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Abstract

Many complex mechanical systems are simplified by considering them as multibody systems. In
recent years, flexible multibody dynamics has become more and more in demand. In [1], a weakly
constrained joint model was presented, which in a well-defined way models the interconnection
of an elastic and a rigid body by a massless rigid joint. However, the joint model assumes that
the orientation of the joint-elastic body interface is unaffected by the displacement field of the
elastic body. The aim of this study is to highlight the limitations of the joint model due to this
assumption.

In this study, the joint model was applied for two-body system of an elastic and a rigid body,
connected by a small rigid joint. During deformation the joint-body interface was expected to
rotate due to the displacement field of the elastic body. However, due to the assumption the
interface stayed fixed which distorted the displacement field of the elastic body. This assumption
could be avoided if the orientation of the interface during deformation was predicted, which would
be possible by the use of observer points.

Keywords — flexible multibody dynamics, differential-algebraic equations, interconnecting
rigid joints
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Chapter 1

Introduction

1.1 Background and Aim

Many mechanical systems can naturally be treated as multibody systems. A multibody system
is defined as a set of bodies and interconnecting elements. In multibody dynamics, the motion
of the overall system is typically of main interest, rather than the deformations of the individual
bodies. By treating the bodies as rigid, they can be modeled as point masses, which greatly
reduces the complexity of the overall system. Therefore, multibody dynamics has mainly been
modeled by rigid bodies.

The interconnecting elements play a key role in multibody dynamics. Typical interconnecting
elements are springs, dampers, actuators, and joints. The former three, referred to as force
elements, serve as additional interconnecting forces between the bodies. They are incorporated
in the model by extending the force term in Newton’s equations. Joints constrain the relative
position of two bodies, by an algebraic relation, a geometric constraint. In the presence of
joints, constrained rigid multibody dynamics is retrieved, which is described as a system of both
ordinary differential equations (ODEs) and algebraic equations, a system of differential-algebraic
equations (DAEs). System of DAEs are in general much more difficult to solve numerically in
time, and are needed to be handled with great care.

A flexible multibody system refers to a multibody system which contains both rigid and
elastic bodies. In recent years, due to an increased interest in light-weight and high-precision
mechanics, flexible multibody dynamics has become more and more in demand [1]. For flexible
multibody systems, the deformation of the system is a heterogeneous combination of continuous
displacement fields and discrete rigid body motions.

Consider a constrained two-body system where a small rigid joint, modeled as massless,
interconnects an elastic and a rigid body. The rigid joint-elastic body interface should perform
rigid body motions, to conform with both the continuous elasticity model of the elastic body, as
well as the discrete rigid body motion of the rigid joint. These requirements hold for a weakly
constrained joint model presented in [1]. The weakly constrained modeling technique is employed
for a slider-crank example, as well as a pantograph and catenary example (the interconnecting
wires and cables transmitting electrical current from electrical cables to high-speed trains), with
promising results. However, in both those examples, rigid and elastic bodies were connected
directly, without any physical joints.

To apply the joint model in practice, it is crucial to understand its limitations, to avoid misuse.
Therefore, the aim of this study is to highlight the limitations of the weakly constrained joint
model, in presence of physical joints. A drawback with the joint model is that it assumes that the
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6 CHAPTER 1. INTRODUCTION

orientation of the rigid joint-elastic body interface is unaffected by the displacement field of the
elastic body. This assumption distorts the displacement field, and thereby the structural analysis,
if the true displacement field, without the assumption, would render in a rotated interface.

In this study, the limitation of the weakly constrained model in presence of a physical joint,
is highlighted by implementing the joint model for an elastic-rigid body system with a massless
rigid joint, where the true dynamics requires the joint body to rotate due to the displacement
field of the elastic body.

1.2 Overview of Content

This report is divided into a theory chapter, an implementation chapter, a numerical experiments
chapter, and lastly, summary and conclusions. The main objective in the theory chapter is to
present constrained flexible multibody dynamics, which is needed to highlight the limitations of
the weakly constrained joint model.

The theory chapter begins with a section which introduces Lagrangian mechanics, for uncon-
strained and constrained dynamics for the translational motion of point masses. With Lagrangian
mechanics, the equations of motion (EOM) is derived from a variational problem (VP) with fixed
endpoints in time. The constrained dynamics is expressed by a Lagrange multiplier technique.

In the second section, the EOM for a constrained rigid multibody system is derived. In the
two following sections, the EOM is derived, for an unconstrained and a constrained, elastic body,
respectively. Thereafter, in Section 2.5, the VP for a constrained flexible multibody system is
finally presented. Section 2.5 also includes presentations of three massless rigid joint models
from [1], including the weakly constrained joint model.

The EOM for an elastic body has to be discretized, in both time and space, before the dynam-
ics can be solved numerically on a machine. Finite element (FE) discretization is a conventional
technique for discretizing elastic bodies in space. FE discretization is presented in Section 2.6.
There it is shown that FE discretization of constrained elastic bodies generate systems of DAEs.
In Section 2.7, two time-integrating schemes are presented shortly, the backwards differentiation
formula (BDF) methods and Newmark’s method.

The implementation chapter mainly focuses on how to discretize EOM in space by FE dis-
cretization. A FE discretization Python module called FEniCS is employed. A work-around, to
discretize constrained dynamics, is presented.

The numerical experiments consists of two parts. In the first experiment, an elastic body
attached to a rigid wall was considered. The attachment was implemented both with a Dirichlet
boundary condition and as a geometric constraint. The numerical solutions for the unconstrained
and constrained dynamics were compared to validate the implementations.

In the second experiment, a rigid body was connected to the elastic body, through a massless
rigid joint, modeled by the weakly constrained joint model. For the second experiment, the
limitations of the weakly constrained joint model is highlighted.



Chapter 2

Theory

The main objective of the theory chapter is to introduce the EOM for a constrained flexible
multibody system, which is needed to implement the numerical experiments.

In this study, Lagrangian mechanics is followed. For Lagrangian mechanics, a weak formu-
lation of the EOM in both time and space is derived from a VP with fixed endpoints in time.
In the first section, Lagrangian mechanics is introduced, both for unconstrained and constrained
dynamics, for the translational motion of point masses. In the second section, the EOM is first
derived for an unconstrained rigid body, where both translational and rotational motions of point
masses have to treated. The VP is thereafter extended to constrained rigid multibody systems.

In the third section, the dynamics of an unconstrained elastic body is presented. The defor-
mation of elastic bodies is, as opposed to rigid bodies, continuous in space, which requires a more
thorough analysis. In Section 2.1.1, the model is extended to constrained elastic body dynamics.

In Section 2.5, the VP for constrained flexible multibody systems is presented. In the multi-
body setting, the deformation composes of both rigid body motions and an elastic displacement
field. The section also includes presentations of three massless rigid joint models from [1], in-
cluding the weakly constrained joint model.

For elastic bodies, the EOMs, which are weak in space and strong in time (weak-strong forms),
are derived from the VPs. In Section 2.6, FE discretization is briefly presented to discretize the
system in space. In the last section, the time-integrators BDF and Newmark’s methods are
presented to discretize the system in time.

2.1 Introduction to Lagrangian Mechanics and Constrained
Dynamics

In this section, the translational motion of point masses is considered. In the first subsection,
Euler-Lagrange’s equation is derived from Newton’s second law. In the next subsection, Euler-
Lagrange’s equation is shown to describe the dynamics of an extremal for a variational problem
(VP) with fixed endpoints in time. The VP considered in this study is Lagrangian mechanics.
The VP is thereafter extended to model dynamics in presence of holonomic constraints. The
dynamics of the extremal of the extended VP is shown to be described by a system of DAEs,
in classical mechanics. Under a set of assumptions, an initial value problem (IVP) based on the
extremal is shown to be unique. Lastly, the sensitivity to perturbations for systems of DAEs are
discussed.

7



8 CHAPTER 2. THEORY

2.1.1 Connection Between Classical and Lagrangian Mechanics

In this subsection, Euler-Lagrange’s equation for a specific Lagrangian is derived from Newton’s
second law, for the translational motion of point masses. Thereafter, it is shown that the specific
Euler-Lagrange’s equation, for a closed, autonomous (time-invariant) system, implies that the
total energy of the system is conserved. Moreover, a motion which fulfills Euler-Lagrange’s
equation defines an extremal of a VP known as Hamilton’s principle of least action. In the next
subsection, Euler-Lagrange’s equation is derived by solving the VP.

In this and the next subsection, the connection between classical and Lagrangian mechanics
is presented, for the translational motion of point masses, for a closed, autonomous system. In
classical mechanics, such a system is expressed by Newton’s second law,

Mϕ̈∗(t) = f(ϕ∗(t)), t0 ≤ t ≤ t1, (2.1)

where M ∈ Rnϕ×nϕ , ϕ∗ ∈ C2([t0, t1],Rnϕ), f , and t denote the mass matrix, the motion,
the applied resultant force, and the time between time points t0 and t1, respectively. Rnϕ
denotes the degrees of freedom of the system. By introducing additional velocity variables
v = ϕ̇∗ ∈ C1([t0, t1],Rnϕ), Eq. 2.1 is rewritten as a first order system,

ϕ̇∗(t) = v(t), (2.2a)

Mv̈(t) = f(ϕ∗(t)). (2.2b)

The notation C1([t0, t1],Rnϕ) refers to the space C1((t0, t1),Rnϕ), with continuity requirements
at the endpoints in time, where derivatives are defined as one-sided derivatives. Eq. 2.2, accom-
panied with initial conditions, ϕ∗(t0) = ϕ0 and ϕ̇∗(t0) = ϕ̇0, constitute an initial value problem
(IVP). Under the assumptions that M is invertible, and that v and f are uniformly Lipschitz
continuous in time, the IVP has a unique solution, for a sufficiently small interval in time, ac-
cording to Picard-Lindelöf’s theorem [2]. Furthermore, the time interval can be extended by
successively applying the theorem.

Under the assumption that f is conservative, it can be expressed as f(ϕ∗) = −dV (ϕ∗)
dϕ∗

, for a

potential energy V (ϕ∗). Thus, Eq. 2.1 can be expressed as

0 = −dV (ϕ∗)

dϕ∗
−Mϕ̈∗(t). (2.3)

Consider the Lagrangian
L(ϕ∗, ϕ̇∗) = T (ϕ̇∗)− V (ϕ∗), (2.4)

where T (ϕ̇∗) =
ϕ̇T∗Mϕ̇∗

2 is the kinetic energy. Since ∂L
∂ϕ̇∗

= dT
dϕ̇∗

= dT
dϕ̇T∗

= Mϕ̇∗+M
T ϕ̇∗

2 and
∂L
∂ϕ∗

= − dV
dϕ∗

, Eq. 2.3 can, under the assumption that M is symmetric, be reformulated to
Euler-Lagrange’s equation,

0 =
∂L

∂ϕ∗
− d

dt

∂L

∂ϕ̇∗
. (2.5)

Thus, closed, autonomous, conservative mechanical systems can, equivalently to Eq. 2.1 , be
modeled by Euler-Lagrange’s equation, for L = T−V . Furthermore, a ϕ∗ fulfilling Eq. 2.5 defines
an extremal of a corresponding VP, known as Hamilton’s principle of least action. Retrieving
the EOM, from the VP, is the approach taken in Lagrangian mechanics.

Pre-multiplying Euler-Lagrange’s equation with ϕ̇T∗ generates

0 = ϕ̇T∗ (
∂L

∂ϕ∗
− d

dt

∂L

∂ϕ̇∗
), (2.6)
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which for an autonomous system, L = L(ϕ∗(t), ϕ̇∗(t)), can be rewritten as

0 =
d

dt
(L− ϕ̇T∗

∂L

∂ϕ̇∗
). (2.7)

The Hamiltonian H is defined as

H := ϕ̇T∗
∂L

∂ϕ̇∗
− L. (2.8)

Then, Eq. 2.7 is restated as

0 = −dH

dt
. (2.9)

Since, closed, autonomous mechanical systems relies on the conservation of the total energy in
time, the Hamiltonian is interpreted as the total energy. L = T − V , considered for relating
Newton’s second law to Euler-Lagrange’s equation, inserted into Eq. 2.8 gives

H = ϕ̇TMϕ̇∗ + V − ϕ̇T∗Mϕ̇∗
2

= T + V, (2.10)

which is the total energy for unconstrained mechanical systems. Thus, the choice L = T − V
should be used for modeling closed, autonomous, unconstrained mechanical systems.

Similarly to Lagrangian mechanics, Hamiltonian mechanics relies on solving a corresponding
VP. Furthermore, after regarding the momentum as a variable, the VP can be reformulated as
a decoupled system of first order differential equations. While the physical interpretation of
the Hamiltonian is clear, there is a drawback compared to Lagrangian mechanics. By the pre-
multiplication of ϕ̇∗ in Eq. 2.6, false solutions corresponding to stationary systems (ϕ̇∗ = 0) are
introduced. Hamiltonian mechanics is not pursued any further in this study. For a presentation
of Hamiltonian mechanics, see an introductory textbook on calculus of variations, eg. [3]. Lastly,
Lagrangian and Hamiltonian mechanics are not restricted to autonomous systems.

2.1.2 Lagrangian Mechanics

Lagrangian mechanics stems from a VP with fix endpoints in time, Hamilton’s principle of
least action. For the VP, an extremal, embedded in a space of admissible motions, is assumed to
exist. The extremal is retrieved, by applying a stationarity condition over the space of admissible
motions. Euler-Lagrange’s equation is shown to hold for an extremal. Therefore, an extremal is
defined as the motion for which Euler-Lagrange’s equation holds.

Consider the space Vϕ of all motions ϕ(t) ∈ C2([t0, t1],Rnϕ), for t0 ≤ t ≤ t1, which are known
at the time points t0 and t1, ϕ(t0) = ϕ0 and ϕ(t1) = ϕ1,

Vϕ = {ϕ(t) | ϕ(t) ∈ C2([t0, t1], Rnϕ), ϕ(t0) = ϕ0, ϕ(t1) = ϕ1}. (2.11)

For ϕ(t0) = ϕ0 and ϕ(t1) = ϕ1 to be well-defined, t0, t1, ϕ0, and ϕ1 are all assumed to be
finite. To be able to categorize spaces by their codomain, the notation Vϕ = Vϕ(Rnϕ) is adopted.
Assume that an extremal ϕ∗(t) ∈ C2([t0, t1],Rnϕ) is embedded in Vϕ. An extremal is defined
as a motion which solves Euler-Lagrange’s equation, Eq. 2.5. The space of a single extremal is
defined as

Vϕ∗ := {ϕ∗(t) | Vϕ 3 ϕ∗(t)}. (2.12)

3 refers to a single element embedded in a space, whereas ∈ refers to any element embedded in
a space. By linearizing the problem around ϕ∗, an affine space Vϕ̃ is retrieved, which can be
expressed as

Vϕ̃ = Vϕ∗ ⊕ Vθη, (2.13)
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where Vθη is a linear space, in θ ∈ Vθ for each η ∈ Vη, of admissible variations,

Vθη = Vθ ⊗ Vη, (2.14)

with

Vθ = {θ | θ ∈ R}, (2.15a)

Vη = {η(t) | η(t) ∈ C1([t0, t1], Rnϕ), η(t0) = 0, η(t1) = 0}. (2.15b)

η ∈ Vη denotes the direction, and the relative magnitude, of an admissible variation in time,
while θ ∈ Vθ denotes a magnitude which is constant in time for the admissible variation. Since
the endpoints in ϕ ∈ Vϕ are prescribed, only admissible variations which vanish at the endpoints
are sought. This requirement is retrieved by forcing all η ∈ Vη to vanish at the endpoints. The
affine space Vϕ̃ is referred to as the trial function space, and ϕ̃ ∈ Vϕ̃ as an admissible motion.
According to Eq. 2.13, an admissible motion is element-wise expressed as the sum of the extremal
and an admissible variation

ϕ̃(θ, t) = ϕ∗(t) + θη(t), t0 ≤ t ≤ t1. (2.16)

The linearization was performed to enable to use the mathematical machinery for linear theory.
However, if η is a nonlinear function, then ϕ̃ ∈ Vϕ̃ is only a valid approximation of ϕ ∈ Vϕ for
small θ.

To retrieve Hamilton’s principle of least action, the action integral is first introduced

j(θ) =

∫ t1

t0

L(ϕ̃(θ, t), ˙̃ϕ(θ, t))dt, ϕ̃ ∈ Vϕ̃, (2.17)

where L(ϕ̃, ˙̃ϕ) : R2nϕ → R is a bilinear functional. Hamilton’s principle of least action is stated
as

Variational problem 1 (Unconstrained problem). For a given pair of tuples (t0, ϕ0) and (t1, ϕ1)
find an extremal ϕ∗(t) ∈ Vϕ(Rnϕ), for t0 ≤ t ≤ t1, under the assumption that ϕ∗(t) exists, such
that

0 = j′(0), ∀η ∈ Vη(Rnϕ). (2.18)

for

j(θ) =

∫ t1

t0

L(ϕ̃(θ, t), ˙̃ϕ(θ, t))dt, ϕ̃ ∈ Vϕ̃(Rnϕ), (2.19)

where M(t) = ( ∂L∂ϕ∗ −
d
dt

∂L
∂ϕ̇∗

)(ϕ∗(t), ϕ̇∗(t)) ∈ C([t0, t1],Rnϕ) is a continuous function.

Eq. 2.18 denotes the stationarity condition. To find ϕ∗ ∈ Vϕ(Rnϕ), under the assumption
that it exists, the action integral is differentiated

j′(θ) =
d

dθ

∫ t1

t0

L(ϕ∗ + θη, ϕ̇∗ + θη̇)dt (2.20)

=

∫ t1

t0

(
ηT
∂L

∂ϕ̃
(ϕ∗ + θη, ϕ̇∗ + θη̇) + η̇T

∂L

∂ ˙̃ϕ
(ϕ∗ + θη, ϕ̇∗ + θη̇)

)
dt,

Insertion of Eq. 2.20, into the stationarity condition, Eq. 2.18, gives

0 = j′(0) =

∫ t1

t0

(
ηT

∂L

∂ϕ∗
(ϕ∗, ϕ̇∗) + η̇T

∂L

∂ϕ̇∗
(ϕ∗, ϕ̇∗)

)
dt, ∀η ∈ Vη, (2.21)
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where the notation

∂L

∂ϕ∗
(ϕ∗, ϕ̇∗) :=

∂L

∂ϕ̃
(ϕ∗ + θη, ϕ̇∗ + θη̇)

∣∣
θ=0

,
∂L

∂ϕ̇∗
(ϕ∗, ϕ̇∗) :=

∂L

∂ ˙̃ϕ
(ϕ∗ + θη, ϕ̇∗ + θη̇)

∣∣
θ=0

, (2.22)

is employed. Performing integration by parts on the last term generates∫ t1

t0

η̇T
∂L

∂ϕ̇∗
dt =

[
ηT

∂L

∂ϕ̇∗

]t1
t0
−
∫ t1

t0

ηT
d

dt

∂L

∂ϕ̇∗
dt = −

∫ t1

t0

ηT
d

dt

∂L

∂ϕ̇∗
dt. (2.23)

Insertion into Eq. 2.21 gives the EOM in weak form

0 =

∫ t1

t0

ηT
( ∂L
∂ϕ∗

− d

dt

∂L

∂ϕ̇∗

)
dt, ∀η ∈ Vη. (2.24)

To continue, consider the fundamental lemma of calculus of variations,

Lemma 1 (Fundamental lemma of calculus of variations in time). Let N(t) ∈ C([t0, t1],Rnϕ).
If ∫ t1

t0

h(t)TN(t)dt = 0, ∀h ∈ C1([t0, t1],Rnϕ), (2.25)

with h(t0) = h(t1) = 0, then N(t) = 0 for t0 ≤ t ≤ t1.

The lemma is proved by contradiction, as shown in Appendix A.1. The unconstrained dy-
namics, M(t) = ∂L

∂ϕ∗
− d

dt
∂L
∂ϕ̇∗

, is required to be a continuous function in time by VP 1. Since

also η ∈ C1([t0, t1],Rnϕ), the prerequisites for the fundamental lemma of calculus of variations
are met. By applying the lemma, Euler-Lagrange’s equation, Eq. 2.5, is retrieved for ϕ∗, which
was the definition for ϕ∗ being an extremal. VP 1 is the process of finding a local extremum for
an unconstrained system in calculus of variations [3].

Consider the specific Lagrangian L = T − V . For the specific Lagrangian, with ϕ∗ ∈
C2([t0, t1],Rnϕ), M(t) is a continuous function in time. Hence, all requirements for VP 1 are
fulfilled. Applying the lemma gives Euler-Lagrange’s equation

∂L

∂ϕ∗
− d

dt

∂L

∂ϕ̇∗
= 0, with L = T − V. (2.26)

By applying the lemma, the formulation changes from a weak to a strong formulation in time.
A classical theorem in functional analysis is that a strong solution implies a weak solution, but
not vice versa [4]. Since the endpoints in time (ϕ∗(t0), ϕ̇∗(t1)) = (ϕ0, ϕ̇0) are given, a boundary
value problem (BVP) is retrieved,

Boundary value problem 1. For a given pair of endpoint conditions, (ϕ∗(t0), ϕ̇∗(t1)) =
(ϕ0, ϕ̇0), find a motion path ϕ∗ ∈ C2([t0, t1],Rnϕ) for which

∂L

∂ϕ∗
− d

dt

∂L

∂ϕ̇∗
= 0, (2.27a)

where

L(ϕ∗, ϕ̇∗) = T (ϕ̇∗)− V (ϕ∗). (2.27b)
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In the previous subsection, Euler-Lagrange’s equation, with L = T − V , was related to
Newton’s second law, written as a first order system, Eq. 2.2. Moreover, under the assumptions
of uniformly Lipschitz continuity of f and v, and M being invertible, an IVP based on Eq. 2.2
provides a unique motion ϕ∗(t), for t0 ≤ t ≤ t1. Therefore, the IVP for a specific pair of initial
conditions corresponds to the BVP 1 for a specific pair of endpoint conditions. Thus existence
and uniqueness of the motion for the IVP implies that the motion for the corresponding BVP
exists and is unique. As shown above, BVP 1 is reformulation in strong form of VP 1, which is a
problem in weak form. The existence and uniqueness of a solution for BVP 1 implies existence,
but not uniqueness, of a solution for VP 1.

In the integration by part step in the above proof, as well as for the connection to classical me-
chanics (see Section 2.1.1), the requirement ϕ∗ ∈ C2([t0, t1],Rnϕ) is needed. However, the EOM
in weak form, Eq. 2.24, can be proved under the weaker assumptions that ϕ∗ ∈ C1([t0, t1],Rnϕ),
and furthermore that ϕ∗ ∈ D1([t0, t1],Rnϕ), where D1 denotes the function space of piecewise dif-
ferentiable functions with continuous derivates, for finite many pieces. For ϕ∗ ∈ D1([t0, t1],Rnϕ)
it is possible to model multibody systems in presence of actuators, which can change the char-
acteristics of the system in an instant. Proofs under the weaker assumptions are provided in
introductory textbooks on calculus of variations, eg. [3].

2.1.3 Extension to Constrained Dynamics

In a multibody setting, the presence of joints serves as holonomic constraints, which generates
constrained dynamics. Consider nλ < nϕ holonomic, or geometric, constraint equations,

g(ϕ∗(t)) = 0, ϕ∗ ∈ Vϕ∗ , (2.28)

where g ∈ C1([t0, t1],Rnλ). Time-differentiation gives

G(ϕ∗(t))ϕ̇∗(t) = 0, (2.29)

where G := dg(ϕ∗)
dϕ∗

∈ C([t0, t1],Rnλ×nϕ) denotes the constraint Jacobian. Assume that G has
full row rank, which means that the rows in G are linearly independent. Then, the constraint
restricts the degrees of freedom of the system, from the space Rnϕ to a manifold of ns dimensions,
where ns := nϕ − nλ.

For constrained dynamics, Hamilton’s principle of least action is solved subject to Eq. 2.28,

Variational problem 2 (Constrained problem). For a given pair of tuples (t0, ϕ0) and (t1, ϕ1),
where ϕ0 and ϕ1 fulfill Eq. 2.28, find an extremal ϕ∗(t) ∈ Vϕ∗(Rnϕ), under the assumption that
ϕ∗(t) exists, such that

0 = j′(0), ∀η ∈ Vη(Rnϕ), (2.30a)

for

j(θ) =

∫ t1

t0

L(ϕ̃(θ, t), ˙̃ϕ(θ, t))dt, ϕ̃ ∈ Vϕ̃(Rnϕ), (2.30b)

subject to

g(ϕ̃(t)) = 0, g ∈ C1([t0, t1],Rnλ), (2.30c)

with G(ϕ∗(t)) having full row rank.
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Eq. 2.30c is stated as a strong formulation in time, whereas the stationarity condition,
Eq. 2.30a, enforces stationarity of the extremal in a weak sense in time. This inconsistency
in the formulations can be circumvented in two different ways, either by solely considering mo-
tions on the constrained manifold, for which Eq. 2.30c automatically fulfilled. Alternatively
Eq. 2.30c is incorporated into Eq. 2.30b. Thus, with by reformulations, Eq. 2.30c is avoided.

Consider a parametrization s(t) ∈ C2([t0, t1],Rns) spanning the constrained manifold. After
applying a coordinate transformation to the minimal coordinates spanning the parametrization,
ϕ = ϕ(s(t)) ∈ C2([t0, t1],Rns), the nλ dimensions related to the constraints do not have to be
considered. Thus, the dynamics can be described by an unconstrained VP on the manifold,

Variational problem 3 (Minimal coordinates). For a given pair of tuples (t0, ϕ0) and (t1, ϕ1),
and a parametrization s(t) ∈ C2([t0, t1],Rns) of the constrained manifold, find an extremal
ϕ∗(s(t)) ∈ Vϕ(Rns), for t0 ≤ t ≤ t1, under the assumption that ϕ∗(s(t)) exists, such that

0 = j′(0), ∀η(s(t)) ∈ Vη(Rns), (2.31a)

for

j(θ) =

∫ t1

t0

L(ϕ̃(θ, s(t)), ˙̃ϕ(θ, s(t)))dt, ϕ̃ ∈ Vϕ̃(Rns), (2.31b)

Under the assumption that a given s(t) is non-singular for all admissible motions, VP 3 is
solved just as a reduced unconstrained VP 1. The derived EOM in strong form are known as
the state space form. The state space form has the advantage that the number of unknowns are
reduced by nλ equations. However, its main drawback is that a prescribed parametrization is
required to employ the coordinate transformation.

A typical example, when the state space form is handy, is to model the dynamics on a sphere in
three dimensions. With Canonical coordinates, the VP is constrained. However, by introduction
of spherical coordinates, the problem can be reformulated as a two-dimensional unconstrained
VP for the two angles spanning the sphere. For many complex structures it is not possible to
prescribe the constrained manifold. Then, another approach is needed.

The alternative approach is based on a Lagrange multiplier technique which follows from
Lagrange’s multiplier theorem,

Theorem 1 (Lagrange’s multiplier theorem). Under the assumption that ϕ∗ ∈ C2([t0, t1],Rnϕ) is
an extremal of the constrained VP 2, there exists a specific Lagrange multiplier λ∗ ∈ C([t0, t1],Rnλ)
such that ϕ∗ is an extremal of the unconstrained VP 1 for Lagrangian P ,

P (ϕ̃, ˙̃ϕ) = L(ϕ̃, ˙̃ϕ)− g(ϕ̃)Tλ∗, ϕ̃ ∈ Vϕ̃, (2.32)

with g ∈ C1([t0, t1],Rnλ), ie. 0 = ∂P
∂ϕ∗
− d

dt
∂P
∂ϕ̇∗

.

First, note that P = P (ϕ̃, ˙̃ϕ) is a bilinear functional in ϕ̃ and ˙̃ϕ, which only holds for a specific
Lagrange multiplier λ∗. For the proof of the theorem, Eq. 2.30c is considered

0 = g(ϕ̃) = g(ϕ∗ + θη). (2.33)

Performing differentiation with respect to θ generates

d

dθ
g(ϕ̃) =

dg(ϕ̃)

dϕ̃
η = 0. (2.34)
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Thereafter, setting θ = 0 gives
G(ϕ∗(t))η = 0, (2.35)

with G(ϕ∗(t)) = dg(ϕ∗)
dϕ∗

= dg(ϕ̃)
dϕ̃ |θ=0. Since G denotes the constraint Jacobian, η is restricted to

the tangent plane of the constraints. Thus, for VP 2, η is restricted to the space

Vη̂ = {η(t) | η(t) ∈ Vη, G(ϕ∗(t))η = 0}. (2.36)

The derivations steps from VP 1, which render in the EOM in weak form in time, Eq. 2.24, can
be employed for VP 2, with Vη replaced by Vη̂. The updated EOM in weak form is then stated
as

0 =

∫ t1

t0

η̂TMdt, ∀η̂ ∈ Vη̂(Rnϕ), (2.37)

where M(t) = ∂L
∂ϕ∗
− d

dt
∂L
∂ϕ̇∗
∈ C([t0, t1],Rnϕ) is the uconstrained dynamics. Since η̂ ∈ Vη̂(Rnϕ) is

restricted to the tangent plane of the constraint, the fundamental lemma of calculus of variations,
Lemma 1, cannot be employed for Eq. 2.37. However, by projecting M(t) onto the tangent plane
of the constraints, for each time point t, the weak form is reduced to only be required to hold on
the tangent plane, with η̂ ∈ Vη̂(Rnϕ) reduced to η ∈ Vη(Rns),

0 =

∫ t1

t0

ηTΠMdt, ∀η ∈ Vη(Rns). (2.38)

Π denotes the complement to the orthogonal projector onto the range of G(ϕ∗)
T

Π := I −GT (GGT )−1G, (2.39)

where I denotes the identity matrix. Invertibility of GGT follows from that G has full row rank,
as shown in Appendix A.2. Due to Eq. 2.35, projection onto the tangent plane of the constraints,
and projection onto the complement of G(ϕ∗)

T , are equivalent projections. For a presentation
of orthogonal projectors, see a textbook on numerical linear algebra, eg. [5, p. 46]. Applying the
fundamental lemma of calculus to Eq. 2.38 generates

0 = ΠM = M −GT (GGT )−1GM. (2.40)

Set the Lagrange multiplier λ∗ = (GGT )−1GM . That (GGT )−1 is continuous in time follows
from that G are continuous in time, and that an invertible square matrix is continuous, as
proved in Appendix A.3. Since also M is continuous in time, λ∗ ∈ C([t0, t1],Rnλ). Since
M(t) = ∂L

∂ϕ∗
− d

dt
∂L
∂ϕ̇∗

, Eq. 2.40 corresponds to

0 =
∂L

∂ϕ∗
− d

dt

∂L

∂ϕ̇∗
−G(ϕ∗)

Tλ∗, (2.41)

which is equivalent to

0 =
∂P

∂ϕ∗
− d

dt

∂P

∂ϕ̇∗
, (2.42)

for P (ϕ∗, ϕ̇∗) = L(ϕ∗, ϕ̇∗) − g(ϕ∗)
Tλ∗. Since Eq. 2.42 is Euler-Lagrange’s equation for the

Lagrangian P , ϕ∗ is an extremal of the unconstrained VP 1 for Lagrangian P . Hence, the
theorem is proved.

Remark 1. λ∗(t) = 0, for λ∗ in Theorem 1, implies that the motion ϕ∗ for unconstrained and
constrained dynamics are exactly the same.
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If λ∗ = 0, then P = L, implying that ϕ∗ is an extremal of both VP 1 and VP 2.
According to Lagrange’s multiplier theorem, an extremal ϕ∗ of the constrained VP 2 is also

an extremal of the unconstrained VP 1 for the Lagrangian P , for a specific Lagrange multi-
plier λ∗(t) ∈ C([t0, t1],Rnλ). Thus, as an expense for reformulating the constrained VP as an
unconstrained VP, a specific Lagrange multiplier λ∗(t) ∈ C([t0, t1],Rnλ) has to be prescribed.

This last obstacle is circumvented by extending the VP to finding an extremal (ϕ∗(t), λ∗(t)),
for t0 ≤ t ≤ t1, embedded in a space (Vϕ, Vλ) with given endpoint conditions, (ϕ(t0), λ(t0)) =
(ϕ0, λ0) and (ϕ(t1), λ(t1)) = (ϕ1, λ1). For Theorem 1 to hold, the given (λ0, λ1) must equal
(λ∗(t0), λ∗(t1)). The tuples (t0, ϕ0, λ0) and (t1, ϕ1, λ1) are denoted as consistent endpoint con-
ditions, if ϕ0 and ϕ1 fulfill Eq. 2.28, and (λ0, λ1) = (λ∗(t0), λ∗(t1)).

Under the assumption that ϕ∗ is an extremal of VP 2, the extremal component λ∗(t) ∈
C([t0, t1],Rnλ) exists, according to the theorem. Moreover, it is embedded in the function space

Vλ = {λ(t) | λ(t) ∈ C([t0, t1],Rnλ), λ(t0) = λ0, λ(t1) = λ1}, (2.43)

where the space of an extremal component λ∗ is expressed by,

Vλ∗ = {λ∗(t) | Vλ 3 λ∗(t)}. (2.44)

Define the affine space Vλ̃, by linearizing the space around λ∗ ∈ Vλ, as

Vλ̃ := Vλ∗ ⊕ Vθϑ, (2.45)

where the space of admissible variations, with respect to λ∗, is defined as

Vθϑ := Vθ ⊗ Vϑ, (2.46)

with Vθη from Eq. 2.15a and

Vϑ := {ϑ(t) | ϑ(t) ∈ C1([t0, t1],Rnλ), ϑ(t0) = 0, ϑ(t1) = 0}. (2.47)

The requirement for ϑ ∈ Vϑ to vanish at the endpoints is included since λ∗(t0) and λ∗(t1) are
assumed to be known.

The updated Lagrangian LC : R2nϕ+nλ → R is a trilinear functional in (ϕ̃, ˙̃ϕ, λ̃), extended
from the bilinear functional P , Eq. 2.32,

LC(ϕ̃, ˙̃ϕ, λ̃) = L(ϕ̃, ˙̃ϕ)− g(ϕ̃)T λ̃, (ϕ̃, λ̃) ∈ (Vϕ̃, Vλ̃). (2.48)

LC is referred to as the constrained Lagrangian. Hamilton’s principle of least action, for finding
an extremal (ϕ∗(t), λ∗(t)) ∈ (Vϕ∗ , Vλ∗), is stated as

Variational problem 4 (Lagrange multiplier technique). For a given pair of consistent endpoint
conditions (t0, ϕ0, λ0) and (t1, ϕ1, λ1), find an extremal (ϕ∗(t), λ∗(t)) ∈ (Vϕ∗ , Vλ∗), for t0 ≤ t ≤
t1, under the assumption that (ϕ∗(t), λ∗(t)) exists, such that

0 = j′(0), ∀(η, ϑ) ∈ (Vη, Vϑ), (2.49a)

for

j(θ) =

∫ t1

t0

LC(ϕ̃(θ, t), ˙̃ϕ(θ, t), λ̃(θ, t))dt, (ϕ̃, λ̃) ∈ (Vϕ̃, Vλ̃). (2.49b)
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Assume that ϕ∗ is an extremal of VP 2. The existence of λ∗ follows from Theorem 1. To
find (ϕ∗, λ∗), the action integral is differentiated

j′(θ) =
d

dθ

∫ t1

t0

LC(ϕ∗ + θη, ϕ̇∗ + θη̇, λ∗ + θϑ)dt (2.50)

=

∫ t1

t0

(
ηT
∂LC

∂ϕ̃
(ϕ∗ + θη, ϕ̇∗ + θη̇, λ∗ + θϑ) + η̇T

∂LC

∂ ˙̃ϕ
(ϕ∗ + θη, ϕ̇∗ + θη̇, λ∗ + θϑ)

+
∂LC

∂λ̃
(ϕ∗ + θη, ϕ̇∗ + θη̇, λ∗ + θϑ)ϑ

)
dt,

Insertion of Eq. 2.50 into the stationarity condition, Eq. 2.49a, gives

0 = j′(0) =

∫ t1

t0

(
ηT
∂LC

∂ϕ∗
(ϕ∗, ϕ̇∗, λ∗) + η̇T

∂LC

∂ϕ̇∗
(ϕ∗, ϕ̇∗, λ∗) +

∂LC

∂λ∗
(ϕ∗, ϕ̇∗, λ∗)ϑ

)
dt, (2.51)

Performing integration by parts in time on the term including η̇, see Eq. 2.23, generates

0 =

∫ t1

t0

ηT
(∂LC

∂ϕ∗
− d

dt

∂LC

∂ϕ̇∗

)
dt+

∫ t1

t0

∂LC

∂λ∗
ϑdt, ∀(η, ϑ) ∈ (Vη, Vϑ). (2.52)

Insertion of Eq. 2.48 into Eq. 2.52 leads to the equations of constrained motion (EOCM) in weak
form

0 =

∫ t1

t0

ηT
( ∂L
∂ϕ∗

− d

dt

∂L

∂ϕ̇∗
−G(ϕ∗)

Tλ∗
)
dt+

∫ t1

t0

ϑT g(ϕ∗)dt, ∀(η, ϑ) ∈ (Vη, Vϑ). (2.53)

Setting η = 0 gives

0 =

∫ t1

t0

ϑT g(ϕ∗)dt, ∀ϑ ∈ Vϑ. (2.54)

Eq. 2.54, and thereby also VP 4, only requires that the holonomic constraint equations hold for
the extremal component ϕ∗ in a weak sense in time. This is a relaxation on the restrictions to
the constraints provided in VP 2, which was strong in time and was also forced to hold for all
admissible motions ϕ̃ ∈ Vϕ̃. Therefore, the assumption that ϕ∗(t) is an extremal of VP 2 can be
relaxed to that there exists an extremal (ϕ∗, λ∗) of VP 4.

For Eq. 2.54 all the prerequisites are met to employ the fundamental lemma of calculus of
variations, Lemma 1. By instead setting ϑ = 0 generates

0 =

∫ t1

t0

ηT
( ∂L
∂ϕ∗

− d

dt

∂L

∂ϕ̇∗
−G(ϕ∗)

Tλ∗
)
dt, ∀η ∈ Vη. (2.55)

Consider MC(t) = M(t) − G(ϕ∗)
Tλ∗. Since M(t) ∈ C([t0, t1],Rnϕ) (see Section 2.1.2) and

G(ϕ)T∗ λ∗(t) are continuous in time, so is MC. As a consequence, all the prerequisites are met to
employ the fundamental lemma of calculus of variations. By employing Lemma 1 for Eqs. 2.54
and 2.55, a BVP for a system of second order differential-algebraic equations (DAEs) is retrieved,

Boundary value problem 2. For a given pair of consistent endpoint conditions (t0, ϕ0, λ0)
and (t1, ϕ1, λ1), find a (ϕ∗, λ∗) ∈ (Vϕ∗ , Vλ∗) path such that

∂L

∂ϕ∗
− d

dt

∂L

∂ϕ̇∗
−G(ϕ∗)

Tλ∗ = 0, (2.56a)

g(ϕ∗) = 0. (2.56b)
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By performing the derivation steps from Eq. 2.1 to Eq. 2.5 backwards on Eq. 2.56a, Eq. 2.56
is rewritten as Lagrange’s equations of the first kind, or the EOCM in strong form,

Mϕ̈∗(t) = f(ϕ∗(t))−G(ϕ∗(t))
Tλ∗(t), (2.57a)

g(ϕ∗(t)) = 0, (2.57b)

where M ∈ Rnϕ×nϕ and f ∈ C([t0, t1],Rnϕ) denote a symmetric mass matrix and a conservative
force, respectively.

The system of DAEs, Eq. 2.57, should be understood as the system

Mϕ̈∗(t) = f(ϕ∗(t)), (2.58)

restricted to move along g(ϕ∗(t)) = 0. The restriction is provided by the constraint component
−G(ϕ∗)

Tλ∗, which can be interpreted as a force pulling the motion back to a path constrained
by g(ϕ∗) = 0.

To model Eq. 2.57 numerically, the system is discretized in time by a time-integration method
(see Section 2.7). To enforce the motion to follow the constrained path, the constraint equa-
tions and the constraint term should hold for the new time-update tnew, g(ϕ∗(tnew)) = 0 and
−G(ϕ∗(tnew))Tλ∗(tnew). Thus, with an explicit time-integrating scheme for the acceleration, a
system would still be required to be solved at each time-update. Hence, implicit time-integrators
are employed for systems of DAEs.

By introducing additional velocity variables v ∈ C1([t0, t1],Rnϕ), Eq. 2.57 is rewritten as a
system of first order DAEs,

ϕ̇∗ = v, (2.59a)

Mv̇ = f(ϕ∗)−G(ϕ∗)
Tλ∗, (2.59b)

0 = g(ϕ∗). (2.59c)

Compared to IVPs based on systems of ODEs, IVPs based on systems of DAEs are more difficult
to solve numerically. This is mainly due to that the latter is more sensitive to perturbations of
the system, and that the initial conditions (ϕ0, v0, λ0) are forced to satisfy

Mv̇0 = f(ϕ0)−G(ϕ0)Tλ0, (2.60a)

g(ϕ0) = 0, (2.60b)

G(ϕ0)v0 = 0. (2.60c)

where the Eq. 2.60c stems from Eq. 2.29.
Initial conditions, which fulfill Eq. 2.60, are referred to as consistent initial conditions. In

practice, for complex structures, finding consistent initial values is a challenging procedure [1].
In the next subsection, the sensitivity to perturbations is discussed for IVPs based on systems
of DAEs, by introducing the perturbation and differentiation indices.

2.1.4 Sensitivity to Perturbations for Systems of DAEs

Consider a general system of first order differential equations,

F (x(t), ẋ(t), t) = 0, (2.61)

with a solution x(t) for t0 ≤ t ≤ t1. When solving the system numerically in time, a slightly per-
turbed system has to be considered. The perturbation arises mainly due to the time-discretization
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scheme, but also from the limitation on how precisely a value is evaluated on a machine. Consider
the perturbed system

F (x̂(t), ˙̂x(t), t) = δ(t), (2.62)

where δ(t) is a perturbation. A way to estimate the sensitivity to perturbations for a system is
by its perturbation index. If the perturbation index of Eq. 2.61 is k ≥ 1, then there exists an
estimate, on the norm of the global error induced by the perturbation ‖x(t) − x̂(t)‖, which is
dependent on the norm of the initial error ‖x(t0)− x̂(t0)‖, and the norm of the perturbation and
its derivatives,

‖x(t)− x̂(t)‖ ≤ ‖x(t0)− x̂(t0)‖+ max
t0≤ε≤t

‖δ(ε)‖+ ...+ max
t0≤ε≤t

‖δk−1(ε)‖, (2.63)

if the perturbation δ(t) is sufficiently small [1, p. 34]. Systems of ODEs have perturbation index
k = 0, with the estimate [1, p. 34]

‖x(t)− x̂(t)‖ ≤ ‖x(t0)− x̂(t0)‖+ max
t0≤ε≤t

‖
∫ ε

t0

δ(τ)dτ‖. (2.64)

For systems with perturbation indices k ≥ 2, the magnitude, of the maximal oscillatory behavior
at any time point of the perturbation (maxt0≤ε≤t ‖δi(ε)‖ for i ∈ [1, k − 1]), amplifies the bound
on ‖x(t) − x̂(t)‖. Specifically, highly oscillatory perturbations with tiny magnitudes generate
strict bounds for systems with perturbation indices k ≤ 1, but loose bounds for systems with
perturbation indices k ≥ 2. Note, the perturbation induced by the machine error εmac (the
error induced by that the evaluations of two values approaching each other eventually become
indistinguishable on a machine) is tiny, εmac ∼ 10−16, but random, and therefore naturally
oscillatory at some instance in time.

Also, for nonlinear systems, the solutions of discretized systems, at each time step, are re-
quired to converge until the residual at that time step is below a specified bound. Thus, the
magnitude of the induced perturbation can partly be forced to be small for all time steps. How-
ever, the oscillatory behavior of the perturbation is not controlled. Moreover, the oscillatory
nature of the two described perturbations increases as the time step size decreases. As a conse-
quence, solving systems numerically, with perturbation indices k ≥ 2, requires great care.

Consider the system of first order DAEs in Eq. 2.59, the EOCM in strong form. For systems
of first order DAEs with holonomic constraints, the perturbation index is exactly the same as the
differentiation index [1, p. 35]. The differentiation index defines how many differentiation steps
are required to reformulate a well-posed system of first order DAEs, to a system of explicit first
order ODEs. In the following paragraph, Eq. 2.59 is shown to have differentiation index three,
under the assumptions that G has full row rank and M is symmetric positive definite (SPD).
Note, the reformulation, which gives the differentiation index, is completed when a system of
explicit ODEs in (ϕ̇∗, v̇, λ̇∗) is retrieved.

First, differentiate the constraint equations in time, to retrieve the constraints at velocity
level,

0 =
d

dt
g(ϕ∗) = G(ϕ∗)ϕ̇∗ = G(ϕ∗)v.. (2.65)

A second differentiation step in time yields the constraints at acceleration level,

0 =
d2

dt2
g(ϕ∗) = G(ϕ∗)v̇ + κ(ϕ∗, v), κ(ϕ∗, v) =

dG(ϕ∗)

dt
v. (2.66)
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By combining Eq. 2.59b and Eq. 2.66, a linear system is retrieved,[
M GT

G 0

] [
v̇
λ∗

]
=

[
f
κ

]
(2.67)

Under the assumptions that G has full row rank and M is SPD,[
M GT

G 0

]
, (2.68)

is invertible. A proof is provided in Appendix A.4. The matrix is block diagonalized by perform-
ing block Gaussian elimination[

M GT

G 0

]
=

[
I 0

GM−1 I

] [
M 0
0 −GM−1GT

] [
I M−1GT

0 I

]
. (2.69)

By inverting the three matrices, Eq. 2.67 is rewritten as

v̇ = M−1(f −GTλ∗), (2.70a)

λ∗ = (GM−1GT )−1(GMf + κ) = F2. (2.70b)

By insertion of Eq. 2.70b into λ∗ in Eq. 2.70a, a system of explicit ODEs is retrieved in v̇,

v̇ = M−1(f −GTF2) = F1. (2.71)

By appedinding Eq. 2.59a, and a time-differentiated Eq. 2.70b, a system of explicit ODEs in
(ϕ̇, v̇, λ̇) is retrieved,

ϕ̇∗ = v, (2.72a)

v̇ = F1, (2.72b)

λ̇∗ = Ḟ2. (2.72c)

In total, three differentiation steps were performed to retrieve Eq. 2.72. Therefore, Eq. 2.59
is a system of index-3 first order DAEs. By accompanying Eq. 2.72, with consistent initial
conditions (ϕ0, v0, λ0), the retrieved IVP, under the assumptions that the right-hand side is
uniformly Lipschitz continuous in time, has a unique solution for a sufficiently small interval in
time, according to Picard-Lindelöf’s theorem [2]. Furthermore, the time interval can be extended
to [t0, t1] by successively applying the theorem. Thus, for consistent initial conditions, under the
set of admissibility assumptions, and that M is SPD, G has full row rank, f is conservative and
the the right-hand side of Eq. 2.72 is uniformly Lipschitz continuous in time, the extremal of
VP 4 exists (the existence of a solution for the IVP implies the existence of a solution for BVP 2,
which furthermore implies the existence of a solution for VP 4).

The sensitivity to perturbations for systems of DAEs can generally be reduced through index
reduction. For Eq. 2.59 the simplest way to reduce the index is by replacing the constraint
equations by a time-differentiated version, eg. the constraints at velocity level 0 = G(ϕ∗)v.
While this process, reduces the sensitivity to perturbations, it introduces drift-off effects. Drift-
off effects refer to that the motion ϕ∗ might deviate away from the constrained path g(ϕ∗) = 0
over time. However, there are ways to be able to rewrite systems of index-3 DAEs as systems of
index-2 DAEs, while still avoiding drift-off effects. Those methods rely on extending the system,
eg. by requiring fulfillment of both 0 = g(ϕ∗) and 0 = G(ϕ∗)v simultaneously. For details, see [1,
p. 46-47]. In this study, only a basic constrained problem is considered, which was successfully
solved numerically based on a system of index-3 first order DAEs. An important note, for systems

of index-3 DAEs, the constraints at velocity and acceleration level, 0 = G(ϕ∗)v and 0 = d2g(ϕ∗)
dt2 ,

serve as hidden constraints, which makes the system more sensitive to perturbations [1, p. 34].
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2.2 Rigid Body Dynamics

In this section, planar rigid body dynamics is considered. Rigid bodies are per definition un-
deformable. The motion of a rigid body is fully described by the translational and rotational
motion of a local reference system, placed at its center of mass. In the first subsection, the
EOM is derived for unconstrained dynamics. As mentioned previously, interconnecting joints
serve as holonomic constraints for multibody systems. In the second subsection, a model for
interconnecting massless, rigid, revolute joints is presented. Recall, the aim of this study is to
highlight the limitations of a massless, rigid, revolute joint model for interconnecting elastic and
rigid bodies.

For completion, a model for interconnecting force elements is presented in the third sub-
section. Lastly, in the forth subsection, the dynamics of a multibody system, constrained by
interconnecting joints, is presented.

2.2.1 Unconstrained Rigid Body Dynamics

In this subsection, an unconstrained rigid body is considered. Rigid bodies are defined as bodies
which do not deform due to applied pressure. They may deform due to change in temperature,
but the temperature of the bodies are assumed to be constant in this study. The dynamics, at
constant temperature, of a rigid body can be fully described, by the motion of a local reference
system, placed at its center of mass. For planar motion, the local reference system has two
translational and one rotational degree of freedom. Modeling with rigid bodies generates a
system of minimal complexity. In a multibody setting, with some bodies being much stiffer than
the others, it is often desirable to model the stiffer bodies as rigid bodies.

In Section 2.1.2, the equations of unconstrained motion (EOUM) in weak form was derived
from the unconstrained VP 1. To be able to apply the derivation steps to retrieve the rigid body
dynamics, the spaces of admissible translational and rotational motions have to be assembled
to a space of admissible motions. Retrieving the space of admissible motions is the main new
concept in this subsection. Lastly, the specific Lagrangian L = T − V is inserted to retrieve
Newton-Euler’s EOM in strong form from the EOUM in weak form.

Let a planar rigid body with a bounded domain be considered. Throughout the whole study,
only planar motion is treated, to simplify the description of the rotational motion. For a general
three-dimensional presentation, see [1]. Assume that the applied forces only vary in the plane
of the motion. Then, it is sufficient to model a planar segment Ω̄ ⊂ R2 of the rigid body. From
here onwards, the rigid body refers to the planar segment of the rigid body.

Place a local, a body-fixed, reference frame at the center of mass of the rigid body. Let
x ∈ L2(Ω̄) denote the material points of the body with respect to the body-fixed reference
frame. Consider the planar motion of the body, with respect to an inertial reference frame.
The planar motion is decomposed into a distance from the inertial frame to the center of mass
r(t) ∈ C2([t0, t1],R2), as well as material points x mapped to the global reference frame

ϕ(r(t), α(t), x) = r(t) +A(α(t))x, A(α(t)) :=

(
cos α −sin α
sin α cos α

)
. (2.73)

A(α(t)) ∈ C2([t0, t1],R2×2) denotes the rotation matrix from the body-fixed to the inertial
reference frame, with α(t) ∈ C2([t0, t1],R) denoting the angle between the body-fixed reference
frame and the inertial reference frame. A schematic is illustrated in Fig. 2.1.

The body is set into motion by body and surface applied forces. The applied forces consist
of, a body force density β(x, t) ∈ L2(Ω)⊗C([t0, t1],R2) applied over the interior domain Ω, and
an surface force density τ(x, t) ∈ L2(ΓN) ⊗ C([t0, t1],R2) applied along a bounded Neumann



2.2. RIGID BODY DYNAMICS 21

 

r

   

inertial frame

body-fixed frame 

at center of mass

x

α

φ

Figure 2.1: A rigid body with a body-fixed frame at the center of mass.

boundary segment ΓN. Both β and τ are defined with respect to the body-fixed reference frame.
The function spaces in space are chosen to guarantee that the forthcoming integrals in space are
bounded.

For a given body shape with applied forces, the VP for determining the motion of the rigid
body in time, for t0 ≤ t ≤ t1, is reduced to determining r(t) and α(t), for given endpoint
conditions, (r(t0), α(t0)) = (r0, α0) and (r(t1), α(t1)) = (r1, α1). Thus, the spaces of translational
Vr and rotational motion Vα of the body-fixed frame is considered,

Vr := {r(t) | r(t) ∈ C2([t0, t1], R2), r(t0) = r0, r(t1) = r1}, (2.74a)

Vα := {α(t) | α(t) ∈ C2([t0, t1], R), α(t0) = α0, α(t1) = α1}. (2.74b)

Assume that the extremal components r∗ and α∗ are embedded in Vr and Vα, respectively,

Vr∗ := {r∗(t) | Vr 3 r∗(t)}, (2.75a)

Vα∗ := {α∗(t) | Vα 3 α∗(t)}. (2.75b)

Recall, 3 refers to a single element embedded in a space, whereas ∈ refers to any element
embedded in a space. By linearizing the problem around r∗ and α∗, the affine spaces Vr̃ and Vα̃
are retrieved. The spaces are expressed as

Vr̃ := Vr∗ ⊕ Vθz, (2.76a)

Vα̃ := Vα∗ ⊕ Vθζ , (2.76b)
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where Vθz and Vθζ are linear spaces of admissible variations, in θ ∈ Vθ for each z ∈ Vz and ζ ∈ Vζ ,
respectively,

Vθz := Vθ ⊗ Vz, (2.77a)

Vθζ := Vθ ⊗ Vζ . (2.77b)

z and ζ denote the direction, and the relative magnitude, of the admissible variations in time,
for the translational and rotational motion, respectively. Moreover, Vz and Vζ are defined as

Vz := {z(t) | z(t) ∈ C1([t0, t1], R2), z(t0) = 0, z(t1) = 0}, (2.78a)

Vζ := {ζ(t) | ζ(t) ∈ C1([t0, t1], R), ζ(t0) = 0, ζ(t1) = 0}. (2.78b)

Since r and α are given at the endpoints in time, z and ζ are required vanish there.
Consider the space Vϕ based on Eq. 2.73, for admissible translational and rotational motion

Vr̃, and Vα̃,

Vϕ := {r̃(t) +A(α̃(t))x | r̃(t) ∈ Vr̃, α̃(t) ∈ Vα̃, x ∈ L2(Ω̄), A from Eq. 2.73}, (2.79)

and the corresponding space for the extremal components

Vϕ∗ := {r∗(t) +A(α∗(t))x | r∗(t) ∈ Vr∗ , α∗(t) ∈ Vα∗ , x ∈ L2(Ω̄), A from Eq. 2.73}. (2.80)

Consider the difference between ϕ ∈ Vϕ and ϕ∗ ∈ Vϕ∗ ,

ϕ− ϕ∗ =
(
r∗ + θz +A(α∗ + θζ)x

)
−
(
r∗ +A(α∗)x

)
= θz +

(
A(α∗ + θζ)−A(α∗)

)
x. (2.81)

For each ζ(t), there is a sufficiently small θ such that the approximation

A′(α∗)θζ
.
= A(α∗ + θζ)−A(α∗), A′(α∗) :=

(
−sin α∗ −cos α∗
cos α∗ −sin α∗

)
, (2.82)

is good. Define the space Vθη based on the approximation applied to Eq. 2.81,

Vθη := Vθ ⊗ Vη (2.83)

with Vθ from Eq. 2.15a and,

Vη := {z(t) + ζ(t)A′(α∗(t))x | z(t) ∈ Vz, α∗(t) ∈ Vα∗ , ζ(t) ∈ Vζ , x ∈ L2(Ω̄), A′ from Eq. 2.82}.
(2.84)

The affine space Vϕ̃ of admissible motions is defined as

Vϕ̃ := {ϕ∗(x, t) + θη(x, t) | (ϕ∗, θη)(x, t) ∈ (Vϕ∗ , Vθη)} (2.85)

With the space of admissible motions derived, Hamilton’s principle of least action for a closed,
autonomous system of an unconstrained rigid body is stated as,

Variational problem 5 (Unconstrained rigid body). For a closed, autonomous system of an
unconstrained rigid body with given material points x ∈ L2(Ω̄), applied forces with densities(
β(x, t), τ(x, t)

)
∈
(
L2(Ω) ⊗ C([t0, t1],R2), L2(ΓN) ⊗ C([t0, t1],R2)

)
, and tuples (t0, r0, α0) and

(t1, r1, α1), find an extremal ϕ∗(x, t) ∈ Vϕ, under the assumption that ϕ∗(x, t) exists, such that

0 = j′(0), ∀η ∈ Vη, (2.86a)
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for

j(θ) =

∫ t1

t0

L(ϕ̃(θ, x, t), ˙̃ϕ(θ, x, t))dt, ϕ̃ ∈ Vϕ̃, (2.86b)

where

L(ϕ̃, ˙̃ϕ) = T ( ˙̃ϕ)− V (ϕ̃), ϕ̃ ∈ Vϕ̃. (2.86c)

Recall, the Lagrangian L = T − V was, in Section 2.1.1, shown to correspond to the conser-
vation of total energy, for closed, autonomous unconstrained mechanical systems.

In Section 2.1.2, the EOM in weak form in time was derived from the unconstrained VP 1.
The same derivation steps are applicable to VP 5. The EOM in weak form is restated here (same
as Eq. 2.24)

0 =

∫ t1

t0

ηT
( ∂L
∂ϕ∗

− d

dt

∂L

∂ϕ̇∗

)
dt, ∀η ∈ Vη. (2.87)

The kinetic energy of a rigid body is expressed as

T (ϕ̃) =
1

2

∫
Ω

ρ ˙̃ϕT ˙̃ϕdx, ϕ̃ ∈ Vϕ̃, (2.88)

where ρ denotes the density. The potential energy, due to applied work, is expressed as

V (ϕ̃) = −
∫

Ω

ϕ̃TAβdx−
∫

ΓN

ϕ̃TAτds, ϕ̃ ∈ Vϕ̃, (2.89)

Consider the term ∂L
∂ϕ∗

, in Eq. 2.87, for the specific Lagrangian L = T − V . First, ∂L
∂ϕ∗

=

− ∂V
∂ϕ∗

= − ∂V
∂ϕT∗

. Insertion of Eq. 2.89 generates

− ∂V

∂ϕT∗
=

∫
Ω

Aβdx+

∫
ΓN

Aτds. (2.90)

Thus, ∫ t1

t0

ηT
∂L

∂ϕ∗
dt =

∫ t1

t0

ηTA
( ∫

Ω

βdx+

∫
ΓN

τds
)
dt (2.91)

Insertion of a decoupled η = z + ζA′(α∗)x, according to Eq. 2.84, gives∫ t1

t0

ηT
∂L

∂ϕ∗
dt =

∫ t1

t0

(
zT
( ∫

Ω

Aβdx+

∫
ΓN

Aτds
)

+ ζT
( ∫

Ω

xTA′TAβdx+

∫
ΓN

xTA′TAτds
))

dt.

(2.92)
Since the given x, β, and τ belong to L2, and Ω and ΓN are assumed to be bounded, the integrals
in space are bounded. Moreover, note that

A′TA =

[
0 1
−1 0

]
, (2.93)

is the matrix format for the signed magnitude of a cross product operation in 2D, ie. for any
two vectors a and b, aTA′TAb = nTαa× b, where nα is a unit vector in direction of the rotational
axis. Eq. 2.92 is shortened to∫ t1

t0

ηT
∂L

∂ϕ∗
dt =

∫ t1

t0

(
zT f + ζT τtorque

)
dt, (2.94)
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where

f =

∫
Ω

Aβdx+

∫
ΓN

Aτds, τtorque =

∫
Ω

nTαx× βdx+

∫
ΓN

nTαx× τds (2.95)

denote the applied force in the inertial reference frame and the applied torque about the body-
fixed frame, respectively.

Thereafter, consider d
dt

∂L
∂ϕ̇∗

= d
dt

∂T
∂ϕ̇∗

= d
dt

∂T
∂ϕ̇T∗

. Insertion of Eq. 2.88 into d
dt

∂T
∂ϕ̇T∗

gives

d

dt

∂T

∂ϕ̇T∗
=

d

dt

∫
Ω

ρϕ̇∗dx =

∫
Ω

ρϕ̈∗dx. (2.96)

Thus, ∫ t1

t0

ηT
d

dt

∂L

∂ϕ̇∗
dt =

∫ t1

t0

∫
Ω

ηT ρϕ̈∗dxdt. (2.97)

To continue, the extremal component ϕ∗ ∈ Vϕ∗ , Eq. 2.80, is decoupled into its translational and
rotational components, and thereafter time-differentiated twice

ϕ∗ = r∗(t) +A(α∗(t))x, (2.98a)

ϕ̇∗ = ṙ∗(t) +A′(α∗(t))α̇∗(t)x, (2.98b)

ϕ̈∗ = r̈∗(t) +A′′(α∗(t))α̇
2
∗(t)x+A′(α∗(t))α̈∗(t)x. (2.98c)

Note, A′′ = −A, see Eq. 2.73. Insertion of Eq. 2.98c into Eq. 2.97 gives∫ t1

t0

ηT
d

dt

∂L

∂ϕ̇∗
dt =

∫ t1

t0

∫
Ω

ηT ρ
(
r̈∗ −A(α∗)α̇

2
∗x+A′(α∗)α̈∗(t)x

)
dxdt. (2.99)

Insertion of a decoupled η = z + ζA′(α∗)x, according to Eq. 2.84, gives∫ t1

t0

ηT
d

dt

∂L

∂ϕ̇∗
dt =

∫ t1

t0

∫
Ω

(
z + ζA′x

)T
ρ
(
r̈∗ −Aα̇2

∗x+A′α̈∗(t)x
)
dxdt (2.100)

=

∫ t1

t0

∫
Ω

ρ
(
zT r̈∗ − zTAα̇2

∗x+ zTA′α̈∗x
)
dxdt

+

∫ t1

t0

∫
Ω

ρ
(
ζTxTA′T r̈∗ − ζTxTA′TAα̇2

∗x+ ζT α̈∗x
Tx
)
dxdt

Recall that the body-fixed frame was placed at the center of mass, Fig. 2.1. As a consequence,∫
Ω
ρxdx = 0, and Eq. 2.100 is shortened to∫ t1

t0

ηT
d

dt

∂L

∂ϕ̇∗
dt =

∫ t1

t0

zTmr̈∗dt+

∫ t1

t0

( ∫
Ω

−ζT ρα̇2
∗n

T
αx× xdx+ ζTJα̈∗

)
dt (2.101)

=

∫ t1

t0

(zTmr̈∗ + ζTJα̈∗)dt,

where

m :=

∫
Ω

ρdx, J :=

∫
Ω

ρxTxdx, (2.102)

denote the mass and moment of inertia about the body-fixed frame, respectively. Note, both
m and J are bounded, under the assumption that ρ is bounded. Insertion of, Eq. 2.94 and
Eq. 2.101, into the EOM in weak form, Eq. 2.87, gives the decoupled EOM

0 =

∫ t1

t0

(zT (f −mr̈∗) + ζT (τtorque − Jα̈∗))dt, ∀(z, ζ) ∈ (Vz, Vζ). (2.103)
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Figure 2.2: Locating the joint of a pivot from two interconnected rigid bodies.

In VP 5, β and τ were given as continuous functions in time. Due to Eq. 2.95, f and τtorque,
and furthermore (f −mr̈∗) and (τtorque − Jα̈∗)), are continuous in time. Thus, the prerequisites
for fundamental lemma of calculus of variations, Lemma 1, are met for each of the two integral
terms.

By first setting z = 0, and applying the fundamental lemma of calculus of variations for the
all admissible variations ζ, and thereafter setting ζ = 0, and applying the fundamental lemma
of calculus of variations for the all admissible variations z, Newton-Euler’s EOM in strong form
is retrieved,

mr̈∗ = f, (2.104a)

Jα̈∗ = τtorque. (2.104b)

Recall, in Section 2.1.1, existence and uniqueness of the dynamics for an IVP based on Newton’s
second law, under a set of assumptions, was guaranteed by use of Picard-Lindelöf’s theorem.
The same procedure can reused here to retrieve existence and uniqueness of the dynamics for an
IVP based on Newton-Euler’s EOM.

2.2.2 Modeling of Joints Between Rigid Bodies

in Section 2.1.3, constrained dynamics was presented in order to enable incorporation of inter-
connecting joints into models of multibody systems. In this study, massless, rigid, revolute joints
are considered. The massless assumption is reasonable since joints are often small, compared
to the bodies, in multibody systems. Moreover, the massless assumption leads to less stiff sys-
tems of differential equations for the dynamics of multibody systems. In this study, only joints
interconnecting pairs of bodies are considered.

For two rigid bodies (referred to by indices 1 and 2) interconnected by a massless, rigid,
revolute joint, the constraint is defined by expressing the position of the pivot of the joint
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Figure 2.3: A spring, a damper, and an actuator serving as interconnecting force elements
between two rigid bodies.

through the two body-fixed frames, xp,1 and xp,2,

g(ϕ1, ϕ2) = ϕ1(xp,1, t)− ϕ2(xp,2, t) = 0, (2.105)

or equivalently,

r1(t) +A(α1)xp,1 − (r2(t) +A(α2)xp,2) = 0. (2.106)

The model is illustrated in Fig. 2.2. In presence of joints, the constrained Lagrangian, LC, is
considered. LC for two interconnected rigid bodies is

LC(ϕ1, ϕ2, ϕ̇1, ϕ̇2) = T1(ϕ̇1) + T2(ϕ̇2)−
(
V1(ϕ1) + V2(ϕ2)

)
− g(ϕ1, ϕ2)λ(1,2). (2.107)

with T and V from Eqs. 2.88 and 2.89.

2.2.3 Force Elements

Interconnecting force elements are typically present in multibody systems. Force elements are
characterized by that they affect the applied forces on interconnected bodies. Springs, dampers,
and actuators are standard force elements. Two rigid bodies, interconnected by a spring, a
damper, and an actuator, are illustrated in Fig. 2.3.

The magnitude of the force, of the three force elements combined, is

fforce elements(ξ, ξ̇, t) = k(ξ − ξ0) + dξ̇ + h(ξ, ξ̇, t), (2.108)

where k, ξ0, d, h denote the spring constant, the spring nominal length, the damping coefficient,
and the actuator law, respectively, and where ξ = cT c with

c(ϕ1, ϕ2) = ϕ1(xf,1, t)− ϕ2(xf,2, t). (2.109)
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where xf,1 and xf,2 denote the attachment points for the force element with the two bodies.
Dampers and actuators are non-conservative force elements. Moreover, in presence of actuators,
switching at prescribed time points, the multibody system is a non-autonomous system. Recall
from Section 2.1.1, the Lagrangian L = T − V were retrieved under the assumptions that the
applied forces were conservative and that the system was autonomous. For a presentation of
non-autonomous multibody systems, in presence of non-conservative forces, see [6].

Springs are incorporated into the model by extending the potential energy of the system. For
two interconnected rigid bodies, the potential energy becomes

V (ϕ, ξ(ϕ1, ϕ2), ξ̇(ϕ̇1, ϕ̇2), t) = V1(ϕ1) + V2(ϕ2) +
k

2

(
ξ(ϕ1, ϕ2)− ξ0

)2
, (2.110)

where V1 and V2 follow from Eq. 2.89. Just as the applied work in Eq. 2.89 contributed to
the force and torque term of Newton-Euler’s equation, Eq. 2.104, the extended potential energy
would generate extended force and torque terms for Newton-Euler’s equation.

Force elements are not of interest in this study and will not be pursued any further.

2.2.4 Constrained Rigid Multibody System

A multibody system is composed of a collection of bodies and interconnecting elements. In this
study, only massless, rigid, revolute joints, modeled by Eq. 2.105, are incorporated as intercon-
necting elements. By reusing derivations from Sections 2.1.3 and 2.2.1, the EOM in strong form,
is derived in a few steps.

Consider a system of nb rigid bodies. The kinetic and potential energies for a multibody
system are aggregated versions of the counterparts for a single body,

T ({ ˙̃ϕi}nbi=1) =

nb∑
i=1

1

2

∫
Ωi

ρi ˙̃ϕTi ˙̃ϕidx, ϕ̃i ∈ Vϕ̃ (2.111)

V ({ϕ̃i}nbi=1) =

nb∑
i=1

(−
∫

Ωi

ϕ̃Ti Aiβidx−
∫

ΓiN

ϕ̃Ti Aiτids), ϕ̃i ∈ Vϕ̃. (2.112)

The Lagrangian for an unconstrained multibody system follows,

L({ϕ̃i, ˙̃ϕi}nbi=1) = T ({ ˙̃ϕi}nbi=1)− V ({ϕ̃i}nbi=1), ϕ̃i ∈ Vϕ̃. (2.113)

The collection of all joints is denoted by the set of index pairs J , where the index pairs refer
to the indices of the interconnected bodies. Thus, the Lagrangian for a constrained multibody
system is

LC({ϕ̃i, ˙̃ϕi}nbi=1, {λ̃(j,k)}(j,k)∈J ) = L({ϕ̃i, ˙̃ϕi}nbi=1)−
∑

(j,k)∈J

g(ϕ̃j , ϕ̃k)T λ̃(j,k), (2.114)

where λ(j,k) denotes the Lagrange multipliers for joint connection (j, k). Hamilton’s principle of
least action for a rigid multibody system is stated as

Variational problem 6 (Rigid multibody system). For a closed, autonomous constrained
rigid multibody system with given material points {xi}nbi=1 ∈ L2(Ω̄i), applied force densities(
βi(xi, t), τi(xi, t)

)
∈
(
L2(Ωi)⊗ C([t0, t1],R2), L2(ΓiN)⊗ C([t0, t1],R2)

)
, and consistent endpoint

conditions ({ri0, αi0}
nb
i=1, {λ

(j,k)
0 }(j,k)∈J ), ({ri1, αi1}

nb
i=1, {λ

(j,k)
1 }(j,k)∈J ), find an extremal ({ϕi∗(x, t)}

nb
i=1, {λi∗(t)}(j,k)∈J )
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where (ϕi∗(x, t), λ
i
∗(t)) ∈ (Vϕi∗ , Vλi∗), for t0 ≤ t ≤ t1, under the assumption that an extremal exists,

such that

0 = j′(0), ∀
(
{ηi}nbi=1, {ϑ(j,k)}(j,k)∈J

)
, (2.115a)

for

j(θ) =

∫ t1

t0

LC({ϕ̃i(θ, xi, t), ˙̃ϕi(θ, xi, t)}nbi=1, {λ̃(j,k)(θ, t)}(j,k)∈J )dt, (2.115b)

where

LC({ϕ̃i, ˙̃ϕi}nbi=1, {λ̃(j,k)}(j,k)∈J ) = T ({ ˙̃ϕi}nbi=1)− V ({ϕ̃i}nbi=1)−
∑

(j,k)∈J

g(ϕ̃j , ϕ̃k)T λ̃(j,k), (2.115c)

and where

g(ϕ̃j , ϕ̃k) = ϕ̃j(xp,j , t)− ϕ̃k(xp,k, t) = 0, (2.115d)

with ηi ∈ Vηi , ϑ(j,k) ∈ Vϑ(j,k)
, ϕ̃i ∈ Vϕ̃i , and λ̃(j,k) ∈ Vλ̃(j,k)

.

The derivations of the EOCM in weak form from VP 6, is an aggregated versions of the
derivations pursued from VP 4 to Eq. 2.53. The EOCM in weak form becomes

0 =

nb∑
i=1

∫ t1

t0

ηTi
(∂(Ti − Vi)

∂ϕi∗
− d

dt

∂(Ti − Vi)
∂ϕ̇i∗

)
dt (2.116a)

−
∑

(j,k)∈J

∫ t1

t0

ηT{j,k}G(ϕ
{j,k}
∗ )Tλ

(j,k)
∗ dt (2.116b)

+
∑

(j,k)∈J

∫ t1

t0

ϑT(j,k)g(ϕj∗, ϕ
k
∗)dt, ∀({ηi}nbi=1, {ϑ(j,k)}(j,k)∈J ) ∈ (Vη, Vϑ), (2.116c)

where G(ϕ
{j,k}
∗ ) = ∂g(ϕ̃j ,ϕ̃k)

∂ϕ̃{j,k}
|θ=0. The subscript {j,k}, for η{j,k}, denotes that both ηj and ηk are

considered. After employing derivation steps from Eq. 2.87 to Eq. 2.103 on Eq. 2.116a, inserting
η = z + ζA′(α∗)x, Eq. 2.84, into Eq. 2.116b, and noting that

G(ϕ
{j,k}
∗ )T =

{
1, j ∈ {j, k},
−1, k ∈ {j, k}, , (2.117)

the decoupled EOCM in weak form is retrieved

0 =

nb∑
i=1

∫ t1

t0

zTi (fi −mir̈
i
∗) + ζTi (τ itorque − Jiα̈i∗)dt (2.118a)

−
∑

(j,k)∈J

∫ t1

t0

(
zT{j,k} + ζT{j,k}x

T
p,{j,k}A

′(α
{j,k}
∗ )T

)
G(ϕ

{j,k}
∗ )Tλ

(j,k)
∗ dt (2.118b)

+
∑

(j,k)∈J

∫ t1

t0

ϑT(j,k)g(ϕj∗, ϕ
k
∗)dt, ∀({zi, ζi}nbi=1, {ϑ(j,k)}(j,k)∈J ) ∈ (Vz, Vζ , Vϑ). (2.118c)
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By successively setting all admissible variations but one to zero, and employing the fundamental
of calculus of variations on the remaining integral, the EOCM in strong form is retrieved,

nb∑
i=1

mir̈
i
∗ +

∑
(j,k)∈J

G(ϕ
{j,k}
∗ )Tλ

(j,k)
∗ =

nb∑
i=1

fi, (2.119a)

nb∑
i=1

Jiα̈
i
∗ +

∑
(j,k)∈J

xTp,{j,k}A
′(α
{j,k}
∗ )TG(ϕ

{j,k}
∗ )Tλ

(j,k)
∗ =

nb∑
i=1

τ itorque, (2.119b)

∑
(j,k)∈J

g(ϕj∗, ϕ
k
∗) = 0. (2.119c)

According to Remark 1, for λ
(j,k)
∗ = 0 the EOUM is retrieved, which, unsurprisingly, is an

aggregated version of Newton-Euler’s equation, Eq. 2.104.

For λ
(j,k)
∗ 6= 0, the presence of constraints inhibits a complete decoupling of the EOCM

into translational and rotational components. Moreover, due to the presence of A′(α
{j,k}
∗ ), and

A(α
{j,k}
∗ ) embedded in Eq. 2.119c (see Eq. 2.106), the EOM is a nonlinear system in time.

Moreover, due to Eq. 2.93,∑
(j,k)∈J

xTp,{j,k}A
′(α
{j,k}
∗ )TG(ϕ

{j,k}
∗ )Tλ

(j,k)
∗ = (2.120)

∑
(j,k)∈J

xTp,{j,k}A
′(α
{j,k}
∗ )TA(α

{j,k}
∗ )A(α

{j,k}
∗ )TG(ϕ

{j,k}
∗ )Tλ

(j,k)
∗ =

∑
(j,k)∈J

nTα,{j,k}xp,{j,k} ×
(
A(α

{j,k}
∗ )TG(ϕ

{j,k}
∗ )Tλ

(j,k)
∗

)
.

Note, A(α
{j,k}
∗ )TG(ϕ

{j,k}
∗ )Tλ

(j,k)
∗ are the constraint force on the interconnected bodies mapped

to the body-fixed reference frames of the interconnected bodies.

2.3 Unconstrained Elastic Body Dynamics

As opposed to rigid bodies, elastic bodies are deformable. The deformation of an elastic body is
a continuous process described by a displacement field. For elastic bodies, Hamilton’s principle
of least action is a weak formulation in both time and space. From the VP the EOM which is
weak in space but strong in time (the weak-strong form) is derived. The EOM in weak-strong
form is the starting point for further FE discretization.

In this section, an single elastic body attached by a Dirichlet condition is considered. The
derivations, rendering in the EOM in weak-strong form, are performed in the second subsection.
In the first subsection, the function spaces in space which the displacement field belongs to, the
Sobolev spaces, are briefly introduced. In the third subsection, an IVP is set up from the EOM
in weak-strong form. In the last subsection, the EOM in strong-strong form is derived.

In the next section, the attachment to the inertial reference is extended to incorporate at-
tachments to unknown constraint equations, with the aim to incorporate interconnecting joints.
Thereafter, to enable flexible multibody dynamics, the elastic body dynamics is decoupled into
rigid body motions and elastic displacements by introduction of body-fixed reference frames, in
a similar way to Eq. 2.73.
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2.3.1 Introduction to Sobolev Spaces

To retrieve the dynamics of an elastic body, an unknown displacement field has to be determined
(see Eq. 2.125). For linear elasticity, there exists a unique weak solution for the displacement
field over the interior domain Ω, for each time point, if the displacement field belongs to the
function space H1

0 (Ω). Existence and uniqueness proofs, for Dirichlet and Neumann problems
for more general linear elliptic differential equations, are presented in textbooks on PDEs, eg. [4,
Ch. 9]. In this subsection, only some relevant results are stated.

Hs(Ω), s ∈ R, denotes the Sobolev spaces which are also Hilbert spaces (a complete inner
product space). Specifically, H0(Ω) = L2(Ω). The inner product, between u, v ∈ H1(Ω), also
includes (∇u,∇v)L2(Ω),

(u, v)H1(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω) =

∫
Ω

vTudx+

n∑
k=1

∫
Ω

∂kv
T∂kudx, (2.121)

with the corresponding norm,

‖u‖H1(Ω) =
√

(u, u)H1(Ω). (2.122)

By introduction of a multi-index α (an n-tuple of positive integers where n is the number of
space dimensions), the inner product between u, v ∈ Hk(Ω), k ∈ Z+ (positive integers), is stated
as

(u, v)Hk(Ω) = (u, v)L2(Ω) +
∑

1≤k≤|α|

∫
Ω

DαvTDαudx, (2.123)

where Dα = ∂|α|

∂x
α1
1 ∂x

α2
2 ···∂x

αn
n

, and xi ∈ [1, n] denotes a Cartesian coordinate axis. Also, Hk(Ω) ⊂
Hk−1(Ω). For Hs(Ω), s ∈ R, the inner product is defined by use of Fourier transforms [4,
Def. 7.14] (to employ Fourier transforms Hs(Ω) is first extended to Hs(Rd), for Ω ⊂ Rd). To
retrieve a unique displacement field u ∈ H1(Ω), the elastic body is required to be rigidly attached
along Dirichlet boundary ΓD segments, meaning that the displacement field is required to vanish
along ΓD. The requirement on the displacement field u, is included in the notation by the zero
subscript u ∈ H1

0 (Ω). H1
0 (Ω) is defined as the closure of C∞0 (Ω), the space of smooth functions

which vanish along ΓD, in the H1(Ω)-norm [4, Def. 7.8].
The strong formulation, in both space and time, (strong-strong formulation) of the elas-

tic body EOM contains a second order derivate of the displacement field in space, Eq. 2.161.
Therefore, the function space H2(Ω) ∩ H1

0 (Ω), which restricts the second order derivatives, is
considered [4, Def. 9.10].

In the presence of Neumann ΓN, or constrained ΓC boundary segments (see Section 2.4), the
displacement field has to be determined along the corresponding boundaries as well. This is
enabled by use of the trace operator.

First, the class of Ck domains is defined as,

Definition 1. A bounded domain Ω is of class Ck, k ∈ Z+, if every point on ∂Ω has a neigh-
borhood N so that ∂Ω ∪N is a Ck-surface.

The trace operator γ can then be retrieved by the theorem [4, Th. 7.40]

Theorem 2. Let k ∈ Z+. Assume that the bounded domain Ω is of class Ck, and that also ∂Ω
is bounded. Then, there exists a bounded linear mapping, called the trace operator γ, such that
γ : Hk(Ω)→ Hk−1/2(∂Ω).
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inertial frame

Ω

Ω

ΓD

ΓN

x

u

φ

Figure 2.4: Schematic of the deformation of an unconstrained elastic body. The body is not
permitted to deform along ΓD.

The boundedness property means that there exists a constant C such that ‖γu‖Hk−1/2(∂Ω) ≤
C‖u‖Hk(Ω), ∀u ∈ Hk(Ω). The assumption of Ω being of class Ck can be extended to bound-

aries which are piecewise of class Ck if the angle between the interconnecting segments at each
singularity is nonzero.

Let H
1/2
0 (∂Ω) be defined as the closure of C∞0 (∂Ω) in the H1/2(∂Ω)-norm. Then, for u ∈

H1
0 (Ω), the boundary displacement field γu is an element of H

1/2
0 (∂Ω). Lastly, Hs(Ω)∗ denotes

the dual space of Hs(Ω).

2.3.2 Derivation of Equations of Unconstrained Motion in Weak-Strong
Form

Let a two-dimensional undeformed elastic body over a bounded reference domain Ω̄ ⊂ R2, of
class Ck, be considered. The body is rigidly attached to an inertial reference frame, along a
Dirichlet ΓD boundary segment. x ∈ L2(Ω̄) denotes the material points of the undeformed body,
with respect to the inertial reference frame. Due to applied force, the body is deformed by a
displacement field

Vu ={u(x, t) | u(x, t) ∈
(
H1

0 (Ω) ∪H1/2
0 (∂Ω)

)
⊗ C2([t0, t1],R2), u(·, t0) = u0, u(·, t1) = u1},

(2.124)
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where u0 and u1 denote known initial and final displacement fields. ϕ(x, t) denotes the mapping

from the reference to the deformed ˆ̄Ω domain,

ϕ(u(x, t), x) := x+ u(x, t), ϕ : Ω̄→ ˆ̄Ω, (2.125)

where x ∈ L2(Ω̄) and u ∈ Vu. A schematic of the deformation is illustrated in Fig. 2.4 where ΓN

denotes a Neumann boundary segment. Suppose that x ∈ L2(Ω̄) is known, then it is sufficient
to model the unknown displacement field over time.

The internal displacements affect the internal force of the body. The internal force is expressed
by internal stresses and strains. A convenient strain measure for multidimensional use is the
Green-Lagrange strain tensor E,

E :=
1

2
(∇ϕT∇ϕ− I) =

1

2
(∇u+∇uT +∇uT∇u). (2.126)

Since only space-differentiated terms are present, the strain tensor is invariant under rigid body
motions. Due to the presence of ∇uT∇u, E is nonlinear in ∇u. To retrieve a linear internal
force term, a linear strain measure is required. For sufficiently small ∇u, ∇uT∇u is negligible,
and the linear strain tensor ε is obtained,

ε =

(
ε11 ε12

ε21 ε22

)
:=

1

2
(∇u+∇uT ). (2.127)

The Lagrangian stress tensor σ is retrieved by also defining stresses in the reference domain. The
material of the elastic body is assumed to be isotropic and homogeneous, which means that the
material properties of the body are rotationally and positionally invariant within the body. As
a consequence, ε12 = ε21, and

ε =
1

2
(∇u+∇uT ) = ∇u. (2.128)

For an isotropic and homogeneous body, Hooke’s law provides a linear relation between σ and ε,

σ :=
E

1− υ2

(
(1− υ)ε+ υtrace(ε)I

)
(2.129)

where E, υ, and I denote Young’s modulus, Poisson’s number, and an identity matrix, and
trace(ε) = ε11+ε22. The two-dimensional stress model, Eq. 2.129, stems from considering a planar
stress assumption for three-dimensional elastic bodies. The assumption is a valid approximation
for thin three-dimensional elastic bodies.

Eq. 2.129 can be rewritten in vectorized form as

σ = Cε, (2.130)

with the vectorized strains and stresses defined as

ε := (ε11, ε22, 2ε12), σ := (σ11, σ22, σ12), (2.131)

and with the stiffness tensor C defined as

C :=
E

(1− υ)2

1 υ
υ 1

(1− υ)/2

 . (2.132)
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In this study, a hyper-elastic material model is considered, which means that an internal energy,
as a potential to the internal force, is assumed to exist. The internal energy, or the strain energy,
is defined as

W (u) :=
1

2

∫
Ω

σ(u) : ε(u)dx, (2.133)

where σ : ε = trace(σε) = σ11ε11 + 2σ12ε12 + σ22ε22 = σT ε. Metals are commonly modeled as
hyper-elastic materials. To retrieve the potential energy of the elastic body, work contributions
from the displacements of the body, are included as well,

V (u) :=
1

2

∫
Ω

σ(u) : ε(u)dx−
∫

Ω

uTβdx−
∫

ΓN

uT τds. (2.134)

where β ∈ H1(Ω)∗ ⊗ C([t0, t1],R2) and τ ∈ H1/2(ΓN)∗ ⊗ C([t0, t1],R2) denote the applied body
force density and the applied surface force density, the surface traction, respectively. The kinetic
energy T is defined as

T (u̇) :=
1

2

∫
Ω

ρu̇T u̇dt. (2.135)

To eventually state Hamilton’s principle of least action for the elastic body, assume there
exists an extremal u∗,

Vu∗ := {u∗(t) | Vu 3 u∗(t)}. (2.136)

By linearizing the problem around u∗ an affine space Vũ is retrieved, which is expressed as

Vũ := Vu∗ ⊕ Vθv, (2.137)

where Vθv is a linear space, in θ ∈ Vθ for each v ∈ Vv, of admissible variations,

Vθv := Vθ ⊗ Vv, (2.138)

with

Vv :={v(x, t) | v(x, t) ∈ Vvx ⊗ Vvt , v(·, t0) = 0, v(·, t1) = 0}. (2.139)

where

Vvx := {vx(x) | vx(x) ∈ H1
0 (Ω) ∪H1/2

0 (∂Ω)}, (2.140a)

Vvt := {vt(t) | vt(t) ∈ C1([t0, t1], R2)}. (2.140b)

Vvx denotes the test function space. According to Eq. 2.139, element-wise v = vxvt, for v ∈ Vv,
vx ∈ Vvx , and vt ∈ Vvt . With the retrieved space of admissible motions, an unconstrained VP is
stated. Note, the resemblance with the unconstrained VP. 1.

Variational problem 7 (Unconstrained elastic body). For a closed, autonomous system of
an unconstrained elastic body with given material points x ∈ L2(Ω̄), applied force densities(
β(x, t), τ(x, t)

)
∈
(
H1(Ω)∗ ⊗ C([t0, t1],R2), H1/2(ΓN)∗ ⊗ C([t0, t1],R2)

)
, and tuples (t0, u0)

and (t1, u1), find an extremal u∗(x, t) ∈ Vu∗ , under the assumption that u∗(x, t) exists, such that

0 = j′(0), ∀v ∈ Vv, (2.141a)

for

j(θ) =

∫ t1

t0

L(ũ(θ, x, t), ˙̃u(θ, x, t))dt, ũ ∈ Vũ, (2.141b)

where

L(ũ, ˙̃u) = T ( ˙̃u)− V (ũ), ũ ∈ Vũ. (2.141c)
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Insertion of the Lagrangian, Eq. 2.141c, into the action integral, Eq. 2.141b, gives

0 =

∫ t1

t0

(∫
Ω

1

2
ρ(u̇∗ + θv̇)T (u̇∗ + θv̇)dx−

∫
Ω

1

2
σ(u∗ + θv) : ε(u∗ + θv)dx (2.142)

+

∫
Ω

(u∗ + θv)Tβdx+

∫
ΓN

(u∗ + θv)T τds
)

dt, ∀θv ∈ Vθv.

Applying the stationarity condition, Eq. 2.141a, generates

0 =

∫ t1

t0

(∫
Ω

ρv̇T u̇∗dx−
∫

Ω

σ(u∗) : ε(v)dx+

∫
Ω

vTβdx+

∫
ΓN

vT τds
)

dt, ∀v ∈ Vv. (2.143)

Eq. 2.143 is weak in both time and space. Since v(·, t0) = v(·, t1) = 0, integration by parts of
the first term, with respect to time, gives

0 =

∫ t1

t0

(∫
Ω

(
ρvT ü∗ + σ(u∗) : ε(v)− vTβ

)
dx−

∫
ΓN

vT τds
)

dt, ∀v ∈ Vv. (2.144)

To retrieve a weak-strong formulation, the admissible variations are separated in space and time,
Eq. 2.140,

0 =

∫ t1

t0

vTt

(∫
Ω

(
ρvTx ü∗ + σ(u∗) : ε(vx)− vTx β

)
dx−

∫
ΓN

vTx τds
)

dt, ∀(vx, vt) ∈ (Vvx , Vvt).

(2.145)
σ(u) : ε(v) = vTt σ(u) : ε(vx) since ε(v) = ∇v. For the prescribed function space in time the
prerequisites for fundamental lemma of calculus of variations in time, Lemma 1, hold. Applying
the lemma generates the weak-strong formulation for the EOUM,∫

Ω

ρvTx ü∗dx+

∫
Ω

σ(u∗) : ε(vx)dx =

∫
Ω

vTx βdx+

∫
ΓN

vTx τds, ∀vx ∈ Vvx . (2.146)

The conventional FE discretization technique is based on the weak-strong formulation. The
conventional FE discretization technique is presented in Section 2.6.

It is important to understand with which measure the integrals should be viewed. Lebesgue
measure generates zero measures for contributions from lines and points within the integrals. To
enable a FE discretization, which converges to the weak-strong formulation above for increasing
spatial resolution, the Lebesgue measure is a natural choice, since the element borders then
carries zero measure. For details about Lebesgue measure, see eg. [7].

2.3.3 Compact Notation and Initial Value Problem

In practice, the endpoint condition u1 ∈ H1
0 (Ω)∪H1/2

0 (∂Ω) is presumingly not accessible. Instead
a time-differentiated initial interior displacement field u̇0 ∈ H1

0 (Ω) is assumed to be at hand. In
this study, an IVP based on the EOM in weak-strong form, Eq. 2.146, is solved numerically. To
solve the IVP numerically, discretization schemes, in both space and time, have to be employed.
The discretization schemes, in space and time, are introduced in Sections 2.6 and 2.7, respectively.

Before the IVP is presented, compact notations are introduced for the EOM in weak-strong
form. The internal force term is written as

a(u∗, vx) :=

∫
Ω

σ(u∗) : ε(vx)dx. (2.147)
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The parentheses denote a bilinear form, for each time point, meaning it is linear in both arguments
and maps the arguments to the real numbers. The right-hand side integrals are linear functionals,
at each time point, for given pair of applied force densities (β, τ), and are denoted

〈β, vx〉 :=

∫
Ω

vTx βdx, (2.148a)

〈τ, vx〉 :=

∫
ΓN

vTx τds. (2.148b)

The inertia term, a bilinear form in ü and v, for each time point, is expressed as

m(ü∗, v) :=

∫
Ω

ρvT ü∗dx. (2.149)

With this notation, an IVP, based on the weak-strong formulation, is stated as

Initial value problem 1 (Unconstrained elastic body). For initial conditions, u∗(·, t0) = u0 ∈
H1

0 (Ω) ∪ H1/2
0 (∂Ω) and u̇∗(·, t0) = u̇0 ∈ H1

0 (Ω), find a displacement field path u∗ ∈
(
H1

0 (Ω) ∪
H

1/2
0 (∂Ω)

)
⊗ C2([t0, t1],R2) for

m(ü∗, vx) + a(u∗, vx) = 〈β, vx〉+ 〈τ, vx〉, ∀vx ∈ Vvx . (2.150)

2.3.4 Derivation of Equations of Unconstrained Motion in Strong-
Strong Form

In this subsection, the EOUM in strong-strong (both time and space) form is derived. This
subsection is included for completion, since the strong-strong form is not used in the numerical
experiments in this study.

To retrieve a strong formulation also in space, more restrictive function spaces in space have
to be considered, compared to derivations of the weak-strong formulation in the previous section.
As stated in Section 2.3.1, the function space for the interior displacement field is updated from
H1

0 (Ω) to H2(Ω) ∩ H1
0 (Ω). The corresponding boundary displacement field is updated from

H
1/2
0 (∂Ω) to H3/2(∂Ω) ∩H1/2

0 (∂Ω),

Vu ={u(x, t) | u(x, t) ∈
(
H2(Ω) ∩H1

0 (Ω)
)
∪
(
H3/2(∂Ω) ∩H1/2

0 (∂Ω)
)
⊗ (2.151)

C2([t0, t1],R2), u(·, t0) = u0, u(·, t1) = u1},

Moreover, the dual function spaces for β and τ are replaced by L2-spaces. Thus, β ∈ L2(Ω) ⊗
C([t0, t1],R2) and τ ∈ L2(ΓN)⊗C([t0, t1],R2) are considered. During the derivations, the function
space C∞0 (Ω) ∪ C∞0 (∂Ω) is employed for the test function space, Vvx . By a density argument,

C∞0 (Ω) ∪ C∞0 (∂Ω) is thereafter extended to the closure H1
0 (Ω) ∪H1/2

0 (∂Ω).
The derivation steps to retrieve the EOUM in weak-strong form, Eq. 2.146, is reused under

the more restrictive function spaces,∫
Ω

ρvTx ü∗dx+

∫
Ω

σ(u∗) : ε(vx)dx =

∫
Ω

vTx βdx+

∫
ΓN

vTx τds, ∀vx ∈ Vvx . (2.152)

Recall, under the considered assumptions of isotropy and homogeneity, ε(vx) = ∇vx, see Eq. 2.128.
Also, σ is symmetric. Moreover, in Appendix A.5, the divergence property

∇ · (σvx) = trace(σ∇vx) + vTx div(σ) (2.153)
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is shown to hold for a symmetric matrix σ and a vector vx, where div(σ) is defined as the vector
whose components are the divergence of the rows of σ,

div(σ) :=

[
∇ · σT1·
∇ · σT2·

]
. (2.154)

Note, with the restricted function space for the interior displacement field u ∈ H2(Ω) ∩H1
0 (Ω),

div(σ(u)) ∈ L2(Ω). After those observations, and that σ(u) : ε(vx) = trace
(
σ(u)ε(vx)

)
, the

inertia term is rewritten as∫
Ω

σ(u∗) : ε(vx)dx =

∫
Ω

trace(σ(u∗)∇vx)dx =

∫
Ω

∇ · (σvx)dx−
∫

Ω

vTx divσdx. (2.155)

Applying Gauss’s theorem gives∫
Ω

∇ · (σvx)dx−
∫

Ω

vTx divσdx =

∫
∂Ω

vTx σnds−
∫

Ω

vTx divσdx. (2.156)

n denotes the outward normal vector on the boundary. Note,
∫
∂Ω
vTx σnds =

∫
ΓN
vTx σnds since

vx ∈ C∞0 (Ω) ∪ C∞0 (∂Ω). Insertion into Eq. 2.152 gives

0 =

∫
Ω

vTx (ρü∗ − divσ − β)dx+

∫
ΓN

vTx (σn− τ)ds, ∀vx ∈ Vvx . (2.157)

To retrieve the strong-strong formulation the fundamental lemma of calculus of variation for
space is employed,

Lemma 2 (Fundamental lemma of calculus of variations in space). Let Ω ⊂ Rd be a open,
bounded domain in a d-dimensional space. If N(x) ∈ L1(Ω) satisfies∫

Ω

h(x)TN(x)dx = 0, ∀h ∈ C∞0 (Ω), (2.158)

then, N = 0 almost everywhere.

Almost everywhere refers to that the set for which the statement does not hold carries zero
measure. The lemma is proved in [8, Lem. 2.21].

Considering all test functions vx, which vanish along ΓN, gives

0 =

∫
Ω

vTx (ρü∗ − divσ − β)dx, ∀vx ∈ Vvx . (2.159)

Under the more restrictive function spaces, (ρü∗ − divσ − β) belongs to L2(Ω) in space. Since
L2(Ω) ⊂ L1(Ω), the prerequisites for the lemma are met. Employing the lemma gives the force
balance (ρü∗ − divσ − β) = 0 almost everywhere. By considering all test functions vx which
vanish along Ω, the boundary integral is retrieved,

0 =

∫
ΓN

vTx (σn− τ)ds, ∀vx ∈ Vvx . (2.160)

Consider the Lemma 2 for the open, bounded domain ΓN. σ ∈ H1/2(∂Ω) ∩ H−1/2
0 (∂Ω) ⊂

L2(ΓN) ⊂ L1(ΓN) along the boundary, follows from that the boundary displacement field belongs

to H3/2(∂Ω) ∩ H1/2
0 (∂Ω). Since also, τ belongs to L2(ΓN) ⊂ L1(ΓN) and vx ∈ C∞0 (∂Ω) =
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C∞0 (ΓN), the prerequisites for the lemma are met. Employing the lemma yields the Neumann
boundary condition. For completion, the Dirichlet boundary condition is added. Summing up,
the strong form is retrieved

ρü∗(x, t) = divσ(u∗(x, t)) + β(x, t), in Ω, (2.161a)

u∗(x, t) = 0, on ΓD, (2.161b)

σ(u∗(x, t))n(x) = τ(x, t), on ΓN. (2.161c)

Note, the equalities in Eqs. 2.161a and 2.161c hold almost everywhere. So far, the EOUM in
strong form has been derived for vx ∈ C∞0 (Ω) ∪ C∞0 (∂Ω). By a density argument, the test
function space can be extended to vx ∈ H1

0 (Ω) ∪ H1
0 (∂Ω). A proof of the extension for the

interior domain is provided in Appendix A.6. A similar technique can be used for the extension
along the boundary.

2.4 Constrained Elastic Body Dynamics

In the previous section, the EOM in weak-strong form for an unconstrained elastic body attached
to an inertial reference frame was derived. In this section, the model is extended to more general
attachments described by geometric constraints along constrained boundaries ΓC. The aim
with this extension is to eventually be able to incorporate interconnecting joints into a flexible
multibody system, which presented in the next section.

In Section 2.1.3, pointwise geometric constraints were incorporated into the VP by extending
the Lagrangian by−GTλ. As is shown in the first subsection, the distributed constraints along ΓC

is included into the VP by extending the Lagrangian by −
∫

ΓC
GTλds. In the second subsection,

the EOCM in weak-strong form is derived from the VP. Thereafter, in the third and forth
subsections, an IVP based on the EOCM in weak-strong form is set up, and the strong-strong
form is derived, respectively.

2.4.1 Variational Problem for a Constrained Elastic Body

In the previous section, the unconstrained dynamics of an elastic body, rigidly attached to
an inertial reference frame, along a Dirichlet boundary ΓD segment, was considered. Since
the displacement field was known to vanish along ΓD, the displacement field only had to be
determined over Ω̄\ΓD.

In this section, more general attachments are considered. The attachments are described as
holonomic constraints along a constrained boundary segment ΓC,∫

ΓC

g(u)dx = 0, u ∈ Vu. (2.162)

with g ∈ H1(ΓC)⊗C1([t0, t1],Rnλ). In this subsection, a constrained elastic body, in presence of
both ΓD and ΓC, is considered. Then, Vu follows from Eq. 2.124. A schematic for the deformation
of the constrained elastic is illustrated in Fig. 2.5.

In Section 2.1.3, a constrained VP 2 was considered for a pointwise holonomic constraint,
g(ϕ̃) = 0 for ϕ̃ ∈ Vϕ̃. Due to Lagrange’s multiplier theorem, Theorem 1, the constrained VP 2
could be reformulated as an unconstrained VP with a constrained Lagrangian, VP 4. The same
reformulation technique is considered here. First, consider the unconstrained VP 7 subject to
Eq. 2.162,
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inertial frame

Ω

Ω

ΓD

ΓN

x

u

φ

Figure 2.5: Schematic of the deformation of a constrained elastic body. ΓC, unlike ΓD, is
permitted to deform.

Variational problem 8. For a closed, autonomous system of an unconstrained elastic body
with given material points x ∈ L2(Ω̄), applied force densities

(
β(x, t), τ(x, t)

)
∈
(
H1(Ω)∗ ⊗

C([t0, t1],R2), H1/2(ΓN)∗ ⊗ C([t0, t1],R2)
)
, and tuples (t0, u0) and (t1, u1), find an extremal

u∗(x, t) ∈ Vu∗ , under the assumption that u∗(x, t) exists, such that

0 = j′(0), ∀v ∈ Vv, (2.163a)

for

j(θ) =

∫ t1

t0

L(ũ(θ, x, t), ˙̃u(θ, x, t))dt, ũ ∈ Vũ, (2.163b)

where

L(ũ, ˙̃u) = T ( ˙̃u)− V (ũ), ũ ∈ Vũ, (2.163c)

subject to ∫
ΓC

g(ũ)dx = 0, ũ ∈ Vũ, (2.163d)

with g ∈ H1(ΓC)⊗ C1([t0, t1],Rnλ).

Vũ and Vv are defined in Eqs. 2.137 and 2.139. The constrained VP 8 is reformulated as
an unconstrained VP by a Lagrange multiplier technique. First, consider Lagrange’s multiplier
theorem for the constrained dynamics of an elastic body,
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Theorem 3 (Lagrange’s multiplier theorem, elastic body). Under the assumption that u∗ ∈
Vu∗ is an extremal of the constrained VP 8, there exists a Lagrange multiplier λ∗ ∈ L2(ΓC) ⊗
C([t0, t1],Rnλ) such that u∗ is an extremal of the unconstrained VP 7 for Lagrangian P ,

P (ũ, ˙̃u) = L(ũ, ˙̃u)−
∫

ΓC

g(ũ)Tλ∗dx, ũ ∈ Vũ, (2.164)

with g ∈ H1(ΓC)⊗ C1([t0, t1],Rnλ), ie. 0 = ∂P
∂ϕ∗
− d

dt
∂P
∂ϕ̇∗

.

In this study, a proof is only provided for the restricted function spaces, for which the strong-
strong formulation of the EOM holds (see Section 2.3.4), in order to be able to apply Gauss’s
theorem.

The proof is similar to the one provided in Section 2.1.3. Consider Eq. 2.163d,

0 =

∫
ΓC

g(ũ)dx =

∫
ΓC

g(u∗ + θv)dx (2.165)

Differentiating, with respect to θ, and thereafter setting θ = 0, gives∫
ΓC

G(u∗)vdx = 0. (2.166)

Thus, for VP. 8, v is restricted to the tangent plane of the constraint along ΓC,

Vv̂ = {v(t)|v(t) ∈ Vv,
∫

ΓC

G(u∗)vdx = 0}. (2.167)

In Section 2.1.1, an extremal was defined as the dynamics for which Euler-Lagrange’s equation
holds. An equivalent definition is that an extremal is defined as the dynamics for which the
fundamental lemma of calculus of variations, in both space and time, holds.

Consider Eq. 2.145,

0 =

∫ t1

t0

vTt

(∫
Ω

(
ρvTx ü∗ + σ(u∗) : ε(vx)− vTx β

)
dx−

∫
ΓN

vTx τds
)

dt, ∀(vx, vt) ∈ (Vvx , Vvt).

(2.168)
Applying derivation steps from Eq. 2.152 to Eq. 2.145, for the interior space integral, gives the
weak-weak formulation of the EOM,

0 =

∫ t1

t0

∫
Ω

vT (ρü∗ − divσ − β)dxdt−
∫ t1

t0

∫
ΓN

vT τdsdt+

∫ t1

t0

∫
∂Ω

vTσndsdt = (2.169)∫ t1

t0

∫
Ω

vT (ρü∗ − divσ − β)dxdt+

∫ t1

t0

∫
ΓN

vT (σn− τ)dsdt+

∫ t1

t0

∫
ΓC

vTσndsdt, ∀v ∈ Vv̂.

Note, the additional term
∫ t1
t0

∫
ΓC
vTσndsdt, compared to the unconstrained case, due to the

presence of holonomic constraints over ΓC. As in Section 2.3.4, the prerequisites for the fun-
damental lemma of calculus of variations are met for v:s which vanish over ΓC, and Ω or ΓN.
Lastly, consider v:s which vanish over ΓN and Ω,

0 =

∫ t1

t0

∫
ΓC

vTσndsdt, ∀v ∈ Vv̂. (2.170)
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Due to that v ∈ Vv̂ is restricted to the tangent plane of the constraints along ΓC, the fundamental
lemma of calculus of variations is not applicable. The problem is circumvented by projecting σn
onto the tangent plane of the constraints,

0 =

∫ t1

t0

∫
ΓC

vTΠσndsdt, ∀v ∈ Vv. (2.171)

where Π follows from Eq. 2.39. The functions space Vv, after projection, only span the tan-
gent plane of the constraints of Vv̂, and is therefore a lower-dimensional space. Employing the
fundamental lemma of calculus of variations to Eq. 2.171 gives

0 = Πσn = σn−GT (GGT )−1Gσn (2.172)

Set λ∗ = (GGT )−1Gσn. That λ∗ ∈ L2(ΓC) ⊗ C([t0, t1],Rnλ) follows from, that G ∈ L2(ΓC) ⊗
C([t0, t1],Rnλ) and σ ∈ L2(ΓC)⊗C([t0, t1],Rnλ). As shown in Appendix A.2, GGT is invertible
under the assumption that G has full row rank. In Appendix A.3, the continuity in time of
(GGT )−1 (GGT is a square matrix) is shown to follow from the continuity in time of GGT . A
similar argument, as in Appendix A.3, (GGT )−1 can be employed to show that (GGT )−1 belongs
to L2(ΓC) follows from that GGT belongs to L2(ΓC).

By replacing
∫ t1
t0

∫
ΓC
vTσndsdt with∫ t1

t0

∫
ΓC

vTΠσndsdt =

∫ t1

t0

∫
ΓC

vTσndsdt−
∫ t1

t0

∫
ΓC

vTGTλ∗dsdt, (2.173)

in Eq. 2.169, the unrestricted space of admissible variations Vv can be employed for the weak-weak
formulation of the EOM,

0 =

∫ t1

t0

∫
Ω

vT (ρü∗ − divσ − β)dxdt+

∫ t1

t0

∫
ΓN

vT (σn− τ)dsdt (2.174)

+

∫ t1

t0

∫
ΓC

vTσndsdt−
∫ t1

t0

∫
ΓC

vTGTλ∗dsdt, ∀v ∈ Vv.

The three first integral terms follows from VP 7. −
∫ t1
t0

∫
ΓC
vTG(u∗)

Tλ∗dsdt follows from applying

the stationarity condition, Eq. 2.163a, to −
∫ t1
t0

∫
ΓC
g(ũ)Tλ∗dsdt. Thus, Eq. 2.174 can be derived

from the unconstrained VP 7 for Lagrangian P , Eq. 2.164. Since the fundamental lemma of
calculus of variations is applicable for all the integral terms, u in Eq.2.174 is an extremal to VP 7
for Lagrangian P , which concludes the proof.

By Theorem 3, the constrained VP 8 can be reformulated as a unconstrained VP 7 with
Lagrangian P , Eq. 2.164. However, the reformulated VP requires that λ∗ is prescribed.

As in Section 2.1.3, this obstacle is circumvented by extending the VP to an unconstrained
VP for finding an extremal (u∗, λ∗) embedded in a space (Vu, Vλ). Vλ is defined as

Vλ := {λ(x, t) | λ(x, t) ∈ L2(ΓC)⊗ C([t0, t1],Rnλ), λ(·, t0) = λ0, λ(·, t1) = λ1}. (2.175)

For Theorem 3 to hold, the given endpoints (λ0, λ1) must equal the endpoints of the specific
Lagrange multiplier (λ∗(t0), λ∗(t1)). The embedding of λ∗ in Vλ is expressed by

Vλ∗ = {λ∗(x, t) | Vλ 3 λ∗(x, t)}. (2.176)

The affine space Vλ̃ is defined by linearizing the space Vλ around λ∗ ∈ Vλ∗

Vλ̃ := Vλ∗ ⊕ Vθϑ, (2.177)
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where Vθϑ is a linear space, in θ ∈ Vθ, Eq. 2.15a, for each ϑ ∈ Vϑ,

Vθϑ = Vθ ⊗ Vϑ, (2.178)

with
Vϑ := {ϑ(x, t) | ϑ(x, t) ∈ Vϑx ⊗ Vϑt , ϑ(·, t0) = 0, ϑ(·, t1) = 0}, (2.179)

where

Vϑx := {ϑx(x) | ϑx(x) ∈ H1/2
0 (ΓC)∗}, (2.180a)

Vϑt := {ϑt(t) | ϑt(t) ∈ C1([t0, t1],Rnλ)}. (2.180b)

With the Lagrange multiplier technique, a constrained Lagrangian LC = LC(ũ, ˙̃u, λ̃) is consid-
ered,

LC(ũ, ˙̃u, λ̃) = L(ũ, ˙̃u)− g(ũ)T λ̃, (ũ, λ̃) ∈ (Vũ, Vλ̃). (2.181)

Hamilton’s principle of least action, for finding an extremal (u∗(t), λ∗(t)) ∈ (Vu∗ , Vλ∗), is then
stated as

Variational problem 9 (Constrained elastic body). For a closed, autonomous system of a con-
strained elastic body with given material points x ∈ L2(Ω̄), applied force densities

(
β(x, t), τ(x, t)

)
∈(

H1(Ω)∗⊗C([t0, t1],R2), H1/2(ΓN)∗⊗C([t0, t1],R2)
)
, and consistent endpoint conditions (t0, u0, λ0)

and (t1, u1, λ1), find an extremal (u∗(x, t), λ∗(x, t)) ∈ (Vu∗ , Vλ∗), under the assumption that an
extremal exists, such that

0 = j′(0), ∀(v, ϑ) ∈ (Vv, Vϑ), (2.182a)

for

j(θ) =

∫ t1

t0

LC(ũ(θ, x, t), ˙̃u(θ, x, t), λ̃(θ, x, t))dt, (ũ, λ̃) ∈ (Vũ, Vλ̃), (2.182b)

where

LC(ũ, ˙̃u, λ̃) = T ( ˙̃u)− V (ũ)−
∫

ΓC

g(ũ)T λ̃ds, (ũ, λ̃) ∈ (Vũ, Vλ̃), (2.182c)

with g ∈ H1(ΓC)⊗ C1([t0, t1],Rnλ).

T ( ˙̃u) and V (ũ) are defined in Eqs. 2.135 and 2.134. In the next subsection, the weak-strong
formulation of EOCM is derived from VP 9.

2.4.2 Derivation of Equations of Constrained Motion in Weak-Strong
form

Since VP 9 includes the constrained Lagrangian LC, the derivation steps become an extended
version of those presented in Section 2.3.2.

Insertion of the constrained Lagrangian, Eq. 2.182c, into the action integral, Eq. 2.182b, gives

0 =

∫ t1

t0

(∫
Ω

1

2
ρ(u̇∗ + θv̇)T (u̇∗ + θv̇)dx−

∫
Ω

1

2
σ(u∗ + θv) : ε(u∗ + θv)dx (2.183)

+

∫
Ω

(u∗ + θv)Tβdx+

∫
ΓN

(u∗ + θv)T τds−
∫

ΓC

g(u∗ + θv)T (λ∗ + θϑ)ds
)

dt, ∀(θv, θϑ) ∈ (Vθv, Vθϑ),
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where Vθv follows from Eq. 2.138. Applying the stationarity condition, Eq. 2.182a, generates

0 =

∫ t1

t0

(∫
Ω

ρv̇T u̇∗dx−
∫

Ω

σ(u∗) : ε(v)dx+

∫
Ω

vTβdx (2.184a)

+

∫
ΓN

vT τds−
∫

ΓC

vTG(u∗)
Tλ∗ds

)
dt, ∀v ∈ Vv,

0 =

∫ t1

t0

∫
ΓC

ϑT g(u∗)dsdt, ∀ϑ ∈ Vϑ, (2.184b)

where G(u∗) = dg(ũ)
dũ |θ=0. Eq. 2.184 is weak in both time and space. Since v(·, t0) = v(·, t1) = 0,

performing integration by parts of the inertia term, with respect to time, yields

0 =

∫ t1

t0

(∫
Ω

ρvT ü∗dx+

∫
Ω

σ(u∗) : ε(v)dx−
∫

Ω

vTβdx (2.185a)

−
∫

ΓN

vT τds+

∫
ΓC

vTG(u∗)
Tλ∗ds

)
dt, ∀v ∈ Vv,

0 =

∫ t1

t0

∫
ΓC

ϑT g(u∗)dsdt, ∀ϑ ∈ Vϑ, (2.185b)

To retrieve a weak-strong formulation, v ∈ Vv are separated in space and time,

0 =

∫ t1

t0

vTt

(∫
Ω

ρvTx ü∗dx+

∫
Ω

σ(u∗) : ε(vx)dx−
∫

Ω

vTx βdx (2.186a)

−
∫

ΓN

vTx τds+

∫
ΓC

vTxG(u∗)
Tλ∗ds

)
dt, ∀(vx, vt) ∈ (Vvx , Vvt),

0 =

∫ t1

t0

ϑTt

∫
ΓC

ϑTx g(u∗)dsdt, ∀(ϑx, ϑt) ∈ (Vϑx , Vϑt), (2.186b)

σ(u∗) : ε(v) = vTt σ(u∗) : ε(vx) since ε(v) = ∇v. Since vt and ϑt belongs to C1([t0, t1]) and all other
time-dependent functions in Eq. 2.186 belongs to C([t0, t1]), the prerequisites for fundamental
lemma of calculus of variations in time, Lemma 1, are met. Applying the lemma, for both
equations, generates the weak-strong formulation for the EOCM,

0 =

∫
Ω

ρvTx ü∗dx+

∫
Ω

σ(u∗) : ε(vx)dx−
∫

Ω

vTx βdx (2.187a)

−
∫

ΓN

vTx τds+

∫
ΓC

vTxG(u∗)
Tλ∗ds, ∀vx ∈ Vvx ,

0 =

∫
ΓC

ϑTx g(u∗)ds, ∀ϑx ∈ Vϑx . (2.187b)

In comparison to weak-strong formulation for the EOUM, Eq. 2.146, there exists an extra equa-
tion which states that displacement field u∗ is required to fulfill the constraint equations along ΓC.
Moreover, in the force balance, Eq. 2.187a, there exists an additional term,

∫
ΓC
vTxG(u∗)

Tλ∗ds,
which is interpreted as the force pulling the unconstrained dynamics to the path constrained by
Eq. 2.187b.

2.4.3 Compact Notation and Initial Value Problem for g = u

In this subsection, an IVP based on Eq. 2.187 is presented in a compact format. IVPs are of
interest, since in general, consistent initial conditions, rather than consistent end point conditions,
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are accessible. In the first numerical experiment in this study, implementations of unconstrained
and constrained elastic dynamics are compared, for a constraint which describes a homogeneous
Dirichlet condition,

g(u∗) = u∗ = 0, G(u∗) = 1. (2.188)

Compact notations, for the integral terms present in EOUM in weak-strong form, were introduced
in Section 2.3.3. For the specific choice of constraints, Eq 2.188, the corresponding integrals in
Eq. 2.187 are bilinear functionals,

b(u∗, ϑx) :=

∫
ΓC

ϑTx u∗ds, (2.189)

and

bT (λ∗, vx) :=

∫
ΓC

vTx λ∗ds. (2.190)

The transpose notation indicates the relation between the two integrals where the integrands
consist of the extremal of one of the variables times a test function of the other variable. Fur-
thermore, as shown in Section 2.6.2, the two matrices arising from FE discretization, of Eqs. 2.190
and 2.190, are each others transpose matrix.

The IVP based on Eqs. 2.187 and 2.188 is stated as

Initial value problem 2 (Constrained elastic body). For consistent initial conditions,
(
u∗(x, t0), u̇∗(x, t0), λ∗(x, t0)

)
=

(u0, u̇0, λ0) ∈
(
H1

0 (Ω) ∪ H1/2
0 (∂Ω), H1

0 (Ω), L2(ΓC)
)
, find a solution path (u∗, λ∗) ∈

((
H1

0 (Ω) ∪

H
1/2
0 (∂Ω)

)
⊗ C2([t0, t1],R2), L2(ΓC)⊗ C2([t0, t1],R2)

)
, such that

m(ü∗, vx) + a(u∗, vx) + bT (λ∗, vx) = 〈β, vx〉+ 〈τ, vx〉, ∀vx ∈ Vvx , (2.191a)

b(u∗, ϑx) = 0, ∀ϑx ∈ Vϑx . (2.191b)

With G = 1, λ∗ is interpreted as a negative surface traction along ΓC.

2.4.4 Derivation of Equations of Constrained Motion in Strong-Strong
Form

In this subsection, the the strong-strong formulation of EOCM is derived. This subsection is
included for completion, since the strong-strong form is not used in the numerical experiments
in this study. The derivation steps follows closely those applied in Section 2.3.4.

To retrieve a strong-strong formulation, more restrictive function spaces in space have to
be considered, compared to derivations of the weak-strong formulation in Section 2.4.2. As in
Section 2.3.4, the functions space Vu is updated to

Vu ={u(x, t) | u(x, t) ∈
(
H2(Ω) ∩H1

0 (Ω)
)
∪
(
H3/2(∂Ω) ∩H1/2

0 (∂Ω)
)
⊗ (2.192)

C2([t0, t1],R2), u(·, t0) = u0, u(·, t1) = u1},

by replacing H1
0 (Ω) with H2(Ω)∩H1

0 (Ω), and H
1/2
0 (∂Ω) with H3/2(∂Ω)∩H1/2

0 (∂Ω). Moreover,
the applied force densities are restricted to L2-spaces, β ∈ L2(Ω) ⊗ C([t0, t1],R2) and τ ∈
L2(ΓN)⊗C([t0, t1],R2). During the derivations, the function space C∞0 (Ω)∪C∞0 (∂Ω) is employed
for the test function space, Vvx . By a density argument, C∞0 (Ω)∪C∞0 (∂Ω) is thereafter extended

to the closure H1
0 (Ω) ∪H1/2

0 (∂Ω).
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The weak-strong formulation of the EOCM, Eq. 2.187, is considered under the more restrictive
function spaces,

0 =

∫
Ω

ρvTx ü∗dx+

∫
Ω

σ(u∗) : ε(vx)dx−
∫

Ω

vTx βdx (2.193a)

−
∫

ΓN

vTx τds+

∫
ΓC

vTxG(u∗)
Tλ∗ds, ∀vx ∈ Vvx ,

0 =

∫
ΓC

ϑTx g(u∗)ds, ∀ϑx ∈ Vϑx . (2.193b)

The two integral terms related to the constraint is already written in the format for which the
fundamental lemma of calculus of variations is applicable. However, the internal force term is
not in the applicable format. The reformulation, as presented in Section 2.3.4, involves applying
the divergence property in Appendix A.5 and thereafter Gauss’s theorem. The reformulation,
for derivations see Eqs. 2.152-2.145 , renders in

0 =

∫
Ω

vTx
(
ρü∗ − div(σ(u∗))− βbig)dx (2.194a)

+

∫
ΓN

vTx (σn− τ)ds+

∫
ΓC

vTx (σn+G(u∗)
Tλ∗)ds, ∀vx ∈ Vvx ,

0 =

∫
ΓC

ϑTx g(u∗)ds, ∀ϑx ∈ Vϑx . (2.194b)

By considering ϑx = 0 and v = 0 along ΓC, Eq. 2.145 is retrieved. In Section 2.3.4, the
EOUM in strong-strong form, Eq. 2.161, was derived from Eq. 2.145. Considering ϑx = 0 and
v = 0 over Ω̄\ΓC gives

0 =

∫
ΓC

vTxG(u∗)
Tλ∗ds, ∀vx ∈ Vvx (2.195)

Consider the Lemma 2 for the open, bounded domain ΓC. Since G(u∗)
Tλ∗ belongs to a subset

of L1(ΓC), and vx ∈ C∞0 (ΓC) (when v = 0 over Ω̄\ΓC), the prerequisites for the fundamental
lemma of calculus of variations in space, Lemma 2, are met. Applying the lemma, gives σn =
−G(u∗)

Tλ∗ almost everywhere along ΓC.
By considering Eq. 2.193 for v = 0,

0 =

∫
ΓC

ϑTx g(u∗)ds, ∀ϑx ∈ Vϑx , (2.196)

is retrieved. Again, the prerequisites for Lemma 2, are met. Applying the lemma, gives g(u∗) = 0
almost everywhere along ΓC. For σn = −G(u∗)

Tλ∗ and g(u∗) = 0, together with the strong-
strong formulation of the EOUM, Eq. 2.161, the strong-strong formulation of the EOCM is
retrieved,

ρü∗(x, t) = divσ(u∗(x, t)) + β(x, t), in Ω, (2.197a)

u∗(x, t) = 0, on ΓD, (2.197b)

σ(u∗(x, t))n(x) = τ(x, t), on ΓN, (2.197c)

σ(u∗(x, t))n(x) = −G(u∗(x, t))
Tλ∗(x, t), on ΓC, (2.197d)

g(u∗(x, t)) = 0, on ΓC. (2.197e)
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Note, Eqs. 2.197a and 2.197c-e hold almost everywhere over their respective domains. By com-
paring Eqs. 2.197c and 2.197d, −G(u∗)

Tλ∗ is interpreted as a surface traction over ΓC.

Recall in Eq. 2.59 in Section 2.1.3, −G(λ∗)
Tλ∗ was interpreted as the force pulling the

unconstrained motion to the path constrained by g(ϕ∗) = 0. That −G(u∗)
Tλ∗ in Eq. 2.197 is

interpreted as a surface traction, and not as a force, follows from that the constraint is defined
over ΓC, Eq. 2.162, instead of in a pointwise sense, such as g(ϕ̃) = 0.

2.5 Multibody Framework

In the two previous sections, the deformation due to solely elastic displacements have been
modeled. Recall that the elasticity model relies on that the elastic displacements are sufficiently
small. In a multibody framework, deformations are, in general, large. In Section 2.2, a rigid
multibody system was retrieved by equipping each rigid body with a body-fixed reference frame.

By equipping each elastic body with a body-fixed reference frame, the large motions can be
described by translations and rotations of the body-fixed reference frame, while the change of
the shape of the body is described by an elastic displacement field. In the first subsection, the
total deformation field, as a combination of rigid body motions and an elastic displacement field,
is presented.

In the second subsection, EOCM in weak-strong form is derived for the full deformation
field of a constrained elastic body. In the third subsection, three different constraint models for
interconnecting joints between elastic and rigid bodies are presented. In the last subsection, the
VP for a flexible multibody system is presented.

2.5.1 Body-fixed Reference Frame

Recall, in Eq. 2.73, a body-fixed reference frame was placed at the center of mass of a rigid
body, to enable a decoupling of the motion into translational and rotational components. Here,
the body, either elastic or rigid, is also equipped with a body-fixed frame, but this time not
necessarily at the center of mass. The motion of the body-fixed frame is, just as in Eq. 2.73,
modeled by r, the distance from the inertial to the body-fixed frame, and α, the angle between
the body-fixed frame and the inertial frame. The displacement field is defined with respect to the
body-fixed frame. The total deformation field ϕ, with respect to the inertial frame, is expressed
as

ϕ(r(t), α(t), u(x, t), x) = r(x, t) +A(α(t))(x+ u(x, t)), ϕ̃ : Ω̄→ ˆ̄Ω, (2.198)

with

A(α(t)) =

(
cos α −sin α
sin α cos α

)
, (2.199)

where x ∈ L2(Ω̄) and A denote the material points, with respect to the body-fixed frame, and the
rotation matrix between the body-fixed and inertial reference frame, respectively. A schematic
of the deformation is illustrated in Fig. 2.6.

Noteworthy, if r = 0 and α = 0, the deformation model for an elastic body attached to the
inertial frame, is retrieved, Eq. 2.125. If instead u = 0, the motion of a rigid body is retrieved,
Eq. 2.73. Moreover, if the body-fixed frame is placed at the center of mass, the rigid body motion
can be decoupled into translational and rotational components.
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Figure 2.6: Schematic of the full deformation, in a multibody setting, of a constrained elastic
body.

2.5.2 Derivation of Equations of Constrained Motion in Weak-Strong
Form

In this subsection, the total deformation field for an elastic body, without any Dirichlet boundary
conditions but constrained along ΓC, is considered, as illustrated in Fig. 2.6. This is a common
situation in multibody settings, since most bodies are interconnected, instead of being directly
connected to the inertial reference frame. An important remark, in order to employ a Dirichlet
boundary condition, for an elastic body, in a multibody setting, the body-fixed frame is required
to be placed along ΓD. With the body-fixed frame placed along ΓD, the condition is fulfilled by
setting the boundary displacement field to vanish along ΓD. However, if the body-fixed frame
is not placed along ΓD, then the corresponding boundary displacement field is unknown with
respect to the body-fixed frame. Naturally, a Dirichlet condition is only possible to set up if the
boundary displacement field is known.

To set up a VP based on the total deformation field, Eq. 2.198, the spaces of rigid body
translational Vr and rotational Vα motion, elastic displacement field Vu, and Lagrange multipliers
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Vλ, are considered,

Vr ={r(t) | r(t) ∈ C2([t0, t1], R2), r(t0) = r0, r(t1) = r1}, (2.200a)

Vα ={α(t) | α(t) ∈ C2([t0, t1], R), α(t0) = α0, α(t1) = α1}, (2.200b)

Vu ={u(x, t) | u(x, t) ∈
(
H1(Ω) ∪H1/2(∂Ω)

)
⊗ C2([t0, t1],R2), (2.200c)

u(·, t0) = u0, u(·, t1) = u1},
Vλ :={λ(x, t) | λ(x, t) ∈ L2(ΓC)⊗ C([t0, t1],Rnλ), λ(·, t0) = λ0, λ(·, t1) = λ1}. (2.200d)

Thus, the aim of the VP is to retrieve the constrained motion, between t0 ≤ t ≤ t1, for given con-
sistent endpoint conditions, (r(t0), α(t0), u(·, t0), λ(·, t0)) = (r0, α0, u0, λ0) and (r(t1), α(t1), u(·, t1), λ(·, t1)) =
(r1, α1, u1, λ1). Since there does not exist any Dirichlet boundary segments along the body,
the zero subscripts for the function spaces in space, in Vu, are not included. The function
spaces Vr∗ , Vα∗ , Vr̃, Vα̃, Vθz, Vθζ , Vz, and Vζ follows from Section 2.2.1. The function spaces
Vu∗ , Vũ, Vθv, Vv, Vvx , and Vvt are adopted from Section 2.3.2, but without any subscript zeros
on the function spaces. Lastly, function spaces Vλ∗ , Vλ̃, Vθϑ, Vϑ, Vϑx , and Vϑt are taken from
Section 2.4.1.

As in Section 2.2.1, spaces of admissible full deformation Vϕ̃, and the corresponding variations
Vθη, are sought from the spaces Vr̃, Vα̃, and Vũ. First, consider the space Vϕ based on applying
Eq. 2.198 for admissible displacement fields and rigid body translational and rotational motions,

Vϕ = {r̃(t)+A(α̃(t))(x+ ũ) | r̃(t) ∈ Vr̃, α̃(t) ∈ Vα̃, x ∈ L2(Ω̄), ũ ∈ Vũ, A from Eq. 2.199}, (2.201)

The corresponding space for the extremal components is

Vϕ∗ ={r∗(t) +A(α∗(t))(x+ u∗) | r∗(t) ∈ Vr∗ , (2.202)

α∗(t) ∈ Vα∗ , x ∈ L2(Ω̄), u∗ ∈ Vu∗ , A from Eq. 2.73}.

Consider the difference between ϕ ∈ Vϕ and ϕ∗ ∈ Vϕ∗ ,

ϕ− ϕ∗ =
(
r∗ + θz +A(α∗ + θζ)(x+ u∗ + θv)

)
−
(
r∗ +A(α∗)(x+ u∗)

)
(2.203)

= θz +
(
A(α∗ + θζ)−A(α∗)

)
(x+ u∗) +A(α∗ + θζ)θv.

For each ζ(t) ∈ Vζ , there is a sufficiently small θ such that the approximations

A′(α∗)θζ
.
= A(α∗ + θζ)−A(α∗), A′(α∗) :=

(
−sin α∗ −cos α∗
cos α∗ −sin α∗

)
, (2.204)

A(α∗)
.
= A(α∗ + θζ) (2.205)

are good. With the approximations, Eq. 2.203 becomes

ϕ− ϕ∗
.
= θz +A′(αx)θη(x+ u∗) +A(α∗)θv. (2.206)

Define the space Vθη based on Eq. 2.206,

Vθη := Vθ ⊗ Vη, (2.207)

with Vθ from Eq. 2.15a and,

Vη :={z(t) + ζ(t)A′(α∗(t))(x+ u∗) +A(α∗)v | z(t) ∈ Vz, α∗(t) ∈ Vα∗ , ζ(t) ∈ Vζ , (2.208)

x ∈ L2(Ω̄), u∗ ∈ Vu∗ , v ∈ Vv, A andA′ from Eqs. 2.199 and 2.204}.
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Since Vz, Vζ , and Vv vanish at the endpoints in time, so thus η(x, t) ∈ Vη, η(·, t0) = η(·, t1) = 0.
The affine space Vϕ̃ of admissible motions is defined as

Vϕ̃ := {ϕ∗(x, t) + θη(x, t) | (ϕ∗, θη)(x, t) ∈ (Vϕ∗ , Vθη)} (2.209)

Since the applied forces affect the full deformation, the kinetic and the potential energies,
depends on it,

T ( ˙̃ϕ) =
1

2

∫
Ω

ρ ˙̃ϕT ˙̃ϕdx, (2.210)

and

V (ϕ̃) =
1

2

∫
Ω

σ(ũ) : ε(ũ)dx−
∫

Ω

ϕ̃TAβdx−
∫

ΓN

ϕ̃TAτds, (2.211)

with β and τ defined with respect to the body-fixed frame. Since the strain measure is invariant
to rigid body motions, σ(ϕ̃) : ε(ϕ̃) = σ(ũ) : ε(ũ). Hamiltion’s principle of least action is stated
as

Variational problem 10 (Constrained elastic body, multibody setting). For a closed, au-
tonomous system of a constrained elastic body with given material points x ∈ L2(Ω̄), applied force
densities

(
β(x, t), τ(x, t)

)
∈
(
H1(Ω)∗⊗C([t0, t1],R2), H1/2(ΓN)∗⊗C([t0, t1],R2)

)
, and consistent

endpoint conditions (t0, r0, α0, u0, λ0) and (t1, r1, α1, u1, λ1), find an extremal (ϕ∗(x, t), λ∗(x, t)) ∈
(Vϕ∗ , Vλ∗), under the assumption that an extremal exists, such that

0 = j′(0), ∀(η, ϑ) ∈ (Vη, Vϑ), (2.212a)

for

j(θ) =

∫ t1

t0

LC(ϕ̃(θ, x, t), ˙̃ϕ(θ, x, t), λ̃(θ, x, t))dt, (ϕ̃, λ̃) ∈ (Vϕ̃, Vλ̃), (2.212b)

where

LC(ϕ̃, ˙̃ϕ, λ̃) = T ( ˙̃ϕ)− V (ϕ̃)−
∫

ΓC

g(ϕ̃)T λ̃ds, (ϕ̃, λ̃) ∈ (Vũ, Vλ̃), (2.212c)

with g ∈ H1(ΓC)⊗ C1([t0, t1],Rnλ).

The first derivation steps is closely similar to those performed in Section 2.4.2. Insertion of
the constrained Lagrangian, Eq. 2.212c, into the action integral, Eq. 2.212b, gives

0 =

∫ t1

t0

(∫
Ω

1

2
ρ(ϕ̇∗ + θη̇)T (u̇∗ + θη̇)dx−

∫
Ω

1

2
σ(u∗ + θv) : ε(u∗ + θv)dx (2.213)

+

∫
Ω

(ϕ∗ + θη)TA(α∗)βdx+

∫
ΓN

(ϕ∗ + θη)TA(α∗)τds

−
∫

ΓC

g(ϕ∗ + θη)T (λ∗ + θϑ)ds
)

dt, ∀(θv, θη, θϑ) ∈ (Vθv, Vθη, Vθϑ).

Applying the stationarity condition, Eq. 2.212a, generates

0 =

∫ t1

t0

(∫
Ω

ρη̇T ϕ̇∗dx−
∫

Ω

σ(u∗) : ε(v)dx+

∫
Ω

ηTA(α∗)βdx (2.214a)

+

∫
ΓN

ηTA(α∗)τds−
∫

ΓC

ηTG(ϕ∗)
Tλ∗ds

)
dt, ∀(v, η) ∈ (Vv, Vη),

0 =

∫ t1

t0

∫
ΓC

ϑT g(ϕ∗)dsdt, ∀ϑ ∈ Vϑ, (2.214b)
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where G(ϕ∗) = dg(ϕ̃)
dϕ̃ |θ=0. Since η(·, t0) = η(·, t1) = 0, performing integration by parts of the

inertia term, with respect to time, yields

0 =

∫ t1

t0

(∫
Ω

ρηT ϕ̈∗dx+

∫
Ω

σ(u∗) : ε(v)dx−
∫

Ω

ηTAβdx (2.215a)

−
∫

ΓN

ηTAτds+

∫
ΓC

ηTG(ϕ∗)
Tλ∗ds

)
dt, ∀(v, η) ∈ (Vv, Vη),

0 =

∫ t1

t0

∫
ΓC

ϑT g(ϕ∗)dsdt, ∀ϑ ∈ Vϑ. (2.215b)

To continue, η is decoupled according to Eq. 2.208, η = z + ζA′(α∗(t))x+A(α∗)v,

0 =

∫ t1

t0

(∫
Ω

ρzT ϕ̈∗dx−
∫

Ω

zTAβdx−
∫

ΓN

zTAτds+

∫
ΓC

zTG(ϕ∗)
Tλ∗ds

)
dt, ∀z ∈ Vz,

(2.216a)

0 =

∫ t1

t0

(∫
Ω

ρζ(x+ u∗)
TA′T ϕ̈∗dx−

∫
Ω

ζ(x+ u∗)
TA′TAβdx−

∫
ΓN

ζ(x+ u∗)
TA′TAτds

(2.216b)

+

∫
ΓC

ζ(x+ u∗)
TA′TG(ϕ∗)

Tλ∗ds
)

dt, ∀ζ ∈ Vζ ,

0 =

∫ t1

t0

(∫
Ω

ρvTAT ϕ̈∗dx+

∫
Ω

σ(u∗) : ε(v)dx−
∫

Ω

vTβdx (2.216c)

−
∫

ΓN

vT τds+

∫
ΓC

vTATG(ϕ∗)
Tλ∗ds

)
dt, ∀v ∈ Vv,

0 =

∫ t1

t0

∫
ΓC

ϑT g(ϕ∗)dsdt, ∀ϑ ∈ Vϑ, (2.216d)

where ATA = I was used. Recall, in Section 2.2.1, aTA′TAb, for any a and b, were rewritten as
nTαa× b. Also, v ∈ Vv and ϑ ∈ Vϑ are separated in space and time,

0 =

∫ t1

t0

zT
(∫

Ω

ρϕ̈∗dx−
∫

Ω

Aβdx−
∫

ΓN

Aτds+

∫
ΓC

G(ϕ∗)
Tλ∗ds

)
dt, ∀z ∈ Vz, (2.217a)

0 =

∫ t1

t0

ζ
(∫

Ω

ρnTα(x+ u∗) ×AT ϕ̈∗dx−
∫

Ω

nTα(x+ u∗) × βdx−
∫

ΓN

nTα(x+ u∗) × τds

(2.217b)

+

∫
ΓC

nTα(x+ u∗) ×ATG(ϕ∗)
Tλ∗ds

)
dt, ∀ζ ∈ Vζ ,

0 =

∫ t1

t0

vTt

(∫
Ω

ρvTxA
T ϕ̈∗dx+

∫
Ω

σ(u∗) : ε(vx)dx−
∫

Ω

vTx βdx (2.217c)

−
∫

ΓN

vTx τds+

∫
ΓC

vTxA
TG(ϕ∗)

Tλ∗ds
)

dt, ∀(vx, vt) ∈ (Vvx , Vvt),

0 =

∫ t1

t0

ϑTt

∫
ΓC

ϑTx g(ϕ∗)dsdt, ∀(ϑx, ϑt) ∈ (Vϑx , Vϑt). (2.217d)

Recall the definition of f defined in Eq. 2.95,

f =

∫
Ω

Aβdx+

∫
ΓN

Aτds. (2.218)
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Moreover, define τx+u∗
torque as

τx+u∗
torque :=

∫
Ω

nTα(x+ u∗) × βdx+

∫
ΓN

nTα(x+ u∗) × τds. (2.219)

Insertion of Eqs. 2.218 and 2.219 into Eq. 2.217 gives

0 =

∫ t1

t0

zT
(∫

Ω

ρϕ̈∗dx− f +

∫
ΓC

G(ϕ∗)
Tλ∗ds

)
dt, ∀z ∈ Vz, (2.220a)

0 =

∫ t1

t0

ζ
(∫

Ω

ρnTαx×AT ϕ̈∗dx− τx+u∗
torque +

∫
ΓC

nTαx×ATG(ϕ∗)
Tλ∗ds

)
dt, ∀ζ ∈ Vζ , (2.220b)

0 =

∫ t1

t0

vTt

(∫
Ω

ρvTxA
T ϕ̈∗dx+

∫
Ω

σ(u∗) : ε(vx)dx−
∫

Ω

vTx βdx (2.220c)

−
∫

ΓN

vTx τds+

∫
ΓC

vTxA
TG(ϕ∗)

Tλ∗ds
)

dt, ∀(vx, vt) ∈ (Vvx , Vvt),

0 =

∫ t1

t0

ϑTt

∫
ΓC

ϑTx g(ϕ∗)dsdt, ∀(ϑx, ϑt) ∈ (Vϑx , Vϑt). (2.220d)

To retrieve the EOCM in weak-strong form, the fundamental lemma of calculus of variations in
time, Lemma 1, is employed. Under the given function spaces, the prerequisites for the lemma are
met, for details see Sections 2.2 and 2.4.2. Applying the lemma gives the EOCM in weak-strong
form, ∫

Ω

ρϕ̈∗dx = f −
∫

ΓC

G(ϕ∗)
Tλ∗ds, (2.221a)∫

Ω

ρnTα(x+ u∗) ×AT ϕ̈∗dx = τx+u∗
torque −

∫
ΓC

nTα(x+ u∗) ×ATG(ϕ∗)
Tλ∗ds, (2.221b)∫

Ω

ρvTxA
T ϕ̈∗dx+

∫
Ω

σ(u∗) : ε(vx)dx =

∫
Ω

vTx βdx+

∫
ΓN

vTx τds (2.221c)

−
∫

ΓC

vTxA
TG(ϕ∗)

Tλ∗ds, ∀vx ∈ Vvx ,

0 =

∫
ΓC

ϑTx g(ϕ∗)dsdt, ∀ϑx ∈ Vϑx . (2.221d)

Since the rotation matrix, and possibly also the constraint equations, are nonlinear, the EOCM
is a nonlinear system. Eq. 2.221 is referred to as a weak-strong form even though the first two
equations is given in strong form. Eq. 2.221 is not fully decoupled into rigid body translational
and rotational motion, and elastic displacements. Especially, the Lagrange multipliers λ∗ couple
the first three equations. Part of the couplings are hidden in ϕ̈∗. The rest of this subsection is
devoted to show how much the inertia terms can be decoupled.

First, ϕ̈∗ is derived,

ϕ∗ = r∗ +A(α∗)(x+ u∗), (2.222a)

ϕ̇∗ = ṙ∗ + α̇∗A
′(x+ u∗) +Au̇∗, (2.222b)

ϕ̈∗ = r̈∗ + α̈∗A
′(x+ u∗)− α̇2

∗A
′′(x+ u∗) +Aü∗ + 2α̇∗A

′u̇∗, (2.222c)

= r̈∗ + α̈∗A
′(x+ u∗) + α̇2

∗A(x+ u∗) +Aü∗ + 2α̇∗A
′u̇∗.
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In the last equality A′′ = −A was used. Insertion of Eq. 2.222c into the inertia terms in Eq. 2.221
gives, with the compact notation for the inertia term, Eq. 2.149, used,∫

Ω

ρϕ̈∗dx = mr̈∗ +A′sdef.α̈∗ +Asdef.α̇
2
∗ +

∫
Ω

ρ(Aü∗ + 2α̇A′u̇∗)dx, (2.223a)∫
Ω

ρnTα(x+ u∗) ×AT ϕ̈∗dx =

∫
Ω

ρ(x+ u∗)
TA′T ϕ̈∗dx (2.223b)

= sTdef.A
′T r̈∗ + Jdef.α̈∗ +

∫
Ω

ρ(x+ u∗)
T
(
A′TAü∗ + 2u̇∗α̇

)
dx,

m(ρAT ϕ̈∗, vx) = m(ρAT r̈∗, vx) +m(ρATA′(x+ u∗)α̈∗, vx) (2.223c)

+m(ρ(x+ u∗)α̇
2
∗, vx) +m(ρü∗, vx) +m(ρα̇∗A

TA′u̇∗, vx),

with the the mass m defined in Eq. 2.102, the coordinate distance from the center of mass of the
deformed body s(u) defined as

sdef. = sdef.(u) :=

∫
Ω

ρ(x+ u)dx, (2.224)

and the moment of inertia of the deformed body defined as

Jdef. = Jdef.(u) :=

∫
Ω

ρ(x+ u)T (x+ u)dx. (2.225)

For an undeformed elastic body, with the body-fixed frame placed at the center of mass, Eq. 2.223a
and Eq. 2.223b simplify to mr̈ and Jα̈ (J = Jdef.(0), Eq. 2.102), respectively. mr̈ and Jα̈ are
also the translational and rotational inertia terms for rigid body dynamics, according to Newton-
Euler’s equation, Eq. 2.104.

Moreover, if the body-fixed frame and the inertial frame overlap, the inertial term for solely
elastic displacements, m(ρü, v), is retrieved. This highlights the possible simplifications which
can be retrieved by a smart choice for placement of the body-fixed reference frame.

2.5.3 Modeling of Interconnecting Joints

As mentioned previously, constrained multibody dynamics was derived in order to enable incor-
poration of interconnecting joints into the model. In this study, three models for massless, rigid
joints, retrieved from [1], are presented to interconnect elastic bodies. As noted in [1], the inter-
connecting joints, in a multibody context, are often very small compared to the interconnected
bodies. Hence, the massless assumption leads to less stiff systems of differential equations, and
is therefore employed in this study. For two non-massless joint models, see [1].

For a rigid joint connected to an elastic body, two different modeling approaches meet at the
joint-body interface. According to the rigid joint model, the interface is restricted to perform
rigid body motions. Whereas, according to the elastic body model, the interface is permitted to
perform elastic body motions. Since rigid body motions is a special case of elastic body motions,
the interface should be restricted to perform rigid body motions, to conform with both models.

For the first model, where the elasticity model is defined with respect to the interface, the
motion of the interface is, in a well-defined way, restricted to rigid body motions. However, the
model is only applicable once for each elastic body. The joint models for general use involves
model compromises.

In the second model, the constraint along the interface is represented by a point constraint,
which violates the elasticity model. The last model is the weakly constrained joint model. Recall,
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r1

xp,1

inertial frame

body-fixed frame

Figure 2.7: Locating the pivot of a joint through a body-fixed reference frame at the joint-body
interface.

the aim of this study is to highlight the limitations of the weakly constrained joint model. The
last model conforms with the elasticity model, but is restricted to interconnections where one of
the bodies is rigid. Also, the model requires that the orientation of the rigid joint-elastic body
interface is unaffected by the displacement field of the elastic body.

2.5.3.1 Body-Fixed Frame Attached to Joint

In the first model, the body-fixed frame is placed at the joint-body interface, as illustrated in
Fig. 2.7. Since the displacement field along the interface is known, it is possible to apply a
Dirichlet condition for the displacement field along the interface. By setting the displacement
field to vanish along the interface, the interface is restricted to perform rigid body motions.
The rigid motions of the body-fixed frame is constrained just as an interconnected rigid body.
An interconnecting joint model for rigid bodies was presented in Section 2.2.2. Thus, with this
model, the constraints on the elastic displacement field and the rigid body motions, is decoupled.

However, there is an obvious drawback with this model. It is only applicable once per elastic
body. Its use is further limited, for an elastic body, by the fact that, for applying a Dirichlet
condition to a rigid attachment, the body-fixed frame is required to be placed along ΓD, as
explained in the previous subsection. Moreover, to in a well-defined way include a force element
with pointwise attachment, such as those presented in Section 2.2.3, the body-fixed frame has to
be placed in its attachment point.
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r1

xp,1

inertial frame

joint coordinate frame

xo,1+u(xo,1,t)

body-fixed frame

Figure 2.8: Locating the pivot of a joint through an additional coordinate system at the joint-
body interface.

2.5.3.2 Intermediate Joint Coordinate Frame

The aim with the second model is to extend the concept from the first model to generic com-
binations of interconnecting elements. The idea is to equip all rigid interfaces, connected to an
elastic body, with local reference systems. Thus, additional joint coordinate reference frames are
added to all interfaces, if the body-fixed frame is not placed there. A schematic is illustrated in
Fig. 2.8. The distance from the inertial frame to a joint coordinate frame, represented by hats,
is defined as

r̂1 := r1 +A(α1)(xo,1 + u(xo,1, t)). (2.226)

The constraint equation for describing interconnected elastic bodies with the second model is
expressed as

g(ϕ̂1, ϕ̂2) = r̂1 +A(α̂1)x̂p,1 − (r̂2 +A(α̂2)x̂p,2) = 0. (2.227)

Note the close resemblance to the constraint equation for the rigid-rigid body connection, see
Section 2.2.2. However, there is a main drawback with this approach. The constraint equation
in Eq. 2.227 is described in a pointwise way, which conforms well with the rigid body motions.
However, this model constrains a certain point of the elastic displacement field along the interface,
while the remaining parts are treated as unconstrained. This is not a well-defined way to impose
a constraint on the elastic displacement field. The model approximates the true dynamics with
the assumption that the point constraint is a good approximate for a corresponding well-defined
constraint along the rigid joint-elastic body interface.

Moreover, the orientation of the joint coordinate frame, angle α̂1, is defined by use of ad-
ditional observer points along the boundary. In combination with specialized joint modeling
elements, this is a common approach [1, p. 101].
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Figure 2.9: Schematic of the constraint equation for the weakly constrained joint model.

2.5.3.3 Weakly Constrained Joint Model

The aim with the third model is to retrieve a generic model, which incorporates elastic displace-
ment fields in a well-defined way. However, the generality has to be restricted to cases where
one of the two interconnected bodies is rigid (here body 2). Then, the pivot of the joint can be
located through the rigid body. ξ(x) for x ∈ L2(ΓC,1), denotes the distance from the body-joint
interface to the pivot. Then, a constraint along ΓC,1 is expressed as

g(ϕ1, ϕ2) = ϕ1(r(t), α(t), u(x, t), x) + ξ(x)− ϕ2(xp,2, t) = 0, for x ∈ L2(ΓC,1), (2.228)

with ϕ1 from Eq. 2.198 and ϕ2 from Eq. 2.73. A schematic is illustrated in Fig. 2.9. By applying
Eq. 2.228 over ΓC,1, as in Eq. 2.162, the constraint is incorporated in a well-defined way, both
for the rigid body motions and the elastic displacement field. The aim of this study is to show
the limitations of this model. Since ξ = ξ(x), the elastic body-joint interface is assumed to retain
its shape in reference to the body-fixed frame of the elastic body. This requirement can severely
distort the displacement field, as clarified in the numerical experiments.

2.5.4 Flexible Multibody Dynamics

The last extension step, to enable modeling of the dynamics of a multibody system consisting of
both elastic and rigid bodies, flexible multibody dynamics, in presence of interconnecting joints,
is simple. The multibody system is retrieved as an aggregation of several single bodies, just as
for the rigid multibody system in Section 2.2.4.

Consider a system of nb bodies. The kinetic and potential energies are retrieved by aggre-
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gating Eq. 2.210,

T ({ ˙̃ϕi}nbi=1) =

nb∑
i=1

1

2

∫
Ωi

ρi ˙̃ϕTi ˙̃ϕidx, (2.229)

and Eq. 2.211,

V ({ϕ̃i}nbi=1) =

nb∑
i=1

(
1

2

∫
Ωi

σi(ũi) : εi(ũi)dx−
∫

Ωi

ϕ̃Ti Aiβidx−
∫

ΓiN

ϕ̃Ti Aiτids), (2.230)

for ϕ̃i ∈ Vϕ̃ from Eq. 2.209. Moreover, the presence of interconnecting joints is identified by a
set J of index pairs, with the indices referring to the indices of the interconnected bodies. The
constrained Lagrangian for the constrained flexible multibody system is

LC = T ({ ˙̃ϕi}nbi=1)− V ({ϕ̃}nbi=1)−
∑

(j,k)∈J

∫
Γ
{j,k}
C

g(ϕ̃j , ϕ̃k)T λ̃(j,k)ds. (2.231)

The superscript {j,k}, for Γ
{j,k}
C , denotes that both ΓjC and ΓkC are considered, while the subscript

(j,k), for λ̃(j,k), denotes that the same Lagrange multipliers are used for the two interconnected
bodies. By inserting the Lagrangian into Hamilton’s principle of least action, an aggregated
version of EOCM in weak-strong form, can be derived, just as in Section 2.2.4 for rigid multibody
systems. To perform the derivations do not provide much further insight, and is therefore omitted.
However, in the next subsection, the derivations are performed for a two-body system investigated
in the numerical experiments.

2.5.5 Two-Body System with Weakly Constrained Joint Model

In this subsection, the IVP based on the EOM in weak-strong form is presented for a two-body
system which is studied in the numerical experiments, see Section 4.2. The two-body system
consists of an elastic and a rigid body. The elastic body is, on its left side, attached to a rigid
wall, by a Dirichlet boundary condition. On the lower right corner of the elastic block, a rigid
revolute joint is attached. The rigid joint is also connected to a rigid body, hanging underneath
its pivot. The configuration is illustrated in Fig. 4.4. The only applied force is the gravity,
directed downwards in the figure, with body force density β0 = (0,−9.82), with respect to the
inertial reference frame.

The inertial reference frame is placed at the lower left corner of the elastic block. Then, the
Dirichlet boundary segment is attached to the inertial reference frame (which is a requirement
as discussed in Section 2.5), and the elastic body performs solely elastic displacements. The
dynamics for the displacement field is modeled as in Section 2.4. The rigid revolute joint is
approximated as massless, and modeled with the weakly constrained model, Section 2.5.3.3.

The material of the elastic body is modeled as isotropic and homogeneous. The depth of the
two bodies are one percent of their lengths and widths. By approximating the elasticity model
for the elastic body by the planar stress model, Eq. 2.129, it is sufficient to model the planar
motion of the two-body system.

Recall from Section 2.2.4, the presence of rotations matrices contributed to the EOCM being
nonlinear. To retrieve a linear system for the constrained dynamics, only the translational motion
r of the rigid body is considered. Then, the constrained Lagrangian for the two-body system
becomes

LC(ũ1, r̃2) = T1( ˙̃u1) + T2( ˙̃r2)− V1(ũ1)− V2(r̃2)−
∫

ΓC,1

g(ũ1, r̃2)T λ̃ds, (2.232)
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with kinetic energies

T1( ˙̃u1) :=
1

2

∫
Ω1

ρ ˙̃uT1 ˙̃u1dx, (2.233a)

T2( ˙̃r2) :=
1

2

∫
Ω2

ρ ˙̃rT2 ˙̃r2dx, (2.233b)

and potential energies

V1(ϕ̃1) :=
1

2

∫
Ω1

σ(ũ1) : ε(ũ1)dx−
∫

Ω

ũT1 β0dx, (2.234a)

V2(r̃2) := −
∫

Ω2

r̃T2 Aβdx = −
∫

Ω2

r̃T2 β0dx. (2.234b)

with ũ1 ∈ Vũ, r̃2 ∈ Vr̃, and λ̃ ∈ Vλ̃ from Eqs. 2.137, 2.76a, and 2.177. Note, the absence of
surface work contributions for the potential energies. Also, note that β is defined with respect
to the body-fixed frame, whereas β0 is defined with respect to the inertial frame, β0 = Aβ.

The constraint equation for the interconnecting joint becomes, see Eq. 2.228,

g(u1, r2) = u1(x, t) + x+ (xp,1 − x)− (r2(t) + xp,2) (2.235)

= u1(x, t) + xp,1 − r2(t)− xp,2 = 0, for x ∈ L2(ΓC,1),

where xp,1 and xp,2 are the position of the joint with respect to the two body-fixed frames. Then,
Hamilton’s principle of least action is stated as

Variational problem 11 (Two-body system). For a closed, autonomous two-body system of
an elastic and a rigid body with given material points {xi}2i=1 ∈ L2(Ω̄i)∪ xp,i, applied force den-
sities β0, and consistent endpoint conditions (t0, r0

2, u
0
1, λ

0) and (t1, r1
2, u

1
1, λ

1), find an extremal
(u∗,1(x, t), r∗,2(t), λ∗(x, t)) ∈ (Vu∗ , Vr∗ , Vλ∗), under the assumption that an extremal exists, such
that

0 = j′(0), ∀(v1, z2, ϑ) ∈ (Vv1 , Vz2 , Vϑ), (2.236a)

for

j(θ) =

∫ t1

t0

LC(ũ1(θ, x, t), ˙̃u1(θ, x, t), r̃2(θ, t), ˙̃r2(θ, t), λ̃(θ, x, t))dt, (2.236b)

where

LC(ũ1, r̃2) = T1( ˙̃u1) + T2( ˙̃r2)− V1(ũ1)− V2(r̃2)−
∫

ΓC,1

g(ũ1, r̃2)T λ̃ds, (2.236c)

for (ũ1, r̃2, λ̃) ∈ (Vũ1
, Vr̃2 , Vλ̃) and with g ∈ H1(ΓC)⊗ C1([t0, t1],Rnλ),

g(u1, r2) = u1(x, t) + xp,1 − r2(t)− xp,2 = 0. (2.236d)

The derivations steps to retrieve the EOCM in weak-strong form is a combined version of
those performed in Sections 2.1.3 (from VP. 4 to Eq. 2.57) and 2.3.2 (from VP. 8 to Eq. 2.187).
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First, the constrained Lagrangian is inserted into the action integral to retrieve

0 =

∫ t1

t0

(∫
Ω1

1

2
ρ(u̇∗,1 + θv̇1)T (u̇∗,1 + θv̇1)dx−

∫
Ω1

1

2
σ(u∗,1 + θv1) : ε(u∗,1 + θv1)dx (2.237)

+

∫
Ω1

(u∗,1 + θv1)Tβdx+

∫
Ω2

1

2
ρ(ṙ∗,2 + θż2)T (ṙ∗,2 + θż2)dx+

∫
Ω2

(r∗,2 + θz2)Tβdx

−
∫

ΓC,1

g(u∗,1 + θv, r2 + θz2)T (λ∗ + θϑ)ds
)

dt, ∀(θv1, θz2, θϑ) ∈ (Vθv, Vθz, Vθϑ),

Thereafter, applying the stationarity condition gives

0 =

∫ t1

t0

(∫
Ω1

ρv̇T1 u̇∗,1dx−
∫

Ω1

σ(u∗,1) : ε(v1)dx+

∫
Ω1

vT1 βdx+

∫
Ω2

ρżT2 ṙ∗,2dx (2.238a)

+

∫
Ω2

zT2 βdx−
∫

ΓC,1

vT1 G
T
u∗,1λ∗ds−

∫
ΓC,1

zT2 G
T
r∗,2λ∗ds

)
dt, ∀(v1, z2) ∈ (Vv, Vz),

0 =

∫ t1

t0

∫
ΓC,1

ϑT g(u∗,1, r∗,2)dsdt, ∀ϑ ∈ Vϑ, (2.238b)

where Gu∗,1 = dg(ũ1)
dũ1
|θ=0 and Gr∗,2 = dg(r̃2)

dr̃2
|θ=0. Since v1(·, t0) = v1(·, t1) = 0 and z2(t0) =

z2(t1) = 0, performing integration by parts on the inertia terms, with respect to time, yields

0 =

∫ t1

t0

(∫
Ω1

ρvT1 ü∗,1dx+

∫
Ω1

σ(u∗,1) : ε(v1)dx−
∫

Ω1

vT1 βdx+

∫
Ω2

ρzT2 r̈∗,2dx (2.239a)

−
∫

Ω2

zT2 βdx+

∫
ΓC,1

vT1 G
T
u∗,1λ∗ds+

∫
ΓC,1

zT2 G
T
r∗,2λ∗ds

)
dt, ∀(v1, z2) ∈ (Vv, Vz),

0 =

∫ t1

t0

∫
ΓC,1

ϑT g(u∗,1, r∗,2)dsdt, ∀ϑ ∈ Vϑ, (2.239b)

To be able to apply the fundamental lemma of calculus of variations in time, v1 and ϑ are
separated in space and time,

0 =

∫ t1

t0

vTt,1

(∫
Ω1

ρvTx,1ü∗dx+

∫
Ω1

σ(u∗) : ε(vx,1)dx−
∫

Ω1

vTx,1βdx+

∫
ΓC

vTx,1G
T
u∗,1λ∗ds

)
dt

(2.240a)

+

∫ t1

t0

zTt,2

(∫
Ω2

ρr̈∗,2dx−
∫

Ω2

βdx+

∫
ΓC,1

GTr∗,2λ∗ds
)

dt, ∀(vx,1, vt,1, z2) ∈ (Vvx , Vvt , Vz),

0 =

∫ t1

t0

ϑTt

∫
ΓC

ϑTx g(u∗)dsdt, ∀(ϑx, ϑt) ∈ (Vϑx , Vϑt), (2.240b)

Since vt,1, z2, and ϑt belongs to C1([t0, t1]) and the remaining time-dependent functions belong
to C([t0, t1]), the prerequisites for the fundamental lemma of calculus of variations in time,
Lemma 1, are met. Applying the lemma, for the three time-integrals, generates the weak-strong
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formulation of the EOCM,∫
Ω1

ρvTx,1ü∗,1dx+

∫
Ω1

σ(u∗,1) : ε(vx,1)dx+

∫
ΓC,1

vTx,1G
T
u∗,1λ∗ds =

∫
Ω1

vTx,1βdx, ∀vx,1 ∈ Vvx ,

(2.241a)∫
Ω2

ρr̈∗,2dx+

∫
ΓC,1

GTr∗,2λ∗ds =

∫
Ω2

βdx, (2.241b)∫
ΓC,1

ϑTx g(u∗,1, r∗,2)ds = 0, ∀ϑx ∈ Vϑx . (2.241c)

With the constraint equation in Eq. 2.236d, Gu∗,1 = 1 and Gr∗,2 = −1. Moreover, Eq. 2.241c is
rewritten as∫

ΓC,1

ϑTx u∗,1ds−
∫

ΓC,1

ϑTx r∗,2ds =

∫
ΓC,1

ϑTx (xp,2 − xp,1)ds, ∀ϑx ∈ Vϑx . (2.242)

The right-hand side integral is a linear functional which is compactly denoted as

〈k, ϑx〉 :=

∫
ΓC,1

ϑTx (r∗,2 + xp,2 − xp,1)ds. (2.243)

By denoting m2 :=
∫

Ω2
ρdx, f2 :=

∫
Ω2
βdx, and recalling the compact notations from Sec-

tions 2.3.3 and 2.4.3, Eq. 2.241 is rewritten as

m1(ü∗,1, vx,1) + a1(u∗,1, vx,1) + bT1 (λ∗, vx,1) = 〈β, vx,1〉, ∀vx,1 ∈ Vvx , (2.244a)

m2r̈∗,2 −
∫

ΓC,1

λ∗ds = f2, (2.244b)

b(u∗,1, ϑx)−
∫

ΓC,1

ϑTx r∗,2ds = 〈k, ϑx〉, ∀ϑx ∈ Vϑx . (2.244c)

Initial value problem 3 (Two-body system). For consistent initial conditions,
(
u∗,1(x, t0), u̇∗,1(x, t0), r∗,2, ṙ∗,2, λ∗(x, t0)

)
=

(u0, u̇0, r0, ṙ0, λ0) ∈
(
H1

0 (Ω)∪H1/2
0 (∂Ω), H1

0 (Ω), ·, ·, L2(ΓC)
)
, find a solution path (u∗,1, r∗,2, λ∗) ∈((

H1
0 (Ω)∪H1/2

0 (∂Ω)
)
⊗C2([t0, t1],R2), C2([t0, t1],R2), L2(ΓC)⊗C2([t0, t1],R2)

)
, such that Eq. 2.244

holds.

With Gu∗,1 = 1, λ∗, in Eq. 2.244a, is interpreted as a negative surface traction along ΓC with
respect to the elastic body. Moreover, with Gr∗,2 = −1,

∫
ΓC,1

λ∗ds, in Eq. 2.244b, is interpreted

as a force acting on the rigid body.

2.6 Finite Element Method

Finite element methods (FEM) are the conventional class of methods to discretize the EOM in
weak-strong form, of an arbitrarily shaped elastic body. In the first subsection, the methodology
is presented for conventional unconstrained dynamics for a single elastic body. In the second
subsection, constrained dynamics is considered. The FE discretization gives rise to systems
of ODEs and DAEs, for unconstrained and constrained dynamics, respectively. In the next
section, time-integrators are discussed to discretize the systems of differential equations in time
to retrieve corresponding systems of difference equations. For a thorough introduction to FEM,
see an introductory textbook, eg. [9].
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2.6.1 Conventional Unconstrained Dynamics

The domain, Ω̄, is discretized, by covering it by small elements Ωe, with node points at all element
vertices. The spatial resolution of the grid is denoted by the subscript h. The displacement over
each element is modeled by the EOM in weak-strong form. The homogeneous displacement
field over an element ue∗(x, t) ∈ Vu∗(Ω

e) is approximated, by a linear combination of discrete
displacements uh∗(t) at the adjacent node points, times local basis functions Ne(x) for x ∈ L2(Ω),

ue∗(x, t)
.
=

neh∑
i=1

Ne
i (x)uh∗,i(t), (2.245)

where neh denotes the number of adjacent vertices. The test functions and applied volume force
densities over the elements, vex and βe, are approximated likewise. τe, over the surface elements,
is correspondingly approximated, with local basis functions Ne

∂Ω(x) for x ∈ L2(ΓN)

τe(x, t)
.
=

neh∑
i=1

Ne
∂Ω,i(x)τhi (t), (2.246)

The local basis functions are typically polynomials. The Lagrange polynomials are a conventional
choice, for details see [9]. The local basis functions are extended to Ω̄ by being set to zero over
non-adjacent elements. By the extension, the discretization process over all elements to all
vertices can be assembled. Thereby, the EOM in weak-strong form, Eq. 2.150, over the whole
domain gets discretized to,

vh,Tx
(
Mhü

h
∗(t) +Ahu

h
∗(t)− β̄h − τ̄h

)
= 0, ∀vhx ∈ H1

0,h(Ω) ∪H1/2
0,h (∂Ω), (2.247)

where Mh ∈ Rnqh×nqh , Ah ∈ Rnqh×nqh , β̄h ∈ Rnqh , and τ̄h ∈ Rnqh denote the mass matrix, the
stiffness matrix, applied volume forces, and applied surface forces, respectively. nqh denotes the
degrees of freedom of the discretized system. The vertices along the Dirichlet boundary segments
are not included, since the displacement field is known to vanish there. The matrices and vectors
are expressed as

Mh :=

ne∑
e=1

neh∑
i=1

∫
Ωe
ρNe,T

i Ne
i dx, (2.248a)

Ah :=

ne∑
e=1

neh∑
i=1

∫
Ωe
Be,Ti CBei dx, (2.248b)

β̄h :=

ne∑
e=1

neh∑
i=1

∫
Ωe
Ne,T
i Ne,

i βhdx, (2.248c)

τ̄h :=

ne∑
e=1

neh∑
i=1

∫
ΓeN

Ne,T
∂Ω,iN

e
∂Ω,iτhds, (2.248d)

where ne denotes the number of elements. C denotes the stiffness tensor defined in Eq. 2.132.
Be denotes a the strain-displacement matrix which maps uh∗(t) to ε(ue∗), such that

ε(ue∗)
.
=

neh∑
i=1

Bei (x)uh∗,i(t), (2.249)
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where ε was defined in Eq. 2.131. Be is retrieved by performing a gradient-like operation to Ne.
For a proper definition of Be, see [9].

The specific test function v̂hx,i which is one at vertex i and zero at the other vertices can be

constructed by discretization of a specific smooth function. Therefore, it belongs to H1
0,h(Ω) ∪

H
1/2
0,h (∂Ω). Since Eq. 2.247 must hold for v̂hx,i for all vertices i which does not lie in ΓD,

Mhü
h
∗(t) +Ahu

h
∗(t) = β̄h(t) + τ̄h(t), (2.250)

follows. Eq. 2.250 is a linear system of second-order ODEs in time. In the following section,
time-integrating schemes to discretize systems of ODEs to systems of difference equations are
discussed. IVPs based on systems of difference equations can be solved numerically. In the
numerical experiments in this study, triangle elements with first-order Lagrange polynomials for
Ne are employed. The first-order Lagrange polynomials are continuous within the elements,
making Be (related to Ne by a gradient-like operator) constant within elements. Displacement
fields cannot be modeled with zeroth-order Lagrange polynomials, since then stiffness matrix
would be zero regardless of uh∗ , since Be would be zero. Triangle elements with first-order
Lagrange polynomials are referred to as 3-node elements, or linear triangle elements in engineering
literature.

In this study, the deformations ϕ, Eqs. 2.125 and 2.198, were decomposed to retrieve homo-
geneous displacement fields. Eq. 2.247 only holds for a homogeneous displacements field. If a
non-homogeneous discretized displacement field w∗ would be considered, the first step would be
to retrieve a homogeneous discretized displacement field as

w∗ −
ne∑
e=1

neh∑
i=1

∫
ΓeD

Ne
∂Ω,iu

h
∗,ids, (2.251)

which would thereafter be discretized according to Eq. 2.247.

2.6.2 Extension to Constrained Dynamics

For constrained dynamics with the Lagrange multiplier technique, the Lagrange multipliers over
the surface elements λe∗(x, t) are approximated by discrete Lagrange multipliers at the adjacent
vertices λh∗,i(t), times the local basis function Ne

∂Ω(x) for x ∈ L2(ΓC)

λe∗(x, t)
.
=

neh∑
i=1

Ne
∂Ω,i(x)λh∗,i(t). (2.252)

Since no spatial derivatives of λ∗,i are included in Eq. 2.169, it is possible to employ zeroth-order
Lagrangian polynomials for the local basis function in Eq. 2.252. However, in this study, first
order Lagrange polynomials were used.

Consider the EOCM in weak-strong form, Eq. 2.191, for a constrained elastic body with
constraint equation g(u∗) = u∗. Applying FE discretization to Eq. 2.191 gives

vh,Tx (Mhü
h
∗ +Ahu

h
∗ +BTh λ

h
∗ − β̄h − τ̄h) = 0, ∀vhx ∈ H1

0,h(Ω) ∪H1/2
0,h (∂Ω), (2.253a)

ϑh,Tx Bhu
h
∗ = 0, ∀ϑhx ∈ H

1/2
0,h (ΓC)∗, (2.253b)

with matrix Bh ∈ Rnλh×nq defined as

Bh :=

ne∑
e=1

neh∑
i=1

∫
ΓeC

Ne,T
∂Ω,iN

e
i dx, (2.254)
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and where nλh denotes the degrees of freedom for vertices along ΓC. Recall from the previous
subsection, the specific test function v̂hx,i which is one at vertex i, which does not lie in ΓD, and

zero at the other vertices. Consider a corresponding ϑ̂hx,i. By requiring Eq. 2.253 to hold for v̂hx,i
and ϑ̂hx,i for all vertices in Ω̄\ΓD and ΓC respectively, a linear system of second-order DAEs is
retrieved, (

Mhü
h
∗(t)

0

)
+

(
Ah BTh
Bh 0

)(
uh∗(t)
λh∗(t)

)
=

(
β̄h + τ̄h

0

)
. (2.255)

As was shown in Section 2.1.4, Eq. 2.255, after being rewritten as a first order system, belongs
to the characteristically stiff systems of index-3 DAEs. A scaling technique is introduced to
reduce the stiffness of Eq. 2.255. In the elasticity model, the difference in orders of magnitude
between stresses and strains are on the order of Young’s modulus, which typically varies between
108− 1011. The aim of the scaling is to reduce, the difference in order of magnitude, between uh∗
and λh∗ . To retain the symmetry of the problem, the scaling is applied in a symmetrical way,

T

(
Mhü

h
∗(t)

0

)
+ T

(
Ah BTh
Bh 0

)
T

(
uh∗(t)
λ̄h∗(t)

)
= T

(
β̄h + τ̄h

0

)
, (2.256)

where I and cscale represent an identity matrix and a scaling coefficient. λ̄h∗(t) is defined as

λ̄h∗(t) :=
λh∗(t)

cscale
. (2.257)

2.7 Time-Integration Methods

Constrained dynamics is, after FE discretization, modeled as a system of second order DAEs.
Time-integration methods, discretize systems of ODEs in time, to generate systems of difference
equations. After discretization in time, the combined difference and algebraic equations are
recursively updated in time by solving linear systems, if the system of difference and algebraic
equations is linear. Otherwise, Newton’s method is employed for each time-update.

As argued in Section 2.1.3, implicit time-integrators should be employed for systems of DAEs.
There are three main families of implicit time-integrators, the backwards differentiation formula
(BDF) methods, Adams-Moulton methods, and the implicit Runge-Kutta methods [10]. In [1,
Sect. 7.2], it is argued that implicit Runge-Kutta methods are preferable for the constrained
flexible multibody dynamics. However, due to simplicity, BDF methods are considered in this
study. Noteworthy, the time-integrators, are based on systems of first order ODEs. Thus, the
systems of second order DAEs are rewritten as first order systems, see Eq. 2.59.

In the first subsection, BDF methods are presented. In the second subsection, IDA, a state-
of-the-art time-integrator for system of DAEs, is introduced. In the last subsection, Newmark’s
method is presented, to solve linear systems of first order ODEs.

2.7.1 Backwards Differentiation Formula

The BDF methods are a family of implicit multistep methods. For implicit multistep methods,
the time-update is dependent on the current derivative f(tn+k, yn+k), as well as the state variables
of the current and previous time steps yn+i (i ∈ [0, k]),

k∑
i=0

αiyn+i = hβf(tn+k, yn+k), (2.258)
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where h is time step length and αi and β are constants, with αk 6= 0. A numerical method is
consistent if the property

lim
h→0

τerror

h
= 0 (2.259)

holds, where τerror is the local truncation error. For each k (number of previous time steps), there
exists a specific combination of constants αi and β, such that the BDF method is a consistent
method. Moreover, the order of the method, the convergence order of the global error, is k [10].
The consistent BDF methods for one and two previous time steps, BDF-1 and BDF-2, are

yn+1 − yn = hf(tn+1, yn+1) (2.260a)

yn+2 −
4

3
yn+1 +

1

3
yn =

2

3
hf(tn+2, yn+2) (2.260b)

BDF-1 is the implicit Euler method. A linear multistep method is called zero-stable if the
numerical solution, with test function f ≡ 0, is bounded for all time steps. According to Dahlquist
Equivalence Theorem, for a consistent linear multistep method, zero-stability is a necessary and
sufficient condition for convergence of the system of ODEs [10]. Consistent BDF methods of
order k ≤ 6 are zero-stable [10].

A system is said to be stiff in an interval, if, for any explicit time-integrator, a time step
length, which is excessively small in relation to the smoothness of the exact solution within the
same interval, is needed to maintain stability. Thus, for stiff systems, consistent BDF methods
which permits relatively large time steps are sought. A good indicator is A-stability. To analyze
A-stability, Dahlquist’s test equation ẏ = λy, where λ ∈ C−, C− is the set of eigenvalues of the
system with non-positive real parts, is set up. Insertion of the test equation into Eq. 2.258 gives

k∑
i=0

αiyn+i − hβλyn+k = 0, (2.261)

with k roots ξ1, ..., ξk. The stability region of the BDF methods is defined by the set S = {µ ∈
C : |ξi(µ)| ≤ 1, i ∈ [1, k]}, with roots lying on the unit circle being simple. If C− ⊂ S, the
method is A-stable. An A-stable method generates, for Dahlquist’s test equation with a fixed λ,
bounded solutions for arbitrarily large step sizes. Consistent BDF methods are A-stable up to
order two [10].

2.7.2 IDA

Implicit Differential-Algebraic (IDA) solver is a state-of-the-art time-integrator, from SUNDI-
ALS, for systems of DAEs [11]. IDA solves non-linear problems formulated as fully implicit
systems, F (q, q̇, t) = 0, by use of simplified Newton’s method at each time step. IDA is based on
adaptive step size, adaptive order consistent BDF methods. The included orders for the consis-
tent BDF methods are one to five. IDA is available in Python through the module Assimulo [12].
A thorough explanation of the concepts used by IDA is out of scope for this study. In depth
introduction to simulation strategies for systems of DAEs is presented in [13]. It includes expla-
nations about step size and order selection strategies adopted by IDA and DASSL (an alternative
state-of-the-art time-integrator for systems of DAEs).

The step size control is based on an error estimate retrieved from a predictor/corrector
approach over all state variables [13]. For systems of DAEs, it is advisable to exclude the
constraint equations, which are in general unpredictable from the previous time steps, from the
predictor/corrector evaluations. Otherwise, there is a risk, of that the step size controller deems
that the step size repeatedly should be reduced until a minimum step size length is retrieved,
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and the program crashes. Recall that BDF methods are based on solving first order systems.
Thus, some equations are related to the additional velocity variables, Eq. 2.59. For systems of
index-3 DAEs, due to the presence of hidden constraints at velocity and acceleration level (see
Section 2.1.4), it is advisable to also exclude equations related to the velocity variables from
the predictor/corrector evaluations as well. The exclusion of specified equations is done by the
suppress alg command in Assimulo (and equivalently with the IDASetSuppressAlg command in
SUNDIALS).

2.7.3 Newmark’s Method

Newmark’s method is a time-integrator for solving linear or nonlinear systems of second order
ODEs. In this study, Newmark’s method for solving linear systems of second order ODEs is
considered. At each iterate, the updated accelerations ün+1 is first retrieved by solving a linear
system. Thereafter, u̇n+1 and un+1 are explicitly updated.

To derive the method, un+1 and u̇n+1 are expressed as

un+1 = un +

∫ tn+1

tn

u̇(s)ds = un + hun +

∫ tn+1

tn

(tn+1 − s)ü(s)ds, (2.262a)

u̇n+1 = u̇n +

∫ tn+1

tn

ü(s)ds. (2.262b)

In the derivation step in Eq. 2.262a, integration by parts was performed, after inserting the
derivative of s− tn+1, into the integral. h denotes the time step length. Thereafter, the integrals
are approximated by weighting them between the current and updated acceleration,∫ tn+1

tn

(tn+1 − s)ü(s)ds ≈ (1− γ)hün + γhün+1, (2.263a)∫ tn+1

tn

ü(s)ds ≈ (
1

2
− β)h2ün + βh2ün+1, (2.263b)

with the introduced constants 0 < γ < 1 and 0 < β < 1
2 . The algorithm is given by inserting

Eq. 2.263 into Eq. 2.262, and thereafter the retrieved result, into the linear system of second
order ODEs. For a detailed description, see eg. [14]. In this study, the parameters were set at
γ = 1

2 and β = 1
4 , which generates a stable method without dissipation [14].
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Chapter 3

FEniCS Implementation

FEniCS is a free and open-source software for solving PDEs with finite element techniques.
FEniCS is retrieved either as a Python module or as a C++ package. The aim is to provide the
user with automatic mesh generation, assembling, and solving processes, letting the user focus
on setting up the weak formulation. In the first subsection, the implementation structure for the
unconstrained dynamics for a single elastic body is described. It represents a typical program
structure in FEniCS. In the following subsection, obstacles encountered, when extending the
framework to constrained dynamics, is presented.

3.1 Unconstrained Elastic Body Dynamics

First, a triangular mesh pattern is retrieved, after the user has specified the geometry, possibly
through a CAD file. As of FEniCS v.2017.2, only triangular elements are implemented. There-
after, discrete function spaces for test and trial functions are defined, in our case as Lagrange
polynomials. Then, Dirichlet boundary conditions are provided along boundaries where the
displacement field is known.

For time-integrators based on solving systems of second order ODEs, such as Newmark’s
algorithm, the system of difference equations, which follows from discretization of a system of
differential equations in time, can be provided in FEniCS variational format. Then, by suc-
cessively updating the state variables and calling FEniCS internal solver, time-stepping can be
preformed in a few lines, both for linear and nonlinear systems.

However, most time-integrators, such as BDF methods, are based on solving first order ODEs.
In this study, rewriting the problem to a first order system was deemed easier to do outside of
FEniCS variational format. Therefore, FEniCS were used to assemble the mass and stiffness
matrix, and the right-hand side vectors in Eq. 2.250. For time-stepping, both BDF-1 and BDF-
2, as well as the IDA solver, were employed. Note, with this approach, the condensation of the
stiffness matrix (moving contributions from Dirichlet boundaries from the stiffness matrix to the
right-hand side) had to be implemented by the user.

3.2 Constrained Elastic Multibody Dynamics

From an implementation in FEniCS point of view, the biggest obstacle, for extension to con-
strained dynamics, is that the internal assembler (as of version 2017.2) cannot handle function
spaces defined solely along a boundary segment, as is the case for the Lagrange multipliers λ,
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and the corresponding test functions ϑx. This restriction is known to the software developers.
The software is under development to handle this issue.

In this study, a work-around was implemented to circumvent this problem. The trial and test
function spaces for the Lagrange multipliers were defined over the full domain Ω̄, just as for u
and vx. Due to the extension, the assembled vector and matrices included degrees of freedoms
corresponding to Lagrange multipliers on Ω̄\ΓC. The last step of the work-around is to reduce
the vector and matrices of all rows and columns related to λ ∈ Ω̄\ΓC and ϑ ∈ Ω̄\ΓC. The same
effect can be retrieved by treating λ ∈ Ω̄\ΓC as homogeneous Dirichlet boundary conditions.
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Figure 4.1: Initial configuration for the elastic block problem.

Chapter 4

Numerical Experiments

The numerical experiments constituted of two experiments. In the first test case, an elastic
block attached to a rigid wall was modeled both with unconstrained and constrained dynamics.
The aim with the first experiment was to validate the implementation of the unconstrained and
constrained dynamics. In the second experiment, a rigid block was attached to the elastic block,
through a rigid joint. The aim with the second experiment was to highlight the limitations for the
usage of interconnecting rigid joints modeled by the weakly constrained joint model, pressented
in Section 2.5.3.3.
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Figure 4.2: Configurations of the elastic block after 10−4s, with step size 10−5, for unconstrained
and constrained dynamics.

4.1 Elastic Block

4.1.1 Problem Description

As a first test case, an 1m×1m×0.01m isotropic and homogeneous elastic block was considered.
Since the depth of the block was one percent of its length and height, the elastic block was
considered thin, and the planar stress model, Eq. 2.129, was applied in the length-height plane.
The elastic block was attached to a rigid wall on its left side. The plane of the elastic block was
covered by a mesh of 32 linear triangle elements. The inertial reference frame was placed at the
lower left corner of the plane of the elastic block. The initial configuration, of the plane of the
elastic block, is illustrated in the schematic Fig. 4.1. The elastic block was set to motion due
to gravity. The gravitational acceleration with respect to the inertial reference frame β0 was set
to (0,−9.82)m/s2. A zero surface force was applied on the body along the Neumann boundary
segment.

The dynamics was modeled both as unconstrained and constrained elastic body dynamics,
by incorporating the attachment to the rigid wall either as a homogeneous Dirichlet boundary
condition, or by treating the attachment as a constrained boundary segment ΓC, for which the
constraint equation

g(u∗) = u∗, u∗ ∈ Vu∗ (4.1)

is forced to hold. The numerical solutions, for the unconstrained and constrained dynamics, were
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Figure 4.3: Global error convergence in time steps, after 10−4s, for the constrained dynamics
with a BDF-1 method, compared to a reference solver; unconstrained dynamics with a BDF-2
method with h = 10−9.

retrieved by solving the IVPs generated from discretization, in both time and space, of IVPs 1
and 2, respectively.

For the unconstrained dynamics, FE discretization was performed on the EOUM in weak-
strong form, in IVP 1. The discretization rendered in a linear system of second order ODEs in
time, see Eq. 2.250. The system of ODEs was discretized in time by both BDF-2 and Newmark’s
method.

For the constrained dynamics, FE discretization was based on EOCM in weak-strong form
in IVP 2. From the discretization, a linear system of second order DAEs arouse, see Eq. 2.255.
The differential equations in the system of DAEs were discretized by BDF-1 and BDF-2.

Zero initial displacement u0 = 0 and displacement velocity u̇0 = 0 fields were employed for the
unconstrained dynamics. To retrieve consistent initial conditions for the constrained dynamics,
the initial Lagrange multiplier field λ0 was also set to zero.

Both the unconstrained and constrained dynamics were simulated for 10−4s with step sizes
ranging from h = 10−5s to 10−9s. Young’s modulus E and density ρ were set to 180GPa and
2400kg/m2, to resemble steel. Poisson’s ratio υ was set to 0.3.

4.1.2 Results and Discussion

Fig. 4.2 shows the block configuration after 10−4s, for step size h = 10−5s, for unconstrained
dynamics with BDF-2 and Newmark’s method, as well as for constrained dynamics with BDF-
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2. The displacement fields are similar for all cases. For the unconstrained and constrained
dynamics simulated by BDF-2, the displacement fields were indistinguishable (‖uconstrained

BDF−2 −
uunconstrained

BDF−2 ‖2 ∼ 10−12). For the constrained dynamics, the Lagrange multipliers are included
in the figure. Recall from Section 2.4.3, the Lagrange multipliers can be interpreted as negative
surface traction along ΓC. With this in mind, their orientations seem reasonable. Note, the
difference in order of magnitude for displacements and Lagrange multipliers is on the same order
of magnitude as E. Thus, also the lengths of the Lagrange multipliers seem reasonable.

A common way to validate an implementation is to check whether a theoretical convergence
order is retrieved. BDF-1 is a first order method, meaning that the global error converges linearly
with decreasing time step length h. Since BDF-2 is a second order method in time, the first order
method cannot distinguish the solution retrieved from the BDF-2 method from the analytical
solution. Fig. 4.3 shows the `2-norm of the differences in displacement field retrieved from, the
constrained dynamics with time-integrator BDF-1, for step sizes h = 10−5 − 10−8s, and, the
unconstrained dynamics with time-integrator BDF-2 and h = 10−9s, which was employed as a
reference solver. As expected, linear convergence is seen in the figure. Together with the close
resemblance between the configurations seen in Fig. 4.2, the convergence property indicates that
the models have been implemented correctly.

4.2 Two-Body System with Weakly Constrained Joint Model

4.2.1 Problem Description

In the second test case, a rigid joint was attached to the elastic block, furthest down on its right
side. The joint body composed of two equilateral triangles with bisection length 0.2m and 0.01m
depth. One triangle was attached to the elastic block. The other was hanging down, with a
1m × 1m × 0.01m rigid block attached underneath it. A plane of the structure is illustrated
in Fig. 4.4. The mesh of the elastic block was refined to 50 linear triangle elements, so that
the rigid joint-elastic body interface ΓC,1 was covered by a single element facet. The inertial
reference frame was kept at the lower left corner of the elastic block. The rotational motion of
the rigid block was not included in the model, to retain linearity for the two-body system, see
Section 2.5.5. The attachment of rigid wall, to the left side of the elastic block, was treated
as a homogeneous Dirichlet boundary condition. The joint was approximated as massless, and
modeled by the weakly constrained joint model, Section 2.5.3.3. The constrained dynamics was
modeled both with BDF-2 and IDA as time-integrators. The physical parameters for the elastic
block were not changed. The density of the rigid block was also set to 2400kg/m2. A 10−3s
simulation was performed with step size 10−6.

4.2.2 Results and Discussion

Fig. 4.5 shows the configuration of the structure after 10−4s simulation with time-integrator
BDF-2. The bent shape of the elastic block indicates that its displacements are mainly caused
by the load from the rigid block. This is expected as the two blocks have the same weight. The
bent shape is in clear contrast to the shape of the single elastic body, as shown in Fig. 4.2.

Even though the unconstrained parts of the boundary on the right side of the elastic block
are tilted, the joint-body interface is vertical. The vertical shape of the joint-body interface is
explained by that the shape of the interface is unaffected by the displacement field of the elastic
body, ξ(x) for x ∈ ΓC,1 from Eq. 2.228. To how large extent this orientation distortion affects
the displacement field, over the elastic block, is difficult to estimate. However, it can be assumed
that the structural analysis close to the interface is invalid.
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Figure 4.4: Initial configuration of two-body system.

Moreover, the Lagrange multipliers along the interface are dominated by a rotational compo-
nent, which stems from that the joint-body interface is forced to be vertical. Since the constraints
on the interconnected rigid block is transmitted through the Lagrange multipliers, artificially
large Lagrange multipliers can also affect the motion of the interconnected rigid body.

Altogether, the joint model seems to distort the dynamics of the interconnected bodies if the
deformation includes a rotation of the joint-body interface. The magnitude of the distortions are,
in general, difficult to estimate, because it is very problem-dependent. However, the assumption
that ξ can be modeled with respect to the reference domain strictly restricts the validity of the
model.

To retrieve more accurate results, the weakly constrained joint model could be updated to
predict the orientation of the joint-body interface. One alternative is to use observer points, just
as for the joint model based on joint coordinate systems. Another alternative is to require that
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Figure 4.5: Configurations of the two-body system, after 10−4s, with step size 10−5, for uncon-
strained and constrained dynamics.

the rotational components of the Lagrange multipliers (interpreted as stresses) on average are
small enough. The small enough requirement would have to be incorporated as a criteria. The
former of the two seems more promising for future studies.

This test case was also tried to solve with IDA. However, with the system formulated as a
system of index-3 DAEs, the step size control decreased towards zero until the program crashed.
For a similar problem, with the joint covering the whole right side of the elastic block, the
simulations succeeded and gave similar results to BDF-2. Index reduction was not performed in
this study.



Chapter 5

Summary and Conclusions

5.1 Summary

Many mechanical systems can be treated as multibody systems. Traditionally, rigid multibody
dynamics has mainly been considered, since the deformation of the system, rather than the
deformation of the individual bodies, are of main interest. In recent years, due to an increased
interest in light-weight and high-precision mechanics, flexible multibody dynamics has become
more and more in demand. Flexible multibody systems consist of elastic and rigid bodies,
interconnected with force elements and joints.

In the theory chapter, Newton-Euler’s equations of motion for rigid body dynamics was
derived. Thereafter, a weak formulation in space for elastic body dynamics was derived, which is
required for performing finite element discretization. The presence of joints constrains the motion
of the connected bodies. Therefore, constrained rigid and elastic dynamics were derived, by use
of a Lagrange multiplier technique. Finally, the flexible multibody dynamics were retrieved.

In this study, massless rigid joint models for interconnecting elastic and rigid bodies were
considered. At the rigid joint-elastic body interface, continuous and discrete deformation models,
of the elastic body and the rigid joint, meet. Finding a satisfactory joint model for general usage
is still an open topic [1].

In [1], a weakly constrained joint model was presented, for which both the elastic displace-
ments and the rigid body motions are well-defined. Moreover, the model was applied for two
numerical experiments with promising results. However, for those examples the elastic and rigid
bodies were connected directly, without any physical joint.

To apply the joint model in practice, it is crucial to understand its limitations, to avoid misuse.
Therefore, the aim of this study was to highlight the limitations of the weakly constrained joint
model, in presence of physical joints. A drawback with the joint model is that it assumes that the
orientation of the rigid joint-elastic body interface is unaffected by the displacement field of the
elastic body. This assumption distorts the displacement field, and thereby the structural analysis,
if the true displacement field, without the assumption, would render in a rotated interface.

The numerical study consisted of two experiments. The objective of the first experiment was
to validate the implementation of the constrained and unconstrained dynamics. This was done
by modeling an elastic block attached to a rigid wall. The attachment was either incorporated
as a homogeneous Dirichlet condition or as a constraint, for the unconstrained and constrained
dynamics respectively.

The finite element implementation was performed with a python module called FEniCS.
The module provides automatic mesh generation, assembling, and solving processes, making the

73



74 CHAPTER 5. SUMMARY AND CONCLUSIONS

implementation of the unconstrained elastic dynamics relatively compact. For the constrained
dynamics a function space of Lagrange multipliers over solely a constrained boundary had to be
implemented. However, to implement that in FEniCS a work-around had to be implemented
where, first the Lagrange multipliers were defined over the whole domain. Then, the degrees of
freedom that did not correspond to the constrained boundary were reduced away.

In the second experiment, a rigid block was attached to the elastic block by a small rigid
joint. For this configuration, the orientation of the interface between the elastic body and rigid
joint was expected to change during deformation of the two-body system. The aim with the
second experiment was to highlight the limitation of the weakly constrained joint model for a
rotating rigid joint-elastic body interface.

As expected, the weakly constrained joint model forced the orientation of the rigid joint-
elastic body interface to be fixed during deformation. This clearly distorted the displacement
field of the elastic block. To retrieve more accurate results, the joint model could be updated to
predict the orientation of the joint-body interface by the use of observer points on the adjacent
unconstrained boundary. This is left for future studies.

5.2 Conclusions

The aim of this study was to highlight the limitations of a weakly constrained joint model for
connecting elastic and rigid bodies, through massless rigid joints. The joint model required that
the orientation of the rigid joint-elastic body interface would not be affected by the displace-
ment field of the elastic body. This assumption distorts the displacement field, and thereby the
structural analysis, if the true displacement field would have given a rotated interface.

The limitations of the joint model was shown by applying the joint model for a two-body
system of an elastic and a rigid body, connected by a small rigid joint. During deformation the
rigid joint-elastic body interface was expected to rotate. However, with the weakly constrained
joint model, the orientation of the interface remained fixed. A proposal for circumventing this
limitation would be to predict the orientation of the interface by the use of observer points placed
on the adjacent unconstrained boundary. This proposal is left for future studies.



Appendix A

Additional Proofs

The appendix contains a handful of proofs used in the theory section.

A.1 Proof of the Fundamental Lemma of Calculus of Vari-
ations in Time

In this appendix, the fundamental lemma of calculus of variations to retrieve a strong formulation
in time, Lemma 1, is proved. First, the lemma is restated,

Lemma (Fundamental lemma of calculus of variations in time). Let N(t) ∈ C([t0, t1],Rnϕ). If∫ t1

t0

h(t)TN(t)dt = 0, ∀h ∈ C1([t0, t1],Rnϕ) (A.1)

with h(t0) = h(t1) = 0, then N(t) = 0 for t0 ≤ t ≤ t1.

The proof is a proof by contradiction. In the the proof an arbitrary scalar-valued component
of N(t) is of interest, Ni(t) ∈ C([t0, t1],R), where N(t) = ({Ni(t)}

nϕ
i=1). Assuming that N(t)

is not identically zero for t0 < t < t1, then there exists a time point t0 < t∗ < t1 such that
N(t∗) 6= 0. Without loss of generality, consider Ni(t∗) > 0 and Nj 6=i(t∗) = 0, for j ∈ [1, nϕ],
is assumed to hold. Since Ni is continuous, there exists a sub interval (ξ0, ξ1) ⊂ [t0, t1] such
that t∗ ∈ (ξ0, ξ1) and Ni(ξ) > Ni(t∗)/2 for ξ ∈ (ξ0, ξ1). A specific h ∈ C1([t0, t1],Rnϕ), with
h(t0) = h(t1) = 0, is defined by

h(t) =

{
(t− ξ0)2(ξ1 − t)2ei, if ξ0 < t < ξ1

0, otherwise
(A.2)

where ei is the ith unitvector in Rnϕ . For the specific h, Eq. A.1 becomes

0 =

∫ t1

t0

h(t)TN(t)dt ≥
∫ ξ1

ξ0

Ni(t∗)

2
(t− ξ0)2(ξ1 − t)2eTi eidt (A.3)

=

∫ ξ1

ξ0

Ni(t∗)

2
(t− ξ0)2(ξ1 − t)2dt > 0, (A.4)

which is a contradiction. Thus, N(t) = 0 for t0 < t < t1. Since N is continuous, the equality,
N(t) = 0, can be extended to hold over the closed interval [t0, t1]. Thereby, the lemma is proved.
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A.2 Proof of Invertibility I

In this appendix, that, the matrix G ∈ Rnλ×nϕ (nλ < nϕ) has full row rank implies that the
square matrix GGT ∈ Rnϕ×nϕ is invertible, is proved. This property is needed in the proof of
Theorem 1.

In the proof of GGT being invertible, the following lemma is used.

Lemma 3. For any m×n matrix A, the null space of A, Ker(A), and the range of AT , R(AT )
are orthogonal complements, ie.

yTw = 0, ∀(y, w) ∈ (R(AT ),Ker(A)) (A.5)

Proof : An arbitrary y ∈ R(AT ) can be expressed as y = ATx with x being in the preimage
of AT . Consider the inner product with a w ∈ Ker(A)

yTw = (ATx)Tw = xTAw = xT 0 = 0. (A.6)

Note, Aw = 0 is a property of w ∈ Ker(A). Since yTw = 0 holds for any y ∈ R(AT ) and any
w ∈ Ker(A), the lemma is proved.

Consider again, to prove that the matrix G ∈ Rnλ×nϕ (nλ < nϕ) has full row rank implies
that the square matrix GGT ∈ Rnϕ×nϕ is invertible. GGT being invertible is equivalent with
that the null space of GGT only contains the zero vector, Ker(GGT ) = {0} [5, Th. 1.3]. Consider
an element in Ker(GGT ),

GGTx = 0, x ∈ Ker(GGT ). (A.7)

According to Eq A.7, GTx, an element in the range of GT , is in Ker(G). Due to Lemma 3,
GTx = 0.

Since G has full row rank, GTx = 0 implies that x = 0. That any element x ∈ Ker(GGT ) is
required to be zero implies that Ker(GGT ) = {0}, equivalent with GGT being invertible.

A.3 Proof that an Invertible Matrix is Continuous

In this appendix, that, an invertible square matrix A ∈ Rn×n is continuous, is proved. First, the
determinant of A, det(A), is shown to be continuous.

According to Cayley-Hamilton’s theorem [15, p. 49], the characteristic polynomial of A is
defined as

pA(λ) = det(λI −A), (A.8)

for a variable λ, where I denotes the identity matrix. Specifically, −pA(0) = det(A). Since
polynomials are continuous, det(A) is continuous.

Consider the notation det(A) = det(A1, ..., An) with the matrix separated into column vectors.
Furthermore, according to Cramer’s rule [16, Th. 4.1], element j of the solution vector x of a
linear system Ax = b, where b ∈ Rn is the right-hand side and A is an invertible (equivalent with
det(A) 6= 0) square matrix, is expressed as

xj = det(A1, ..., Aj−1, b, Aj+1, ..., An)/det(A). (A.9)

The solution vector for a linear system, with a basis vector of ei ∈ Rn, i ∈ [1, n], as the right-hand
side, is a column vector of A−1,

Aui = ei, ui = A−1
i . (A.10)
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Thus, by applying Cramer’s rule successively for all basis vectors of Rn, A−1 is retrieved with
every element expressed as a rational of two determinants. That det(A) is continuous implies
that

uij = det(A1, ..., Aj−1, ei, Aj+1, ..., An)/det(A), (A.11)

any element of A1, is continuous. Thus, A−1 is continuous.

A.4 Proof of Invertibility II

In this appendix, some basic linear algebra definitions and properties are used. They can all be
found in an introductory textbook, eg. [5]. The square matrix[

M GT

G 0

]
, (A.12)

with M ∈ Rnϕ×nϕ and G ∈ Rnλ×nϕ , under the assumptions that G has full row rank and M is
symmetric positive definite (SPD), is proved to be invertible. This proof is needed in Section 2.1.4
when a specific system of DAEs is shown to have differentiation index 3. The meaning of all
symbols can be retrieved from Section 2.1.

First, perform block Gaussian elimination to retrieve a diagonal matrix[
M GT

G 0

]
=

[
I 0

GM−1 I

] [
M 0
0 S

] [
I M−1GT

0 I

]
, (A.13)

where S := −GM−1GT is the Schur complement matrix. Performing block Gaussian elimination
is only possible if M is invertible. That M is invertible follows from the assumption that M
is positive definite. Note, positive definite matrices are invertible since their null spaces, per
definition, only contains the zero vector. A property of invertible matrices is that their null
spaces only contain the zero vector.

Since all diagonal elements of the triangular square matrices are nonzero (they are all one), all
the rows of the triangular elements are linearly independent. Therefore, the triangular matrices
are invertible. As a consequence, the matrix in Eq. A.12 is invertible if and only if S is invertible.

Next, that M is SPD implies that M−1 is SPD is shown. Set y = Mx. Since M has full rank
(follows from M being invertible), y is nonzero for any nonzero x. M−1 is positive definite since

yTM−1y = xTMTM−1Mx = xTMTx = xTMx > 0, ∀x 6= 0. (A.14)

The last inequality, which holds for any nonzero x, is the property that defines a positive definite
matrix M . The symmetry of M−1 follows from y = Mx = MTx implies that M−1y = M−T y =
x, which holds for any x and y.

Lastly, S is shown to be positive definite, which implies invertible. Since G has full row rank,
u = GT z is nonzero for any nonzero z. Since

zTSz = −zTGM−1GT z = uTM−1u, (A.15)

positive definiteness of S follows from positive definiteness of M−1.

A.5 Proof of a Divegence Property

In this appendix, the divergence property

∇ · (σv) = trace(σ∇v) + vTdiv(σ) (A.16)
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is shown to hold for a symmetric matrix σ and a vector v, where div(σ) is defined as the vector
whose components are the divergences of the rows of σ.

div(σ) :=

[
∇ · σT1·
∇ · σT2·

]
. (A.17)

First, the product rule
∇ · (xy) = (∇x)T y + x∇ · y (A.18)

is proven for a scalar x and a vector y,

∇ · (xy) =
∑

∂i(xyi) = x
∑

∂iyi +
∑

yi∂ix = (∇x)T y + x∇ · y. (A.19)

Then, the product rule, Eq. A.18, is applied twice to Eq. A.16,

∇ · (σv) = ∇ · (v1σ·1 + v2σ·2) = (∇v1)Tσ·1 + v1∇ · σ·1 + (∇v2)Tσ·2 + v2∇ · σ·2. (A.20)

Grouping the first and third terms together, and the second and the forth terms, give

∇ · (σv) = trace(σ∇v) + vT
[
∇ · σ·1
∇ · σ·2

]
. (A.21)

Due to symmetry of σ, σ·1 = σT1· and σ·2 = σT2·, and

∇ · (σv) = trace(σ∇v) + vTdiv(σ). (A.22)

Thus, the proof is completed.

A.6 Extension of the Fundamental Lemma of Calculus of
Variations in Space

Consider the fundamental lemma of calculus of variations in space,

Lemma (Fundamental lemma of calculus of variations in space). Let Ω ⊂ Rd be a open, bounded
domain in a d-dimensional space. If N(x) ∈ L1(Ω) satisfies∫

Ω

h(x)TN(x)dx = 0, ∀h ∈ C∞0 (Ω), (A.23)

then h = 0 almost everywhere.

Almost everywhere refers to that the set for which the statement does not hold carries zero
measure. In [8, Lemma 2.21], the lemma is proved. In this appendix the extension to h ∈ H1

0 (Ω)
is proved.

Since H1
0 (Ω) was defined as the closure of C∞0 (Ω) in the H1

0 (Ω)-norm, C∞0 (Ω) is dense in
H1

0 (Ω). Thus, for every h∗ ∈ H1
0 (Ω) there exists a sequence (hk)Z+ ∈ C∞0 (Ω) such that it

converges strongly to h, ie. ‖h∗ − hk‖H1
0 (Ω) → 0 as k →∞. Since H1

0 (Ω) is a Hilbert space, the
limit exists.

By evaluating the norm,

‖h∗ − hk‖2H1
0 (Ω) =

∫
Ω

(h∗ − hk)T (h∗ − hk)dx+

∫
Ω

∇(h∗ − hk)T∇(h∗ − hk)dx→ 0, (A.24)
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one can conclude that h∗ − hk → 0 almost everywhere. As a consequence∫
Ω

(h∗ − hk)(x)TN(x)dx→ 0, (A.25)

and therefore Eq. A.23 holds for a specific h∗ ∈ H1
0 (Ω). Since h was chosen arbitrarily the lemma

is proved.
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