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Abstract 
The aim of this thesis is to suggest a statistical model to estimate the loss rates of honey bees                   
during winter in Sweden. The estimator is to be based on annual summary statistics, collected by                
the Swedish beekeeping organisation.  
 
Regional specific estimates for winter loss rate is derived by a spatial and temporal hierarchical               
model with binomial response. The model is updated by Bayesian inference using Integrated             
Nested Laplace Approximations (INLA). Winter loss estimates were derived with probability           
intervals and presented on a map of Sweden. 
 
The analysis shows that the average winter loss rates ranges between 10.2 and 19.7 % across the                 
21 regions, while the differences in average loss rates between years were increasing from ranges               
9.3 to 18.3 % in 2015, 9.9% to 19.4 % in 2016 and 11.0 to 21.3 % in 2017. Regional differences                     
were not linked to cultivation zones, when comparing different models with the information             
criterions WAIC and DIC.  
 
The analysis included summary statistics from three years. It is possible to expand the model to                
include spatial and temporal interaction and trends over time by including summary statistics             
from more years. Estimates of winter loss rates based on data from several years have stronger                
properties compared to properties due to changes between regions, especially since the            
contributing beekeepers may vary a lot from year to year and in each region.  
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1. Introduction and aim  

Winter loss in managed honey bees is the colonies that die during winter. Reliable estimates of                
the winter losses in managed honey bees can be used for monitoring and detecting trends in                
winter losses and how it is related to major drivers and stressors influencing honey bee health.  
 
Every year, the Swedish beekeeping organisation collects data from their members on winter             
loss. Reporting is voluntary and about 50% of the members respond to the survey. The               
beekeeping organisation aggregates the number of colonies lost during winter in each region.             
The number of members reporting varies a lot between year and from different regions, which               
influences each aggregated data point.  
 
I will derive probability intervals for loss rate with a bayesian model which has the property of                 
giving the complete probability distribution of loss rate as a direct result. From that result a                
probability interval is summarised. This has otherwise been derived using confidence intervals of             
the log odds (Van der zee.R, et.al., 2012, p.32). 
 
There is a possibility of spatial dependency between the different regions, meaning that colony              
loss in two or more regions is dependent on the same factors. Certain regions and cultivation                
areas are for example observed to have a shortage of pollen and nectar plants which has a                 
negative effect on honey bees health (Jordbruksverket, 2009). Spatial variability will therefore be             
modeled as a fixed zone effect and a random spatial effect.  
 
The aim of this thesis is to find a suitable estimator for loss rate during winter, based on this data.  
It will be achieved by the following objectives: 
 
1) specify a statistical model for the data on loss rate during winter of honey bees in Sweden,  
2) test if regional differences can be linked to cultivation zones 
3) estimate historical winter losses in Sweden over the last three years.  
 

2. Method  
 

2.1 Data 
The Swedish beekeeping organisation annually collects data and then presents it as summary             
statistics. The data has been aggregated on a regional level which is displayed as 25 regions and                 
has been collected over the course of 3 years. The 25 regions were merged to 21, to represent the                   
21 counties of Sweden. There is a larger number of members then there is reporting members so                 
the estimation of total loss, given all members, will be based on data from reporting members.                
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Computations will be performed in the software R using the R-INLA package (R Core Team,               
2017).  
 
2.1.1 Counties of Sweden 
To give a sense of where Sweden’s counties lie, a map of Sweden is presented below (figure 1).                  
It is observed that a larger number of beekeepers report in the southern half of Sweden (figure 2).                  
The total number of reporting members was 5551 in 2015, 6237 in 2016 and 6494 in 2017.  
 

  
 

     Figure 1. Counties of Sweden (Wikimedia Commons, 2018). 
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Figure 2. Number of reporting members in each region (2015-2017).  
 
2.1.2 Cultivation zones  
The counties of Sweden are divided into 5 zones according to a map of Sweden’s cultivation                
zones (figure 3). Zone 1 is defined as cultivation zone 1, zone 2 as cultivation zones 2-3, zone 4                   
as cultivation zones 5-6 and zone 5 as cultivation zones 7-8. A list of which each county belongs                  
to is also presented (table 1).  
 

         Table 1. Allocation of zone number to the swedish counties.  
Region Zone Region Zone Region Zone 

Skåne 1 Västra Götaland 2 Värmland 4 

Halland 1 Kalmar 3 Örebro 4 

Blekinge 1 Jönköping 3 Dalarna 4 

Gotland 1 Kronoberg 3 Västerbotten 5 

Östergötland 2 Uppsala 4 Västernorrland 5 

Södermanland 2 Gävleborg 4 Jämtland 5 

Stockholm 2 Västmanland 4 Norrbotten 5 
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Figure 3. Left panel: The eight swedish cultivation zones (Riksförbundet Svensk trädgård, 2018). 
Right panel: Cultivation zones divided into 5 zones. Zone 1 is represented as black, zone 2 as 
red, zone 3 as green, zone 4 as dark blue and zone 5 as light blue. 
 

2.2 Statistical model for colony loss rate 
Colony loss rate is modelled by a generalized linear mixed model (GLMM), which consists of a                
family distribution for the response variable, a linear regression term with fixed and random              
effects and a link function. This type of model has previously been used for colony loss rate (Van                  
der zee.R, et.al., 2012, p.25). The total colony loss for beekeeper j in region i year t is a binomial                    
random variable under the assumption of the same loss rate for every colony. If is the              Y jit   
number of dead colonies after winter, is the number of colonies before winter and the      njit          
parameter is the loss rate of colonies, then total colony loss is defined aspit   

 
(1)  Bin( , )Y jit ~ njit  pit   

 
Due to the fact that the data does not contain information about colony loss for all members but                  
only for reporting members, certain (strong) assumptions will be made to be able to estimate the                
loss rate for the above model, regarding all members of the Swedish beekeeping organisation. 
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In this case, the data is aggregated across all beekeepers (who has reported) in a region. If                 
assuming that the colony loss between beekeepers is independent and that all beekeepers in a               
region has the same probability for winter loss, then the following theorem can be applied.  
 
Consider ~ Bin(n, p) and ~ Bin(m, p), independent binomial variables with the same X1      X2           
probability p, then +  is also a binomial variable with distribution Bin(n+m, p).X1 X2   
 
This results in the fact that the estimated loss rate with respect to reporting members would be                 
the same as of that regarding all members.  
 

(2)  Bin( , )Y ·it ~ n·it  pit   
   

To estimate , a link function, , in form of a logit transformation will be defined to remove  pit    ηit             
any range restrictions, creating a probability between 0 and 1. (G. Rodriguez. 2007)  

 

(3) ogit ( p ) logηit = l it =  )(  pit
1 −  pit

  
 
When estimated, the inverse logit retrieves the probability scale.  

 

(4)  = ) = ( )pit logit  ( η −1
it

 e ηit

1 +   e ηit
 

 
However, I want to estimate the loss rate with the assumption of both spatial and temporal                
differences and therefore will be defined as a sum of regression terms. (Van der zee.R, et.al.    ηit              
2012, p.25)  
 
2.2.1 Statistical models for spatial dependencies 
A bym model will be used to see if spatial dependencies can be observed. It is the union of an                    
i.i.d model v and a besag model u, i.e. a random effect + spatial effect.  

 
is defined as the i.i.d model where the random variable x = is a vector of nvi             , .., ) (x 

1 .  x 
n       

counties that is independent and normally distributed with precision  so that τ  | τ  (0, )xi ~ N 1
s τi

  

where each is conditionally independent, is a fixed scale and i is the number of  xi     0si >             
counties (R-INLA, 2018 a).  
 

is defined as the besag model for the random vector x so thatui               

where is the number of neighbours of county and | x , i = ,  ( , )xi j  / j τ ~ N 1
ni

∑
 

i~j
xj

1
n τi

  ni         xi   i ~ j
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indicates that the two counties  and  are neighbours (R-INLA, 2018 b).xi xj   
 

  

xi  xj   

   

 
Figure 4. Example of neighbourhood structure. All medium gray squares are neighbours to the              
dark gray square, hence = 8 in this illustration.ni   
 
2.2.2 Statistical models  
The following four models will be considered, which will include different combinations of             
terms. Model 1 is considered  to be the null model. 
 
Model 1 is defined as 

(5) = +  ,η it b0 + vi δt  
 
where is the intercept, an unstructured spatial random effect and an unstructured b0     vi       δt    
temporal random effect.  
 
Model 2 is defined as 

(6) = +  ,η it zi + vi δt  
 
where  is added to model 1 as a fixed effect for cultivation zones.zit  
 
Model 3 is defined as 

(7) = + + +  ,η it b0 vi ui δt   
 
where, compared to model 1, region is evaluated with an additional structured spatial random              
effect .ui   
 
Model 4 is defined as 

(8) = + +  ,η it zi + vi ui δt  
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where both,  from model 2 and  from model 3, are regarded as an addition to model 1.zi ui   
 
The random effects , and are normally distributed with expectation zero and a variance   vi  ui   δt           
that will be estimated and later presented as the precision , k = v, u, ./στ k = 1 2

k  δ  
 
2.2.3 Model comparison by WAIC and DIC 
To compare the models that have been fitted, I will mainly regard the widely applicable               
information criterion (WAIC) but will also present the deviance information criterion (DIC).            
DIC is, as the sample size grows, an asymptotic approximation and is widely used but is known                 
to have some problems connected to the fact that it is not fully Bayesian (Vehtari, A, et.al., 2017,                  
p.1414). WAIC however is fully bayesian, which is one of the reasons why WAIC is viewed as                 
an improvement of DIC (Vehtari, A, et.al., 2017, p.1414). WAIC is averaging over the posterior               
distribution instead of conditioning on a point estimate and uses the entire posterior distribution              
to calculate its deviance and penalty terms. Hence, a smaller value indicates the better model,               
which is also the case for DIC (Vehtari, A, et.al., 2017, p.1414). 
 

2.3 Parameter estimation  
To estimate the parameters of this model, I will apply the process called Bayesian inference               
using Integrated Nested Laplace approximation (INLA). INLA is an algorithm created to            
estimate parameters of LGM models and is a faster alternative to Markov chain Monte Carlo               
method (MCMC) when regarding spatial and temporal models with large data sets (Martins.G.T,             
et al., 2013). It is a statistical analyses applied to observed data where the prior distribution needs                 
to be specified for the purpose of obtaining the posterior distribution of the unknown parameter               
(Blangiardo and Cameletti, 2015, p.58).  
 
Next follows some general theory of the most vital concepts of this method where the aim is to                  
approximate the posterior marginal distributions. 
 
 
 
 
 
 
2.3.1 Bayesian inference using INLA 
Being related through Bayes theorem, consider the posterior marginal distributions, 
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(9)  =  ∝  ,(ψ| y)  p (ψ, y| x) dx∫
 

 
p  (y|x, ) p(x|y) dx∫

 

 
p ψ  

(10) = = ,(x| y)  p (x, | y) dψ∫
 

 
p ψ  (x|y, )p(ψ|y) dψ∫

 

 
p ψ   

where y is the observations, x the latent field, the hyperparameter, and are         ψ   (ψ| y)  p  (x| y)  p   
the posterior marginal distributions, is the likelihood for observation and    (y|x, )  p ψ       (x, | y)  p ψ
is the posterior (Tufvesson, O. 2017, p.13).  
 
The method makes use of Laplace approximation where a density function f(x) of a random               
variable, with a certain distribution, is regarded as log f(x) by means of a second order Taylor                 
expansion (Blangiardo and Cameletti, 2015, p.105). By solving  

(11) = 0 , obtaining the mode anddx
d log f (x)

x*   

(12) for  , obtaining ,/ − 1 d x2
d logf (x)2

x* σ2*  

the Laplace approximation of the given distribution is approximately N( , ) (Blangiardo          x*  σ2*   
and Cameletti, 2015, p.105).  
 

The aim with INLA is to approximate the posterior marginals,  

(13)  =  =    and(x | y)p j (x , ψ| y) dψ∫
 

 
p j  (ψ| y) p(x | ψ, ) dψ∫

 

 
p j y  

(14) = (ψ | y)  p k (ψ| y) dψ∫
 

 
p −k  

As they are related, it follows from these expressions that approximations needs to be made for                
and (Rue et al., 2009, p.6).(ψ| y)  p (x | ψ, )  p j y  

 
 

 

 

 

By Laplace approximation is  
 

(15)    = (ψ| y)  p p(x|ψ,y)
p(x,ψ|y)  
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              = p(y)
p(y|x,ψ)p(x,ψ) 1

p(x|ψ,y)  

          = p(y)
p(y|x)p(x|ψ)p(ψ) 1

p(x|ψ,y)  

          ∝ p(x|ψ,y)
p(ψ)p(x|ψ)p(y|x)  

 , x =    (the mode)≈ p (x|ψ,y)*
p(ψ)p(x|ψ)p(y|x)

x*   

   = (ψ| y)  p*   (the Laplace approximation of )(ψ| y)  p  

 

To approximate , consider the full density of , which is approximated to be(x | ψ, )  p j y | y,  x ψ  

(16)   ∝ (x |y, )  p  ψ (x , , )  p  y ψ  

    = (y|x, )  p ψ (x |ψ)  p  (ψ)  p  

              ∝ , as a function of x.(y|x, )  p ψ (x |ψ)  p   

 
From this it follows that the Laplace approximation is  
 

(17) = N(x |y, )  p  ψ ≈ (x |y, )  p*
 ψ  x ,( = x*  − [ ∂ x 2

∂ logp(x |ψ,y)2 *
 ]

−1)  

 
It is possible to do numerical integration of to directly derive an approximation of        (x |y, )  p*

 ψ        
which may be a fast method but not always accurate (Rue et al., 2009, p.11). Instead I(x | y, )  p j ψ                  

will be using so called simplified Laplace approximation which is commonly used and it runs by                
default in the INLA algorithm in R. It is based on a Taylor expansion up to the third order of                    

(Rue et al., 2009, p.12).(x |ψ, )  p  y  
 
With the approximations of and , the marginal posteriors and    (x | y, )  p j ψ   (ψ| y)  p     (x | y)  p j   

are obtained through equation (13) and (14) respectively. The integrals are then solved(ψ | y)  p k              
numerically through a series of steps involving finite weighted sums but these are omitted here.               
(Tufvesson, O. 2017, p.15) 
 

2.4 Implementation 
To implement this method I have chosen to work in the software R which is useful for statistical                  
computation and visualisation. The built in package INLA will be used since it is widely used for                 
spatio-temporal models.  
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Next follows a copy of the implementation of the four models in R, seen as formula 1- 4, and                   
lastly the INLA function that each formula will be put into. and , seen in model 1 are           vi   δt       
modeled as i.i.d with a constraint set to zero. In model 3 and 4, + is represented by a bym              vi ui       
model which is defined as the i.i.d model + the besag model.  is represented by zon.zi   

     Figure 5. The implementation of the four models and the INLA function in R. 
 

3. Results 
The subheadings 3.1 to 3.4 are the results of the INLA approximation i.e the posterior estimates, 
for model 1 to model 4.  
 

3.1 Model 1 
By computing the inverse logit, results in an mean loss rate of 0.153, for all counties. By     b0             
looking at 1/ and 1/ , it can be noted that the variance is bigger for the unstructured spatial  τ v  τ δ               
effect then it is for the temporal. It means that the loss rate varies more between regions then                  
between years. 
 

Table 2. Posterior estimates (mean, standard deviation (SD) and  
quantiles) for model 1. 

Parameter Mean SD 2.5% 50% 97.5% 
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b0  -1.711 0.011 -1.734 -1.711 -1.689 

1/ = σ2
v τ v  19.141 6.418 9.216 18.287 34.158 

1/ = σ2
δ τ δ  216.385 163.099 34.145 175.669 640.102 

 
3.2 Model 2 
By computing the inverse logit, for - , the resulting mean loss rate for the 5 zones are      z1  z5            
0.168, 0.166, 0.123, 0.17 and 0.124 respectively. Similarly to the result of model 1, the variance                
is bigger for the unstructured spatial effect then it is for the temporal. 
  

Table 3. Posterior estimates (mean, standard deviation (SD) and  
quantiles) for model 2. 
Parameter Mean SD 2.5% 50% 97.5% 

z1  -1.598 0.087 -1.771 -1.598 -1.425 

z2  -1.612  0.086 -1.783 -1.612  -1.44 

z3  -1.96  0.102 -2.164 -1.96 -1.757 

z4  -1.581  0.068 -1.715 -1.581 -1.447 

z5  -1.954  0.097 -2.147 -1.953 -1.765 

1/ = σ2
v τ v  32.878  12.968 13.953 30.803 64.006 

1/ = σ2
δ τ δ  216.077 163.325  34.213 175.155 641.58 

 
 
 
 
 
3.3 Model 3 
By computing the inverse logit, results in a mean loss rate of 0.1528, for all regions. The     b0             
results are similar to model 1 and the variance for the structured spatial effect is much close to 0.  
  

Table 4. Posterior estimates (mean, standard deviation (SD) and  

18 



 

quantiles) for model 3. 

Parameter Mean SD 2.5% 50% 97.5% 

b0  -1.714 0.056 -1.825 -1.713 -1.604 

1/ = σ2
v τ v  18.292 6.304 8.641 17.422 33.108 

1/ = σ2
u τ u  1813.9 1822.9 113.7 1269.3 6643.5 

1/ = σ2
δ τ δ  216.966 163.734 34.437 176.022 643.619 

 
3.4 Model 4 
By computing the inverse logit, for - , the resulting mean loss rate for the 5 zones are      z1  z5            
0.172, 0.166, 0.124, 0.17, 0.124 respectively. A similar result to model 2, and again a variance                
for the structured spatial effect much close to 0.  
 

Table 5. Posterior estimates (mean, standard deviation (SD) and  
quantiles) for model 4. 

Parameter Mean SD 2.5% 50% 97.5% 

z1  -1.573 0.114 -1.8 -1.573 -1.347 

z2  -1.6112 0.097 -1.805 -1.612 -1.419 

z3  -1.959  0.113 -2.183 -1.959 -1.735 

z4  -1.589 0.080 -1.742 -1.582 -1.421 

z5  -1.9545 0.109 -2.173 -1.954 -1.742 

1/ = σ2
v τ v  31.17 12.65 12.85 29.10 61.67 

1/ = σ2
u τ u  1863.00 1845.25 130.97 1319.22 6711.36 

1/ =σ2
δ

 
 τ δ  216.69  163.87  34.42  175.61 644.07 

3.5 Model comparison 
 
3.5.1 WAIC and DIC   
The resulting information criterions WAIC and DIC for the 4 models are respectively very              
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similar to each other which could indicate that neither of model 2 - 4 are a better alternative to                   
model 1 (table 6). It also means that this result gives no real indication of what model is the                   
better and that regional differences can’t be linked to cultivation zones. What is also interesting               
to observe is the fact that the resulting DIC values are not consistent with those of WAIC. Since                  
the values of WAIC and DIC are so similar, I choose to present further results for model 4                  
because it’s more complex and interesting to look at. 
 

    Table 6. Information criterions WAIC and DIC with their  
    respective effective parameters. 

Model WAIC WAIC p.eff DIC DIC p.eff 

1 1164.421 180.079 957.352 22.272 

2 1164.088 179.646 957.495 22.078 

3 1164.372 180.058 957.358 22.301 

4 1164.203 179.741 957.530 22.135 

 
3.5.2 Regional loss rate  
Few differences can be seen for the regional loss rate between the models (figure 6) which also                 
was concluded in table 6. The loss rate varies between 10.2-19.7 % for model 1, 10.0-19.7% for                 
model 2, 10.2-19.7% for model 3 and 10.0-19.7 % for model 4. Spatial variation however is                
observed as clusters of counties having similar color. 
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Figure 6. Loss rate due to the four different models. Each map is a representation of the  loss 
rate in the order; model 1 to model 4, from the left.  
 

3.6 Further results 
The following results are derived with the estimated parameters of model 4.  
 
3.6.1 Regional loss rate 
There is a large variation in mean loss rates for each county (Table 7). There seems to be a                   
spatial pattern across Sweden where clusters of neighbouring counties have similar loss rates             
(“lossrate4” in figure 6). Uncertainty, seen as 95% probability intervals, in estimates of mean              
loss rate is varying between counties (figure 7).  
 
Table 7. The mean loss rate of each county and average colonies per county between 2015-2017. 

County Mean  Average 
colonies 

County Average 
colonies 

Mean County Mean Average 
colonies 

1. Örebro 0.15 1711 8.Norrbotten 501 0.12 15.Östergötland 0.17 3246 

2.Jämtland 0.10 305 9.Västerbotten 631 0.11 16.Kalmar 0.11 4307 

3.Värmland 0.16 1416 10.Västernorrland 344 0.18 17.Gotland 0.16 1120 

4.Kronoberg 0.11 2859 11.Gävleborg 982 0.18 18.Blekinge 0.17 898 

5.Jönköping 0.15 3023 12.Uppsala 1945 0.15 19.Skåne 0.19 7310 

6.Dalarna 0.19 1094 13.Stockholm 1865 0.18 20.Halland 0.15 2203 

7.Västmanland 0.20 664 14.Södermanland 1662 0.17 21.Västra  
     Götaland 

0.15 7449 
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Figure 7. Mean loss rate (circle) with 95% probability intervals for each county, represented by 
the same order as in table 7. 
 
3.6.2 Zone loss rate 
An advantage of the Bayesian model is that estimates of loss rate come as a full probability                 
distribution. The following figures are two ways of presenting the estimated loss rates for the 5                
zones. The probability density of mean loss rate on the logit scale for each zone (figure 8, Left                  
panel). Zone 3 and 5 stands out from the others with a slightly smaller mean loss rate. The                  
probability densities can be summarised into 95 % probability intervals, for each zone. The mean               
loss rate for the 5 zones are 0.172, 0.166, 0.124, 0.17, 0.124 respectively (see paragraph 3.4) with                 
probability intervals (0.14,0.21), (0.14,0.19), (0.10,0.15), (0.15,00.19) and (0.10,0.15)        
respectively.  
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 Figure 8. Left panel: Probability density of loss rate on logit scale for each zone.  
Right panel: Mean loss rate (circle) with 95% probability intervals for each zone. The black line 
is the intercept for model 3 with associated confidence interval (dotted lines).  

 
3.6.3 Yearly loss rate 
It is possible to observe changes in form of increased loss rate through the 3 years (figure 9). The                   
differences in mean loss rates were increasing from ranges 9.3 to 18.3 % 2015, 9.9% to 19.4 %                  
2016 and 11.0 to 21.3 % 2017. However, it is not justified to conclude any temporal trends with                  
data from three years only.  

Figure 9. Comparing average loss rate to yearly loss rate (2015-2017). 
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3.6.4 Historical winter losses  
The total winter loss (i.e. not only those that has been reported) is defined as 
 

(18)  Bin( , )Y *
·it ~ mit p*

it   
 

An estimate of the actual number of colonies lost requires an assumption. Under the assumption               
of an average number of colonies per beekeeper is the same in each region and all members have                  
bees, the total number of colonies in each region i and year t is defined as 
 

(19) = the average number of colonies per reporting members in region i year t*totalmit   
   members in region i year t.  

 
Historical total winter losses have the mean i.e the expectation from a binomial       mit ×  p*

it        
distribution. Results are presented and derived with estimations with respect to both zones and              

counties. The defined total amount of colonies before winter, , from 2015-2017, is         m∑
21

i=1
 it

 
    

270734 colonies and out of these are 27473 estimated to have died during winter.  
 

        Table 8. Total colony loss 
         from 2015 to 2017. 

Zone Total colony loss 
(2015-2017) 

1 6237 

2 6041 

3 4488 

4 6192 

5 4503 

Total 27463 
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                    Figure 10. Estimated regional total colony loss per year (2015-2017). 
 
3.6.5 Goodness of fit 
A goodness of fit plot shows that the estimates are relatively accurate (figure 11). It plots the                 
expected colony loss for each region i year t, , against the observed colony loss in each         nit ×  p*

it         
region i year t, where the different colors represents the three years. 
 
 
 
 
 
 

  
 
 
 
 
 
 
   
 

Figure 11. Goodness of fit. 
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4. Conclusions and discussion 
The aim of this thesis was to specify a statistical model for the data on loss rate during winter of                    
honey bees in Sweden, test if regional differences can be linked to the swedish cultivation zones                
and lastly estimate historical winter losses in Sweden over the last three years. 
 
The result shows that regional differences could not be linked to cultivation zones. Neither did               
the result show a structured or unstructured spatial effect even though (“lossrate4” in figure 6)               
suggested it. This could be due to too few observations and that the data is too roughly                 
aggregated and should therefore not be discarded in future studies. The four specified models              
gave very similar results which then led me to present further results for the more complex                
model. Unless motivated, the standard procedure would be to choose the simplest of models if no                
significant effect of new parameters can be established.  
 
Based on the estimated loss rate, the historical total winter loss is assessed to be, that out of                  
270734 colonies, 27473 died during winter and the mean loss rate is estimated to be between                
10.2 and 19.7 %. These results are derived with strong assumptions and should therefore be               
regarded as a rough upper estimate. 
 
As a result of my assumptions, this thesis is in many ways a simplification of a very complex                  
problem. It was assumed that the colony loss between beekeepers is independent and that all               
beekeepers in a region has the same probability for winter loss. In reality, there is reasonably a                 
dependency between beekeepers who, for example, have colonies in the same area. It would              
however,  require data on an individual level to estimate variation between beekeepers. 
 
Not only is the average of colonies per county varying a lot (table 7) but it is also established that                    
members holds a varying amount of colonies (figure 12). The illustration itself is an average so                
there is the possibility of some beekeepers having hundreds of colonies and others few or none.                
Large versus small scale beekeepers could or do have an effect on the overall colony loss (Van                 
der zee.R, et.al. 2012, p.25). That would mean that the average number I am using could be a too                   
strong of an assumption. However, to estimate its effect also require the data to be collected on                 
an individual level. 
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Figure 12. Histogram of the average number of colonies per beekeeper in each region.  
 
The analysis was based on observations from only three years and even though the observed               
result shows an increasing loss rate, of ranges 9.3 to 18.3 % in 2015, 9.9% to 19.4 % in 2016                    
and 11 to 21.3 % in 2017, it is not valid to conclude any temporal trends with so few                   
observations. Hence, what the analysis shows when the summary statistics has been collected             
during a longer period of time, is an interesting aspect of this problem. Apart from being able to                  
find trends, it enables the model to expand, adding regression terms in form of spatial and                
temporal interactions. Estimates of winter loss rates based on data from several years have              
stronger properties compared to properties due to changes between regions, especially since the             
contributing beekeepers may vary a lot from year to year and in each region. Therefore, it would                 
be of interest to do further studies in the future. 
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