Calvin’s scheduler these results concluded that the new scheduler is not always ben-
eficial, but only in some scenarios. Future work could focus in building a method
that easily can change between the old and the new scheduler depending on the
load, since it is a better to use the old scheduler that will process all tokens if there
is a high load on actors and better to use the new scheduler that will select tokens
to process if there is a low load on actors. The method could be inspired by for
instance NIC (Network Interface Controller) that uses a similar switch between poll
and event-based modes depending on high or low loads.
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6.6 Appendix

Profile Results

------------------------------------------------------------------------------
NewRR_Trigger = 0.05
nbr = 4:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
167324 1.383 195.478 0.001 strategy
1551307 4.786 178.966 0.000 _fire_actor_once
167324 1.717 11.050 0.000 communicate
------------------------------------------------------------------------------
NewRR_Trigger = 0.05
nbr = 1:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
170636 1.394 202.213 0.001 strategy
1625110 4.868 185.691 0.000 _fire_actor_once
170636 1.735 11.046 0.000 communicate
------------------------------------------------------------------------------
RR_Trigger = 0.05
nbr = 4:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
40775 1.418 302.940 0.007 strategy
2824234 7.609 285.328 0.000 _fire_actor_once
40775 2.190 13.473 0.000 communicate
------------------------------------------------------------------------------
RR_Trigger = 0.05
nbr = 1:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
40439 1.373 296.611 0.007 strategy
2803430 7.420 279.272 0.000 _fire_actor_once
40439 2.209 13.294 0.000 communicate
------------------------------------------------------------------------------
NewNonp_Trigger = 0.05
nbr = 4:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
170242 1.406 211.436 0.001 strategy
1573371 5.859 194.533 0.000 _fire_actor_non_preemptive
170242 1.745 11.383 0.000 communicate
------------------------------------------------------------------------------
NewNonp_Trigger = 0.05
nbr = 1:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
173258 1.373 207.220 0.001 strategy
1541336 5.715 191.105 0.000 _fire_actor_non_preemptive
173258 1.655 10.681 0.000 communicate
------------------------------------------------------------------------------
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Nonp_Trigger = 0.05
nbr = 4:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
37988 1.297 304.344 0.008 strategy
2634478 8.338 287.263 0.000 _fire_actor_non_preemptive
37988 2.170 13.307 0.000 communicate
------------------------------------------------------------------------------
Nonp_Trigger = 0.05
nbr = 1:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
40690 1.397 317.619 0.008 strategy
2824045 8.954 300.095 0.000 _fire_actor_non_preemptive
40690 2.232 13.473 0.000 communicate
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6.6 Appendix

Profile Results

------------------------------------------------------------------------------
NewRR_Counter
nbr = 4:

------------------------------------------------------------------------------
ncalls tottime cumtime percall function
52130 0.446 102.793 0.002 strategy
416731 1.154 85.466 0.000 _fire_actor_once
52130 2.716 16.046 0.000 communicate
------------------------------------------------------------------------------
NewRR_Counter
nbr = 1:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
57508 0.470 106.507 0.002 strategy
417672 1.176 86.196 0.000 _fire_actor_once
57508 3.074 18.961 0.000 communicate
------------------------------------------------------------------------------
RR_Counter
nbr = 4:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
5938 0.382 51.962 0.009 strategy
379792 0.982 47.665 0.000 _fire_actor_once
5938 0.367 3.481 0.001 communicate
------------------------------------------------------------------------------
RR_Counter
nbr = 1:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
11035 0.536 94.615 0.009 strategy
732578 1.926 85.017 0.000 _fire_actor_once
11035 0.680 8.315 0.001 communicate
------------------------------------------------------------------------------
NewNonp_Counter
nbr = 4:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
13856 0.125 49.076 0.004 strategy
109867 0.894 42.961 0.000 _fire_actor_non_preemptive
13856 0.788 5.724 0.000 communicate
------------------------------------------------------------------------------
NewNonp_Counter
nbr = 1:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
13988 0.203 65.423 0.005 strategy
266067 1.340 58.657 0.000 _fire_actor_non_preemptive
13988 0.781 6.118 0.000 communicate
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------------------------------------------------------------------------------
Nonp_Counter
nbr = 4:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
3117 0.154 46.268 0.015 strategy
192717 1.129 42.727 0.000 _fire_actor_non_preemptive
3117 0.195 3.172 0.001 communicate
------------------------------------------------------------------------------
Nonp_Counter
nbr = 1:
------------------------------------------------------------------------------
ncalls tottime cumtime percall function
10856 0.519 109.249 0.010 strategy
725333 2.711 99.852 0.000 _fire_actor_non_preemptive
10856 0.665 8.156 0.001 communicate
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