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Abstract

As infrastructural systems become ever more complex and interconnected, they may
also become ever more vulnerable to system-wide faults due to local disturbances.
As such it is of great importance to design these system to be resilient, i.e. to be able
to withstand and recover from disturbances or new conditions. In the case of traffic
networks, while much work has been done to analyze the stability of these systems,
there is still little work to analyze their resilience.

This thesis analyzes a variant of Daganzo’s Cell Transmisson Model to explore
the robustness of equilibria in dynamical flow networks in response to various per-
turbations. In particular it tries to characterize the set of perturbations which force a
freeflow equilibrium out of freeflow. Since any such equilibrium is locally asymp-
totically stable, the retention of freeflow would thus ensure a retention of stability.

The report first finds the smallest necessary size (in `1-norm and for arbitrary
affine cost functions) of any deterministic perturbations to the exogenous inflows to
violate freeflow. Second it finds bounds for the probability of the equilibrium flows
to violate freeflow due to stochastic exogenous inflows; either normally or inde-
pendent, exponentially distributed. Third it finds the new equilibrium matrix and a
condition for the retention of freeflow following a single-cell routing perturbation.
Finally it simulates a simple network’s performance in response to periodic exoge-
nous inflows and cell mass increments, where it is shown that exogenous inflows
with feasible averages may still cause system-wide faults and that mass increments
are more disruptive the further away the affected cell is from a drain cell.
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Notation

Listed below is a short-hand for most of the notation used in this thesis.

1 An all-one vector of appropriate dimension.
R+ The set of non-negative real numbers.
R

n×m An n by m matrix with only real-valued elements. If m = 1 that
argument may be omitted, i.e. Rn×1 =Rn.

αi The cost of additional exogenous inflow to cell i.
A The associated cost of a perturbation.
γi(x) The flow control parameter for cell i using FIFO routing rule.
Γ(x) The diagonal Rn×n

+ flow control matrix using FIFO routing rule.
ΛF The set of exogenous inflows for which the (freeflow) equilibrium

flows are all below capacity.
σi(xi) The supply function for cell i.
ϕi(xi) The demand function for cell i.
Ci The capacity of cell i.
E The set of links/edges in the graph or network.
F The freeflow region, where there are no upstream congestion effects

for any cell.
G A graph consisting of (at least) a set of nodes and a set of links.
hi j The equilibrium weights which gives the effect of inflow u j on the

outflow of cell i at equilibrium.
H The Rn×n

+ equilibrium matrix describing the effects of the exogenous
inflows on the flow equilibrium.

n The number of nodes/cells in the network, n = |V|.
Ri j The fraction of the total outflow from cell i that goes to cell j.
R The Rn×n

+ routing matrix describing how flow is diverted within the
network.

R The set of cells who accept exogenous flow.
S The set of cells who diverts part of their outflow out of the network.
ui The exogenous inflow to cell i.
V The set of nodes/cells in the network.
xi The state/mass of cell i.
zi The total outflow from cell i.
z∗i The total outflow from cell i at equilibrium.
a≤ b In the case of vectors a,b of equal size N, this operation implies that a

is element-wise less than b, i.e. ai ≤ bi for all 1≤ i≤ N.
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1
Introduction

1.1 Background and purpose

Resilience—defined as the ability of systems to plan and prepare for, absorb, re-
spond to, and recover from disasters and adapt to new conditions [1]—has become
a key aspect in the design of critical infrastructure networks, such as energy or trans-
port systems. As they become ever more complex and interconnected, their response
even to small local perturbations may cause major cascading problems throughout
the system. This in turn makes the study of modeling and designing these networks
of ever more interest and importance.

In this thesis we will analyze traffic networks using a version of Daganzo’s
cell transmission model (CTM) [2, 3]. While CTM was used to model highway
traffic, later efforts has been made to apply similar models to urban traffic networks.
Much of these have focused on the stability of these models, stability of their flow
equilibria or the conditions for convergence. In [4] S. Coogan and M. Arcak expand
upon the CTM (and other models) to allow for more extensive results relating to
equilibria and convergence in highway networks, and in [5] they demonstrate the
stability properties of networks with diverging junctions, showing that they exhibit
global asymptotic stability and thus allowing for more general topologies. In [6]
E. Lovisari, G. Como and K. Salva show how the stability of the equilibrium is
dependent on the exogenous inflow and that there is a set of inflows for which there
are no equilibria.

The purpose of this thesis then is to instead examine the robustness of a net-
work’s flow equilibrium, in particular their ability to remain below flow capacities
following a perturbation. The goal of this examination is to characterize the set
of perturbations which retain freeflow in the network, where freeflow refers to the
states where no flows are stymied due to capacity issues. While the theoretical re-
sults primarily concern the linear system dynamics of the equilibrium, they may still
be of use for the study of nonlinear models of traffic networks.
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1.2 Limitations

1.2 Limitations

This thesis considers a a somewhat simplified model in that it is assumed time-
invariant. As such, some transient behaviours are not taken into account. In order to
have generally applicable results it will also not spend much focus on the particular
demand and supply functions and their effects on the equilibria, but for the demand
functions’ relation to the flow capacities.

1.3 Outline

The outline is as follows: in Chapter 2 we will describe the dynamical flow network
model analyzed in this thesis along with some basic concepts from graph theory.
We will describe the stability conditions and properties for our model and motivate
the choice of analyzing the equilibrium’s ability to remain in the freeflow region.

In Chapter 3 we will then analyze a flow equilibrium’s ability to accept ad-
ditional exogenous flow while remaining below flow capacity. We will thus only
consider non-negative inflow perturbations and we will use the `1-norm to compare
their sizes.

In Chapter 4, we will formulate the properties of the equilibrium flows in
response to stochastic exogenous inflows (either Gaussian or exponentially dis-
tributed). We will then formulate upper and lower bounds for the probability of
the equilibrium flows remaining below flow capacities.

In Chapter 5 we will move on to single-row routing matrix perturbations and
find an expression for which we can update the equilibrium matrix. We will then
use this to determine for which perturbations the new flow equilibrium is below
flow capacity.

In Chapter 6 we will numerically analyze the ability of a simple, cyclic network
using FIFO routing to accept various perturbations while being able to either remain
or return to freeflow and give some qualitative measures for which perturbations are
more pernicious. We will also demonstrate that some of these issues are eliminated
by either eliminating all cycles or by using non-FIFO routing.

Finally we will summarize our results in Chapter 7 and suggest future work.
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2
Background

This Chapter has four sections: Section 2.1 will describe basic graph theory along
with important definitions and concepts, while Sections 2.2 will describe the dynam-
ical flow network model and its properties. Section 2.3 will describe some particu-
lars of the cell transmission model and an expression for the freeflow equilibrium.
Section 2.4 will then describe and motivate the explicit problem formulation for this
thesis. Section 2.1 is largely based on [7] while Sections 2.2-3 are based on [8] and
[6].

2.1 Networks as graphs

To model a network one often describes it as a graph G = (V,E), consisting of two
sets:

• the set of nodes/vertices V where each node is assigned a number so that
V = {1,2, . . . ,n}. Here, n = |V| is the number of nodes,

• the set of links/edges E ⊆ V ×V which consists of ordered pairs (i, j) where
node i is linked to node j.

If the existence of link (i, j) implies the existence of link ( j, i), the network is undi-
rected; if not, it is directed. Links (i, i), i.e. links whose head and tail nodes coincide,
are called self-loops. The out-neighborsNi of a node i is the set of nodes j for which
the links (i, j)∈ E , while its in-neighbors N̄i is the set of nodes j for which the links
( j, i) ∈ E .

In certain cases it is also useful to associate a positive scalar value Wi j to each
link to denote its “strength” or “size”. If so, the graph is instead described as G =
(V,E ,W ) where the weight matrix W ∈ Rn×n

+ is a square matrix where Wi j > 0 if
(i, j) ∈ E and Wi j = 0 if (i, j) /∈ E . If the weights only take the values 0 or 1 the
graph is said to be unweighted.

A walk is a finite sequence of nodes γ = {γ0,γ1, . . . ,γl}, which starts in node
i = γ0 and ends in node j = γl , for which there exists a link (γh−1,γh) ∈ E for all
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2.2 The dynamical flow network model

h = 1, . . . , l. Here, l is the length of the walk and walks of length 0 is said to go from
a node to itself. Relatedly, a walk that does not pass through any node more than
once except for possibly the first and last node, i.e. γh 6= γk for any 0 ≤ h < k ≤ l
(except possibly γ0 = γl), is called a path. A path of length l ≥ 2 which starts and
ends in the same node is called a cycle. A graph that has no cycles is called acyclic;
else it is cyclic.

If there exists a path from node i to node j then it is said that node j is reachable
from node i. If all nodes in a graph are reachable from any other node, that graph is
said to be (strongly) connected.

For a length-l walk γ , its weight is the product of its l link weights:

Wγ =
l

∏
h=1

Wγh−1γh (2.1)

where walks of length 0 are said to have unitary weight. Relatedly, the sum of the
weights of all length-l walks can be found as the (i, j)-element of the weight matrix
to power l, i.e. (W l)i j. In particular, for unweighted graphs this coincides with the
total number of length-l walks from i to j. For acyclic graphs, it thus holds that
W k = 0 for some 1≤ k ≤ n (i.e. the weight matrix is nilpotent).

A (row) sub-stochastic matrix A is a matrix with non-negative entries for which
all row sums are less than or equal to one:

A1≤ 1. (2.2)

If all row sums are equal to one, the matrix is merely said to be stochastic. In com-
partmental systems with a sub-stochastic weight matrix W , a node i is said to be
out-connected if there exists a path from i to any node j for which ∑k Wjk < 1.

Weight matrices which adhere to (2.2) and for which all nodes are out-connected
have a spectral radius which is strictly less than 1, i.e. the largest absolute value of
any of the matrix’s eigenvalues is strictly less than one. Matrices W with a spectral
radius strictly less than one have the property that as k approaches infinity, W k→ 0.

2.2 The dynamical flow network model

In our model of a traffic network, we compartmentalize it into discrete stretches of
road. These need to be of comparable lengths and not too long. This is to avoid
odd results where e.g. mass entering the cell will immediately add to the outflow
from that cell several kilometers away. As such, longer stretches of road will be
discretized into line sub-graphs in our graph of the entire network.

These cells will be our nodes V = {1, ...,n} and our edges E are the connections
between them. In this model we allow no self-loops, meaning that (i, i) /∈ E for any
i ∈ V . Figure 2.1 shows an example three-way intersection while Figure 2.2 shows
how it may be discretized in space.
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2.2 The dynamical flow network model

Figure 2.1 Example three-way junction (courtesy of Open Street Map).

Figure 2.2 Discretized graph of the junction in Figure 2.1.

The state xi = xi(t) describes the (non-negative) amount of mass/traffic located
in cell i. The internal flow matrix F ∈Rn×n

+ denotes the non-negative flows between
the cells where Fi j is the flow from cell i to cell j. Due to the lack of self-loops,
Fii = 0 for all i ∈ V . Based on simple conservation of mass, the dynamics of the
state vector x = x(t) ∈ Rn

+ are

ẋ = u+FT
1−F1−w (2.3)

where u ∈ Rn
+ is exogenous input/inflow, FT

1 ∈ Rn
+ is the flow into each cell from

its neighboring cells, F1 ∈Rn
+ is the flow out from each cell to its neighboring cells

and w ∈ Rn
+ is the exogenous outflow.
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2.2 The dynamical flow network model

We define source cells R ⊆ V as the subset of cells which accepts exogenous
inflow (e.g. from highway on-ramps): if i /∈R then ui = 0. In turn, drain cells S ⊆V
is the subset of cells with outflow going out of the system (e.g. to highway off-
ramps): if wi > 0 (for any time t), then i ∈ S. If i ∈R or there exists a path starting
in a cell j ∈R and ending in i, then the cell i is inflow-connected. Similarly, if i ∈ S
or there exist a path starting in a cell i and ending in a cell j ∈ S, then the cell i
is outflow-connected. If all cells are outflow-connected (inflow-connected) then the
network topology T = (V,E ,R,S) is called outflow-connected (inflow-connected).

Revised notation
To better describe the flow dynamics, we introduce the notation

z = F1+w (2.4)

for the total outflows for all cells. We introduce an additional condition which says
that if there is no mass in a cell, it can not have any outflow:

xi = 0 =⇒ zi = ∑
j∈V

Fi j +wi = 0 (2.5)

This condition also ensures that x(t)≥ 0 for all times t ≥ 0. Using this notation also
allows us to rewrite internal flows and the external outflows as in (2.6).

Fi j = Ri jzi, wi = (1−∑
l∈V

Ril)zi, i, j ∈ V (2.6)

where Ri j describes what fraction of the outflow zi goes to cell j. As such, Rii = 0
since we have no self-loops and ∑ j∈V Ri j ≤ 1 for all i ∈ V since the sum of all
outflows (internal and external) from a cell has to equal zi. Relating all this new
notation to (2.3) yields

ẋ = u− (I−RT )z (2.7)

where R ∈ Rn×n
+ is a routing matrix. In this notation, a cell i ∈ S necessarily has

∑ j∈V Ri j < 1 or wi = 0 at all times (as per (2.6)). Rather than keeping track of the
external outflows w, this notation allows us to focus on the internal system flows
and cells in S (and by extension the system) will lose mass continuously.

Monotone dynamical flow networks and their stability
Early work regarding the CTM assumed linear relations between the state of the
system and the flows. To better describe real traffic behaviours, we thus have to
expand the class of dynamical flow networks. A monotone dynamical flow network
is of the form

ẋ = u+ f (x) (2.8)

where f (x) is Lipschitz-continuous (the absolute value of the rate of change is
bounded) and (∇ f (x))T is a compartmental matrix. Monotone systems have some
useful stability properties, as described in [8]:
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2.3 Cell transmission model

Theorem 2.1. For a monotone dynamical flow network

ẋ = u+FT (x)1−F(x)1−w(x),

(i) the partial order between external inflows and initial states is preserved by
the state at any time;

(ii) the `1-distance between any two solutions is never increasing

Moreover, if the external inflows u are constant in time, then:

(iii) every equilibrium x∗ is stable;

(iv) an equilibrium x∗ is globally asymptotically stable iff it is locally asymptoti-
cally stable;

(v) an equilibrium x∗ is asymptotically stable if the compartmental matrix
(∇ f (x∗))T is outflow-connected;

(vi) the trajectory started from x(0) = 0 is always entry-wise monotonically non-
decreasing in time, hence convergent to a (possibly infinite) limit.

Here, `1-distance refers to the `1 norm where a distance d1 between two vectors
p and q is calculated as

d1(p,q) = ‖p−q‖1 =
n

∑
j=1
|p j−q j|. (2.9)

In other words, statement (ii) from Theorem (2.1) says that for any two solutions
x, x̃ and times t, s≥ 0 it holds that

‖x(t + s)− x̃(t + s)‖1 ≤ ‖x(t)− x̃(t)‖1. (2.10)

2.3 Cell transmission model

In this section we will explore the particulars of a class of dynamical flow network
models known as the cell transmission model. This will serve to support our choice
in limitations for this thesis.

Demand and supply functions
To account for congestion effects in a network we first introduce demand functions
ϕi(xi) that give an upper bound for the outflow zi given the current mass xi, i.e.
0≤ zi ≤ ϕi(xi). These functions are assumed to be

• Lipschitz-continuous,
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2.3 Cell transmission model

• non-decreasing (the more mass, the more outflow can be provided),

• concave (as the current mass grows larger, outflow increments less or equally
as much from additional mass),

• ϕi(0) = 0 (in accordance to (2.5)).

To model the back propagation of congestion down-stream, where the current mass
of a cell impacts its ability to accept more mass, we introduce (non-negative) supply
functions σi(xi) which are assumed to be

• Lipschitz-continuous,

• non-increasing (the more mass, the less inflow can be accepted),

• concave (larger the current mass, the more inflow decrements from additional
mass),

• σi(xi) = 0 for all xi ≥ x̄i where x̄i ≥ 0 is a possibly infinite constant represent-
ing cell i’s buffer capacity.

The supply functions can then describe the supply constraints

u+RT z≤ σ(x) (2.11)

which say that, at all times, the sum of all exogenous and endogenous inflows to a
cell has to be less than or equal to the value of that cell’s supply function for the
current mass in that cell.

The demand and supply functions interact to determine the flows in the net-
work given the current state of the system. The effect of this interaction can be
demonstrating by plotting the demand function of a cell i alongside its supply func-
tion, as in Figure 2.3. The throughput of cell i is initially dependent only on the
demand function. However, at some point the demand and supply intersect and
ϕi(xi) = σi(xi). Past this point the flow is instead dependent on the supply func-
tion. This is a variant of the fundamental diagram of traffic flows which illustrates
that as the mass of a cell increases the resulting outflow will only increase up to
point, after which congestion effects will impede the throughput.

Motivated by this behaviour, we define a cell’s flow capacity as

Ci = max
xi≥0

(min [ϕi(xi), σi(xi)]) (2.12)

i.e. as the largest value of the minimum of the two for any non-negative value of xi.
As we will see later, this puts a constraint on any potential flow equilibria.

Outside the freeflow region
The freeflow region F is the set of system states which do not violate the supply
constraints (2.11):

F = {x ∈ Rn
+ : u+RT

ϕ(x)≤ σ(x)} (2.13)
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2.3 Cell transmission model

Figure 2.3 The demand and supply functions of a cell, alongside the resulting cell
flow.

In other words: in the freeflow region, there are no (upstream) congestion effects at
any cell.

But how do we deal with the situations where we are outside the freeflow region,
i.e. where the current state of the system violate the supply constraints? Remember
that the demand function only provides an upper bound for a cell’s outflow:

0≤ zi ≤ ϕi(xi) (2.14)

To ensure that we always adhere to supply constraints we introduce flow control
parameters γ which stymie the flows whenever necessary, in effect slowing down
traffic. For example, if we were to stymie the total outflow of a cell i whenever that
cell violates the supply constraints:

zi = γiϕi(xi), 0≤ γi ≤ 1
0≤ γiϕi(xi)≤ ϕi(xi) (2.15)

This means that whenever we are in the freeflow region γi = 1 and we simply have
that our outflow is zi = ϕi(xi). How we choose the flow parameters depend on the
routing rules that apply to the cell. These routing rules can apply to the total outflow
or to each individual outgoing link of the cell, and as such the flow dynamics may
be much more complex outside the freeflow region than they are within it.

In the original (real-time) cell transmission model, the flow control parameters
are chosen according to a first-in-first-out (FIFO) routing rule which stymies the

15



2.3 Cell transmission model

total outflow of a cell if any of its out-neighbors are congested:

z = Γ(x)ϕ(x), Γ(x) = diag(γ(x))

γi(x) = sup

{
ξ ∈ [0,1] : max

k∈Ni

(
ξ ∑

h∈V
Rhkϕh(xh)−σk(xk)

)
≤ 0

}
(2.16)

where Ni is the set of out-neighbors for cell i. As we can see, this has no effect on
our network flows while in the freeflow region. This routing strategy is not neces-
sarily monotone outside the freeflow region however (page 14 of [8]) and as such
Theorem 2.1 may not apply in all such cases. As we will see in Chapter 6, by using
other routing strategies one can have a globally monotone network.

The freeflow equilibrium
In the freeflow region, assuming a constant inflow u and a constant routing matrix
R, we can find the freeflow equilibrium flows by rearranging (2.7):

z∗ = (I−RT )−1u = Hu (≤C) (2.17)

where the notation H = (I−RT )−1 for the equilibrium matrix has been introduced
for future benefit. Here we have also stated the necessary condition that these equi-
librium flows be at or below their respective flow capacities. By definition, all cell
masses are constant at equilibrium and as such the flow into and flow out of a cell
must be equal. Any net difference would give rise to a change in cell mass.

Since R is sub-stochastic (R1 ≤ 1), then if the network is out-connected the
matrix (I−RT ) has a spectral radius less than 1 which allows us to re-write (2.17)
as

z∗ = (I−RT )−1u = (I +RT +(RT )2 +(RT )3 + . . .)u (2.18)

analogous to a geometric series. The rightmost side of (2.18) illustrates that such an
equilibrium equals the direct exogenous inflow ui, plus the weighted sum ∑ j∈V R jiu j
of the external inflows to cells one step upstream from i, plus the weighted sum
∑ j∈V(R2) jiu j of the external inflows to cells two steps upstream from i, and so on.
This shows that hi j = Hi j is the sum of the weights of all walks which start in cell
j and end in cell i, and as such is a measure of the influence/gain of inflow j on the
equilibrium flow of cell i.

A set of particular interest related to these freeflow equilibria is the feasibility
region ΛF which is the set of inflows u for which the equilibrium flows z∗ are all
below cell flow capacities C:

ΛF = {u ∈ Λ : z∗i ≤Ci ∀ i ∈ V; z∗ = (I−RT )−1u} (2.19)

In this region, the freeflow equilibrium flows are all allowable given the network’s
flow capacities. Outside of this region the flow equilibrium is instead dependent on
the routing rules in use. Due to the wide range of options and permutations of these
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2.4 Problem formulation

routing rules, this region is particularly interesting if we are to make any generally
applicable observations.

Finally, we will state that all freeflow equilibria have an unambiguous corre-
sponding mass equilibrium found using the inverse demand function:

x∗i = ϕ
−1
i (z∗i ). (2.20)

Properties of equilibria
We can make use Theorem 2.1 to make further statements regarding the stability of
any equilibria in monotone systems:

Corollary 2.1.1. Consider a transportation network with topology G = (V,E ,R),
demand functions ϕi, supply functions σi, and capacities Ci. For a constant inflow
vector u and a constant, out-connected routing matrix R, let H = (I−RT )−1. Then,

(i) if Hu ≤ C then x∗ = ϕ−1(z∗) is a locally asymptotically stable equilibrium
for the (original) CTM;

(ii) if Hu 6≤C, then the CTM admits no equilibrium.

We will prove this corollary:

(i) the condition guarantees that x∗ is a free-flow equilibrium for the original
CTM. Local asymptotic stability follows from Theorem 2.1.

(ii) Assume by contradiction that there exists such an equilibrium x∗ for the CTM.
Let zi be the outflow from cell i at such an equilibrium. Then, flow balance
implies that zi = ∑ j R jiz j + ui in each cell i. Hence (I − RT )z = u so that
z = Hu. On the other hand, the supply and demand constraints imply that
zi ≤ ϕi(x∗i ) and zi ≤ σi(x∗i ) so that zi ≤Ci for every i.

2.4 Problem formulation

Our goal for this thesis is to characterize the set of perturbations which retain
freeflow in a network with a constant, out-connected routing matrix R. In short,
we want to find the cases where the new, perturbed equilibrium z̃∗ is a freeflow
equilibrium and therefore abides by

z̃∗ ≤C (2.21)

We will do this for a few reasons, the primary one being that any freeflow equi-
librium is asymptotically stable: globally so for a globally monotone network and
locally otherwise. As such it is of great interest to know which perturbations cause
the network to leave the freeflow region as we are guaranteed to find a (stable)
equilibrium following any perturbations not in that critical set.
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2.4 Problem formulation

Another reason is that we have an explicit expression for such equilibria in
(2.17) (and (2.18)) which allows us to analyze them further than we might other
equilibria which depend more directly on the routing rules as well as the supply and
demand functions in the network. For the purpose of this thesis’s theoretical results
(Chapters 3–5) we will therefore only take into account the flow capacities C relat-
ing to the equilibrium flows and we will ignore any congestion due to the supply
constraints.
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3
Deterministic inflow
perturbations

In this Chapter, a network equilibrium’s tolerance to deterministic inflow distur-
bances is examined. We will assume that the routing matrix R is constant and we
will ignore the effects of any supply constraints in the analysis. The perturbed ex-
ogenous inflow is given by

ũ = u+ û, û≥ 0 (3.1)

where u ∈ ΛF are the constant inflows causing some original freeflow equilibrium
z∗. At some time the (non-negative) disturbances û are applied and assumed to be in
effect sufficiently long for a new equilibrium to be reached. Our goal is to find the
smallest additional inflow ûmin (measured in the `1 norm) necessary to force the new
inflow vector outside the feasibility region ΛF , i.e. so that it violates the condition
in (2.21):

z̃∗ = Hũ≤C.

This is found in Section 3.1. In Section 3.2 we will generalize this to where all
inflows are given disturbance costs αi and the minimal disturbance cost Amin neces-
sary to violate (2.21) is determined.

3.1 Smallest critical perturbation

For this section we want to find the smallest inflow as measured in `1 norm. In `1
norm, the size of a vector p is found as

‖p‖1 =
n

∑
j=1
|p j|. (3.2)

Since we assume that the perturbations û are non-negative, we may re-write this
into a simpler expression:

‖û‖1 = ∑
j∈R

û j. (3.3)
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3.1 Smallest critical perturbation

The perturbed inflow ũ is assumed to be applied for a sufficiently long time that a
new equilibrium is reached. This new equilibrium z̃∗ is given as

z̃∗ = Hũ = H(u+ û) = z∗+Hû. (3.4)

Combining equations (2.21) and (3.4) gives us a condition for the disturbance

z̃∗ = z∗+Hû≤C ⇐⇒ Hû≤C− z∗. (3.5)

In other words, the inflow perturbation needs to adhere a condition similar to (2.21),
only with more restrictive residual capacities. For each cell i it holds that

(Hû)i ≤ (C− z∗)i ⇐⇒ ∑
j∈V

hi jû j ≤Ci− z∗i . (3.6)

A critical disturbance causes equality in (3.6) for at least one cell. To find the small-
est disturbance necessary to violate (3.5), it is first necessary to determine the small-
est disturbance necessary to cause this equality for each individual cell. In order to
determine this disturbance, we will first make a proposition:

Proposition 3.1. For any cell i∈V: if there exists a set of cells k, l, . . .∈R such that
hik = hil = . . . > hi j for all j 6= k, l, . . . ∈ R the smallest disturbance (in `1-norm)
which causes equality in (3.6) for the chosen cell is distributed among the inflows
k, l, . . . or can be focused on any of the single inflows.

To prove Proposition 3.1, consider two disturbances which cause equality in
(3.6) for a cell i: û(1) ≥ 0 which has its disturbance solely affecting inflow k (chosen
as in Proposition 3.1), and û(2) ≥ 0 which has its disturbance divided along two
inflows k and m (where him ≤ hik). Thus

(Hû(1))i =Ci− z∗i , (Hû(2))i =Ci− z∗i

(Hû(1))i = (Hû(2))i ⇐⇒ hikû(1)k = hikû(2)k +himû(2)m

[ûk = û(1)k − û(2)k ]

hik(û
(2)
k + ûk) = hikû(2)k +himû(2)m

hikûk = himû(2)m

ûk =
him

hik
û(2)m . (3.7)

Here him
hik
≤ 1 (the special case where hik = 0 coincides with cell i being in-

disconnected, making it impervious to inflow perturbations) which allows us to
finally determine that

‖û(1)‖= û(2)k + ûk ≤ û(2)k + û(2)m = ‖û(2)‖ (3.8)
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3.1 Smallest critical perturbation

Analogous arguments can be made when the disturbances of û(2) are divided among
more than two inflows or entirely on other inflows than k. �

Proposition 3.1 finally allows us to find the size of the smallest disturbance δi
which causes equality in (3.6) for cell i:

δi =
Ci− z∗i

max
j∈R

(hi j)
(3.9)

In other words, it is found by dividing the residual capacity by the largest inflow
weight in row i of H corresponding to a source cell j ∈ R. Finally, the smallest
disturbance ûmin necessary to violate (3.5) is given by:

ûmin = min
i∈V

(δi) = min
i∈V, j∈R

(
Ci− z∗i

hi j

)
. (3.10)

A perturbation any larger than this quotient focused on the exogenous inflow j cor-
responding to the minimum would thus violate the condition.

We have thus found the smallest necessary perturbation to force the new equi-
librium outside of freeflow. Alternatively, we have found an upper bound for the
size of a perturbation that can arbitrarily affect the inflows with no risk of forcing
the inflow vector out of the feasibility region. As we can see in (3.10) it is not suf-
ficient to merely see which residual capacity is the smallest to find our bound. We
also have to consider how reachable they are from the inflows; since hi j is the sum
of the weights of all walks which start in cell j and end in cell i, the size of hi j is
proportional to how reachable cell i is from cell j. Our bound ûmin is thus depen-
dent on the interaction between the original equilibrium z∗ and the general network
topology.

Example
To illustrate the use of the expression found, we will consider a simple cyclic net-
work of four cells as shown in Figure 3.1. This network has two source cells (cells
1 and 2) and only one drain cell (cell 4). The routing matrix, capacity vector and
unperturbed exogenous inflows for this network are given in (3.11).

R =


0 0.6 0.4 0
0 0 0.4 0.6
0 0 0 1

0.2 0 0 0

 , C =


4

3.2
3
5

 , u =


2.3
0.5
0
0

 (3.11)

The equilibrium matrix and the resulting flow equilibrium are

H =


1.25 0.25 0.25 0.25
0.75 1.15 0.15 0.15
0.80 0.56 1.16 0.16
1.25 1.25 1.25 1.25

 , z∗ =


3.00
2.30
2.12
3.50

 (3.12)
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3.2 Cost of attack

1 3

2

4
u1 w

u2

Figure 3.1 Simple cyclic network

Next we will calculate the residual capacities and disturbances δi j for j = 1,2 ac-
cording to (3.9).

C− z∗ =


1.00
0.90
0.88
1.50

 , δ =


0.80 4.00
1.20 0.78
1.10 1.57
1.20 1.20

 (3.13)

Here we can see that ûmax = 0.78 (applied to the exogenous inflow to cell 2) and that
while cell 3 has the smallest residual capacity, it can manage perturbations larger
than 1 to either inflow while remaining below capacity. This illustrates that it is
insufficient to merely see which residual capacity is the smallest to find a network
equilibrium’s tolerance to additional exogenous inflow.

3.2 Cost of attack

The previous section assumes that the associated cost of disturbing any inflow is
equal. In this section, the case where each inflow has a positive cost associated with
it is considered. For a disturbance vector û and a cost vector α where αi > 0 for all
i ∈R we introduce a cost function as:

A(û;α) = α
T û = ∑

j∈R
α jû j (3.14)

The previous section explored the case where all the weights were equal (and uni-
tary), i.e. α = 1. Now the goal is instead to find the minimal cost Amin necessary
for any disturbance vector û to violate the condition in (3.5) for some cost vector
α . These costs could correspond to e.g. the probability of increased flows or some
infrastructural cost related to the current inflows. No matter how these costs are cho-
sen, the first step is to define the disturbance to inflow j ∈R which causes equality
for cell i in (3.5):

δi j =
Ci− z∗i

hi j
. (3.15)
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3.2 Cost of attack

If we apply any of these disturbances to their corresponding exogenous inflows, the
remaining residual capacity for cell i will be zero. The cost of applying any single
perturbation δi j is found as

A(δi j,α) = α jδi j. (3.16)

There is no benefit in partitioning a disturbance along several exogenous inflows.
To illustrate this, imagine that we divide our perturbation ûex along inflows k and l.
To ensure that the remaining residual capacity of cell i equals zero, it will have to
be a convex combination:

ûex
j =


λδik, j = k
(1−λ )δil , j = l
0, otherwise.

(3.17)

From this we can discern that the cost of this disturbance will be:

A(ûex,α) = αk(λδik)+αl((1−λ )δil)

[αkδik = a, αlδil = b]

A(ûex,α) = λa+(1−λ )b (3.18)

Here we can see that we can minimize our cost further by changing the value of
λ : if a > b the cost is minimized for λ = 0 and if a < b the cost is minimized for
λ = 1. Only in the special case a = b does it not matter what λ we choose, the cost
will remain constant no matter our choice. Similar arguments can be made against
partitioning a disturbance along 3 or more inflows. We have thus shown that there
is no benefit in partitioning a disturbance along several inflows.

All that remains is to see which product between the size of an individual pertur-
bation and the cost for the corresponding inflow is the smallest for us to determine
Amin:

Amin = min
i∈V, j∈R

(α jδi j) = min
i∈V, j∈R

(
α j

Ci− z∗i
hi j

)
(3.19)

This result is (not very surprisingly) quite similar to the one found in Chapter 3.1,
only we also take into consideration the cost of applying a perturbation on the asso-
ciated exogenous inflow j.

Example
Let us use the same example as from Section 3.1, only this time we will have dif-
ferent costs for the two inflows. We will choose the costs so that a greater cost
correspond to an increased likelihood of perturbations along that inflow. Let us say
that while inflow u1 is known to be rather stable, inflow u2 is known to fluctuate.
We will therefore choose α2 > α1, in particular we will choose the cost vector:

α =
(
1 1.25 0 0

)T (3.20)
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3.3 Addendum - Capacity perturbations

For this network, the resulting perturbations δi j for j = 1,2 are:

δ =


0.80 4.00
1.20 0.78
1.10 1.57
1.20 1.20

 (3.21)

To find the associated costs of the perturbations in δ , we multiply the first column by
α1 = 1 and the second column by α2 = 1.25. This gives us the costed perturbations
δ α :

δ
α =


0.80 5.00
1.20 0.98
1.10 1.96
1.20 1.50

 (3.22)

From this we can see that Amin = 0.80 is the minimal cost necessary to force the new
equilibrium out of the feasibility region. And unlike the example in Section 3.1, we
have changed both which cell i which is at risk as well as which exogenous inflow
j which causes the most issue.

3.3 Addendum - Capacity perturbations

While we have focused on inflow perturbations in this Chapter, the results we have
gathered can be used to address the issue of flow capacity perturbations:

C̃ =C−Ĉ, Ĉ ≥ 0. (3.23)

In particular we can give an upper bound Ĉmax on the largest reduction in flow ca-
pacities (measured in `1-norm) for which the equilibrium remains a freeflow equi-
librium:

Ĉmax = min
i∈V

(Ci− z∗i ). (3.24)

In short, Ĉmax equals the smallest marginal capacity of any cell. Only perturbations
greater than this are able to force the equilibrium out of freeflow.
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4
Stochastic inflow
perturbations

In this Chapter, we will explore a network’s resilience to stochastic perturbations in
the exogenous inflows. Since exogenous inflows are unlikely to be entirely deter-
ministic and predictable, this analysis may be of better use in some cases. Like in
Chapter 3, we will again limit our analysis to the cases where the routing matrix R is
constant and where there are no upstream congestion effects, allowing us to ignore
the effects of any supply functions.

We assume that the exogenous inflows are random variables whose expected
values who are within the feasibility region ΛF , and that they change slowly enough
for the network to reach a new equilibrium before changing again. We will then
formulate some bounds for the probability for the resulting equilibrium flows to
exceed the flow capacities:

P(z̃∗ 6≤C) = 1−P(z̃∗ ≤C) = 1−P(C− z̃∗ ≥ 0) (4.1)

In Section 4.1 we will give the general expressions for our lower and upper prob-
ability bounds. In Section 4.2 we will assume that the inflows are normally dis-
tributed while in Section 4.3 they are assumed independently, exponentially dis-
tributed. Whether it is reasonable for the exogenous inflows to have these distribu-
tions will be noted in their respective sections. Finally in Section 4.3 we will do a
short example to show the validity of these bounds.

4.1 Probability bounds

Due to the complex connections of a real-world network and the possible interde-
pendencies of its exogenous inflows, it is difficult to formulate very strict bounds
for any probabilities with regard to the resulting network flows. As such the bounds
described in this thesis are quite lenient and make as few assumptions of the char-
acteristics of either the network or the exogenous inflows as possible. In short, the
range of values between our lower and upper bounds may be quite large.

25



4.1 Probability bounds

For our lower bound of the probability that the equilibrium flows will exceed
their capacities, we will choose the largest probability for any single cell to exceed
its capacity (independent of the other cells):

bL = max
j∈V

[
P(z̃∗j >C j)

]
= max

j∈V

[
1−P(z̃∗j ≤C j)

]
(4.2)

That this is a lower bound is quite intuitive: the probability that at least one capacity
is violated is necessarily greater than or equal to the largest likelihood that any
single capacity is violated. To illustrate the validity of this bound, consider the Venn
diagram in Figure 4.1 where the three circles correspond to the probability of cell
1–3 to exceed its capacity. The probability that the equilibrium flows will exceed
capacities is thus represented by the area enclosed by those three circles. This total
area is by necessity greater than or equal to the largest area of any individual circle,
with equality if one circle encloses the others or if the circles (and thus the events)
coincide entirely.

Figure 4.1 A Venn diagram portraying three events and their interdependencies.

For our upper probability bound we will make use of Boole’s inequality (also
known as union bound) which states that if we denote E1,E2, . . . ,En as the events
where cell 1,2, . . . ,n exceeds its capacity, it holds that

P

(
n⋃

j=1

E j

)
≤

n

∑
j=1

P(E j). (4.3)

In other words: the probability that at least one capacity is violated is smaller than
or equal to the sum of the individual probabilities that a capacity is violated (with
equality if all these events are independent). If we again consider Figure 4.1 we can
see that this seems reasonable. The total area enclosed by the three circles must be
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4.2 Normally distributed inflows

smaller than the sum of the individual areas since there is some overlap. If there was
no overlap, the complementary (independent) result becomes apparent.

As such, our upper bound bU is

bU = min

[
1, ∑

j∈V
P(z̃∗j >C j)

]
= min

[
1, n− ∑

j∈V
P(z̃∗j ≤C j)

]
(4.4)

where we have taken into account that we sum over n cells and that a probability
can not be larger that 1. In conclusion, the probability that the equilibrium leaves
the feasibility region is bounded according to

bL ≤ P(z̃∗ 6≤C)≤ bU . (4.5)

4.2 Normally distributed inflows

In this section we will assume that the exogenous inflows u are Gaussian, or nor-
mally distributed. This assumption has some issues though in that Gaussian vari-
ables are supported for all u ∈R, which causes an issue when we consider that we
only allow non-negative inflows u ≥ 0. During the rest of this section we will as-
sume that the probability of negative inflows is sufficiently small for the effects of
this possibility to be negligible to the final results.

We start off by declaring some basic notation for the distribution of any exoge-
nous inflow j ∈R:

u j ∼ N(u j,σ
2
j j), u j = E[u j], σ

2
j j = Var[u j] = E[(u j−u j)(u j−u j)

T ] (4.6)

i.e. u j is the mean of u j and σ2
j j is its variance. This can be rewritten as

u j = u j + ε j, E[ε j] = 0, Var[ε j] = E[ε jε
T
j ] = σ

2
j j (4.7)

which “reimagines” u j as being a constant inflow u perturbed by Gaussian noise
ε j with mean 0 and variance σ2

j j. The benefit of this second convention will prove
itself shortly, where we will determine the properties of the (random) equilibrium
z̃∗:

z̃∗ = Hũ = H(u+ ε), E[z̃∗] = Hu = z∗ ≤C,

Var[z̃∗] = E[(Hε(Hε)T ] = HE[εε
T ]HT = HΣHT (4.8)

where u is the mean vector of u and Σ is the (pseudo-) covariance matrix of ε . We
also introduce z∗ as the expectation of the equilibrium flows, for which all flows are
at or below their capacity. For any single cell i ∈ V we can further determine:

z̃∗i = ∑
j∈V

hi jũ j = ∑
j∈V

hi j(u j + ε j), E[z̃∗i ] = ∑
j∈V

hi ju j = z∗i

Var[z̃∗i ] = E[ ∑
j∈R

hi jε j( ∑
k∈R

hikεk)] = ∑
j∈R

∑
k∈R

hi jhikE[ε jεk] = ∑
j,k∈R

hi jhikσ
2
jk (4.9)
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4.3 Exponentially distributed inflows

where σ2
jk = Σ jk is the covariance of inflow noises j and k. Using these results, we

can give an expression for the probability that equilibrium flow i will be greater than
its capacity:

P(z̃∗i >Ci) = 1−P(z̃∗i ≤Ci) = 1−Φ

 Ci− z∗i√
∑

j,k∈R
hi jhikσ

2
jk

 (4.10)

where Φ(x) is the cumulative distribution function for the standard normal distri-
bution (i.e. one with mean 0 and standard deviation 1). Now we finally have all we
need to give some bounds for the probability that the equilibrium will be in the fea-
sibility region: as the lower bound bL we have the largest probability for any single
cell to exceed their capacity:

bL = max
i∈V

P(z̃∗i >Ci) = max
i∈V

1−Φ

 Ci− z∗i√
∑

j,k∈R
hi jhikσ

2
jk


 . (4.11)

As our upper bound bU we have the sum of the individual cells’ probabilities of
exceeding their capacities:

bU =min

[
1, ∑

i∈V
P(z̃∗i >Ci)

]
=min

1, n−∑
i∈V

Φ

 Ci− z∗i√
∑

j,k∈R
hi jhikσ

2
jk


 . (4.12)

4.3 Exponentially distributed inflows

For this section we assume that the inflows are independent and exponentially dis-
tributed. One benefit of this assumption is that exponential distributions are only
supported for non-negative values, meaning that there are no concerns with applica-
bility as there were for Gaussian inflows. This analysis is instead somewhat limited
by requiring the inflows to be independent, but we find results that may be useful
even for cases where the dependencies between the inflows are sufficiently weak.

In any case, we assume to have independent, exponentially distributed inflows
according to:

u j ∼ Exp(a j), fu j(y) = a j exp(−a jy) , y≥ 0

E[ui] =
1
a j

, Var[ui] =
1
a2

j
, ∀ j ∈R (4.13)
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4.3 Exponentially distributed inflows

where exp(x) = ex, the exponential function. The equilibrium outflow for cell i is
found as

z̃∗i = ∑
j

hi ju j = ∑
j

zi j (4.14)

where we have introduced the notation zi j = hi ju j. The distribution of each zi j where
j ∈R is found as

zi j = hi ju j ∼ Exp
(

a j

hi j

)
= Exp(βi j) (4.15)

where βi j =
a j
hi j

. If there is only one exogenous inflow (|R| = 1) then we know the
probability density function for z̃∗i as

fz̃∗i
(zi) = βi j exp(−βi jzi) . (4.16)

For two or more exogenous inflows (|R| ≥ 2), assuming that the rates βi j are all
pairwise distinct (i.e. βi j 6= βik for all j 6= k ∈ R), [9] states that the equilibrium
flow z̃∗i gets the probability density function

fz̃∗i
(zi) =

[
∏
j∈R

βi j

]
∑

k∈R

 exp(−βikzi)

∏
l∈R
l 6=k

(βik−βil)

 . (4.17)

The limitation that the rates need to be pairwise distinct is a rather lenient, though
not insignificant one. As such, we will be satisfied by saying that “for two or more
independent, exponential inflows it holds that the equilibrium generally has the
probability distribution function seen in (4.17).”

The cumulative density function for z̃∗i is found as

Fz̃∗i
(zi) =

∫ zi

0
fz̃∗i
(x)dx = P(z̃∗i ≤ zi). (4.18)

Further, the probability that the equilibrium flow z̃∗i will violate its capacity Ci is:

P(z̃∗i >Ci) = 1−P(z̃∗i ≤Ci) = 1−Fz̃∗i
(Ci) (4.19)

Now we finally have all that we need to find our probability bounds for the equilib-
rium z̃∗ to violate at least one flow capacity: the lower bound bL is again found as
the largest probability for any single inflow to exceed its capacity:

bL = max
i∈V

P(z̃∗i >Ci) = max
i∈V

(
1−Fz̃∗i

(Ci)
)
. (4.20)

And for the upper bound bU we again use Boole’s inequality:

bU = min

[
1, ∑

i∈V
P(z̃∗i >Ci)

]
= min

[
1, n−∑

i∈V
Fz̃∗i

(Ci)

]
. (4.21)
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4.3 Exponentially distributed inflows

Example
To illustrate these results we will again make use of our simple cyclic network from
Chapter 3, only this time we will add another exogenous inflow to cell 2.

1 3

2

4
u1 w

u2

Figure 4.2 Simple cyclic network with two source cells.

C =


4
3
3
5

 , u =


2.3
0.5
0
0

 (4.22)

For the Gaussian inflows, we will say that their standard deviations equal a fourth
of their mean values, rendering it very unlikely (less than 1 in 30 000) for any of
the flows to be negative. We will also say that the correlation coefficient for the
two inflows is ρ = 0.2. Under these specifications, the resulting probability bounds
bG for the probability of the Gaussian inflow being outside the feasibility region is
presented in (4.23).

bG
L = 0.0841≤ P(z̃∗ 6≤C)≤ 0.1729 = bG

U (4.23)

In order to numerically test these values, we will approximate the true probability
using simple cumulative frequency analysis from one million simulations in Matlab.
Our estimate is presented in (4.24).

P(z̃∗ <C)≈ 0.0842 (4.24)

The exponential inflows u1 and u2 are assumed to have means 2.3 and 0.5 respec-
tively, meaning that a1 = 1

2.3 ≈ 0.43 and a2 = 1
0.5 = 2. The resulting probability

bounds bE are shown in (4.25).

bE
L = 0.2601≤ P(z̃∗ 6≤C)≤ 0.9842 = bE

U (4.25)

We will approximate the true probability in the same manner as for the Gaussian
case, though for two cases: one where the inflows are independent and one where
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4.3 Exponentially distributed inflows

they are correlated with a coefficient ρ = 0.2. This allows us to see how valid our
bounds are even in cases where the assumption of independent inflows is untrue.
The resulting probabilities are shown in (4.26).

P(z̃∗indep <C)≈ 0.2822, P(z̃∗corr <C)≈ 0.2835 (4.26)

We can see that for this particular example both choices of inflow distributions gave
estimated probabilities that skirted toward their respective lower bounds, even for
the correlated exponentially distributed inflows. We can also see that in our example,
our theoretical results for exponentially distributed inflows were of use even when
those inflows where somewhat correlated.

If we compare our theoretical probability distributions for the equilibrium flows
(4.17) to that of our simulation, we can see some difference between them. Fig-
ure 4.3 shows the simulated and theoretical probability distributions of cells 2 and
4 for the case of independent exogenous inflows, where we see that the simulated
distribution follows the theoretical one quite closely (i.e. the red line follows the
blue bars). In turn, Figure 4.4 shows the difference between the correlated distri-
butions and our independent distributions for cell 2 and 4. There is a noticeable
difference between the area enclosed by the independent distribution and the area
enclosed by the (simulated) correlated distribution. As earlier claimed however, for
a sufficiently “small” correlation of ρ = 0.2 the difference is not very big and our
probability bounds still hold in this case. This serves to demonstrate that our results
can still be of use even when the inflows are not entirely independent.

Figure 4.3 Comparison between the simulated and theoretical probability density
functions of cells 2 and 4 for independent exogenous inflows.
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4.3 Exponentially distributed inflows

Figure 4.4 Comparison between the probability density functions of cells 2 and 4
for the cases of correlated and independent exogenous inflows .
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5
Routing matrix
perturbations

In this section, we will explore the effects of routing matrix perturbations:

R̃ = R+ R̂ (5.1)

where R̂ is the perturbation matrix. In particular, the effect of single-row perturba-
tions on the equilibrium matrix will be analyzed in Section 5.2. Section 5.3 will
find a condition for whether the resulting, new equilibrium is a freeflow equilibrium
following such a routing matrix perturbation. We will also have a short discussion
of some rules that our perturbations must follow for them to have reasonable real-
world interpretations in Section 5.1.

A real-world analogue of these perturbations could for instance be wide-spread
use of GPS-routing, which may have a noticeable effect on the effective routing
ratios in a network. Further causes of altered traffic behaviour could be sobriety
checkpoints or faulty beliefs of reduced capacities among drivers.

5.1 Perturbation rules

For this section, we will remind ourselves that a network is interpreted as a graph
G = (V,E ,R) where V is our nodes/cells, E is our links and R is our (sub-stochastic)
routing matrix. To ensure that perturbations have sensible, real-world analogues we
should introduce some rules for perturbations R̂ to R. First some necessary condi-
tions for R̃ = R+ R̂:

(i) preserves non-negativity of R̃

This ensures that there are no negative flows. Also, since R describes stochastic
fractions, negative entries have no reasonable interpretation.

(ii) preserves sub-unitary row sums: R̃1≤ 1
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5.2 The new equilibrium matrix

This has two effects: it ensures that no cell generates mass out of nowhere (since
∑ j∈V Ri j > 1 would imply that we can route an excess of the total outflow for cell
i) and also that the power series interpretation of (I− R̃T )−1 still holds (since the
spectral radius remains less than one).

(iii) adheres to link topology

This is to ensure that no links are introduced that are not allowed with respect to
the topology. E.g. allowing one to move from one side of town to the other without
passing through town, or to move over water where there is no bridge. This also
ensures that the network remains in/out-connected.

There is one final rule which we may want to introduce, but which is less appar-
ent in its necessity or interpretation:

(iv) does not change row sums: R̂1= 0

This means that the fraction of a cell’s outflow that leaves the system remains un-
changed. This has the somewhat odd interpretation that all flows always redirect
within the network, meaning that we assume that no-one’s response to being unable
to use a link would be to (however temporarily) leave the system. Or indeed the
opposite, where increased ability to use a link would cause one to remain in the
system rather than leave it.

5.2 The new equilibrium matrix

In this section we will explore the effects of single-row perturbations to the routing
matrix, corresponding to perturbing how the outflow from a single cell is distributed.
This will give us an insight into the wider effects of such perturbations on the equi-
librium. This could in turn be used to quickly or in real time assert whether e.g. a
re-routing due to construction or an accident will cause issues for the equilibrium.
The perturbations described in this section are assumed to adhere to at least rules
(i)–(iii) in Section 5.1.

The Sherman-Morrison formula states that for an invertible square matrix A ∈
R

n×n and two column vectors v,w ∈ Rn, the matrix A+ vwT is invertible iff 1+
wT A−1v 6= 0 and its inverse is given by

(A+ vwT )−1 = A−1− A−1vwT A−1

1+wT A−1v
(5.2)

Our first step is thus to match our notation for a perturbation on row i to the one
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5.2 The new equilibrium matrix

described in the formula:

v =


r̂1
r̂2
...

r̂n−1
r̂n

 , w j =

{
−1, j = i
0, otherwise

}
, wvT =−R̂ =−


0
...
v
...
0

 (5.3)

A = I−RT , A−1 = H =

H1
...

Hn

 , A+ vwT = I−RT − R̂T (5.4)

where H j denotes row j of H, r̂ j is the perturbation to routing factor ri j and where R̂
is our perturbation matrix. As noted above, for the new matrix inverse to even exist,
we have to ensure that

1+wT Hv = 1−Hiv = 1− ∑
j∈V

hi j r̂ j 6= 0. (5.5)

For the inverse to exist, the sum of the products of the equilibrium weights and the
routing changes to the corresponding cell can not equal 1. Using basic linear algebra
(and the invertible matrix theorem in particular), we can surmise that this coincides
with making the rows and columns of I−RT − R̂T linearly dependent, rendering
the matrix rank deficient. This may also coincide with making one or more cells of
R̃ out-disconnected, which would mean that a subset of one or more cells merely
accumulate any mass that they receive. As such, the calculation (5.5) may serve as a
quick check to see whether a perturbation is likely to cause major issues throughout
the network.

The numerator A−1vwT A−1 of (5.2) is calculated as:

H(−R̂T )H =−

0 · · · H1v · · · 0
...

...
...

0 · · · Hnv · · · 0

H =−


hi1H1v hi2H1v · · · hinH1v

hi1H2v hi2H2v
...

...
. . .

hi1Hnv · · · hinHnv


(5.6)

where we in the first step perform the multiplication of H(−R̂T ), before finally
multiplying by H from the right. Collecting the results from (5.2)–(5.6) allows us
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5.3 The new equilibrium flows

to write an explicit formulation of the new equilibrium matrix:

H̃ = (I−RT − R̂T )−1 = H +
1

1−∑ j∈V hi j r̂ j


hi1H1v hi2H1v · · · hinH1v

hi1H2v hi2H2v
...

...
. . .

hi1Hnv · · · hinHnv


(5.7)

where the subtraction in (5.2) is cancelled by the sign of the numerator as seen in
(5.6). Before fully analyzing this result, we will write the expression for a single
element h̃kl of the new equilibrium matrix following a perturbation to the routing of
cell i:

h̃kl = hkl +
hil ∑m∈V hkmr̂m

1−∑ j∈V hi j r̂ j
. (5.8)

From this we see that the overall effect of the perturbation is dependent on the term
1

1−∑ j hi j r̂ j
. If ∑ j hi j r̂ j ≈ 1 the overall effect of the perturbation is greatly increased,

while the overall effect is lessened the further away from 1 the sum gets. We can
also see that if ∑ j hi j r̂ j < 1 the overall sign of the perturbation corrections will be
positive; if ∑ j hi j r̂ j > 1 the sign is instead overall negative.

Beyond that, the change of each row of the equilibrium matrix is primarily pro-
portional to the term Hkv. Redirecting the outflow from i towards cells m whose
exogenous inflow most affect the stationary outflow z∗k will increase all elements of
the row (since hil is non-negative as H is a non-negative matrix) and thus increase
z̃∗k . Redirecting flow away from these cells will instead decrease all elements of the
row, reducing the stationary outflow z̃∗k . This is quite intuitive if one considers that
hkm is in some sense a measure of how reachable cell k is from cell m; increasing the
inflow to cell m should increase its overall mass, which in turn increases its outflow
which we have concluded is very able to reach cell k.

Finally, the change of each column of H̃ is proportional to hil . As such, the
change in effect of exogenous inflow l on the equilibrium flows z∗ is in large de-
pendent on the degree to which z∗i is dependent on the exogenous inflow to cell l.
As hil is a measure of this, it is natural that changing the outflow distribution of a
cell which does not depend much on the exogenous inflow to cell l should not have
much of an effect on the influence of that inflow for all other stationary flows.

5.3 The new equilibrium flows

Now that we know the effect of a perturbation on the equilibrium matrix, let us
explore the effect on the equilibrium flows. In particular, whether they are still below
capacities. Another way to frame the issue: changing the routing matrix may deform
the feasibility region (compare (2.19)). Our goal is to see whether an exogenous
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inflow u which was in the feasibility region before the perturbation still remains
there after the perturbation.

For the purposes of this analysis, we will again assume that the routing of cell
i has been perturbed by the perturbation vector v =

(
r̂1 . . . r̂n

)T . We will begin
by writing the new perturbed equilibrium matrix in full:

H̃ = H + Ĥ, Ĥ =
HR̂T H

1−∑ j∈V hi j r̂ j
. (5.9)

In other words Ĥ = H̃−H is the difference between the new and old equilibrium
matrices. Going forward it will prove useful to not complete the calculations in the
numerator. After the perturbation we get the new equilibrium:

z̃∗ = H̃u = (H + Ĥ)u = z∗+ ẑ∗ ≤C ⇐⇒ ẑ∗ ≤C− z∗ (5.10)

where we have introduced ẑ∗ = z̃∗− z∗ as the difference between the new and old
equilibrium flows (note that ẑ∗ is not necessarily non-negative). Like in Chapters 3
and 4, we again arrive at an expression which needs to adhere to some (residual)
capacity constraints. We can however make some further analysis:

ẑ∗ =
HR̂T H

1−∑ j∈V hi j r̂ j
u =

HR̂T

1−∑ j∈V hi j r̂ j
z∗ =

Hvz∗i
1−∑ j∈V hi j r̂ j

≤C− z∗ (5.11)

where we first perform the operation Hu = z∗, and then see that due to the structure
of HR̂T (as seen in (5.6)), HR̂T z∗ = H(−vwT )z∗ = Hv(−wT z∗) = Hvz∗i . From this
result we can see for each element k of ẑ∗:

ẑ∗k =
Hkvz∗i

1−∑ j∈V hi j r̂ j
≤Ck− z∗k (5.12)

where Hk is again row k of H. Now we have all that we need to give a condition for
whether the new equilibrium will remain below capacity (or alternately: whether
an inflow vector u will remain in the feasibility region) after a (single row) routing
matrix perturbation. We will collect our result in a proposition:

Proposition 5.1. If u ∈ ΛF : Following a perturbation to row i of the routing matrix
(as described in (5.1) and (5.3)) which adheres to (at least) rules (i)–(iii) in Section
5.1, the new equilibrium z̃∗ will be a freeflow equilibrium if

z̃∗ = H̃u≤C ⇐⇒ ∑l∈V hkl r̂l

1−∑ j∈V hi j r̂ j
≤

Ck− z∗k
z∗i

, ∀ k ∈ V. (5.13)

Note that we have divided both sides of (5.12) with z∗i to have the result in
(5.13). In the case where z∗i = 0 we can see that we can make any change we wish
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5.3 The new equilibrium flows

to row i of R without risk of violating capacity. Since this coincides with cell i being
inflow-disconnected (no exogenous flow reaches the cell) it stands to reason that
changing its routing has no bearing on the equilibrium.

In all other cases where z∗i > 0 the effective residual capacity Ck−z∗k
z∗i

is inversely
proportional to z∗i . In order to rationalize this, consider that we are changing how
we are routing the outflow of cell i at all times, including when at equilibrium. From
this perspective, it stands to reason that the larger the initial equilibrium flow (that
we are re-routing), the less margin we have for ill-considered perturbations.
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6
Dynamical perturbations

In this section, we will explore a network’s ability to withstand various dynamical
perturbations and either remain or return to the feasibility region ΛF and/or the
freeflow region F . This will be done by simulating the dynamics of a simple, cyclic
network. For this network we will explore the performance of a first-in-first-out
(FIFO) routing strategy. This routing will ensure that the network flows adhere to
the supply constraints (2.11):

u+RT z≤ σ(x)

From this analysis we hope to gain a better understanding of which perturbations are
particularly disruptive, and how we can relate those results to the network topology.
The simulations will be performed in Matlab where the dynamics are discretized
with zero-order hold in time steps of size h = 0.1. In Section 6.1 we will describe
the routing strategy alongside a more resilient alternative. In Section 6.2 we will
present our network topology alongside an acyclic alternative. In Section 6.3 we will
see which periodic exogenous inflows cause congestion deadlock. In Section 6.4
we will examine cell mass perturbations and how the network’s ability to withstand
them depend on which cell is perturbed.

6.1 Routing rules

As noted in Chapter 2, routing rules determine how flows are stymied within the
network to the supply constraints outside the freeflow region. In this thesis we will
primarily analyze first-in-first-out (FIFO) routing as described in (2.16):

z = Γ(x)ϕ(x), Γ(x) = diag(γ(x))

γi(x) = sup

{
ξ ∈ [0,1] : max

k∈Ni

(
ξ ∑

h∈V
Rhkϕh(xh)−σk(xk)

)
≤ 0

}
In words, FIFO routing will retain the routing proportions to a cell’s out-neighbors
at all times by limiting the total outflow of that cell. It does this by determining
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6.2 Network topologies

the largest value of ξ ∈ [0,1] for which the supply constraints hold for all of cell
i’s out-neighbors and stymieing the total outflow by that factor. This means that if
any of i’s out-neighbors are congested, the flow to all non-congested are stymied as
well. That makes this routing quite vulnerable to cause cascading congestion issues,
where the buildup of mass in cell i due to the inability of traffic to leave it will cause
cells upstream from i to have to stymie their flow, and so on.

To lessen the risk of these cascading congestion issues, one might instead con-
sider non-FIFO routing:

Fi j = Ri jγi j(x)ϕi(xi), γi j(x) = sup

{
ξ ∈ [0,1] : ξ ∑

h∈V
Rh jϕh(xh)≤ σ j(x j)

}
(6.1)

In effect, non-FIFO routing is FIFO routing applied on each individual outgoing link
of a cell i rather than that cell’s total outflow. This significantly lessens the risk of
cascading congestion issues at the cost of changing the effective routing proportions
in the network whenever there are congestion issues. A network wherein all cells
make use of non-FIFO routing can proved to be globally monotone which (per
Theorem 2.1) makes any equilibrium globally stable.

These routing rules can be thought to model different real-world situations. The
situation where the total outflow of a cell is stymied (FIFO) can be imagined to
model a single-lane stretch of road: if the vehicle in front can not enter the next
cell (e.g. it can not turn right onto another road), it will have to stop and wait for an
opportunity. This will cause all vehicles behind it—even those who are not going the
same direction—to have to wait as well (this may go some way to explain the name
first-in-first-out). Non-FIFO routing instead models a multi-lane stretch of road,
where there are individual lanes dedicated to all vehicles going a certain direction,
e.g. a two-lane road where vehicles can either turn right or go straight. As one can
imagine, real-world networks would use some combination of the two (or entirely
different rules) where some cells are best described by FIFO and some by non-
FIFO routing. For the purpose of this thesis however, we will only consider the
cases where all cells in the network share the same routing rule.

6.2 Network topologies

To test the performance of FIFO routing in response to various perturbations we
need some network to test it in. For this purpose we will yet again use the sim-
ple network that we have used in the examples of Chapters 3 and 4 for the basic
topology. Due to the formulation of FIFO (and non-FIFO) routing—which does not
take into account exogenous inflows—we have to introduce an intermediate cell be-
tween the exogenous inflow and the earlier cell 1. This is analogous to e.g. making
the on-ramp of a highway our intermediate cell. Implicit in this convention is the
assumption that we can not hinder any exogenous inflow; it will enter the system
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6.2 Network topologies

unhindered no matter how congested the intermediate cell is. Figure 6.1 shows the
new topology where we have renumbered the cells in order to introduce the inter-
mediate cell.

21 4

3

5
u w

Figure 6.1 Simple cyclic network.

We also want to examine how cycles in a network can impact the network’s
response to various perturbations. By simply removing the link from cell 5 to cell 2
we will remove all cycles present. Figure 6.2 show the acyclic network we will use
to contrast our cyclic network to.

21 4

3

5
u w

Figure 6.2 Simple acyclic network.

Now that we have described the basic topology of our networks, we will define
the other features of our networks. Starting with our routing matrices Rcyc and Racyc
for the cyclic and acyclic case, respectively.

Rcyc =


0 1 0 0 0
0 0 0.6 0.4 0
0 0 0 0.6 0.4
0 0 0 0 1
0 0.1 0 0 0

 , Racyc =


0 1 0 0 0
0 0 0.6 0.4 0
0 0 0 0.6 0.4
0 0 0 0 1
0 0 0 0 0

 (6.2)

Next we will define our demand and supply functions. For the purposes of this
thesis, we are not overly interested in how the structure and distribution of these
functions affects a network’s dynamics. We will therefore assume that they are both
linear in structure and with relatively large flow and buffer capacities. We will fur-
ther assume that the demand and supply functions are the same in structure for all
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cells. In (6.3) we give the explicit expressions for the demand and supply functions
of all cells.

ϕi(xi) =

{
xi, xi ≤ 10
10, xi > 10

, σi(xi) =

{
10− xi, xi ≤ 10
0 xi > 10

, i ∈ V (6.3)

From this we can discern that the flow and buffer capacities for all cells are Ci = 5
and x̄i = 10.

Before continuing on to expose our two networks to various perturbations, we
will make one final note; our two networks have different sets ΛF : Λcyc 6= Λacyc.
We will illustrate this by comparing the non-FIFO cases for a constant exogenous
inflow of u = 4.5 or u = 4.8. Figures 6.3 and 6.4 show the cell masses over time,
starting from empty cells, in response to these inflows.

Figure 6.3 Cell masses resulting from an inflow of u = 4.5 for the cyclic (left) and
acyclic (right) network.

Figure 6.4 Cell masses resulting from an inflow of u = 4.8 for the cyclic (left) and
acyclic (right) network.
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In Figure 6.3 we can see that the equilibria are different for the two networks;
all masses are greater in the cyclic network than they are in the acyclic network.
This is explained by considering that any mass which enters the cyclic network is
able to remain in it for longer than it is able to in the acyclic network. For this
particular example, that effect is coupled with the fact that we have redirected a
fraction of cell 5’s total outflow to feed back into the network, rather than have it
all leave the system directly (as in the acyclic case). In Figure 6.4 we can see that
these effects causes issues for an exogenous inflow u = 4.8 where the mass of cell 1
will increase beyond x1 = 10, even after the other cells in the network have arrived
at their “equilibrium” masses. In the acyclic case however, all cells are able to find
equilibrium masses which are even below xi = 5.

6.3 Exogenous inflow perturbations

In this section we will explore the influence of periodic exogenous inflows on the
cell masses. In particular we will explore the network’s ability to withstand inflow
which periodically exceeds the largest constant inflow in the feasibility region: u =
4.5. We will model this by having a constant inflow perturbed by either a sine wave
or a square wave, as described in (6.4).

usine(t) = 4.3+Asin
2πt
T

, usquare(t) =

{
4.3+A, t mod T < T

2
4.3−A, t mod T > T

2
, t ≥ 0 (6.4)

where 4.3 is the constant inflow, A is the amplitude of the variation and T is its
period. We will make special note of the fact that the average value of these inflows
(i.e. the average exogenous inflow) are both ū = 4.3, which is strictly within the
feasibility region. The exogenous inflows for a constant inflow ū = 4.3, A = 1 and
T = 10 are shown in 6.5 for both perturbations.

Figure 6.5 Exogenous inflows perturbed by periodic variations.

For these two perturbed inflows, we will see what pairings of perturbation am-
plitudes and periods will not cause any cell masses to grow unbounded. This was
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done by simply choosing e.g. the amplitude as a set value and then incrementing
the period until any cell masses diverge. Due to the time cost of simulating the net-
work dynamics, we will limit our analysis to only handle values determined to two
decimal places.

The fact that there exists a limit to these pairings for which no cell masses will
grow unbounded demonstrates that there the network is unable to unload the addi-
tional mass introduced during the peaks of the inflow during the valleys. Since the
network is cyclic this remaining mass will then cause additional congestion issues
during the next period, further exacerbating the buildup of mass in the network.

Our results are presented in Table 6.1 where increasing either the period or
the amplitude of the perturbation by 0.01 would cause a cell mass to increase un-
bounded. Figure 6.6 shows the cell masses in response to the two perturbed inflows
with amplitude A = 1 and period T = 5, which corresponds to no cell masses grow-
ing unbounded. Figure 6.7 conversely shows the cell masses in response to the two
perturbed inflows with amplitude A = 2 and period T = 5, which corresponds to at
least one cell mass growing unbounded.

Sine wave
Amplitude Period

1 8.75
1.08 8

2 4.28
2.15 4

Square wave
Amplitude Period

0.86 8
1.13 6
1.74 4
3.73 2

Table 6.1 Pairings of wave amplitudes and periods for which no cell mass will
grow unbounded.

Figure 6.6 Cell masses resulting from sine (left) and square (right) wave perturba-
tions with amplitude 1 and period 5.

From these results we can discern some near-inverse proportionality between
the amplitude and periods: if we double the period of our perturbations, we have
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6.3 Exogenous inflow perturbations

Figure 6.7 Cell masses resulting from sine (left) and square (right) wave perturba-
tions with amplitude 2 and period 5.

to (approximately) halve the amplitude. We can also see that for a given period,
the amplitude of a sine wave can be greater than that of a square wave without
causing issues. This is likely due to the fact that the total mass flowing into the
network during every inflow peak is greater for the square wave than for the sine
wave. Figure 6.8 shows the area during a peak for a sine wave of amplitude 1 and
period 2, enclosed in the area of a square wave of the same amplitude and period.
All the white space in the figure represents the additional mass introduced by a
square wave during a single peak compared to a similar sine wave. This additional
mass will cause more congestion issues which will negatively impact the network’s
ability to shed that additional mass.

Figure 6.8 Comparison of the areas of a sine and a square wave of the same am-
plitudes and periods.
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Finally, we will demonstrate that either removing the cycles or changing to non-
FIFO routing will entirely remove the risk of unbounded cell mass growth in our
network. Figure 6.9 shows the responses of non-FIFO routing and the acyclic net-
work when the inflow is perturbed by a sine wave of amplitude 2 and period 8.

Figure 6.9 Cell masses resulting from sine wave perturbation of amplitude 2 and
period 8 for non-FIFO routing (left) and the acyclic network (right).

Cell mass perturbations In this section we will explore the network’s resilience
in response to cell mass perturbations. We will model this by increasing the mass
of a single node at time t = 10 by some set amount and analyzing whether any cell
masses are caused to grow unbounded. We will test this for two different constant
inflows: u = 4.3 which is strictly within the feasibility region and u = 4.5 which is
the largest inflow in the feasibility region.

In the first case, we will find the cases where perturbations will cause congestion
issues which deadlock and become unable to solve themselves. In the latter, we will
find that although the constant exogenous inflow is as large as it can be, the network
can still accommodate more mass without causing any congestion deadlocks.

The results of these trials are presented in Table 6.2. In Figure 6.10 we show
the cell masses following mass increments of 3.16 to cell 1 and 13.14 to cell 5 for
u = 4.3. Figure 6.11 shows the cell masses following mass increments of 0.50 to
cell 1 and 5.08 to cell 5 for u = 4.5. Figure 6.12 shows the cell masses diverging
following perturbations of size 5 on cell 1 and of size 15 on cell 5 for a constant
inflow u = 4.3.

From these results we can see that the further away from a drain cell the per-
turbed cell is, the less the mass of that cell can be increased. This should not be very
surprising: the fewer steps necessary for the additional mass introduced to leave the
system, the less effect it should have on the network. But why can cell 3 withstand
larger perturbations than cell 4, even though all the outflow of cell 4 goes to cell
5 (thus making it very close to a drain cell)? That might be explained by consid-
ering how cell 4 acts as a buffer for the additional mass in the network: while the
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u = 4.3
Cell Mass increment

1 3.16
2 4.57
3 6.76
4 6.13
5 13.14

u = 4.5
Cell Mass increment

1 0.50
2 0.91
3 4.46
4 4.06
5 5.08

Table 6.2 Largest impulse for which no cell mass will grow unbounded.

Figure 6.10 Cell masses resulting from cell mass perturbations on cell 1 (left) and
cell 5 (right) for a constant inflow u = 4.3.

mass remains in the network for a longer time when cell 3 is perturbed, a portion
of that mass goes directly to cell 4. This increase in the mass of cell 4 does not
cause any additional congestion issues and merely acts as a temporary buffer until
the perturbation mass has had time to leave the network.

These results show that it is of greater import to watch for sudden influxes of cell
mass in cells which are far from drain nodes. This seems to be true no matter how
far into the feasibility region the constant inflow is, though the margins obviously
decrease as the exogenous inflow increases.

Finally, we will show that these effects can be entirely counteracted by either
introducing non-FIFO routing or by removing all cycles. Figure 6.13 shows the cell
masses in response to a mass increase of size 5 to cell 1 for a constant inflow of
u = 4.3 in those two cases.
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Figure 6.11 Cell masses resulting from cell mass perturbations on cell 1 (left) and
cell 5 (right) for a constant inflow u = 4.5.

Figure 6.12 Diverging cell masses resulting from cell mass perturbations on cell 1
(left) and cell 5 (right) for a constant inflow u = 4.3.

Figure 6.13 Cell masses resulting from cell mass perturbations on cell 1 for a
constant inflow u = 4.3 for non-FIFO routing (left) and the acyclic network (right).
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7
Conclusions

In this final Chapter, we will summarize and explicitly state our results. We will
hearken back to the introduction in Chapter 1 and show that we have fulfilled our
stated purpose and goal. We will then use these results and their limitations to sug-
gest refinements or approaches which may prove interesting to explore going for-
ward.

7.1 Summary

The purpose of this thesis has been to examine the robustness of a network’s flow
equilibria in response to various perturbations. Since the dynamics at or near max-
imum flow capacities are highly dependent on the routing rules as well as demand
and supply functions in use, we defined this as having all equilibrium flows below
capacities following the perturbation(s) for Chapters 3–5. The goal of this analysis
was to characterize the set of perturbations which retain freeflow within the system.

In Chapter 3 we examined the effects of deterministic perturbations on the ex-
ogenous inflows, defined as non-negative additions to one or more exogenous in-
flow. We compared these perturbations using the `1-norm so that we can make qual-
itative statements when comparing different perturbations. Using this measure, we
found a lower bound on the size of a deterministic perturbation necessary to force
at least one equilibrium flow beyond its capacity. We found that it is insufficent
to merely consider the smallest residual capacity; one has to also consider that the
residual capacities are affected to different degrees by increments to the different ex-
ogenous inflows. We later generalize the measure of perturbation size to any affine
cost function and find the smallest cost necessary to force at least one equilibrium
flow beyond its capacity.

In Chapter 4 we explored the effects of stochastic exogenous inflows on the
equilibrium flows. We find the probability distributions for each equilibrium flow
resulting from either normally or (independent) exponentially distributed inflows.
We also provided a short discussion on the issue of applicability with the two ap-
proaches, such as their support of negative values or their demand of inflow inde-
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pendence. For these two cases we then formulate upper and lower bounds for the
probability that these exogenous inflows will cause one or more equilibrium flow
to exceed its capacity. We find that our results are consistent with simulations, and
that our results regarding independent, exponentially distributed inflows are of use
even when the inflows are weakly correlated.

In Chapter 5 we calculated the effects of single-row perturbations to the routing
matrix on the equilibrium matrix. We find how the effect of such perturbations de-
pend on the structure of the initial equilibrium matrix and provide an alternative to
calculating the new matrix inverse for the perturbed routing matrix wholesale. We
then examine how these perturbations deform the feasibility region and find a test to
determine which exogenous inflows remain in the region following its deformation.

Finally in Chapter 6 we simulate a simple, cyclic network using FIFO routing
to explore the effects of periodic inflows and cell mass perturbations. We find that
exogenous inflows that periodically exceed the feasibility region can cause the net-
work to leave the freeflow region, even when the average of those inflows is strictly
within the feasibility region. For cell mass perturbations, we find that their ability to
accept additional mass without causing cascading congestion issues is proportional
to their distance to a drain node. We also find that other cells in the network may act
as buffers, where a cell that is further away from a drain cell than its out-neighbor
may still accept larger perturbations than the out-neighbor does. Finally, we find that
we can make our network impervious to both inflow and cell mass perturbations by
either removing all cycles or by introducing non-FIFO routing.

7.2 Future work

Going forward, one of the most interesting approaches to refine our results would be
to relate them to the supply constraints as well as the flow capacities. Using (2.11)
one could likely refine our results to put stricter limitations on any perturbations.

Another interesting exploration would be to examine the cases of time- and/or
state-dependent routing matrices. While we touched on non-FIFO routing (which
can be considered a form of state-dependent routing matrix) we did not take into
account the effects of e.g. traffic lights or vehicles choosing to alter their route in
response to down-stream congestion.

One avenue to explore would be to use the results from Chapter 5 to formulate
a bound for the necessary size of a routing matrix perturbation to violate flow ca-
pacities. Some initial efforts proved promising, but time constraints caused this line
of inquiry to be cut from the thesis.

The results from Chapter 6 are somewhat limited from the fact that we only
tested the one network topology and routing strategy. Doing similar trials for more
complex topologies (e.g. with several exogenous inflows), mixed routing strategies
or for different, non-linear demand and supply functions may shed more light on
the interaction between network structure and equilibrium robustness.
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7.2 Future work

Finally, it would also be of great interest to apply these results to real-world
topologies and see their applicability. Factors such as whether perturbations to ex-
ogenous inflows are likely to stay constant for sufficiently long for our results to
be of use or the applicability of Gaussian or exponential modeling of exogenous
inflows may affect the use of our results.
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