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Abstract

This thesis presents a novel matching strategy, Inflated Multinomial Matching, which

enables training of anchor-free object detection models based on convolutional neural

networks. An important aspect of detection models is the integral usage of anchor

boxes, where an anchor box is a bounding box with a preset and constant location,

size and shape in the image. The matching strategy presented utilizes the similarity

scores between ground truths and predictions in a stochastic way, which lets detection

models obtain several independent submodels where each submodel specializes towards

predicting objects of a certain size and shape, essentially mimicking the main benefits of

anchors boxes in an unsupervised way. The intended behavior of the matching strategy

is confirmed through a number of indicators monitored throughout the training process.

Finally, a full scale object detection model is trained with Inflated Multinomial Matching

and example detection results are showcased.
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Chapter 1

Introduction

Object detection refers to the combined task of automatic localization of objects of in-

terest in a digital image or video, as well as classification of each object. Using visual

information for detection and recognition of objects is a deceptively di�cult task for a

computer, and the fact that it is done subconsciously by humans and other animals at a

fraction of a second speaks more of the remarkable computational and relational power

of the biological brain than the ease of the task itself [1].

This thesis presents a novel algorithm called Inflated Multinomial Matching (IMM),

which is used as a step in the training process for Deep Learning (DL) models for

object detection. IMM introduces a stochastic method to match the ground truth boxes

directly with the bounding box proposals generated by a DL detection model, instead

of matching with a corresponding anchor. The purpose of the algorithm is to enable the

training of anchor-free object detection models without sacrificing the models capability

of detecting objects of diverse shapes and sizes with high precision, one of the main

advantages that come from using anchor priors.

The report is divided into eight chapters. Chapter 2 contains an overview on object

classification and detection systems and how DL has impacted the field. Chapter 3

presents the software and hardware used throughout the project, as well as datasets

commonly used for training object detection models. Chapter 4 covers some of the

important theoretical concepts and methods of implementation to help understand the

algorithm and associated experiments. The IMM algorithm is presented in Chapter

5 together with a motivation and a demonstrative example. Experimental results on

the algorithm is presented and discussed in Chapter 6 and concluding thoughts on the

di↵erent aspects covered can be found in Chapter 7. Readers with experience in DL and

methods of object detection can choose to skip directly to Chapter 5.
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Introduction 2

1.1 Context

This Master Thesis project was conducted in partnership with Sentia1, a Copenhagen-

based technology startup in the field of intelligent business analytics. By analysing

and merging several di↵erent data sources, such as data from cell towers, WiFi tra�c,

Bluetooth beacons and video cameras, Sentia quantifies customer behavior for businesses

as well as gives insight on tra�c flow and modal share for sustainable city projects.

At the time of writing, object detection based on CNNs was in large part performed on

high-end hardware, primarily on expensive and compute intensive graphics processing

units (GPUs). A major focus at Sentia is complete compliance with privacy regulations

in the EU, which means that no personally identifiable information, such as images or

video, are sent from the data source or stored either locally or on cloud servers. This

means that all image processing needs to happen in near realtime on the same device that

captured the video. No open-source software or o↵-the-shelf detection models available

at the time would neither run su�ciently fast nor accurately enough for the end-purpose

of the product, which meant that a significant portion of the thesis project had to be

dedicated to the construction of the software required for a scalable production system.

While some details on the implementation and tools used throughout the project is

included, the thesis is for the most part focused on the research aspects of the project.

1https://sentia.ai/



Chapter 2

Background

The task of object classification and detection has traditionally followed a two-step

procedure, where the raw image content is first transformed into a feature representation

intended to reduce the number of input variables while preserving the characteristics

which distinguishes the objects of interest from each other or from the background class.

Haar-like features [2], Local Binary Patterns [3] or Histogram of Oriented Gradients [4]

were some of the more popular methods used for this transformation. This feature

representation is then used to train a classification model, such as Nearest Neighbours,

Decision Trees or Support Vector Machines. As long as the feature extraction algorithm

was appropriately chosen and well calibrated, this approach was applied successfully for

automation of numerous tasks such as optical character recognition for post- and bank

o�ces, automatic licence plate recognition for toll stations and for law enforcement as

well as facial recognition in early digital cameras to name a few.

In 2012, the AlexNet model [5] significantly improved on the state of the art on both

the classification and localization tasks of the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [6]. In contrast to the other competition entries that year, AlexNet

utilized a Convolutional Neural Network (CNN) as its base computational engine, which

combines the feature extraction and subsequent classification into an end-to-end train-

able model. The CNN that AlexNet utilized contained 5 Convolutional Layers followed

by 3 Fully Connected (FC) Layers, and the success of this Deep CNN (DCNN) brought

about a reignition of DL as well as a paradigm shift in the field of Computer Vision as a

whole [7]. Since then, almost all entries to ILSVRC use CNNs as their basic framework

and these networks, among with various other DL methods, have been proven to be

powerful tools across almost all subfields of image analysis and computer vision.

The highest accuracy object detection models to date are based on a two-stage approach,

where first a set of region proposals are computed, indicating the regions in the image

3



Background 4

which have a high probability of containing an object of interest. Then, the image

information or extracted features corresponding to these regions are fed to a second stage

network which fine-tunes the localization regression to better match the ground truth

box, as well as computes the classification of the objects. This detection framework is

commonly known as Region-based Convolutional Neural Networks (R-CNN) [8], and has

together with its faster and more accurate successor frameworks Fast/Faster R-CNN

[9] [10] been the base structure for the winning models of detection challenges since

2014. R-CNN and Fast R-CNN rely on the Selective Search [11] algorithm to generate

region proposals, which was a huge computational improvement compared to Exhaustive

Search that was commonly used before. Faster RCNN then replaced the selective search

procedure with a Region Proposal Network (RPN), which combined with the detection

network produced a fully end-to-end trainable method with large improvements in both

performance and accuracy. The impact the development of these frameworks have had

on the general applicability of object detection cannot be understated, with the execution

time on a single image brought down from close to a minute to several times per second

as well as producing results of a high enough quality to be usable for cross-domain

research and in industry applications.

Comparing the two-stage approach of the methods mentioned so far with the architecture

of a standard deep classification model, it is apparent that there are multiple layers of

added complexity and possible computational bottlenecks in the two-stage detection

models. The final performance in both speed and accuracy of the models depends not

only on the depth and architecture of the base network, but also on how well each

independent module is optimized and implemented. To combat these issues, the so

called single-stage models treat object detection as a regression problem over the entire

image in one single forward propagation. Two of the most popular single-stage detectors

are You Only Look Once (YOLO) [12] [13] and Single Shot MultiBox Detector (SSD)

[14]. Shared attributes between both YOLO and SSD are that instead of using region

proposals, they use the resulting feature maps of the base network directly as feature

descriptors for the di↵erent image regions. These feature maps are then appended by

a set of convolutional layers responsible for bounding box regression and corresponding

classification. The main advantages of the single-stage methods are the increase in

training and inference speed, in which the main bottleneck is almost entirely the single

forward propagation through the base network. The tradeo↵s in speed and accuracy

based on method and model selection is compherensively investigated in [15].

An important aspect of both the single-stage and the two-stage detection models is

the integral usage of anchor boxes (also known in literature as prior boxes or default

boxes). An anchor box is a bounding box with a preset and constant location, scale and

aspect ratio in the image. The purpose of anchor boxes is to simplify the localization
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task by training the model to predict the o↵set from the object to a nearby anchor box

instead of predicting the absolute values directly. The first usage of anchors was in the

RPN stage of the Faster R-CNN [10] model, where a total of 9 anchors per grid cell

of the last feature map were used. These were generated by choosing a box with area

and aspect ratio from {1282, 2562, 5122} and {1:1,2:1,1:2} respectively, centered at the

position of the grid cell. Both YOLO and SSD utilize anchors in a similar way, although

improvements have been seen by generating dataset specific anchors by proposing prior

scale and aspect ratios through k-means clustering of the ground truth box dimensions

[13].



Chapter 3

Datasets and Tools

There is a wide selection of DL frameworks to choose from depending on the program-

ming language used, with considerable di↵erences in their implementation, flexibility

and ease of use. Training and inference of models are also made more e�cient by using

hardware optimized for the selected task in a correctly setup environment. This chapter

focuses on the software and hardware setup used as well as the datasets used for the

experiments.

3.1 Software

Python2 with the NumPy3 package is a powerful environment for scientific computing

while still being a general purpose programming system. A number of powerful DL

libraries exist for Python with TensorFlow4 [16], developed by the Google Brain team

and released as open-source in 2015, being one of the most popular. All computational

operations in TensorFlow are represented as nodes in a data graph, with directed edges

representing the flow of data through the graph. Computational graphs are present

across all DL frameworks in large part because of the heavy use of automatic di↵eren-

tiation, a set of techniques for numerically evaluating the gradient of a function defined

by a computer program.

With TensorFlow as the computational backbone, machine learning algorithms can be

developed, trained and run with considerable ease considering the complexity of the

underlying computations. To further simplify the development task, Keras5 [17] is a

high-level library for building, evaluating and running neural networks which uses Ten-

sorFlow (among other frameworks) as its backend.

2http://www.python.org
3http://www.numpy.org

4http://www.tensorflow.org
5https://keras.io

6



Datasets and Tools 7

OpenCV1 is used as the computer vision library for reading image and video data,

manipulating color-spaces, e�cient resizing and other tools mainly used for image in-

put/output/display and augmentation. If the application does not require any video

processing, another excellent image processing library is Pillow2 which arguably is more

user friendly than OpenCV.

3.2 Hardware

Training a supervised DL model that can do anything useful typically relies on datasets

ranging in size from 106 � 1015 bytes and evaluating and updating somewhere between

105 � 108 model parameters repeatedly throughout the training process. The training

of vision systems can be especially demanding, where each image is rich in information

and commonly used datasets consist of 104 � 107 annotated images.

All training and evaluation were carried out on a single p2.xlarge instance through

Amazon Elastic Compute Cloud3. A NVIDIA K80 GPU is the main workhorse on this

instance with 12 GB of GPU-memory. Having a su�cient amount of GPU-memory is

especially important for training of vision systems since each batch of images needs to

fit into GPU memory along with allocating memory for the gradient computation and

updating of all the model parameters.

3.3 Datasets

The performance of DL models is highly dependent on the quality of the data used to

train the model. Three commonly used datasets for object detection are Pascal VOC4

[18], Microsoft COCO5 [19] and ImageNet6 [6] (Table 3.1). Table 3.1 shows number of

images, number of object instances and number of classes included in the main detection

challenges at the time this project was conducted. COCO and ImageNet are continuously

updated with new images and annotations so these numbers are likely to change.

Name N
images

N
objects

N
classes

Pascal VOC (2007+2012) 27.1K 70.8K 20
Microsoft COCO (2014) 122K 886K 80
ImageNet Detection (2014) 476K 533K 200

Table 3.1: Three commonly used datasets for object detection.

1http://opencv.org/
2https://python-pillow.org/
3https://aws.amazon.com/ec2/

4http://host.robots.ox.ac.uk/pascal/VOC/
5http://cocodataset.org/
6http://www.image-net.org/
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VOC is considerably easier (in reference to the comparatively high evaluation scores

currently achieved by state of the art systems) than the two others, with only 20 classes

and relatively few object instances per image. Although COCO contains fewer object

classes than ImageNet, the high amount of object instances per image (avg. 7.7) and

cluttered scenes make it a di�cult dataset to reach high evaluation scores on. Real world

applications often have to operate where the environment is complex and cluttered, and

the high number of object instances per image provides e�ciency since more ground

truth samples are seen per image processed.

This thesis project mainly consists of experiments on the proposed algorithm, IMM,

with a smaller section on a general purpose detection system trained using the proposed

algorithm. Because of its smaller size, Pascal VOC is used for running the algorithm

experiments since 20 di↵erent parameter settings were tested and each setting incurs a

significant training time (around 72 hours in total for the algorithm experiments). For

the general purpose detection system, Microsoft COCO is chosen as the main dataset

for training, where during the duration of this project it was clearly seen that models

trained on COCO performed considerably better on real world tasks compared to Pascal

VOC.

A comprehensive table of the per-class object statistics for the COCO dataset is pre-

sented in Table A.1 in Appendix A.



Chapter 4

Theory & Methodology

This chapter presents some of the important concepts of object detection systems based

on DL, which covers both general theory as well as includes a small section on imple-

mentation details. Most of the important theory underlying ML, DL and CNNs have

been omitted, where [20] as well as the articles referenced in the Chapter 2 can serve as

an excellent resource. Instead, the focus of this chapter is on specific topics important

to understand IMM and the experiments conducted.

4.1 Object Detection

4.1.1 Localization

The objective of the localization (loc) task is to compute the coordinates in the image

plane describing the position and shape of objects of interest. The localization of each

object is commonly represented as a bounding box vector b 2 R4, which encodes the box

by either containing the point coordinates for two opposite corners of the box (minmax

encoding) or by containing the center coordinates as well as the width and height of the

box (centered encoding), see Figure 4.1.

While these two ways to encode a bounding box are the most commonly seen in anno-

tated datasets and for storing and presenting detection results, there are often additional

transformations applied to the coordinates before the box coordinates are used as ground

truth for training detection models.

9



Theory & Methodology 10

b
minmax

: (x1, y1, x2, y2)

b
centered

: (x
c

, y

c

, w, h)

Figure 4.1:
Example bounding box in

minmax encoding.

4.1.2 Classification

The objective of the classification (cls) task is to assign the objects of interest with an

appropriate class label. Binary classification denotes the objective of only separating

between two classes, such as {cat, dog} or {object, background}. In multi-label classifica-

tion, each object can belong to multiple classes simultaneously, in contrary to multi-class

classification where each object belongs to only one class exclusively. The set of classes

can be of varying degrees of granularity, both between and within datasets, where the

granularity and choice of class labels can depend on many factors such as the accessibility

of data and what the end purpose of the application or research is.

cls

species

: bird

cls

subspecies

: chaffinch

Figure 4.2:
Example class labelling.

The object in Figure 4.2 above could be correctly classified as both bird and by the name

of its subspecies, cha�nch. In a classification problem with a set of C di↵erent classes,

a ground truth object with label y = c where c 2 {(0), 1, . . . , C} (zero if including

background class) is commonly represented by one-hot encoding of the label. One-hot

encoding converts the class label (an integer) to a binary vector y where y

i

= 1 if

i = c and 0 otherwise. A classification model would then output a prediction ŷ with

ŷ

i

2 (0, 1) 8 i 2 {(0), 1, . . . , C}, where ŷ

i

often represents the predicted probability for

the object to belong to class i.
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4.1.3 Detection

Combining the loc and cls tasks for all objects of interest in an image summarizes object

detection. A ground truth object with its bounding box encoded by minmax encoding

and with one-hot encoded class label in a 80 class dataset (e.g. COCO), including

background class, would then be represented by a vector of 85 numbers:

y = (x1, y1, x2, y2, 0, . . . , 1, . . . , 0) (4.1)

Figure 4.3 demonstrates visualization of a model result by the general detection model

trained with IMM in this project.

Figure 4.3:
Example detection result of our trained detection system.

Rush hour in the streets of Copenhagen. Credit: Mikael Colville-Andersen

4.1.4 Intersection over Union

The Intersection over Union (IoU) metric (also known as Jaccard index ), is a similarity

measure between finite sets which is commonly used in object detection for evaluating

how good the correspondence is between two bounding boxes. Given bounding boxes b

and b̂, the IoU score is given by:



Theory & Methodology 12

Figure 4.4:
Illustration of the regions of Intersec-
tion and Union between two bounding

boxes.

IoU(b, b̂) =
|b \ b̂|
|b [ b̂|

(4.2)

where the size of the intersection |b\b̂| is the area of the overlap between the two boxes,

and the size of the union |b [ b̂| is the total shared area of the two boxes. See Figure

4.4.

Figure 4.5:
Examples of IoU scores for predictions (pink) of a ground truth bounding box (green).

Left: 0.5 IoU, Middle: 0.75 IoU, Right: 0.9 IoU.
Macaque on Langkawi Island, Malaysia.

In Figure 4.5 an example is shown of three di↵erent bounding box predictions and their

corresponding IoU scores. A threshold of 0.5 IoU is commonly seen as an ”acceptable”

detection, and meets the requirement for a true positive in challenges such as Pascal

VOC, whereas a score of 0.8-0.9 is a very precise detection.
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4.2 Deep Learning for Object Detection

4.2.1 Feature Extraction

Object detection models are generally not trained from scratch on a new dataset, but

instead use a pre-trained CNN as a base for the system. CNNs trained to do object clas-

sification on a large dataset, e.g. ImageNet, have been shown to be powerful as general

feature extractors for di↵erent computational tasks on images [21]. One such pre-trained

CNN is MobileNet [22], which is used throughout this project. MobileNet is composed

of an initial convolutional layer, followed by 13 depthwise separable convolutions (see

[22] for further details on the network architecture and [23] for a detailed breakdown on

depthwise separable convolutions). Each convolutional block outputs a tensor referred

to as the feature maps of that convolutional block. The feature maps of the last convo-

lutional block of MobileNet are downsampled by a factor of 32 in the spatial dimensions

compared to the input image, with a total feature depth of 1024 units. An image of 224

x 224 resolution would therefore result in feature maps of size 7 x 7 x 1024 from the last

convolutional block. When referring to the feature maps and individual (x, y) cells of

the feature maps, the terms grid and grid cells will often be used.

Figure 4.6:
Left: 768 x 960 resolution input image, Middle: 24 x 30 grid corresponding to the
spatiality of the last feature maps, Right: Heatmap showing average activation values
of the last feature maps of MobileNet (with ↵ = 1) when applied to the input image.

Goats roaming the mountainside, Vent, Austria.

Feature maps from one or several of the last convolutional blocks of pre-trained CNNs are

core components in object detection models, and often function as the main information

sources for inferring the position and type of objects present in images. Figure 4.6

illustrate how the final feature maps of MobileNet show high average activation values

in grid cells where objects of interest are present. In the scenario of classification, a

Pooling operation would then be applied over the spatial dimensions of the feature maps
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to create a single 1024-unit feature vector which acts as the final feature representation

for the entire image.

4.2.2 Anchoring & Matching

Anchors are pre-defined reference boxes associated with each grid cell of the feature

maps used by object detection models. Each anchor has its own prediction function for

bounding box regression and classification, but shared weights across the di↵erent grid

cells. In other words, an anchor trained to predict objects around 128 x 128 pixels in

size operates like a sliding window over the feature maps to determine at the location

of each grid cell whether any detections can be inferred based on that feature vector.

Some systems, like Faster R-CNN, only use the feature maps of a single scale for all

predictions, usually the last or second to last feature maps of the feature extraction

network. It is then the job of the anchors to provide multi-scale predictions, where a

single feature vector corresponding to one grid cell of the feature maps is used as input

for prediction of objects vastly di↵erent in size. SSD on the other hand uses feature

maps of multiple scales, with individual anchors defined at each scale.

Figure 4.7:
Left: Closer look at one grid cell of the feature maps, Right: Nine anchor boxes, with

the best box marked in blue, for this grid cell.

Figure 4.7 shows a close up of the previous image, with the center grid cell marked on

an example feature map grid. Defining nine anchor boxes, Faster R-CNN style, with

areas {642, 1282, 2562} pixels and aspect ratios {0.5, 1.0, 2.0} for this specific grid cell,

results in the set of anchor boxes seen to the right.

During training, every ground truth box is matched with one or several of the anchor

boxes based on a matching strategy. Three matching strategies are commonly used:

• Argmax Matching
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Ground truth boxes are matched with the anchor boxes with the highest IoU

overlap, or with any anchor with an IoU overlap higher than a set threshold (0.5

for SSD and 0.7 for Faster R-CNN). This results in ground truth boxes often

matching with several anchor boxes.

Used by: Faster R-CNN, SSD, R-FCN

• Bipartite Matching

Ground truth boxes are matched with only one of the predictions/anchor boxes.

The best pairings between grounds truths/predictions are found by minimizing an

assignment cost based on the IoU scores.

Used by: MultiBox [24]

• Box Center

Ground truth boxes are matched with the anchor box with highest IoU overlap,

where the only anchor boxes considered are those corresponding to the grid cell

containing the center point of the ground truth box.

Used by: YOLOv2

After matching between ground truth and anchor boxes is completed, the final box

predictions and object classifications from those specific anchors are compared with the

ground truth (generally in a parameterized way, see Section 4.3.2), and the regression

and classification losses are calculated.

4.3 Data Preprocessing

Preprocessing refers to the transformations applied to the images and annotations before

passing them to the NN.

4.3.1 Image Preprocessing

Images are typically encoded as a tensor of rank 3, where each (x, y) position in the

image contains integer values in [0, 255] corresponding to the intensities of each of the

color channels red, green and blue (RGB). Preprocessing image data is typically done

by zero-centering and/or rescaling the values for the color intensities.

When developing a detection system on top of a pre-trained CNN, it is important to

use the same preprocessing scheme as was used when training the pre-trained network.

Commonly used preprocessing methods for image recognition and detection are outlined

below:
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• Mean Subtraction

Used by the first DL models trained on the ImageNet dataset and performed by

subtracting the mean value of each color channel over the entire dataset. Assuming

BGR color space (OpenCV default), this means subtracting (103.939, 116.779, 123.68)

from the di↵erent channels of the input images before passing them to the model.

Used by: AlexNet, VGG, ResNet

• [�1, 1] Rescaling

Used by all Google developed models and performed by dividing the pixel values

by 255, followed by subtracting 0.5 and multiplying by 2 to confine the pixel values

to [�1, 1]. The Google models assume RGB color space.

Used by: Inception, Xception, MobileNet

• [0, 1] Rescaling

Used by the DarkNet models. Division by 255 assuming RGB color space.

Used by: DarkNet

In this work, [�1, 1] Rescaling was used since most experiments utilized MobileNet as

the feature extractor.

4.3.2 Box Encodings

Bounding box annotations are typically encoded in one of two ways, either in minmax

encoding (x0, y0, x1, y1) or in centered encoding (x
c

, y

c

, w, h), as defined in Section 4.1.1.

Some detection systems (such as the first version of YOLO) train on one of these en-

codings directly, but it is more common to first perform some sort of preprocessing on

the bounding boxes.

The objects in the COCO dataset are heavily skewed towards box widths and heights

smaller than 100 pixels, with a distribution similar to a long-tailed gaussian as can be

seen in Figure 4.8. A common preprocessing step is log-transforming the widths and

heights, resulting in deletion of the long tail and a variance close to 1 for both the width

and the height (1.36 for the width and 1.24 for the height).

Additionally, anchor based detection systems typically encode the bounding box coor-

dinates in relation to a matching anchor of the ground truth box. With (x
c

, y

c

, w, h)

representing a ground truth box and (x
a

, y

a

, w

a

, h

a

) being the center coordinates, width

and the height of a matching anchor, a commonly used encoding ([9], [10], [14], [25]) is

to parametrize the coordinates as such:
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Figure 4.8:
Scatter plot and histogram of Left: unchanged, Right: log-transformed widths and

heights of boxes from the COCO dataset.
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(4.3)

The goal of the box regressor is then to infer these parametrized targets given the

matching anchor and the features extracted from the image. This encoding has the

e↵ect of shifting the regression task towards predicting a scaled o↵set from the matching

anchor box to the ground truth box, instead of predicting the coordinates of the ground

truth box directly.

In this project, since no anchors are used, a ground truth box is instead encoded relative

to the size and location of the grid cells of the feature maps from the feature extraction. If

the center coordinates (x
c

, y

c

) of a ground truth box are within a grid cell (x
gc

, y

gc

, 32, 32)

(with x

gc

, y

gc

being the center coordinates for the grid cell and 32 being the width and

height of the cell), the ground truth box is parametrized as:

t

x

=
x

c

� x

gc

32
, t

y

=
y

c

� y

gc

32
, t

w

= log

⇣
w

32

⌘
, t

h

= log

⇣
h

32

⌘
(4.4)

With a zero-centered initialization of the weights and bias of the network, model pre-

dictions (t̂
x

, t̂

y

, t̂

w

, t̂

h

) will all be close to zero at start of training. This, together with

the box encoding in Equation 4.4, leads to the initial box predictions (x̂
c

, ŷ

c

, ŵ, ĥ) from

the model to be centered at the location of the grid cell and 32 x 32 pixels in size:

x̂

c

⇡ x

gc

, ŷ

c

⇡ y

gc

, ŵ ⇡ 32, ĥ ⇡ 32
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4.3.3 Augmentation

Data augmentation is the process of transforming the input data to a learning algorithm

while making sure the information relating the input vector to the ground truth label

stays intact. The purpose of data augmentation is to increase the quantity of training

data, which prevents overfitting and improves robustness of the models.

Image recognition and detection problems are highly susceptible to data augmentation

since the input images can be altered to an almost indistinguishable form, as measured

by the Frobenius norm or a similar algebraic metric, while still preserving the input-label

relationship. The augmentation scheme used in this project consists of:

• Resizing each new batch of training images to a random multiple of 32 in both the

x and y direction, where the final image dimension Dim (excluding color channels)

becomes:

Dim(i, j) = 32 · (11, 11) + 32 · (i, j), (i, j) ⇠ U{0, 8}

Thus the resulting feature map shape is in the range [11, 19] and the image dimen-

sions in the range [352, 608] in both the x and y directions. The resizing is done

by cropping the original image until the aspect ratio matches the new dimensions,

followed by bilinear resizing.

• Translation by shifting the image pixels by a random integer s
x,y

⇠ U{�16, 16} in

both the x, y direction respectively, which ensures that the center position of an

object can end up in any one of the 32x32 locations of a map cell.

• Mirroring with a 50% chance by flipping the image along the x-axis.

• Color distortion by multiplying the pixel values of each color channel by a value in

t

r,g,b

⇠ U(0.9, 1.1), followed by rescaling into the [0, 255] value range. Additionally,

there is a 5% chance of black-and-white recoloring.

• Smoothing with a 50% chance by applying gaussian blur with a kernel standard

deviation drawn from U(0, 1).

This scheme ensures that no unique image can be seen twice by the model as well as

greatly increasing model robustness to di↵erent object sizes. It is also a crucial step

to handling common real world situations such as partial occlusions, varying lighting

conditions and improves performance on cameras operating with infrared filters (which

resembles black-and-white images). Example augmentation output can be seen in Figure

4.9 below.
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Figure 4.9:
Left: Original image of my family dog Leon. Right: Example outputs of augmentation.

4.4 Loss Function

Detection systems generally optimize over a multi-task objective function, combining the

regression task and classification task into a single objective. The following descriptions

all assume that a prediction has been made by a model and the loss is computed in

regards to a single object and its ground truth box.

4.4.1 Regression Loss

As motivated in [9] and used by [10], [14], [25], the Smooth L1 loss is used for the

bounding box regression. The Smooth L1 loss for a regression error ✏ is defined as:

SmoothL1(✏) =

8
<

:

✏

2

2 if |✏|  1

|✏|� 0.5 if |✏| > 1
(4.5)

Figure 4.10:
Smooth L1.

Given model predictions (t̂
x

, t̂

y

, t̂

w

, t̂

h

) and ground truth box (t
x

, t

y

, t

w

, t

h

), the regression

loss L
reg

per object is the sum of the Smooth L1 loss over the individual regression errors:
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L

reg

(t, t̂) =
X

i2{x,y,w,h}

SmoothL1(t
i

� t̂

i

) (4.6)

4.4.2 Classification Loss

With C classes, the class prediction of an object by a model is represented by C output

values {ĉ
i

}
i2C , ĉi 2 R. The Softmax function, which can be seen as a generalization of

the logistic sigmoid for multiple categories, is then applied to each output value:

Softmax(ĉ
i

) =
e

ĉi

X

j2C
e

ĉj
(4.7)

The output of the Softmax is constrained to (0, 1) and normalized over all classes, which

can then be interpreted as the predicted probability distribution (likelihood) for the

object classified. With p being the correct class for the object, the classification loss L
cls

of the prediction is the negative log-likehood for the prediction ĉ

p

:

L

cls

(ĉ) = �log(Softmax(ĉ
p

)) (4.8)

This is also known as the categorical cross-entropy loss or multi-class log-loss and is used

as the loss function for the classification task across most popular systems.
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Inflated Multinomial Matching

The main contribution of the proposed algorithm is to provide a method of training DL

based object detection models with the capability to detect multiple objects of di↵erent

shapes and sizes without relying on predetermined anchor boxes to guide the model.

Instead of anchor boxes, a set number of predictors are defined for each grid cell in the

feature maps from the feature extraction network. Lets begin by looking closer at the

concept of predictors before presenting the algorithm.

5.1 Predictors

A predictor is similar to an anchor by consisting of a prediction function for box re-

gression and classification with shared weights across all grid cells. The main di↵erence

between anchors and predictors is in their bounding box initialization. Each anchor

is initialized with its own predefined box width and height and will be responsible for

predicting objects of similar size and shape as as result of the commonly used matching

strategies, see Section 4.2.2. Predictors on the other hand are all initialized equally

and will start out predicting boxes of similar dimensions. Section 4.3.2 covers how the

parametrization of the box annotations will a↵ect the initial outputs of the predictors.

Figure 5.1 on the next page illustrates the processing pipeline from image to feature

maps, predictors and detections.

With all predictors initialized equally, the proposed matching strategy IMM will instead

be key to promoting diversity in predicting objects of di↵erent shapes and sizes.

21
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Figure 5.1:
With a 224 x 224 resolution image as example input, MobileNet will output feature
maps of size 7 x 7 x 1024, where the 1024-unit feature vector of each grid cell acts as a
rich feature representation of local image information at and near a 32 x 32 pixel region
corresponding to the location of the grid cell. After further enhancing this feature
representation through intermediate convolutional layers, typically consisting of 1 x 1
or 3 x 3 filters, we define a set of P predictors where each predictor hold its own set
of weights for box regression and classification. Thus, each predictor consists of a 1 x
1 convolution acting on the feature maps from the pre-trained CNN or on the feature
maps of the intermediate layers, with a set of 4+1+C numbers as output corresponding
to the four regression targets and C +1 values for the C classes plus background class.
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5.2 Algorithm

Let b denote a ground truth bounding box and b̂
i

denote box prediction i out of a set

of m box predictions. The similarity s

i

2 [0, 1] between ground truth and prediction i

can be evaluated as the IoU score or some other similarity measure:

B̂ =

0

BBBBB@

b̂1

b̂2

...

b̂
m

1

CCCCCA
, s =

0

BBBBB@

IoU(b, b̂1)

IoU(b, b̂2)
...

IoU(b, b̂m)

1

CCCCCA
=

0

BBBBB@

s1

s2

...

s

m

1

CCCCCA

Let the normalized similarity vector s̄ represent a probability mass function for a sin-

gle trial multinomial distribution (also known as categorical distribution), where each

individual normalized similarity score s̄

i

represents the event probability p

i

for box pre-

diction i to be matched with the ground truth box:

p

i

= s̄

i

=
s

iX

j2{1,m}

s

j

,

X

i2{1,m}

s̄

i

= 1

Inflate the probability mass function by executing I iterations of inflation, where infla-

tion is the operation of element-wise raising the vector by power coe�cient r, followed

by normalization:

Inflation(p, r) =

0

BBB@
p

r

iX

j2{1,m}

p

r

j

1

CCCA

i2{1,m}

(5.1)

The inflation procedure results in strengthening the probabilities of sampling the better

box predictions and weakening the probabilities of sampling the worse box predictions,

see Figure 5.3.

Let the inflated normalized similarity scores represent the final probability mass function

of the multinomial distribution to be sampled from, where the single trial outcome

determines the matching between this ground truth box and box predictions. Finally,

compute the (parameterized) regression error between ground truth box and matched

prediction box.
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The implemented strategy for updating the classification loss is to compare the correct

ground truth class with the class of all predictions with IoU-score above a set threshold

(where 0.5 was used for the experiments). All predictions with IoU-score below this

threshold are considered negative examples and to belong to the background class. A

random subset of negative examples with size N
neg

= 10 ·N
pos

are selected to contribute

to the classification loss.

5.3 IMM Example

Consider the following Figure (5.2) with a ground truth box and 5 boxes representing

example predictions:

Figure 5.2:
Left: Ground truth box, Right: 5 example predictions.

The IoU scores s and corresponding normalized similarity scores s̄ between the ground

truth box and the predictions are as follows:

s = (0.24, 0.46, 0.27, 0.56, 0.32), s̄ = (0.13, 0.25, 0.14, 0.30, 0.17)

Inflating the probability mass function with power coe�cient r = 2, results in the

following values after I = {0, 1, 2, 3} iterations (denoted by p
I={0,1,2,3}):
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p
I=0 = (0.13, 0.25, 0.14, 0.30, 0.17)

Figure 5.3:
I = 0, r = 2.

p
I=1 = (0.08, 0.28, 0.09, 0.42, 0.13) I = 1, r = 2.

p
I=2 = (0.02, 0.28, 0.03, 0.61, 0.06) I = 2, r = 2.

p
I=3 = (0.00, 0.17, 0.00, 0.82, 0.01) I = 3, r = 2.

Each iteration of inflation results in a redistribution of mass of the probability mass

function such that probabilities of outcomes with high relative mass are increased, and

probabilities are decreased for outcomes with low relative mass. In the example shown

above, zero or one iteration of inflation results in the ground truth box retaining a

fairly high relative probability of being matched with one of the worse box proposals,

compared to after two or three iterations of inflation where the ground truth box rarely

will be matched with a relatively low scoring box proposal.

5.4 Motivation

The core concept of the algorithm is to stochastically match predictions with ground

truth boxes throughout the training process. This is performed by assigning matching

pairs through sampling from a single trial multinomial distribution, where the event

probabilities of matching the ground truth box with each of the box proposals are pro-

portional to the similarity scores between box pairs.
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When utilizing predictors and this matching strategy, all box proposals generated by the

model will be similar in size and shape at the start of training. Next, when a predictor

is matched with a ground truth box and the corresponding model weights are updated

based on the regression error, that predictor incurs a slight bias towards predicting boxes

with similar characteristics. The stochastic nature of the matching strategy will then

act as a feedback loop on this bias, with the same predictor receiving a slightly higher

chance to be matched with boxes of similar shape to the previous update because of the

higher similarity score. The strategy also has the e↵ect of the same predictor matching

numerous times with boxes of completely di↵erent dimensions where the similarity score

is relatively low. This e↵ect is reduced by increasing the probability of matching with

the best predictions through the inflation step.

Through this strategy, the intended end result following training is for each predictor

to have independently converged towards predicting boxes of specific shapes and sizes,

reflecting the overall distribution of box dimensions present in the dataset. Initial ex-

periments with just using the normalized similarity scores as probabilities for matching,

without inflation (this is equivalent to I = 0), did not clearly demonstrate this intended

behavior. However, after applying inflation, each predictor show a clear tendency to-

wards specializing towards matching with and predicting similarly shaped boxes as was

intended. This is discussed in further detail in the next chapter.

The idea of adding the inflation operation comes from Markov Clustering [26] [27], where

inflation is used together with an expansion operation to perform unsupervised clustering

on graphs. In Markov Clustering, inflation is used to strengthen and weaken graph

connections in a similar manner as presented here in Equation 5.1, where variation of its

associated power coe�cient r is responsible for regulating the granularity of the clusters.

In this work, the power coe�cient is kept constant at r = 2 and inflation strength is

regulated by performing multiple iterations of inflation and subsequent normalization,

with the number of iterations I treated as a hyperparameter. Worth mentioning is that

similar behavior can be produced by increasing the power coe�cient r, as in Markov

Clustering, instead of applying multiple iterations of the operation.
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Experiments & Results

This chapter presents experiments conducted on the IMM algorithm, as well as results

and example outputs from a full scale detection model trained with IMM.

6.1 IMM Experiments and Results

The main objective of the IMM experiments is to test and confirm the intended behavior

of the algorithm, as presented in Section 5.4 in the previous chapter. A number of metrics

are monitored for each predictor throughout training, defined to work as indicators of

model behavior, where the definition of each metric is presented at introduction during

the first experiment. A total of 20 models were trained independently on the same set of

training data and validation data, with the same random seed to ensure that all weight

initialization and batching logic is identical across training rounds. The 20 di↵erent

models correspond to setting the number of predictors to a value P 2 {1, 3, 6, 9, 15}
as well as setting the inflation parameter to a value I 2 {0, 1, 2, 3}. The experiment

corresponding to setting P = 9 and for all values of I 2 {0, 1, 2, 3} is presented and

analyzed in full in this chapter. Additional results with P = 6 and P = 15 are presented

in Appendix B.

6.1.1 Data and Model Setup

The algorithm experiments are conducted on all images from Pascal VOC 07+12 train-

val, where 90% is used as training set and 10% is held out as validation set. Most of

the predictor specific metrics are evaluated over the training set, while the performance

specific metrics such as IoU and localization loss are evaluated on the validation set.

The input images were all resized to 416 x 416 pixels using zero-padding to preserve

27
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original image dimensions followed by bilinear resizing. [�1, 1] Rescaling is used as pre-

processing scheme, see Section 4.3.1, to match the training of MobileNet and ground

truth boxes are encoded as defined in Section 4.3.2. Additionally, no data augmentation

was performed during training of these experimental models.

The experimental model is identically defined across all experiments, where MobileNet

with ↵ = 1 is used as feature extractor with the network weights imported and frozen

from a pre-trained ImageNet model denoted MobileNet_v1_1.0_2241 by the TensorFlow

team. With Figure 5.1 as reference, we use the feature maps of the last depthwise

separable convolutional layer, see Section 4.2.1, and append one additional depthwise

separable convolution with 1024 pointwise convolution filters as an intermediate layer

before appending P predictors as defined in Section 5.1. The models are trained over

a multi-task loss function L(t, t̂) = 1
10Lreg

(t, t̂) + L

cls

(t, t̂) with regression loss L

reg

as

defined in Section 4.4.1 and classification loss L
cls

as defined in Section 4.4.2. The Adam

[28] optimizer was used for all experiments, with parameters as suggested in the article,

and the models were trained with a batch size of 32 for a total of 5 epochs over the

training data.

At each batch update and for each ground truth box, IMM is used to match the ground

truth box with one of the box predictions inferred by the P predictors corresponding

to the grid cell which contains the center location of the ground truth box. This has

the implication of each ground truth box always having exactly P predictions to be

compared with, which is important to consider while observing the results from the

experiments. This restriction will be mentioned in the next chapter, as an interesting

future experiment.

1
https://github.com/tensorflow/models/

blob/master/research/slim/nets/mobilenet_

v1.md
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6.1.2 Experiment: Varying Inflation Iterations with 9 Predictors

Indicator: Scale

Let scale denote the average of the width and height of a bounding box, measured in

pixels.

Figure 6.1 shows the mean scale of each predictor (represented by the nine lines in the

graphs) during the course of training for each value of I 2 {0, 1, 2, 3} (where each of the

four graphs corresponds to one value of I). The mean scales are evaluated over all box

proposals generated by each predictor at every grid cell location of the feature maps.

The data points in the graphs are updated at a frequency of 5 times per epoch, where

the value of each data point is the average scale of each predictor over all batch updates

since the previous data point.

Figure 6.1:
Top-left: I = 0, Top-right: I = 1, Bottom-left: I = 2, Bottom-right: I = 3.

Experimental results with 9 predictors on average scale dependent on the inflation
parameter.



Experiments & Results 30

The first observation of interest is in the first data point at 0 epochs. As mentioned

earlier in Section 5.4, we expect to see all predictors inferring boxes of roughly size

32 x 32 pixels at start of training. While this is exactly what was observed during the

initial batch updates, this first datapoint corresponds to the first saved scale value which

happens one fifth of the way into the first epoch (which means after 5000 images have

been seen and 156 batch updates performed). This is an unfortunate implementation

error, which was not found to be substantial enough to be worthy of rerunning all

experiments.

The second observation is the di↵erence in characteristics of the scale values as the

number of inflation iterations I are changed. The example presented in Section 5.3 is a

useful reminder on the e↵ects I has on the matching procedure. In the top left graph,

corresponding to I = 0, we observe some initial di↵erentiation of the scale measurements

between predictors, with the inter-predictor di↵erence peaking at around 0.6 epochs. We

then see this di↵erence decreasing in the scale values, where it is unclear from the data

whether the individual predictors have stabilized or whether further convergance towards

the same scale value would be observed with further training.

When increasing the value of I and thus imposing a higher probability of sampling the

better box predictions at each matching step, we clearly observe a substantial di↵erenti-

ation of the scale values between predictors as training progresses. The top-right graph,

showing I = 1, shows a clear seperation of the scale values, as compared to I = 0. Some

predictors (bottom green, middle red) occupy their own segment of the range of box

scales, where some other predictors (top yellow and blue) show some interesting inter-

actions on which types of boxes they predict. In the bottom left (I = 2) and bottom

right graph (I = 3), we see a much smoother curve for each of the predictors, where

the scale separation occurs early and decisively, and the entire set of predictors appears

to converge towards some form of equilibrium. By counting the number of predictors

clearly visible in the two graphs, we see two predictors for I = 2 and three predictors

for I = 3 with almost identical curves at scale values 25-30. While this may appear as

they are completely unused by the model, we will see in later indicators that this is not

completely true.

Indicator: Aspect Ratio

Aspect ratio (AR) denotes the ratio between the width and the height of a bounding

box.

Figure 6.2 shows the mean AR of each predictor (represented by the nine lines in the

graphs) during the course of training for each value of I 2 {0, 1, 2, 3} (where each of the
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four graphs corresponds to one value of I). As in the case of the scale indicator, the

mean AR is taken over all box proposals generated by each predictor at every grid cell

location of the feature maps. Same update rules apply as with the scale.

Figure 6.2:
Top-left: I = 0, Top-right: I = 1, Bottom-left: I = 2, Bottom-right: I = 3.

Experimental results with 9 predictors on average aspect ratio dependent on the infla-
tion parameter.

Much of the behavior seen by the scale indicator can also be observed in the aspect

ratio, but to a lesser degree. Again we observe very similar predictions at I = 0 across

all predictors, implying together with the scale indicator that all predictors essentially

converge towards the average of all boxes in the dataset if no inflation is applied. While

we do see a clear distinction when introducing inflation, even at I = 3 most of the

predictors seem to jitter around 0.7� 0.9 AR except for the top yellow predictor, which

has specialized towards predicting wide and large objects (the same predictor converged

at a scale of 240 pixels in the previous example).
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Indicator: Match Ratio

The match ratio (MR) for a predictor denotes the proportion of ground truth boxes

where this predictor generated the box proposal with highest IoU score.

Figure 6.3 shows the mean MR of each predictor (represented by the nine lines in the

graphs) during the course of training for each value of I 2 {0, 1, 2, 3} (where each of

the four graphs corresponds to one value of I). The mean AR is taken over all ground

truth boxes, where the top scoring predictor for each ground truth box is counted and

compared to the total amount of ground truth boxes at each value update. Same update

rules apply as with the scale and AR.

Figure 6.3:
Top-left: I = 0, Top-right: I = 1, Bottom-left: I = 2, Bottom-right: I = 3.

Experimental results with 9 predictors on average match ratio dependent on the infla-
tion parameter.

At I = 0, the MR of all predictors quickly converge towards the same value, 1/9, again

suggesting that all predictors converge towards predicting identical boxes when matching

without inflation. After introducing inflation, we see a clear distinction in the MR values
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for each predictor. With this indicator, we can settle the dispute from the analysis of

the scale results, where we were unsure in the case of I = 2 if two predictors went

unused by the model. Those predictors are again the same green and red in the bottom

of the bottom-left MR graph, where we can observe their contribution in producing

the top scoring box proposals for 5.6% and 5.7% of all ground truth boxes. The MR

graphs is a useful indicator for determining the value of I. At I = 3, we observe three

predictors with a MR below 4%, which can be interpreted in two ways. Either the

inflation parameter is too high and the probabilities of top scoring boxes are increased

such that some predictors never gets updated. Another possibility is that six predictors

are enough to capture the entire range of box dimensions in the dataset. The best way

to answer these questions is to look at the empirical performance of the models.
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Performance: Max IoU

For each ground truth box, the max IoU denotes the maximum IoU value of all the box

proposals.

Figure 6.4 shows the mean max IoU over all ground truth boxes during the course of

training for each value of I 2 {0, 1, 2, 3} (represented by the four lines in the graph).

Figure 6.4:
Blue: I = 0, Green: I = 1, Red: I = 2, Purple: I = 3.

Experimental results with 9 predictors on Max IoU depending on the inflation param-
eter.

The first interesting observation in the IoU curves is the similar shapes in the distribu-

tions of the highs and lows between the di↵erent values of I throughout training. This is

due to the random seeding, which ensures that exactly the same images are seen at the

same stage of training and also that the same initialization weights are used. Thus, any

improvements we see are solely due to the change of the I parameter. We see a large

increase in Max IoU between I = 0 and I = 1, and a smaller increase between I = 1

and I = {2, 3}. There is no significant di↵erence between I = 2 and I = 3 in the Max

IoU performance.
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Performance: Regression Loss

The regression loss (loc loss) is computed as in Section 4.4.1 for all matches made by

IMM.

Figure 6.5 shows the mean loc loss over all ground truth boxes and their matched

predictions during the course of training for each value of I 2 {0, 1, 2, 3} (represented

by the four lines in the graph).

Figure 6.5:
Blue: I = 0, Green: I = 1, Red: I = 2, Purple: I = 3.

Experimental results with 9 predictors on Regression Loss depending on the inflation
parameter.

Interestingly, for the regression loss we see almost constant improvement for each increase

of I.
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6.1.3 Experiment: Varying Inflation Iterations and Predictors

Performance: Max IoU

Figure 6.6 shows the mean max IoU for each value of P 2 {1, 3, 6, 9, 15} (represented by

the five lines in the graphs) during the course of training for each value of I 2 {0, 1, 2, 3}
(where each of the four graphs corresponds to one value of I).

Figure 6.6:
Top-left: I = 0, Top-right: I = 1, Bottom-left: I = 2, Bottom-right: I = 3.

Experimental results with varying number of predictors on Max IoU with varying num-
ber of inflation iterations. See legend for curve definitions.

This experiment and result shows the mean Max IoU values for each set of P and I.

The main observations are that the Max IoU performance increases when adding more

predictors, and the introduction of inflation further increases the performance boost of

adding predictors. Comparing I = 2 and I = 3 shows a very small di↵erence in the

overall results, which suggests I = 2 is a good setting when utilizing IMM (solely based

on this set of experiments on the VOC dataset).
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6.2 Full Model

For proprietary reasons, the full model definition cannot be presented in the thesis report,

and as such this section mostly serves to showcase some detection examples. With the

extensive training time and cost associated with training a more complex model on the

full COCO dataset, experiments and result analysis similar to the IMM experiments

above could not be conducted on the full model. The data and general model setup are

included below for the interested reader.

6.2.1 Data and Model Setup

The full model is trained on all images from Microsoft COCO trainval, where again 90%

is used as training set and 10% is held out as validation set. When training the full

model, the entire data augmentation scheme as defined in Section 4.3.3 is implemented,

otherwise the data preprocessing is identical to the setup in Section 6.1.1. This model is

more extensive than the experimental model, where again MobileNet with ↵ = 1 is used

as feature extractor with the same network weights as before, with the main di↵erence

that the weights of the last five depthwise separable convolutions are trainable with

the earlier layers frozen. It utilizes both the last feature maps of MobileNet as well as

the second last feature maps, similar to how SSD defines anchors at multiple scales of

the feature extraction network. The second last feature maps has a finer grid structure

and the feature vectors are more sensitive to smaller objects in the image, which is

overrepresented in the COCO dataset. Due to the size of the grid cells, the default box

predictions from this grid will be of size 16 x 16. 15 predictors are defined for each of the

feature maps, with 30 predictors in total. Loss function and optimizer are identical to

the experimental setup, with the only di↵erence consisting of removing the set limit of

training time and instead include early stopping of the training after a full epoch without

improvement to the validation loss. IMM with I = 2 is used as matching strategy over

box proposals from both feature maps, again confined to the proposals corresponding to

the grid cells containing the center locations of the ground truth boxes.
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6.2.2 Detection Examples

Figure 6.7:
Example detection result, processed at 800 x 640 resolution.

Red light in the bike lane, Copenhagen, Denmark. Credit: Mikael Colville-Andersen

Figure 6.8:
Example detection result, processed

at 352 x 480 resolution.
Young men with bull, Koh Rong,

Cambodia.

Figure 6.9:
Example detection result, processed

at 384 x 512 resolution.
Lisa at the Vietnam markets.
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Figure 6.10:
Example detection result, processed at 480 x 352 resolution.

First o�ces of Sentia.

Figure 6.11:
Example detection result, processed at 960 x 704 resolution. Note how the coracles

(round boats) are classified as boat in the water and bowl on land.
Shrimp fishing in Mui Ne, Vietnam.
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Conclusions

In this thesis, a novel matching strategy was presented for anchor-free object detection

using DL and CNNs. By utilizing the similarity scores between ground truth and pre-

dictions in a stochastic way, together with the concept of predictors and the inflation

operation, detection models can be trained to attain several submodels where each sub-

model specializes towards predicting objects of a certain shape and size without the

usage of anchor boxes. Through experiments that indicate how the matching strategy

a↵ects performance, the intended behavior of IMM is confirmed and example detection

results of a full scale model trained with the algorithm is showcased.

For future work, one aspect mentioned in Section 6.1.1 is that the experiments was

constrained as to only test the algorithm on a small subset of all predictors. This was

due to constraints in processing power, time and cost. Removing this restriction would

give a more accurate representation of the full potential of IMM. Furthermore, it would

be very interesting to see the mean Average Precision performance on a standard model,

such as the MobileNet-SSD or YOLO, with IMM implemented as the matching strategy

instead of anchors. Again, due to time and cost constraints, this is an exercise left to

the interested reader.
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Appendix A

COCO Statistics

Class person bicycle car motorcycle airplane bus train truck boat tra�c light
N

objects

268030 7370 45451 9021 5272 6344 4760 10384 11000 13476
Widths 81 (97) 93 (106) 65 (85) 148 (151) 281 (210) 217 (174) 341 (182) 150 (155) 112 (132) 23 (31)
Heights 133 (130) 95 (87) 46 (59) 136 (116) 123 (104) 167 (125) 201 (127) 105 (108) 62 (83) 40 (49)
Scale 138 (135) 115 (111) 70 (88) 169 (153) 283 (210) 235 (172) 355 (178) 158 (157) 120 (135) 41 (50)
Aspect Ratio 0.63 (0.41) 1.01 (0.65) 1.64 (0.99) 1.08 (0.63) 2.52 (1.23) 1.45 (0.96) 2.35 (2.79) 1.60 (0.83) 2.53 (1.99) 0.66 (0.48)

Class fire hydrant stop sign parking meter bench bird cat dog horse sheep cow
N

objects

1966 2058 1343 10231 10969 4968 5718 6839 9577 8386
Widths 102 (91) 107 (104) 74 (94) 146 (147) 67 (92) 265 (149) 193 (143) 145 (127) 84 (89) 104 (110)
Heights 188 (153) 118 (107) 135 (147) 86 (96) 64 (88) 231 (126) 184 (131) 160 (127) 77 (80) 96 (101)
Scale 190 (154) 124 (113) 137 (150) 153 (149) 78 (104) 294 (150) 221 (151) 182 (141) 96 (96) 120 (119)
Aspect Ratio 0.56 (0.31) 0.90 (0.37) 0.53 (0.27) 2.57 (3.26) 1.24 (0.73) 1.25 (0.59) 1.15 (0.57) 0.99 (0.54) 1.25 (0.67) 1.28 (0.73)

Class elephant bear zebra gira↵e backpack umbrella handbag tie suitcase frisbee
N

objects

5736 1365 5535 5360 9085 11672 12882 6700 6411 2796
Widths 179 (140) 248 (144) 169 (128) 179 (125) 57 (61) 116 (115) 48 (55) 44 (57) 124 (123) 67 (64)
Heights 178 (133) 225 (136) 162 (119) 251 (139) 66 (60) 79 (88) 65 (59) 103 (105) 116 (103) 46 (49)
Scale 209 (150) 274 (152) 194 (136) 264 (145) 74 (69) 125 (118) 70 (66) 106 (107) 146 (128) 71 (65)
Aspect Ratio 1.10 (0.57) 1.19 (0.51) 1.15 (0.57) 0.74 (0.39) 0.89 (0.50) 1.99 (1.20) 0.78 (0.48) 0.56 (1.92) 1.17 (0.73) 1.91 (1.17)

Class skis snowboard sports ball kite baseball bat baseball glove skateboard surfboard tennis racket bottle
N

objects

6864 2750 6559 9129 3418 3895 5715 6362 5032 25083
Widths 102 (92) 108 (100) 22 (27) 56 (78) 74 (72) 37 (41) 96 (86) 120 (115) 80 (70) 31 (35)
Heights 53 (74) 75 (92) 21 (23) 48 (68) 79 (74) 37 (36) 66 (66) 80 (99) 84 (67) 69 (64)
Scale 116 (102) 134 (113) 23 (27) 65 (86) 106 (83) 42 (43) 109 (91) 146 (129) 104 (78) 70 (65)
Aspect Ratio 3.99 (3.70) 3.07 (3.08) 1.08 (0.36) 1.39 (1.04) 1.61 (1.99) 1.03 (0.37) 2.03 (1.49) 2.97 (2.93) 1.16 (0.93) 0.49 (0.37)

Class wine glass cup fork knife spoon bowl banana apple sandwich orange
N

objects

8180 21469 5689 8085 6412 14946 9565 6012 4533 6587
Widths 47 (49) 53 (52) 90 (90) 73 (87) 68 (76) 125 (130) 94 (99) 78 (79) 188 (135) 81 (84)
Heights 86 (82) 65 (62) 75 (75) 62 (69) 59 (61) 89 (102) 89 (89) 66 (67) 151 (111) 70 (70)
Scale 88 (84) 70 (65) 113 (98) 95 (94) 86 (82) 129 (132) 112 (109) 83 (82) 198 (138) 86 (88)
Aspect Ratio 0.60 (0.39) 0.94 (0.72) 1.89 (1.84) 2.01 (2.77) 1.63 (1.74) 1.73 (1.00) 1.20 (0.73) 1.28 (0.64) 1.39 (0.59) 1.24 (0.58)

Class broccoli carrot hot dog pizza donut cake chair couch potted plant bed
N

objects

7573 8123 3009 6091 7333 6606 39844 6040 8973 4355
Widths 109 (86) 73 (69) 146 (131) 252 (183) 96 (79) 147 (129) 78 (77) 264 (166) 85 (88) 409 (176)
Heights 96 (73) 64 (58) 111 (107) 163 (137) 78 (70) 115 (107) 86 (78) 191 (112) 108 (108) 267 (137)
Scale 118 (89) 85 (74) 162 (137) 256 (184) 100 (81) 154 (134) 101 (88) 283 (160) 117 (113) 424 (169)
Aspect Ratio 1.20 (0.49) 1.38 (1.03) 1.75 (1.35) 1.93 (1.14) 1.40 (0.56) 1.44 (0.70) 1.15 (0.91) 1.54 (0.96) 0.90 (0.53) 1.84 (1.29)

Class dining table toilet tv laptop mouse remote keyboard cell phone microwave oven
N

objects

16390 4328 6091 5191 2367 5983 3007 6684 1727 3477
Widths 346 (225) 151 (94) 137 (105) 183 (131) 58 (59) 54 (68) 192 (144) 59 (73) 138 (117) 189 (152)
Heights 212 (170) 197 (118) 123 (82) 148 (114) 43 (44) 46 (68) 84 (78) 61 (82) 101 (82) 183 (122)
Scale 356 (224) 208 (118) 153 (105) 192 (136) 61 (62) 65 (82) 196 (144) 75 (91) 146 (117) 225 (149)
Aspect Ratio 2.37 (2.17) 0.86 (0.52) 1.18 (0.70) 1.43 (0.82) 1.55 (0.66) 1.64 (1.19) 3.03 (2.08) 1.25 (0.89) 1.47 (0.73) 1.22 (0.99)

Class toaster sink refrigerator book clock vase scissors teddy bear hair drier toothbrush
N

objects

234 5834 2760 25206 6587 6851 1500 4919 209 2002
Widths 87 (80) 142 (106) 166 (123) 47 (63) 62 (69) 65 (68) 132 (131) 147 (114) 85 (79) 65 (86)
Heights 79 (77) 74 (73) 282 (145) 47 (49) 66 (69) 103 (100) 123 (113) 169 (126) 87 (75) 84 (96)
Scale 94 (86) 146 (107) 292 (149) 66 (66) 72 (76) 106 (102) 164 (140) 182 (132) 103 (84) 106 (111)
Aspect Ratio 1.23 (0.59) 3.04 (2.62) 0.63 (0.43) 1.51 (1.88) 0.97 (0.47) 0.71 (0.40) 1.34 (1.11) 0.93 (0.39) 1.08 (0.60) 1.21 (1.65)
Class TOTAL
N

objects

886284
Widths 100 (122)
Heights 107 (115)
Scale 131 (137)
Aspect Ratio 1.19 (1.28)

Table A.1:
Per class statistics of all the train/val objects (original size) in the Microsoft COCO
dataset. The mean and the (standard deviation) is shown for each attribute, with pixels
as the unit of measurement. Scale denotes the length of the longest side of the object
and Aspect Ratio is the width / height ratio. Statistics over all classes is shown in

TOTAL.
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Appendix B

Additional Experimental Results

6 Predictors

Indicator: Scale

Figure B.1:
Left: I = 0, Middle-left: I = 1, Middle-right: I = 2, Right: I = 3.

Experimental results with 6 predictors on average scale dependent on the inflation
parameter.

Indicator: Aspect Ratio

Figure B.2:
Left: I = 0, Middle-left: I = 1, Middle-right: I = 2, Right: I = 3.

Experimental results with 6 predictors on average AR dependent on the inflation pa-
rameter.
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Indicator: Match Ratio

Figure B.3:
Left: I = 0, Middle-left: I = 1, Middle-right: I = 2, Right: I = 3.

Experimental results with 6 predictors on average MR dependent on the inflation pa-
rameter.

15 Predictors

Indicator: Scale

Figure B.4:
Left: I = 0, Middle-left: I = 1, Middle-right: I = 2, Right: I = 3.

Experimental results with 15 predictors on average scale dependent on the inflation
parameter.

Indicator: Aspect Ratio

Figure B.5:
Left: I = 0, Middle-left: I = 1, Middle-right: I = 2, Right: I = 3.

Experimental results with 15 predictors on average AR dependent on the inflation
parameter.
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Indicator: Match Ratio

Figure B.6:
Left: I = 0, Middle-left: I = 1, Middle-right: I = 2, Right: I = 3.

Experimental results with 15 predictors on average MR dependent on the inflation
parameter.
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