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Abstract
A convolutional neural network for automatic myocardial segmentation of MR images is
described and implemented, based on the readily available architecture SegNet. A general
network trained on both end-systolic and end-diastolic images is determined to be superior to
the networks trained on the separate data. The evaluation of myocardial segmentation is
discussed, as well as the importance of manual, visual inspection.
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1 Introduction

Cardiovascular disease is the leading cause of death globally, according to a report pub-
lished by World Health Organization 2011 [1]. It has been a great health care challenge
for developed countries during the last decades. In medicine, imaging methods are impor-
tant to make correct and timely diagnoses. The heart can be assessed by several imaging
methods such as wltrasound, electrocardiography, magnetic resonance imaging (MRI), or
nuclear imaging methods. These imaging methods requires effective, objective methods
to assess heart function. An important task is to analyse the volume of the left ventricle
(LV) of the heart to find if the heart is enlarged due to heart failure. The LV pumps blood
to most of the human body, whereas the right ventricle (RV) pumps blood to the lungs,
making the LV more important in heart function assessment. This thesis will focus on the
analysis of the LV imaged by MRI.

1.1 Myocardial delineation

In cardiac MRI, a 3D image of the torso is captured by acquiring images of ’slices’ of
the body, showing cross sections of heart. The slices of the top part of the heart are
called basal, slices in the middle of the heart are called mid-ventricular, and slices from
the bottom of the heart are called apical slices. An example of a delineation of a mid-
ventricular slice can be seen in Figure 1. The LV volume is typically evaluated at two
time frames of the cardiac cycle; the end of a heartbeat (called end-systolic) and just
prior to a beat (called end-diastolic). The appearance of the LV differs between the two
time frames. The end-systolic LV is contracted, resulting in a thick muscle wall (called
myocardium), whereas the end-diastolic is inflated due to the blood filling the LV, showing
a thinner myocardium. The volumes are used to evaluate heart function, by calculating
important heart function indicators such as stroke volume (the volume of blood pumped by
the heart during a heart cycle), cardiac output and ejection fraction. To calculate the LV
volume, one needs to delineate the endocardium, the inner wall of the myocardium. Other
heart function indicators, such as the analysis of the myocardium strain, also require the
delineation of the epicardium, the outer wall of the myocardium. One common method
of delineation is for an expert to manually draw the contour of the myocardium for each
slice, for both time frames. Manual delineation is time consuming and requires expertise,
thus calling for automated methods.

Figure 1: Illustration of myocardial delineation, being the output that we want the final
system to produce.



1.2 Machine learning

There exists 'traditional’ image analysis methods for image segmentation problems. How-
ever, the algorithms are far from perfect, and a lot of expertise and time is required to make
them to perform well. Furthermore, the construction of these algorithms for segmenting
a particular object is not necessarily translatable to another object, requiring further re-
sources for each new segmentation problem. Machine learning is a highly adaptable tool
which can be applied to a large array of problems, among them image analysis and image
segmentation. By supplying data with already produced end results, e.g. images with
an already delineated myocardium, a machine learning algorithm can learn to perform a
certain task. The machine learning algorithm could be identical for two separate image
segmentation problems, the only difference being the training data, producing an algo-
rithm that could be very versatile and simplify the development of medical segmentation
tasks. The requirement of data with correctly made (in this case) segmentation is the big
issue in machine learning. However, recent development have shown methods that could
perform well with lesser quantities of data.

The use of machine learning and later deep learning for understanding images and scenes
has become very popular during the last decade, proving to be a powerful tool in image
analysis. There are a number of reasons for this, the most important factors being com-
putational power and large amounts of available data. The computational power comes
from the use of Graphical Processing Units (GPU’s), able to perform a large number of
computations in parallel at a high speed. Deep learning is at the time of writing an a
rapidly expanding field, showing very promising results in a large variety of applications.
It has been a revolutionary step in the automatic segmentation and classification of objects
in images, as well as being very versatile compared to traditional methods. An application
that has received a lot of attention is the processing of traffic scene images, where objects
need to be segmented and classified for a computer to successfully navigate in traffic.

1.3 Project aim

The aim of this thesis was to produce a deep learning model to automatically segment
the myocardium of the left heart ventricle in magnetic resonance (MR) images. Thus,
we would like a system that takes images and produces a delineation of the myocardium,
shown as drawn contours over the image, illustrated in Figure 1. The project was enabled
by the fact that a large amount of MR images of the left ventricle and the myocardium
of the heart was available. Resources on the cloud service Microsoft Azure was available
to fulfil the computational demands. The prospect was that available machine learning
tools would be mature enough to enable an engineering student with basically no previous
experience in machine learning to apply it. The project is among the first in line within
the cardiac MR group to utilize machine learning, hopefully able to provide a base for the
use of deep learning within the group.



The project goals are summarized in the following list:

e Produce a system to automatically segment the LV myocardium in MR images using
deep learning.

e Investigate whether the model learns abstract concepts such as avoiding to classify
dark spots in the LV as myocardium.

e Find a method of evaluation that is relatable in a medical perspective.
e Evaluate the importance of data set size.

e Determine which performs best; deep learning models trained on end-systolic and
end-diastolic images separately or combined.

1.4 Previous Work

The use of CNN’s for semantic segmentation, labelling pixels of an image into differerent
classes, has been investigated by different research groups [2] [3] [4]. These publications
have mostly been produced using publicly available data sets, such as the Kaggle Second
Annual Data Science Bowl[5], with the CNN development in focus. These publications
built upon the field of image classification, often using pre-trained networks trained on
large data sets of labelled images.

Especially, medical image segmentation using deep learning has been researched [6] [7]
[8] [9]. These have also been based on publicly available data sets, however not as large
since well labelled medical data is harder to obtain. The focus is often on the technical
advances in deep learning, with a certain lack in understanding of the networks, which
could be necessary to be able to use the techniques clinically.

Some publications have made 3D segmentation, using the full 3D image information [10].
This is also used when doing manual segmentation, and is information that a CNN seem
to be able to learn from. A publication by Tan et al [9] suggested a system of several deep
neural networks and a polar representation of the images to extract the myocardial contour
in MR images. This work used regression instead of pixel classification to obtain a set of
contour points around the endo- and epicardium. This article also used the addition of a
Fourier transformation of the image slices during a cardiac cycle, introducing information
of the hearts movement during the cardiac cycle.






2 Theory

2.1 TImage Processing

A basic principle in image processing is the detection of relevant patterns that says some-
thing about the contents of the image. These patterns are what we call features. Processing
an image consists of extracting relevant features from the image and then using the features
to gain information about the image, e.g. that it contains a dog, shows a landscape, if it is
night or day etc. Feature extraction can be done by hand, where the programmer can de-
cide on what features are relevant to the problem. The goal would be to extract all features
which are relevant to the problem, and create a model that analyse an image based on
those features. However, this would need us to have knowledge of all the relevant features
of the data, and how important they are in respect to each other. Instead of basing the
algorithms on the knowledge that a programmer must give it, the algorithm could extract
it’s own features, by analysing patterns in the data. This is what we call machine learning.

Classification of an image can sometimes be done to several objects in the image. This
could be done by defining regions of interest or bounding boxes around the objects in an
image, and labelling them with a class, such as dog, cat or fish. To find the contours
around different objects in an image is called image segmentation. In our case, that means
delineating the myocardium in an MR heart image from the rest of the image which is not
within the myocardium.

2.2 Machine Learning

In this chapter, a short concise introduction to machine learning, deep learning, and ar-
tificial neural networks, and how they relate to each other. A multitude of textbooks,
guides and articles exist that explain the different concepts in detail, which the interested
reader is encouraged to read. In this section, the concepts will be presented in a simplified
fashion in order to give an intuitive understanding about what the algorithms do and how
they can be used. The concepts will be exemplified in the case of image segmentation,
being the project subject. The theory is mostly drawn from The Deep Learning textbook
by Ian Goodfellow, Yoshua Bengio and Aaron Courville from MIT [11], as well as standard
practices from articles dealing with similar types of segmentation [2] [8].

Machine learning as a term was coined back in 1959 by IBM based Arthur Samuel, a
pioneer in the field of artificial intelligence (AI). Al includes different fields in the pur-
suit of developing computers and algorithms that display intelligence, machine learning
being one of the fields within AI. Figure 2 illustrates the hierarchy between AI, machine
learning, deep learning. Machine learning is a tool within Al that involves the construc-
tion of algorithms that use data to make predictions and learn from that prediction, in
order to improve the decision making. This can of course be related to natural learning,
being the way humans and intelligent organism makes a prediction on how to react on
a certain situation, and then learning how to react next time in order to yield a better
outcome. Machine learning involves defining what a ’better’ outcome is, and designing a
way of changing the behaviour in order to achieve this outcome. In image segmentation,
the machine learning tool allows us to make algorithms that extract features from the
images and use them to label the pixels in the image with a class that it predicts that



pixel belong to. The better outcome is based on a pre-made segmentation that the model
then tries to learn to be able to perform with it’s own features. This learning process is an
optimization of the feature extraction and decision making, where the algorithm updates
it’s parameters to approach an optimum.

Within machine learning, there are several different approaches to design the algorithm’s
predictions and how it learns based on the data. One approach is the design of algorithms
inspired by the neurons in the brain, dubbed artificial neural networks. They consist of a
network of elements called neurons which receive input, activates based on that input, and
produces an output based on the activation. The layout of this network allows some sort
of input enter on one side, activating neurons which then feeds output to the connected
neurons and eventually through the whole network, resulting in a final output on the other
side.

Machine learning algorithm architectures are often illustrated using a graph of connected
components, for example a set of neurons in an artificial neural network, which henceforth
will be called a layer. The term deep learning is applied when we build these layers on top
of each other. The deeper layers are fed by the activations of the layer above it, meaning
that each layer has a new representation of the data. This enables the algorithm to learn
more complex concepts, and separate simple and complex features. For example, a simple
feature could be the edges in the image, which in the next layer could be used to determine
the corners and contours of objects in the image. By going even deeper the algorithm could
determine the shape, size and rotation of the object, and learn a representation of how
this object should look like.

Machine Learning

Artificial Intelligence

Deep Learning

Figure 2: Al is a large research goal consisting of different fields, an important field being
machine learning. Machine learning is a computer science field that enables computers to
learn a task without being explicitly programmed. Deep learning is a class of machine
learning algorithms, mostly based on some sort of artificial neural network.
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2.3 Training

First, the term ’learning’ should be made clear in the deep learning context. The deep
learning textbook [11] refers to Tom M. Mitchell’s book 'Machine Learning’ [12] for a defi-
nition: "A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E". In this project, T is delineating the myocardial contour,
P is how close the predicted contour is to the true contour, and E is updating the model
to improve the delineation.

The model learns by updating it’s learnable layer parameters, the nature of which is
described for every layer above. How the network performs the updates is controlled by
a function of the parameters that we call a loss function. This is a key component in
deep learning, engaging a lot of researchers to evaluate different loss functions as well as
proposing specialized loss functions for different applications [13] [14] [15]. The training
process consists of optimizing the loss function to a minimum by updating the parameters
for each batch of images passed through the network. The operation of updating the
network parameters is often referred to as back propagation. This can be done by different
methods of optimization, a very popular method in deep learning is Stochastic Gradient
Descent, used in this project. The gradient of the loss function (which can be interpreted
as the slope of the function) in respect to the network parameters is calculated for each
batch. In mathematical terms, an update of a parameter 6 using a loss function L and
learning rate € is given by

0 =0—eVL(0),

where V denotes the gradient. This means that a larger step is taken if the slope of the
loss function is steep, and vice versa. The learning rate is a crucial parameter (parameters
that is not learnable and often controls the training process is in this context called hyper-
parameter), which in practice needs to be controlled during the training progress. In order
to successfully find a minimum in a reasonable training time, the learning rate is often
initially high, and is then reduced as the training proceeds. How to choose and reduce
the learning rate is hard, and there is no definite best way of doing it, but rather common
practice. The training progress is often overseen by monitoring the loss function during
training, and make decisions based on that. Choosing and tuning the hyperparameters of
neural network training is a difficult and cumbersome process, often filled with trial and
error. One technique, described by Snoek, Larochelle and Adams [16], is to use Bayesian
optimization to find the most well suited set of hyperparameters for a particular training
task. This involves training a network with different sets of hyperparameters to find the
ones that produce the best model, and is therefore very time-consuming.

The nature of the learning progress suggests that only concepts contained within the train-
ing data that the model experiences can be learned from. The application of deep learning
on visual recognition involves taking images and labelling the objects in them. This re-
quires a huge amount of already labelled data, a well known example being ImageNet,
containing at the time of writing over fourteen million images with labelled objects. Ima-
geNet has been around since 2009 and has stimulated a lot of great deep learning research.
However, for the myocardial segmentation application, the necessity for that amount of
data is lesser, since the object is very alike in each image. The risk of using a small amount
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of data is instead a phenomenon we call overfitting, where the model heavily specializes on
the training data. This does not necessarily produce a general model good at segmenting
a general myocardium, but especially the training images. Thus, the training data is very
important, and the less data you have the more important it is that the data is correct
and representative for what you want to model.

Research groups have however shown techniques, including network architectures, the use
of batch normalization and data augmentation, to produce accurate models using a small
amount of data [8] [2]. Data augmentation is very important in deep learning, and is the
process of increasing your effective data set by producing new, altered versions of your
data. When using images, it often includes using translation, scaling, rotation and defor-
mations in the images, which can increase your data set significantly. If the augmentation
introduces something that could be present in ’real’ images, the model can become more
invariant to such things as object size and rotation, making it more general. Care should
be taken not to show the model images that it would never encounter only for the sake of
increasing your data set, as it will only produce a less specific model with no gain.

In practice, the training consist of passing images from a training set through the network
and updating parameters a large number of times, hoping that a minimum producing a
well-performing is reached. Each pass through the entire training set is referred to as an
epoch.

2.4 Deep Convolutional Neural Networks

A deep convolutional neural network (CNN) is an artificial neural network which uses
convolutions, which are a kind of linear mathematical operation, explained below. CNN’s
are designed to process data that has a known grid-like topology, such as images, that can
be thought of as a 2-D grid of pixels. The network uses the 2-D grid of data as input, each
operation produces an output that is fed into the next operation, which is fed into the
next operation, and so on. In this chapter, the different operations used in the network
architectures used in the project will be reviewed. The focus will be on the usage and
importance of the operations, and once again the interested reader is encouraged to read
further in the more comprehensive literature.

Neural networks are often said to contain different kinds of layers. What this term means
may vary, in this thesis it refers to several consecutive operations considered to be con-
nected or that their usage is dependent on each other. This simplifies the understanding
of the mechanisms behind the neural network and it’s layers. Especially, the convolutional
layers described in the network architecture (section 4.3) consist of a convolution, followed
by a batch normalization and then a rectified linear unit, all explained below. Another
common terminology is to name each operation a layer, which is more specific and suitable
for deep learning platforms, where you would like to choose single operations at will.
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Convolutional filters

The interpretation of a 2D convolution operator on an image will be considered, as it
is type the convolution that will be used. The operation is more accurately a discrete
convolutional filter, which consist of a kernel of some size, often square (in this thesis we
always use 3x3 filter kernels for convolution). The convolution is a weighted average, cal-
culating the sum of the element wise matrix multiplication between the kernel and an area
of the image, called perceptive field, producing an output of one pixel. This calculation
is done for every output pixel by sliding (the amount of pixel steps in one slide is called
stride) the perceptive field over the entire input image, producing an output image called
a feature map, as illustrated in Figure 3. The values making up the kernel is what we call
parameters or weights, which are learnable, meaning that they can be changed during the
training process.

When convolving the images, padding is used to make sure that the output feature map
has the same size as the input image or feature map. The opposite of a convolution is
a transposed convolution, basically reversing the operation. This can be used to upsam-
ple feature maps to higher dimensions, which is done in the proposed encoder-decoder
architecture.

(a) A convolutional filter operating using
padding, resulting in an equally sized output
as input.

(b) A transposed convolution, resulting in
an upsampled output.

Figure 3: An illustration of convolutional filters operating on an input, i.e. an image,
(colorued blue) producing an output, i.e. a feature map (coloured green) [17].

Activation Function

If a network would only use linear operations, such as convolutions, all operations could be
simplified into one single operation. This would erase the complexity of the deeper layers,
reducing our network to the complexity of one single operation. However, we would like
our model to be as close to linear as possible, since models are more easily optimized if their
behaviour is closer to linear [11]. To introduce non-linearity into our network, a non-linear
activation function is applied to the output of each convolution operation. The Rectified
linear unit (ReLU) use the activation function g(z) = max0, z, which is a function that is
close to linear.
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Batch Normalization

Batch normalization is a concept introduced by Ioffe & Szegedy [18] in order to counter
what they call internal covariate shift and allow for faster training. Internal covariate
shift is an effect where the distribution of each layer’s input changes during training as
the parameters of the previous layers change. To put it in simpler terms we recognize
that a layer learns based on the input that the previous layer fed into it, and updates it’s
parameters accordingly. However, the previous layer also updates it’s parameters, causing
it to change the output it produces. This causes a problem, which is in practice countered
by the use of ReLU’s, careful initialization and small learning rates, slowing down the
training. Since the problem lies within that the input of a layer is affected by all precious
layers, the problem becomes larger the deeper the network.

By using batches of data, in our case batches of several images, and normalizing each batch
activation by both mean and variance, the internal covariate shift is remedied. This allows
for the use of larger learning rates, as well as performing computations on several images
at the same time. This makes use of the power of the parallel computational powers of
GPU’s, only limited by the necessity of enough GPU memory to process the whole batch.
Batch normalization is performed after each convolution in the convolutional layer.

Momentum

Taking steps using the gradient of the loss function can result in undesirable effects. For
example, the steps could oscillate along the steepest descent path to the optimum, avoiding
convergence. A way to counter this is to introduce momentum, where we add a contribution
of the previous gradient step the the current iteration. How much contribution the previous
iteration should have on the current is decided by a momentum factor, defined before
training.

Weight Decay

A method to reduce overfitting is to introduce a weight decay, where we introduce another
criterion that should be minimized during training. A useful criterion is the preference
for the weights of the network to have a smaller squared L? norm, this is called L2 reg-
ularization. This results in a choice of weights that make a tradeoff between fitting the
training data and being small. How much this preference is enforced is determined by a
reqularization factor, defined before training.

Pooling

For images, the pooling operation produces an output that uses some sort of summary
statistics of a neighbourhood of pixels. The most common pooling operation is maz pool-
ing, illustrated in Figure 4. Max pooling extracts the maximum value within a rectangular
neighbourhood around each pixel and reports that value as output. As exemplified in Fig-
ure 4, the pooling operation can be used to downsample the feature map. This is a way
of extracting a more complex representation of the features, e.g. being able to represent
a contour from detected edges, at the cost of information of the location of the features.
This also makes the representation approximately invariant to small translations of the
input, which will prove beneficial in the countering of overfitting, see section 2.3. The
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pooling operation may vary in filter size and stride in the same way as the convolutional
filter, the most common being a small filter size (2x2) and a stride of 1, to prevent the loss
of too much location information.

The loss of locational information is very damaging in image segmentation, where the
location of the boundaries is central. To be able to use pooling in order to obtain more
complex feature maps, the feature maps may be saved and passed to the transposed
convolutional layer performing the corresponding upsampling. This is used in the U-net
architecture, where the feature maps from the max pooling are concatenated with the
input of the transposed convolutional layers, thus retaining the locational information.
This technique is often referred to as a skip connections. A more memory efficient solution
is employed by SegNet, where only the pooling indices of the max pooling layer is saved,
and passed to the transposed convolutional layer at the same depth (see section 4.3).

Figure 4: Max pooling illustrated numerically, where the filter size is 3x3 and the stride
is 1. The matrix before the pooling is coloured blue and the matrix after is coloured green,
with an example filter and output highlighted in darker colour.

Softmax and Classification

To generate a segmentation from feature maps, some sort of classification of each pixel is
needed. This is done by putting a pizel classification layer at the end of the network. Based
on the feature maps, this layer makes a prediction of what class the pixel is most probable
to belong to. This is also based on the weight of the classes, e.g. how large amount of
the total number of pixels belong to the different classes. Before the classification layer, it
is common practice to put a so called softmaz layer. The softmax function squashes the
feature map values between 0 and 1, the probability of a pixel belonging to each class, the
sum of which is 1 for every pixel.
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2.5 Evaluation

There exist no single gold standard measurement to evaluate image segmentation, and
different researchers and segmentation challenges use different measures. This calls for
an understanding of what the different measures represent, as well as their strength and
weaknesses. The general opinion seem to be that several measures should be used in con-
junction to illustrate the performance of a segmentation model.

One important concept is the distribution of correctly and incorrectly classified pixels,
where the correctly classified pixels are true positives (the pixel is correctly predicted to
be myocardium) and true negatives (the pixel is correctly predicted to be background).
The incorrectly classified pixels can either be false positives (the pixel is predicted to be
myocardium but is actually background) or false negatives (the pixel is predicted to be
background but is actually myocardium). In some applications, the effects of false positives
and negatives may vary, calling for a stricter punishment on the model producing one or
the other (this is generally made by a specialized loss function). The Jaccard index is a
statistic used to compare the similarity of two sets, in this case the sets of pixels classified
as myocardium. It is also known as the intersection over union, since it is defined as

|AN B
J(A,B)= ——.
( ) |AU B|
Here, A is the pixels classified as myocardium by the network, and B is the ground truth
myocardium pixels. The intersection (denoted N) of A and B is the true positives, and the
union (denoted U) is the sum of the true positives, false positives and false negatives. We
can consequently interpret the formula as

true positives

Jaccard Index = — - —.
true positives + false negatives + false positives

The Jaccard index describes how well the predicted and ground truth segmentation over-
laps. However, it does not necessarily depict how similiar the produces contours are, which
is of greater concern when a human would visually inspect the segmentation.

The BF score was proposed by Perronin et al [19] as a measure of how similar two bound-
aries are to each other. The authors suggest that this measure should be used in con-
junction with the Jaccard index, to provide a fuller understanding of segmentation per-
formance. The BF score is a value between 0 and 1, and is based on if the segmentation
boundary point belonging to the ground truth boundary. This is decided within a toler-
ance, which in the original article [19], as well as in the default MATLAB setting was set to
0.75 % of the image diagonal. This setting was also used for this thesis.

In the evaluation of the networks, the accuracy will also be posted. The accuracy is just
simply the quotient of the amount of correctly classified myocardial and the total existing
myocardial pixels. It is used since it is the accuracy that the training uses for optimization.
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3 Project Process

Several publications on using deep learning for medical imaging segmentation problems,
including LV segmentation, were studied in preparation for the project. Since there were
quite a few publications on the subject, it was decided that the focus of this project would
be to determine the value of applying pre-existing deep learning implementations to our
data set. The intention was to make use of the cloud service Microsoft Azure and its
machine learning platform Azure Machine Learning Studio. However, it turned out that
this platform did not suit the projects needs, as it did not contain any pre-existing deep
learning algorithms for images. Early in the project this solution was therefore dismissed
and other options were investigated, hoping that the computational resources on Azure
could be used with another deep learning framework. Since the amount of deep learning
frameworks are many, the focus was to find a suitable network architecture that could
easily be implemented and applied to LV segmentation.

The U-net segmentation architecture, suggested in 2015 by Ronneberger et al [8], was de-
termined to be an compelling architecture for the project. U-net has since its publication
been proven to be very powerful for different medical image segmentation tasks, and the
publication is well cited!. The architecture has also been used as a base network and has
been improved further and used in solutions of specific tasks, for instance a 3D segmenta-
tion scheme which would be very relevant for LV segmentation. This made it ideal to use
as a starting point for LV segmentation by a student in the Cardiac MR group, neither car-
rying much deep learning experience. The U-net architecture was originally implemented
using Caffe, a deep learning framework originating from Berkeley AI Research, making it
the choice of framework to use.

Cloud instances provided by Amazon Cloud Services, equipped with the Caffe framework,
was used as computational resources. Attempts to apply the U-net architecture to LV
segmentation was made, but did not produce any promising results. The Caffe framework
turned out to be difficult to use. Especially, it was very hard to determine in what step
the models failed since the implementation of the pre-existing network architectures were
unknown to us.

Finally, MATLAB’S "Neural Network Toolbox" was used for the project. It proved to be
easy to use, with plentiful documentation and support, as well as providing a readily
available network architecture similar to U-net, SegNet. It’s provided sample architecture
was first utilized to get results as quickly as possible, this network was dubbed SeglshNet.
The network was then improved by using the originally published SegNet architecture.
MATLAB also contains readily available tools and guides to use Bayesian optimization for
the tuning of training hyperparameters, which seemed promising. This was however not
carried out due to its very time-consuming nature.

An alternative approach would be to utilize a polar image representation of the LV sug-
gested by Tan et al [9], was studied early on in the project. The publication utilizing it
suggested that the method imposed model constraints which yielded a more physiologi-
cally correct representation. The polar remapping required was implemented early in the
project, but due to lack of time largely caused by the issues of finding a suitable deep
learning platform, this method was not tested further.

1784 citations according to Google scholar, 2017-11-27
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4 Methods

4.1 Data Set

The available images have been taken using a 1.5 Tesla and a 3 Tesla MRI system by
Siemens, as well as a 1.5 Tesla system by Philips. The images have been acquired for
several different studies performed by the Cardiac MR Group at the Skane University
Hospital in Lund. The data for each patient represents a 3D image volume of the torso in
several time frames, capturing one full cardiac cycle. On the end-systolic and end-diastolic
images, delineations have been made by experts from the Cardiac MR Group. In total, a
data set of 6973 images was used.

The data set was acquired by writing a plug-in for the software segment to save the rele-
vant images. The end-systolic and end-diastolic images depicting the heart was selected,
consisting of around 12 slices for each time frame. The top slice and the bottom two slices
were omitted in order to produce a data set of mid-ventricular slices. Patient images where
the myocardial volume differed more than 2 % between the end-systolic and end-diastolic
time frames was discarded. The data set was split into end-systolic and end-diastolic im-
ages, we call the two data sets Systolic and Diastolic data sets. A data set consisting of
both these data sets was also used, we call this data set the Merged data set. This merged
data set use the same training and testing data as the systolic and diastolic data sets, to
make sure that the merged model can be compared to the single time frame models. This
was done in order to be able to compare how the networks trained on the separate data
sets performed versus the networks trained on the combined data set.

4.2 System Design

The proposed system design first uses pre-processing step, consisting of cropping and re-
sampling, producing an image ready for the network. The system then passes the image
through the network, producing a pixel-wise labelled image of the myocardium- and back-
ground (in this case, all non-myocardium pixels are background) pixels. The labelling is
then post-processed, producing a contour of the segmented myocardium and remapping
it to the original image. Thus, the potential user of the system will apply it to an image,
producing a contour of the myocardium drawn on the image, as shown in Figure 5, and
the details of the system steps are presented further below.

Figure 5: Illustration of the proposed system steps for myocardial segmentation. The
image is first resampled and then a center-crop around the LV center is passed trough the
trained network. The obtained segmentation is remapped to the original image size and
resolution, and the contours are displayed on top of the original image.
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The network takes images of uniform size as input. However, the images in the data
set vary in both size and in spatial resolution. To counter this, we utilize the following
pre-processing steps

e Resampling the images to the same spatial resolution, 1.5 mm/pixel.
e Obtaining the LV centerpoint.

e Extracting a LV centercrop image by cropping a 59 x 59 pixel (corresponding to 88,5
mm) image around the LV centerpoint.

e Resampling the image to 128 x 128 pixels, with a spatial resolution of about 0.69
mm /pixel .

This produces images of equal spatial range and resolution. The images also as a more
even distribution between myocardium and background pixels than the original, which will
hopefully improve the performance of the network. The LV centerpoint was obtained by
calculating the center of mass of the delineated endocardium for the training and testing
images. With no previously delineated myocardium, which is the target case, the extrac-
tion of the centerpoint will need to be implemented, for example using pre-existing code
within Segment [20].

An inference pass of the network then produces a 128 x 128 pixel classification map,
either classifying a pixel as myocardium or background. The contour of the myocardium
is extracted from the map and then remapped to the original image size and resolution.

4.3 Network Architecture

SegNet

The network architecture used is called SegNet, proposed by Badrinarayanan et al [2]
from the Computer Vision and Robotics Group at the University of Cambridge, UK. The
SegNet architecture is a fully convolutional network consisting of an encoder and decoder
network part, where each encoder has a corresponding decoder. In Figure 6 we see en-
coders, which consists of two or three convolution ’blocks’ (coloured blue). These consist
of a convolutional layer kernel size of 3 x 3, followed by a batch normalization layer and
then a ReLU layer. After the convolution blocks a max-pooling layer (coloured green)
with a 2 x 2 window and stride 2 is places. This downsamples the feature map, and at
each downsampling we double the number of feature channels. The max-pooling indices
from each max-pooling operation are saved and used in the corresponding decoder, as
discussed in Section 2.4. The decoders are, in a sense, mirrored versions of the encoders,
but with deconvolutional layers (coloured red) that upsamples the feature maps using the
max-pooling indices from the encoders. At the upsampling steps we half the number of
feature channels. At the end of the network there is a softmax layer (coloured yellow)
followed by a pixel classification layer, producing a classifications for the full input image.

20



Convolutional Encoder-Decoder

Pooling Indices

/

Figure 6: An illustration of the SegNet architecture, taken from the original article [2].
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SeglshNet

The SeglshNet architecture is a simplified version of the SegNet architecture, where the
encoders always consist of two convolution blocks. The number of feature channels are
kept the same, differing from SegNet, resulting in a lower memory requirement. This was
the first network that we could use that could be found in MATLAB, and was in order to
start training as quickly as possible.

4.4 Training scheme

The learning parameters was kept the same for each training, with the exception of batch
size between SegNet and SeglshNet, as well as the reduction of number of training epochs
for SegNet on the large data set. The base learning rate was set to 0.01, with a momentum
of 0.9. The training was split evenly into 4 phases (50 epochs of each for all but SegNet
on the large training set, where it was 15 epochs), and the learning rate was reduced by
10 for each new phase. The regularization factor was set to 0.0005. The batch size was 24
for SeglshNet and 12 for SegNet, which was opted to be as large as the GPU could handle
without running out of memory. The training data was shuffled between each epoch.

The data was augmented by random translation in all directions, in the interval [-5 5] pixels.
Augmentation that could be physiologically realistic was avoided, and it’s investigation left
to further research projects.

4.5 Software

The implementation and training of the networks was done using MATLAB 2017b, and
especially utilizing it’s neural network toolbox. The early stages of the project with no
yield to the results of the thesis used Amazon Cloud Service instances and the Caffe deep
learning framework. The training was performed on a GPU with 2 GB of internal memory.

21



22



5 Evaluation

5.1 SeglshNet

Using the SeglshNet architecture, models were trained according to the training scheme
in section 4.4, on the three data sets. The Systolic and Diastolic data sets were randomly
split into 80 % training and 20 % testing data, and the Merged data set used the same
training and testing data as the two others, but combined.

The performance was evaluated by performing segmentation on the test set and comparing
it to the ground truth. Three measures was calculated, the accuracy and the Jaccard index
of the myocardial pixel classification, and the mean BF score of the myocardial contours.
The merged data set was tested on it’s complete test set as well as the systolic- and diastolic
test set separately. Table la displays the results of the evaluation of the networks.

The Merged network performs better than the Systolic and the Diastolic network, even
on the separate data sets, at least on average. This endorsed the later training using only
the Merged data set when the SegNet architecture was adopted.

The same training was performed using a smaller training set, where 8 % of the data set
was used for training and 92 % was used for testing. In all other aspects, the training and
evaluation was performed identical to the above used training set. Table 1b shows the
results of the evaluation using the small training set. Using a smaller training set results
in a severe performance decrease, as expected. The results confirms the superiority of the
Merged network versus the other two.

Table 1: Measured performance of the SeglshNet networks trained on the Systolic, Dias-
tolic and Merged data sets. The networks are named after what data set they were trained
on. The scores are the mean scores of the network classification of the Myocardium class
on the entire test set.

(a) Performance of networks trained on the large training set.

Data Set Network Accuracy Jaccard BF Score

Systolic Systolic 0.96 0.79 0.42
Merged 0.96 0.82 0.48
Diastolic Diastolic 0.95 0.76 0.49
Merged 0.96 0.78 0.53
Merged Merged 0.96 0.80 0.51

(b) Performance of networks trained on the small training set.

Data Set Network Accuracy Jaccard BF Score

Systolic Systolic 0.90 0.60 0.19
Merged 0.91 0.68 0.28
Diastolic Diastolic 0.94 0.46 0.14
Merged 0.94 0.61 0.25
Merged Merged 0.92 0.64 0.26

23



5.2 SegNet

Using the SegNet architecture, a model was trained on the merged data set using the
same training and testing data as used for SegIshNet. It was trained for 60 epochs with a
decrease in base learning rate by 10 every 15 epochs (similar scheme as earlier but with
a reduced number of epochs, due to a slower learning process). A model was also trained
on the 8/92 data split set, using the exact same training scheme as for SegIshNet. The
networks was then evaluated in the same way on the test sets. The evaluation of SegNet
is shown alongside the corresponding SeglshNet performance in table 2a.

Table 2: Measured performance of the SegNet and SeglshNet networks trained on the
Merged data set, for both the larger and smaller training/testing data split. The scores
are the mean scores of the network classification of the Myocardium class on the entire
test set.

(a) Performance of networks trained on the large training set.

Data Set Network Accuracy Jaccard BF Score

Svstolic SeglshNet 0.96 0.82 0.48
y SegNet 0.96 0.83 0.52
Diastolic SeglshNet 0.96 0.78 0.53
SegNet 0.96 0.81 0.59

SeglshNet 0.96 0.80 0.51

Merged g Net 0.96 0.82 0.56

(b) Performance of networks trained on the small training set.

Data Set Network Accuracy Jaccard BF Score

Systolic SeglshNet 0.91 0.68 0.28
Y SegNet 0.91 0.78 0.43
Diastolic SeglshNet 0.94 0.61 0.25
SegNet 0.92 0.75 0.48

SeglshNet 0.92 0.64 0.26

Merged g0 Net 0.92 0.76 0.46

We observe a conclusive superiority of SegNet over SegIshNet. An important note is that
SegNet trained on the large data set was trained for a reduced number of epochs than the
corresponding SeglshNet.

5.3 Visual Inspection

For the visual inspection, the contours were extracted using the system scheme proposed
in Section 4.2. The segmented contour are shown alongside the ground truth contour on
the center-cropped images.
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Separate SegIshNet Merged SeglIshNet SegNet

Jaccard: 0.87 BF': 0.69 Jaccard: 0.89, BF: 0.69 Jaccard: 0.92, BF: 0.82

Good delineation of a systolic image with papillary muscles in the LV, illustrating the
superiority of SegNet.

Jaccard: 0.89, BF: 0.80 Jaccard: 0.85, BF: 0.72 Jaccard: 0.86, BF: 0.65

Good delineation of a diastolic image with a varying myorcardial width. In this case, the
specialized SegIshNet performs best.

25



Separate SeglshNet Merged SegIshNet SegNet

Jaccard: 0.78, BF: 0.46 Jaccard: 0.65, BF: 0.32 Jaccard: 0.78, BF: 0.39

Good delineation of a grainy diastolic image, where the merged SeglshNet is worse than the diastolic.

Jaccard: 0.53, BF: 0.28 Jaccard: 0.50, BF: 0.37 Jaccard: 0.64, BF: 0.47

Diastolic image slice with a good delineation of the epicardium on all sides, even though the intensity
outside the myocardium is different on the different sides.
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Separate SegIshNet Merged SeglIshNet SegNet

Jaccard: 0.86, BF: 0.63 Jaccard: 0.83, BF: 0.52 Jaccard: 0.83, BF: 0.43

Diastolic image which is successfully delineated despite the low contrast.

Jaccard: 0.77, BF: 0.57 Jaccard: 0.78, BF: 0.54 Jaccard: 0.78, BF: 0.58

Diastolic image where we observe an issue with delineation in the presence of dark spots
within the LV.
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SegNet

Separate SeglshNet Merged SegIshNet

Jaccard: 0.62, BF: 0.32 Jaccard: 0.60, BF: 0.23 Jaccard: 0.63, BF: 0.35

A diastolic image slice close to the base of the heart with a small myocardium area, where the delineation
of the epicardium is put outside the true contour. In this case, the separate SeglshNet and SegNet yields
similiar Jaccard Index, but the BF score is different. This can also be seen in the images, where the
contour produced by SegNet is more in line with the ground truth.

Jaccard: 0.53, BF: 0.19 Jaccard: 0.65, BF: 0.31

Jaccard: 0.72, BF: 0.44

Diastolic, grainy image slice close to the base of the heart, where the delineation is unsuccessful by the
merged SeglshNet, and SegNet performs worse than the specialized SeglshNet.
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Separate SegIshNet Merged SegIshNet SegNet

Jaccard: 0.63, BF: 0.32 Jaccard: 0.65, BF: 0.24 Jaccard: 0.69, BF: 0.42

Systolic image slice close to the base of the heart, further showing the issue of delineating
the epicardium and the tendency of drawing the contour too far out.

Figure 11: Visual evaluation of the network performances. The ground truth contour is
displayed in green and the contour produced by the network is displayed in red. The images
have been picked out if they show a certain behaviour of the models, or if they display a
certain difference between the performance of the different networks. The delineations have
been made by the separate (systolic and diastolic depending on the image) and merged
SeglshNet, and SegNet. The individual BF and Jaccard scores are displayed under each
image, for comparison and further showcasing the nature of the scores.
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5.4 Training characteristics

The minimisation of the loss function is an indicator of the training progress. It is, however,
not necessarily a measure of the performance of the produced model, which we ideally
would like to monitor during the training progress. The loss function should however enable
conclusions to be drawn about the nature of the different networks and their performance.
Figure 12 shows the loss function during the training progress of the SeglshNet and SegNet.
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Figure 12: The loss function for each iteration during training, coloured in blue, as well
as the mean loss over the epoch, coloured in orange. 12a and 12b displays the loss for
the networks trained on the Systolic, Diastolic and Merged data sets in different shades of
blue. An important note is that the number of iteration depends on the number of training
epochs and the batch size. SegNet is trained using half the batch size of SeglshNet, and
only for 60 epochs for the large data set, resulting in different number of iterations.
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6 Conclusion and Discussion

6.1 Network Performance

A segmentation model for the left ventricle of the heart using deep learning was produced,
fulfilling the main project goal. The models shows promising results in some cases, success-
fully segmenting the myocardium while handling difficulties like papillary muscles. The
networks have learned not to just take intensity edges into account, but also that dark
spots may appear in the LV, and successfully includes the dark spots in the LV. This really
showcases the strength of the learning process, showing that a concept that can be hard to
manually implement into a model is easily trained by showing the model examples. The
network successfully delineates the endocardium when papillary muscles are present and
when they are not, showing the generality of the model. The model is also invariant to
scaling, being able to segment smaller and larger than average myocardium cases. How-
ever, the outer delineation generally is segmented further out for the smaller cases. This
scale invariance could possible be corrected by augmenting the data set to further increase
the variance of myocardial wall thickness. This could make the model more general and
improve it’s performance on varying sizes.

For the myocardial segmentation problem, the mixing of images from the end-systolic and
end-diastolic time phases in the training set proved to produce a more powerful model.
The more general model proved to be better than the specific models even on the specific
data sets. This could be due to that the specific model is more likely to overfit on the train-
ing data, producing a model that learns more about the training data itself than about
the properties of the myocardium in general. Another cause could be that images in the
data set that result in "bad" training is less of an issue in a larger data set. However, this
should be countered by the use of batches during training. Intuitively, the specific data
sets should produce a better performing model on that specific data, however counter-
measures to overfitting and other possible causes would be more crucial. As a first step
toward a well functioning model, it is concluded that it is favourable to use the full data
set in this case.

For the small data set, the loss function plots clearly show why the training of SegIshNet
is unsuccessful. They converge toward a greater magnitude of loss function than for the
large data set, meaning that we do not reach the same level of optimization of the model.
The greater success of the Merged network in this case is more probably the result of a the
greater number of training data, since the separate data sets yields a even worse level of
optimization. In contrast, the achieved loss does not vary much between the different data
sets when using a large training data set. SegNet, however, does reach a low minimum,
as well as decent segmentation performance on the small data set. This indicates that
we could possibly train SegNet on a smaller data set, which makes it easier to study the
data set and ensure that it is representative for how a myocardium could look like. It
also allows for the use of specialized networks for different parts of the heart, e.g. basal
or apical slices, which would produce smaller data sets if they were divided. Here, heavy
data augmentation could prove very useful.
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When evaluating segmentation, the use of complementing measures is encouraged, and the
understanding of what the measures represent is important. The visual inspection of the
segmentation is very important to understand the performance, strengths and limitations
of the network.

This architecture and approach should be able to be applied to similar segmentation
problems, e.g. the segmentation of other organs in the body as well as being used for
different imaging techniques. This could be done very quickly, only requiring the work of
obtaining a data set. This will hopefully serve as a basis for the continued application
of deep learning in the Cardiac MR Group, and a fast way of testing feasibility of using
deep learning for future segmentation problems. The experienced difficulties in the usage
of deep learning platforms will hopefully be valuable lessons for future work, and reduce
the effort required.

6.2 Limitations

There exist some limitations and problems with the system and networks. We list those
which have not been corrected due to lack of time, and refer to Section 7 for the ones that
is outside the scope of the thesis and pose challenges for further work.

Crop size The crop size is at the moment too small for some cases. We would like to
investigate and find a minimum size so that we always crop the whole myocardium, and
crop all images to that size.

Data set The data sets contain some image slices which are borderline cases if they actu-
ally are midventricular slices. However, we produce decent delineations on these images.
We would like to thoroughly separate data sets between basal, apical and midventricular
slices. This would allow for an investigation similar to the combination of end-diastolic
and end-systolic slices performed in this thesis.

Pixel classification The pixel classification approach is strong for classifying several
different classes, such as in a traffic scene. For the myocardial segmentation application, the
discrete way of classifying a pixel as either myocardium or background is not necessarily the
best approach. If the certainty of the classification of a pixel is low, we would rather draw
the contour through the pixel than around the pixel based on the discrete classification.
This is especially true when the image resolution is low. Therefore, we would like to trace
a contour by directly using the output from the softmax layer to avoid the uncertainty of
the discrete pixel classification. One example of this could be to use an implementation of
Digkstra’s algorithm.
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7 Future Work

The goal of a functioning system that could compete with existing automatic LV segmen-
tation algorithms is still far away. Experimentation with different network architectures,
training schemes and data augmentation is still unexplored. Another attempt to improve
the model would be to label the images with more specific labels, for example labelling
pixels belonging to the left and right ventricle.

The investigation of whether to use general networks trained on all sort of image slices or
divided into basal, apical and mid-ventricular slices would give insight in how to tackle
such a diverse data set. Further work could also be to train a general model on a diverse
data set, and further train it on specific data sets. The general approach is clearly superior,
and could then be split into several networks fine-tuned for each specific case.

The nature of the network training process is not investigated in this thesis, more than
the monitoring of the loss function during training. An approach is to test the network on
a so called walidation set, separate from the training and test set, during training. This
gives an indication of the network’s performance during training. This was not available
for pixel segmentation in MATLAB during the project. However, the latest version of MAT-
LAB, 2018a, is said to to include this feature. This would be a great asset in the study of
when the important aspects of the model is trained and how to design the training scheme.
The training parameters could also be optimized by using Bayesian optimization, readily
available in MATLAB. This involves training several networks with different parameters in
an attempt to find an optimal set of parameters.

Especially, replacing the transfer of pooling indices with skip connections, discussed in
Section 2.4, utilized in the U-net architecture is promising to produce a more accurate
contour. The cost of this would be a higher memory requirement, which would not pose a
problem considering the application does not pose any strict demands on processing speed.
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