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Abstract
In this project, the configuration interaction (CI) method is used to study the nuclear
spectra and the interactions between the nucleons in certain nuclei. The NuShellX@MSU
code based on the CI method is used to calculate and compare the energy levels of the
nuclei 42

20Ca22,
42
22Ti20,

42
21Sc21,

48
24Cr24 on the basis of the J-scheme. The calculations test

the interactions denoted f742pn in the f7pn model space as well as fpmcc, fpmce in
the fp model space. The gx1acdpn interaction in the fppn model space is also applied
to add Coulomb interactions into the calculations and generate the mirror energy differ-
ence (MED). The MEDs are mainly calculated, using the NuShellX@MSU code, between
mirror nuclei 42

22Ti20-
42
20Ca22 and 48

25Mn23-
48
23V25.

The results of the calculations show that the larger model space that includes more
orbits for nucleons gives spectra with more energy states at the price of longer computa-
tional time. The different interactions give differences in the nuclear energy levels at a few
tens of keV. The rotational behaviour and the backbending phenomenon in the spectra
of 48

24Cr24 are studied. Furthermore, the MEDs’ spectra show the breaking of the isospin
symmetry between the nucleons. Predictions on the energy levels of 48

26Fe22 and the MEDs
between 48

26Fe22-
48
22Ti26 are also made for future experiments by the Lund nuclear structure

group.
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Chapter I

Introduction
In nuclear physics, the understanding of the properties of nuclei such as nuclear masses,
energy, wave functions and nucleon density distributions is always the key problem. There-
fore, many models have been developed to solve these problems and establish the structure
of a nucleus.

The liquid-drop model (LDM) suggests an analogy between a nucleus and a liquid
droplet. In this model, a nucleus is regarded as collection of neutrons and protons forming
a droplet of imcompressible fluid. The LDM led to many semiempirical mass formulae,
as, e.g. the semi-empirical mass formula (SEMF), which is used to approximate the mass
and other properties of a nucleus [1]. A great number of attempts have been made to
extend the LDM after that, but it finally comes to a failure with accounting for the “magic
numbers” (see the definition in Section 1.4).

The nuclear shell model was proposed and then developed by physicists, including
Eugene Paul Wigner, Maria Goeppert Mayer and J. Hans D. Jensen et al. in 1949,
when the “magic numbers” and other nuclear properties were successfully addressed and
explained [2]. After the discovery and development of the shell model, the understanding
of the nuclear structure turned into a new, prospective path. The modern nuclear shell
model is based on the assumption that the valence protons and neutrons of the nucleus
occupy several partially filled quantum states, which is analogous to the atomic shell model
[3]. With the emergence of powerful computational facilities, it is possible to understand
the complete spectroscopic characterization of nuclear levels. As an example, NuShellX
is a set of computer codes for shell-model research, written by Bill Rae [4]. It is used
to obtain exact energies, eigenvectors and spectroscopic overlaps for low-lying states in
shell-model Hamiltonian matrix calculations, using the method known as configuration
interaction (CI). As a set of wrapper codes, NuShellX@MSU is written by Alex Brown,
which uses data files for model spaces and Hamiltonians to generate input for NuShellX
and convert the NuShellX output into figures and tables for energy levels, gamma decay
and beta decay [5].

The main purpose of this project is to gain basic knowledge of the CI method and
many-particle theory. The CI method will then be used to study nuclear excitation spec-
tra and calculate the energy levels of many-interacting fermions through the programme
NuShellX. The test will mainly focus on the 40

20Ca core (see the reason in Section 1.4) with
2 nucleons added; 8 nucleons added and the CI method will be applied to the calcula-
tions of the energy differences between the mirror nuclei (see the definition in Section 2).
Comparisons on the calculation results with the experimental results and the results of
different numbers of valence nucleons will be analyzed.

Due to limitations of the method and the codes NuShellX@MSU, the calculation time
for large number of valence nucleons in relatively large model space can be very long
and many Hamiltonians constructed in the codes don’t contain complete interactions
between nucleons, e.g. Coulomb interaction. Therefore, the interaction types are selected
in certain model spaces and the final outputs of the energy levels may have deviations
with the experimental results.
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1 Nuclear physics

1.1 Nuclear composition

Between 1908 and 1913, one of the most famous experiments in nuclear physics was
pronounced and carried out by Hans Geiger and Ernest Marsden, under the direction
of Ernest Rutherford, where alpha particles were fired towards a thin gold foil [6]. The
particles scattered in large angles prove that there is an extremely small and dense matter
in an atom, which contains most of the mass and heavy positively charged particles. That
matter is the nucleus. The nucleus itself contains two types of particles; protons and
neutrons. The protons are those heavy positively charged particles as mentioned, which
charges are equal to the absolute value of those of the electrons. The symbol of a certain
atom is commonly recognized as A

ZX, where Z is the atomic number as well as the number
of the protons or electrons, A is the mass number, and the number of the neutrons N=A-Z.

Protons and neutrons are both fermions, with the half-integer spin. A fermion obeys
the Pauli exclusion principle, which states that a given quantum state cannot be occupied
by more than one fermion. The properties of the fermion influence the establishment of
the nuclear shell model.

1.2 Nuclear stability and radioactive decay

Inside a nucleus, there are two forces balancing the nuclear stability; the strong force
and the electric force. Only protons will be repelled by the electric force because of the
positive charge, and the strong force exists among the interaction of the protons, the
interaction of the neutrons and the interaction of the protons-neutrons. Figure 1.1 shows
the interactions between the nucleons when there are two neutrons and two protons.

Figure 1.1 The interactions between the nucleons [7]

The chart of nuclides is displayed in Figure 1.2, where every spot in the chart repre-
sents a nuclide. The y-axis is labeled neutrons, and the x-axis is labeled protons. The
different colors represents different types of nuclei. The black ones represents the stable
nuclides, and the other ones are explained in the chart. The solid black line represents
the theoretical position of the nuclides that have neutrons and protons with the same
number.
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Figure 1.2 Chart of nuclides [8]

The reason for stable nuclei not found beyond Z>82 is that adding protons in these
nuclei will increase the repulsive electric force pushing other protons out of the nucleus
without increasing the attractive force.

In Figure 1.2, one can determine where the α decay, β decay and positron emission or
electron capture occurs. These all belong to the radioactivity of the nuclei, as the way
the nuclei break up.
α particles are helium nuclei. The α decay decreases the mass number of the element

in order to reach a stable nucleus, so they are found at the top of the nuclear chart. β
particles are negatively charged electrons, and the β decay occurs when the nuclei have too
many neutrons lie above the belt of stability. Positron β+ emission and electron capture
occur below the belt of stability.

1.3 Nuclear Shell Model

In the atomic shell model, the electrons are arranged in orbits subject to the laws of
quantum mechanics. There are similarities between the atomic structure and the nuclear
structure. In 1949, the key role of the spin-orbit coupling in the one-body potential was
proposed by Maria Goeppert Mayer [9] and Otto Haxel, J. Hans D. Jensen and Hans Suess
[10]. One might think the nucleons would be colliding all the time and fail to maintain a
single-particle orbit because of the high density and strong force, but the Pauli exclusion
principle states that two or more identical fermions cannot occupy the same quantum
state within a quantum system simultaneously, so it supports the shell model picture as
strongly bound nucleons becomes confined to their orbits.
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There are three potential models which are most commonly used in the study of the
nuclear shell model. The first one is the three dimensional harmonic oscillator model. It
has the central potential VHO as

VHO(r) =
1

2
mω2r2 + const, (1.1)

where m is the nucleon mass and ω is is the angular frequency of the oscillator.
Figure 1.3 shows the energy levels of the neutrons for a harmonic oscillator potential,

where the letters “s, p, d, f, g, h, i...” represent the orbital angular momentum state l and
the numbers before the letters denote the quantum number n, which refers to the number
of times the state l has appeared. The number on the right of each level is the cumulative
number of neutrons that can be put into all the levels up to the indicated level.

Figure 1.3 Energy levels of neutrons in a parabolic potential well [11]

The second model is the Woods-Saxon model. The potential is given by the expression:

VWS(r) = − V0
1 + exp[(r −R)/a]

(1.2)

where the typical parameter is a≈0.65 fm [11].
Figure 1.4 shows the shape of the Woods-Saxon potential and the differences between

the proton potential well and neutron potential well. The difference is caused by the
Coulomb interaction between the protons.
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Figure 1.4 Woods-Saxon potential well for protons and neutrons

The two potential models above contribute to the development of the nuclear shell
model, but fail to predict the magic numbers after 20. A nucleus having the magic
numbers in either the proton or neutron is particularly stable with the occurrence of
strongly bound states. Those most widely recognized magic numbers are 2, 8, 20, 28, 50,
82 and 126 [12]. For example, 40Ca with 20 neutrons and 20 protons has double magic
numbers, which is used as the core in the calculations in Chapter III.

To improve the model, a spin-orbit coupling of the form Vso(r)~l · ~s is added to the
Woods-Saxon potential model:

V (r) = − V0
1 + exp[(r −R)/a]

+ Vso(r)~l · ~s. (1.3)

It brings the interaction between the orbital angular momentum ~l and the intrinsic spin
angular momentum ~s of the nucleon. The total angular momentum is defined as ~j = ~l+~s.
Its quantum number j has the properties of |l − s| ≤ j ≤ |l + s|, and the quantum number
mj associated with the z component of j has the property of −j ≤ mj ≤ j. So each j
has 2j + 1 mj values and each j orbit can have 2j + 1 protons or neutrons. After the
introduction of the spin-orbit coupling to the Woods-Saxon potential, the shell model
energy levels are shown in Figure 1.5.

The notation on the right side in the Figure 1.5 also has a relationship with the
quantum numbers. Taking 1s1/2 as an example, “1” represents the quantum number n ,
“s” represents l = 0, which are the same as those mentioned in the harmonic oscillator
potential model, and “1/2” represents j.

The nuclear shell model with spin-orbit coupling makes a successful prediction on
the magic numbers and this explains the main gaps between the energy levels. It also
indicates the collisions of the fermions in the low-lying nuclear levels are greatly suppressed
due to the Pauli principle. The shell model also suggests complex configurations for the
nuclei with nucleon numbers between the magic numbers, which require understanding
and calculations to learn the nuclear structure better.
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Figure 1.5 Energy levels of nucleons in a potential well with spin-orbit coupling [11]

1.4 Mirror energy difference (MED)

In nuclear physics, the isospin symmetry plays an important role because the neutron
and the proton have similar mass. In the isospin symmetry, t is introduced as the isospin
quantum number. A nucleon has t = 1/2 and two possible directions in isospin space. The
proton has tz = −1/2 and neutron has tz = +1/2. They can be considered different states
of the same particle. The states are distinguished by different isospin projections. One
assumes that the attractive nuclear force is independent of the charge with the isospin
symmetry, so the mirror nuclei, where one’s number of protons equals to the other’s
number of neutrons and one’s number of neutrons also equals to the other’s number
of protons (e.g. 42

22Ti20 and 42
20Ca22), should have exact symmetry between the analogue

states. However, the existence of the electromagnetic effects and small isospin breaking
components in the strong force can break this degeneracy, which are proved not only
including the Coulomb effects [13]. To study the breaking of the isospin symmetry, one
can focus on mirror energy differences (MED), which means the differences between the
excitation energy of those analogue states in the pair of mirror nuclide.

With shell-model calculations, the MEDs between the analogue states can be calcu-
lated. In this project, the MED of mirror nuclei is defined as

MED = EJ(Tz = −T )− EJ(Tz = +T ), (1.4)

where Tz =
∑A

i=1 tz. The yrast states (states with a minimum of energy) in N 6= Z nuclei
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and even-even N = Z nuclei will have total isospin quantum number T= |N − Z| /2,
so the MED expression defined should be the yrast states of proton-rich nuclei minus
neutron-rich nuclei. As the experimental results of some proton-rich nuclei are accessible,
one can compare the calculated MEDs to the experimental MEDs to learn about the
breaking of the isospin better. The f7/2 shell has been under the focus recently, so in
this project, the MEDs between the nuclei 42Ti & 42Ca, 48Mn & 48V will be determined
with the Coulomb interactions and without the Coulomb interactions using the codes
NuShellX, and the prediction on the MEDs between 48Fe & 48Ti. The focus will mainly
be on the effects of the Coulomb interactions due to the limitations of the codes.
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Chapter II

Method
The project uses the codes NuShellX to obtain the energy levels and the related spectra
of a certain nucleus. The codes written by Bill Rae were developed from old shell model
codes OXBASH and NuShell and are based on the method of CI.

2 CI method

The method of CI is more commonly found in quantum chemistry to calculate the prop-
erties of many-electron system. It is basically a way to find solutions of the Schrödinger
equation for a many-interacting-particle system [14].

In this work, we calculate the energy levels of the nuclei with few more nucleons in the
low-lying nuclear levels outside the core of a magic nucleus. These low-lying nuclear levels
outside the core are in shells called valence shells, and the valence nucleons can thus appear
and interact in the different states causing different “configurations”. In other words, the
wavefunction of the nucleus is expanded as a linear combination of several many-particle
basis states, which represent the configurations, and the states can mix with each other
to minimize the energy, which involves the interaction.

To obtain the energy levels of a certain nucleus, one should solve the many-body
Schrödinger equation and find the eigenvalues of the Hamiltonian describing the related
many-interacting-particle system.

The Schrödinger equation is defined as

ĤΨ(1, 2, ..., N) = EΨ(1, 2, ..., N). (2.1)

The Hamiltonian in the shell model can be denoted as

Ĥ = Ĥ1 + Ĥ2 =
N∑
i=1

[− ~2

2m
∇2

i + V (r)] +
1

2

N∑
j 6=i

V (ri, rj), (2.2)

where Ĥ1 is a one-particle operator composed of the kinetic energy and the mean field
potential, and Ĥ2 is a two-particle operator with the residual interaction between the
nucleons.

When one neglects the interaction part, the equation will only have a single-particle
Hamiltonian, which is much simpler, and the eigenfunction will be a single Slater deter-
minant, which represents the wavefunction. However, one should include the interaction
between the nucleons in the calculation in this project, and the Hamiltonian should be
diagonalized in a finite subspace. The diagonalization method often used is called Lanc-
zos procedure, where the matrix is diagonalized more efficiently than with traditional
methods.

One expands Ψ on a set of basis states as

Ψ =
∑
i

ϕi · ci. (2.3)
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The final step is to solve the eigenvalue problem of the matrix as

H̄ =


〈
ϕ1 | Ĥ | ϕ1

〉
. . .

〈
ϕ1 | Ĥ | ϕN

〉
...

. . .
...〈

ϕN | Ĥ | ϕ1

〉
. . .

〈
ϕN | Ĥ | ϕN

〉
 . (2.4)

3 NuShellX

To calculate the energy levels of certain nuclei using the CI method, the NuShellX codes
are used. The codes use a J-coupled proton-neutron basis, and the matrix is based on
J-scheme allowing the dimensions of up to the order of 100 million [5]. The total angular
momentum J is coupled by the spin of the neutrons, jn with the spin of the protons, jp,
and obeys the general rule

|jp − jn| ≤ J ≤ |jp + jn| . (3.1)

In this project, NuShellX@MSU is used. It is a set of wrapper codes with the user-
friendly interface shown in Figure 4.1 and provides outputs with figures and tables for the
calculated energy levels.

In the program, one should choose the related model space and interaction type for
the nucleus to be calculated. The model spaces and interaction types are provided in
the origin folder of the program. Different model spaces include different orbits, and one
model space can also have model space interactions that are different from each other.
The model space interactions are constructed using advanced methods to reduce the
valence space. Some of the interactions have also been empirically adjusted further to
reproduce data. In the following we will not distinguish the two types but rather apply
them to describe spectra in order to get an idea of the usefulness of CI calculations for
the Ca-region.

Figure 4.1 Typical interface of NuShellX@MSU
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The focus on this project will be mainly on the calculations of 42Ca, 42Ti, 42Sc, 48Cr,
and 48V in the model space denoted f7pn,fp and fppn, which are only symbols used
to distinguish the model spaces. The f7pn model space includes 1f7/2orbits, the fp
model space includes 1f7/2, 2p3/2, 1f5/2, 2p1/2 orbits, and the fppn will be taken into
consideration during the calculation of the MEDs, which includes p1f7/2, 2p3/2, 1f5/2, 2p1/2
orbits and n1f7/2, 2p3/2, 1f5/2, 2p1/2 orbits. As the Coulomb interactions are introduced
in the fppn model space, the notations “p” and “n” are added before the orbits to show
the differences between the calculation of protons and neutrons. The prediction of the
energy levels of 48Fe can also finally be obtained using the program.

When calculating the nucleus with 8 valence nucleons in a larger model space, such as
fp and fppn, the configurations can be very complicated and the matrix of the Hamilto-
nian can be extremely large. For example, consider four valence protons in the fp model
space, the number of configurations can reach 4845, and if another four valence neutrons
are taken into consideration, the total number of configurations can be 48452 = 2.347×107,
so the dimension of the matrix can reach 20 million. The program uses states with good
angular momentum as basis states (j-scheme). This allows treating each value of J sep-
arately, which greatly reduces the size of the matrices to be considered. The largest
calculations performed in this project usually took one night on a standard desktop com-
puter.
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Chapter III

Results

4 Example of calculations in Ca-region

4.1 Two valence nucleons

First, the nuclei with two valence nucleons outside the 40Ca core are considered.

Figure 5.1 Energy levels of 42Ca with interaction type f748pn and f742pn in the model
space f7pn

Figure 5.1 shows the energy levels of 42Ca, which has two valence neutrons. The
calculations were carried out in the f7pn model space with the f742pn and f748pn
interactions. The notations on the right side of the spectra represent the J and the parity.
As 42Ca has 2 valence neutrons and the model space is in 1f7/2 orbit, the maximum of J
should equal to 7/2 + 5/2 = 6 according to the Pauli principle. The Pauli principle is also
the reason why only even J is observed in the spectra, but it is complicated and beyond
the discussion in this thesis. For all the orbits considered in this project, the quantum
number l is odd, and since the number of valence nucleons calculated is even, the parity
π = (−1)l1 . . . (−1)ln will only be positive. It can be seen that in one certain model space,
different interaction types can lead to different calculated results of the energy levels, so
it is essential to find an interaction type with the closest results to the experimentally
obtained levels.

Figure 5.2 shows a comparison of calculated results of 42Ca between the model space
f7pn and fp. The figures are the direct outputs of the program with the experimental
results shown in the left panel. The reason why there are more energy levels in the fp
model space is that more orbits are included which provide more configurations for one
certain J . Thus, one can find some levels with the same length of line in the output (the
length of the lines are proportional to J). The blue lines in the experimental spectra
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represent the levels of negative parities, which cannot be found in the calculations in this
project because we use the 40Ca as the core. The blue lines and extra red lines come from
the excitation of the nucleons from the orbits inside the 40Ca core, but only orbits outside
the core are considered in this project. The black dots in the experimental spectra may
be levels where J is unknown.

(a) (b)
Figure 5.2 Calculated energy levels of 42Ca with interaction type (a) f742pn in the
model space f7pn; (b) fpmcc in the model space fp

After the comparison among all the interaction types in the the model space f7pn and
fp, the interaction type f742pn in the model space f7pn and fpmcc in the model space
fp are considered to fit the experimental results best, illustrated in Figure 5.3, where only
the lowest energy levels for each J are taken into the comparison. The data are shown in
Table 5.1.

Table 5.1 Data of experimental energy levels of 42Ca [15] and calculated levels in f742pn
and in fpmcc

42Ca
J

0+ 2+ 4+ 6+
Eexp(MeV) 0.0 1.52471 2.75240 3.18926
Ef742pn(MeV) 0.0 1.586 2.817 3.237
Efpmcc(MeV) 0.0 1.542 2.636 3.012

The 2+ levels of 42Ca in f742pn and fpmcc are both higher than the experimental
results. For the interaction f742pn, the values of 4+ and 6+ levels are larger than the
experimental results, and for fpmcc, the values of 4+ and 6+ levels are smaller than the
experimental results. The relationships can be compared to the following calculations in
the nuclei with more valence nucleons.

The mirror nucleus of 42Ca is 42Ti, with two valence protons. The calculation results
of 42Ti’s energy levels turn out to be exactly the same as the energy levels of 42Ca in
the two model spaces f7pn and fp using the NuShellX codes, which means no Coulomb
interaction is included in all of the interaction types in these two model spaces. This can
be seen using the f742pn as an example in Figure 5.4.
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Figure 5.3 Experimental energy levels of 42Ca and calculated levels in f742pn and in
fpmcc

Figure 5.4 Calculated energy levels of 42Ca and 42Ti using f742pn

13



The energy levels of 42Sc are also calculated in the two model spaces f7pn and fp.
The values of the same J levels are the same with 42Ca and 42Ti using the same interac-
tion type in these two model spaces, but Figure 5.5 shows that there are more J values
in 42Sc compared to Figure 5.2 (b). We choose the fpmcd interaction type in the fp
model space here as it shows the clearest output spectra. In the nucleus of 42Sc, the two
valence fermions are one proton and one neutron, therefore, the Pauli principle imposes
no limitations on the spins of the fermions. Therefore, the maximum of the total angular
momentum J = jp + jn = 7/2 + 7/2 = 7.

Figure 5.5 Calculated energy levels of 42Sc using fpmcd in fp model space

4.2 Eight valence nucleons

4.2.1 Calculations on 48
24Cr24

As the programme has a good performance in the calculation of energy levels of the
two-valence-nucleon nuclei with the errors of tens of keV compared to the experimental
results, we will test the calculations on eight-valence-nucleon nuclei.48Cr has eight valence
nucleons—four neutrons and four protons—outside the 40Ca core. Due to the limitations
of the long calculation time with the program on nuclei with more nucleons, the f742pn
Hamiltonian in model space f7pn and fpmcc Hamiltonian in model space fp are applied
to calculate the energy levels of 48Cr as they are used in the calculations of 42Ca and 42Ti.
As four neutrons and four protons are included, the total angular momentum is in the
scale of 0 ≤ J ≤ |jp + jn| = (7/2 + 5/2 + 3/2 + 1/2) + (7/2 + 5/2 + 3/2 + 1/2) = 16. The
outputs of the calculations are shown in the Figure 5.6.
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Table 5.2 Data of experimental energy levels of 48Cr [16] and calculated levels in f742pn
and in fpmcc

48Cr
J 0+ 2+ 4+ 6+ 8+

Eexp(MeV) 0.0 0.75219 1.85847 3.4449 5.1883
Ef742pn(MeV) 0.0 1.207 2.230 3.483 5.002
Efpmcc(MeV) 0.0 0.889 1.953 3.615 5.4267

J 10+ 12+ 14+ 16+
Eexp(MeV) 7.0638 8.4108 10.2797 13.3088
Ef742pn(MeV) 6.442 7.874 10.238 13.551
Efpmcc(MeV) 7.432 9.051 11.207 14.807

The program itself only collects experimental levels of the nuclei under 6 MeV, so the
output figures will only show those under-6-MeV calculated levels. The details of the
calculated energy levels is displayed in Table 5.2.

(a) (b)
Figure 5.6 Calculated energy levels of 48Cr with interaction type (a) f742pn in the
model space f7pn; (b) fpmcc in the model space fp

To display the difference between the experimental results and the calculated results
more directly, the plots of data are illustrated in Figure 5.7.

It can be seen from Figure 5.7 that for the lowest energy levels for each J , the results
from fpmcc fit the experimental results better in low J ’s while results from f742pn are
larger, and when J increases, the results from fpmcc go larger than the experimental
results while results from f742pn tend to fit the experimental results better. Compared
with the results from Figure 5.3, the performance of one certain interaction type for
different nuclei can be different, and since the calculations of 48Cr involve more nucleons,
the differences between different interaction types can be more obvious. The fpmcc
Hamiltonian includes more orbits, so there will be more configurations calculated using
fpmcc than using f742pn, which is displayed in Figure 5.7.

15



Figure 5.7 Experimental energy levels of 48Cr and calculated levels in f742pn and in
fpmcc

Another charming characteristic in Figure 5.7 is that the rotational behavior and
backbending displayed in the T = 0 yrast band. The rotational behavior can be obtained

by analyzing the ratio
∣∣∣Q0(S)
Q0(B)

∣∣∣and E(4+)
E(2+)

[17], where

Q0(S)

Q0(B)
= −7

2

√
5

16π

Q(2+)√
B(E2)

. (4.1)

Q0 is the intrinsic quadrupole moment. Q0(S) represents the static Q0, and Q0(B)
represents the Q0 related to the E2 transition strength B(E2). In simple rotational

models,
∣∣∣Q0(S)
Q0(B)

∣∣∣ should equal to unity. The E(4+)
E(2+)

is used to measure how close the nucleus

is to the vibrational limit of 2/1, or the rotational limit of 10/3.
As this part is far beyond my knowledge in nuclear physics, the ratio and parameters

will only be used to prove the rotational behavior of 48Cr. For 48Cr, the experimental
data of Q(2+) = −33.271 e fm2, and B(E2) = 1378.4 e fm2 [18]. Thus, Q0(S)

Q0(B)
= 0.98923

for 48Cr experimentally, which is close to 1, indicating the rotational behavior of 48Cr.
E(4+)
E(2+)

= 2.4707, which is between vibrational and rotational.
At J = 10, the phenomenon backbending appears, which is a irregularity in the

spectra. In heavier nuclei, the backbending is caused by e.g. a band crossing, but the
reason for this backbending in 48Cr still needs further research [19].

To present a better fit to the experimental results, the fpmce Hamiltonian in the model
space fp is used, which is a modification to the fpmcc Hamiltonian [20]. The comparison
of the calculated energy levels is displayed in Figure 5.8. It shows that the results of
fpmce fit the experimental results better than fpmcc, which can be also reflected in
Table 5.3.
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Table 5.3 Differences between experimental energy levels of 48Cr and calculated levels
in fpmce and fpmcc

48Cr
J 0+ 2+ 4+ 6+ 8+

∆Efpmce(MeV) 0.0 -0.0648 0.04347 0.07890 0.1113
∆Efpmcc(MeV) 0.0 -0.137 -0.09453 -0.1701 -0.2384

J 10+ 12+ 14+ 16+
∆Efpmce(MeV) 0.1138 0.0128 -0.2413 -0.4972
∆Efpmcc(MeV) -0.3682 -0.6402 -0.9273 -1.4982

Figure 5.8 Calculated energy levels of 48Cr using fpmce and fpmcc

4.2.2 Predictions on 48
26Fe22

In the chart of nuclides on National Nuclear Data Center online [21], the energy levels
of many proton-rich nuclides have not been reached through experimental methods yet,
including 48Fe with the same mass number as 48Cr which has been calculated in Section
5.2.1. However, with the approach through NuShellX codes, some predictions of the
energy levels of the nuclide 48Fe can be proposed.

The Figure 5.9 shows the calculated energy levels of 48Fe using the fpmce Hamiltonian
in the fp model space, which has been proved to have a good fit to the experimental results
for 48Cr in Section 5.2.1.

The lowest energy levels of each J for 48Fe calculated by the fpmce interaction are
listed in Table 5.4.
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Table 5.4 Calculated energy levels of 48Fe using fpmce in fp model space
48Fe

J 0+ 1+ 2+ 3+ 4+ 5+ 6+
Efpmce (MeV) 0.0 3.798 1.117 3.172 2.446 4.507 3.340

J 7+ 8+ 9+ 10+ 11+ 12+
Efpmce (MeV) 5.357 4.722 6.375 6.436 7.655 8.410

Figure 5.9 Calculated energy levels of 48Fe using fpmce in fp model space

However, in Section 5.1, the interaction types included in the f7pn and fp model space
have been proved to neglect the Coulomb interaction in the nucleons. Therefore, another
interaction type in other model spaces should be introduced to calculate the energy levels
of 48Fe taking the Coulomb effects into consideration. The gx1acdpn interaction in the
fppn model space contains Coulomb interaction added based on the gxpf1a interaction
[22]. The gx1acdpn interaction is first applied to the calculations on 48Cr, the result is
shown in Figure 5.10.
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Figure 5.10 Calculated energy levels of 48Cr using gx1acdpn in fppn model space

One should note that the interaction name is displayed wrongly as gx1apn in the
output spectra using gx1acdpn interaction due to the program’s own error. The energy
levels are lower than the experimental results on 48Cr when J = 4,6, 8, which can be
observed from the spectra directly.

The gx1acdpn interaction applied to 48Fe has the output spectra in Figure 5.11.

Figure 5.11 Calculated energy levels of 48Fe using gx1acdpn in fppn model space

The lowest energy levels of each J for 48Fe calculated by gx1acdpn interaction are
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listed in Table 5.5.

Table 5.5 Calculated energy levels of 48Fe using gx1acdpn in fppn model space
48Fe

J 0+ 1+ 2+ 3+ 4+ 5+ 6+
Egx1acdpn (MeV) 0.0 3.272 0.964 2.863 2.092 3.898 2.793

J 7+ 8+ 9+ 10+ 11+ 12+
Egx1acdpn (MeV) 4.638 4.051 5.468 5.628 6.772 7.675

It can be seen from the calculation results directly through Table 5.4 and Table 5.5
that with Coulomb interactions added, the energy levels become lower, which can be
understood as a result of the repulsive Coulomb effects between the protons. The cal-
culated energy levels of 48Fe with and without the Coulomb interaction using the code
NuShellX@MSU can be used as a reference for the experiments on the measurement of
the energy levels of 48Fe in the future.

4.3 MED calculations

4.3.1 42
22Ti20-

42
20Ca22

As no Coulomb interactions are involved in the interaction types in f7pn and fp model
space, according to the isospin symmetry, the energy levels of the mirror nuclei should be
exactly the same as we have shown in Section 5.1. To find out the breaking of the isospin
symmetry, interaction types including the Coulomb interactions should be introduced to
calculate the energy levels of the mirror nuclei, which is the gx1acdpn interaction in the
fppn model space used in Section 5.2.2. The focus of the MED will be on the nuclei 42Ti
and 42Ca first.

Figure 5.12 shows the experimental and calculated MEDs of 42Ti and 42Ca.

Figure 5.12 Experimental and calculated MEDs of 42Ti and 42Ca. MEDNCrepresents the
calculated MED with no Coulomb interactions; MEDC represents the calculated MED
with Coulomb interactions
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From Figure 5.12, one can see with the Coulomb interactions involved, the MED of
42Ti and 42Ca remains negative and has a decreasing tendency. Comparing with the
MED with no Coulomb interactions remaining 0, the MEDC indicates there should be
the breaking of the isospin symmetry in mirror nuclei. However, as Figure 5.12 shows the
calculated MED with Coulomb interactions still have large differences with the experi-
mental MED, one can conclude that the Coulomb interactions may only be part of the
cause of isospin symmetry breaking, where the strong nuclear force can also be considered
as the component of the breaking, or the interaction types used does not take all the
possible effects into consideration. The MED can be composed of a monopole Coulomb
component, a multipole Coulomb component, and an isospin breaking nuclear interaction
component [23], any of which can be the missing part in the interaction type used in this
project.

For 42Ti, the breaking and alignment of the 1f7/2 proton pair form the excited states,
where the average distance of the protons increases. This leads to the Coulomb energy
decrease when the spin increases for the two protons, and 42Ca does not have this effect.
One can express the MED between 42TI and 42Ca in the following form

MED = E2p(J)− E2n(J). (4.2)

So with the decrease of E2p when the spin increases, the MED should decrease as well.
This conclusion fits the calculated results well, but for the experimental results, there
comes the J = 2 anomaly. According to the Ref. [24], the J = 2 anomaly is present
throughout the 1f7/2 shell, not only for the 42Ti and42Ca pair. The monopole Coulomb
contributions can be the reason, but it has not been proved in the A=42 mirror nuclei.

4.3.2 48
25Mn23-

48
23V25

Figure 5.13 shows the experimental and calculated MEDs of 48Mn and 48V.

Figure 5.13 Experimental and calculated MEDs of 48Mn and 48V. MEDNC represents
the calculated MED with no Coulomb interactions; MEDC represents the calculated MED
with Coulomb interactions
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The breaking of the isospin symmetry brought by the Coulomb interactions and the
limitations of the interaction type are also seen in Figure 5.13. Among the experimental
results, the deviation of the MED between 48Mn and 48V on J = 2 is very pronounced.
However, this large MED may come from the original data from the National Nuclear
Data Center [25], where the measurement of the energy levels of 48Mn are uncertain
experimentally. So the MED on J = 2 given by the calculation can be a prediction to some
extents. Possibilities that the deviation on J = 2 is well described by the experimental
results still exists.

Since the MEDs are very complicated with the mirror nuclei 48Mn and 48V, it is difficult
to figure out how the components contribute on the changes of the MED. But one can
find the similar tendency between the experimental MEDs and the calculated MEDs with
Coulomb interactions, with the calculated results adding some positive effects which may
be caused by the nuclear force components. With the experimental data of 48Mn only
available under J = 13+, the MEDs above J = 13+ spin can be estimated from Figure
5.13 and show a continuous decrease.

4.3.3 48
26Fe22-

48
22Ti26

Figure 5.14 shows the calculated MEDs of 48Fe and 48Ti.

Figure 5.14 Calculated MEDs of 48Fe and 48Ti with Coulomb interactions.

This also gives a prediction on the MEDs between 48Fe and 48Ti with the gx1acdpn
interaction in the fppn model space using the NuShellX@MSU, which can be used in the
further study in the MEDs between 48Fe and 48Ti.
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Chapter IV

Summary and outlook
In this project, calculations of the yrast energy levels of several nuclei based on the 40

20Ca20

core are carried out using NuShellX@MSU code. The nuclei include 42
20Ca22,

42
22Ti20,

42
21Sc21,

48
24Cr24 and 48

26Fe22. Furthermore, the MEDs between 42
22Ti20-

42
20Ca22,

48
25Mn23-

48
23V25,

48
26Fe22-

48
22Ti26 are also calculated.

When calculating 42
20Ca22,

42
22Ti20,

42
21Sc21, several interactions in the model space f7pn

and fp are used, selecting f742pn and fpmcc as the interaction types fitting the experi-
mental results best respectively. Through the calculation of 22Ca and 22Ti, the interaction
types f742pn and fpmcc are proved to be constructed without any Coulomb interactions.
The existence of the Pauli exclusion principle is verified by the calculation results of 42Sc
as the 7+ energy level occur in the spectra.

The interaction type fpmce in the fp model space is introduced to obtain better
calculation results of 48Cr, which is a modification to the fpmcc. The rotational behavior
and backbending of the 48Cr nucleus are also found in the spectra.

With the introduction of the gx1acdpn interaction in the fppn model space, the
Coulomb effect is involved in the calculations of 48Cr. The prediction on the energy
levels of 48Fe with and without the Coulomb interaction is then calculated with fpmce
and gx1acdpn.

Finally, the MEDs calculated between 42
22Ti20-

42
20Ca22,

48
25Mn23-

48
23V25 show the isospin

symmetry breaking brought by the Coulomb interactions. However, due to the lack of
other components in the isospin symmetry breaking, the calculated MEDs does not fit
the experimental MEDs very well, but they show the same tendency. And the MEDs
between 48Fe and 48Ti are predicted using the gx1acdpn interaction.

With all the calculation results, one can understand the nuclear physics and the nuclear
shell model mechanism better. The predictions can be useful to the Lund nuclear structure
group for future experiments as well. To study the self-bound interacting fermions with
further steps, one can try more interactions from different model spaces to see how the
modifications in the interaction types can affect the output results or even make some
improvements.
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