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Abstract

The many-body problem in quantum mechanics always presents new challenges and ways to
discover new properties of existing materials. The difficulty (if not the impossibility) to solve
the many-body problem analytically makes the numerical methods an appealing approach.
Here we consider a Python code, which is under development to become an open-source tool
to perform studies of finite lattice systems in- and out-of-equilibrium. The code already in-
cludes many features, such as studying the dynamical properties of a system using Lanczos
adapted time evolution method, temperature-dependent expectation values and groundstate
calculations and Optimal control. To expand this code’s applicability to a wider range of prob-
lems, we added two new functions in the linear sector, they are responsible for computing the
density-density response function in the frequency and the time domain. The two new func-
tions were used to study three different clusters with a specific perturbation. We have also
created a booklet enriched with worked out examples and details to guide the user through the
installation and running process.

i



Acknowledgments

I would like to express my deep gratitude to my supervisor Professor Claudio Verdozzi for his
support and guidance during my Bachelor thesis. I greatly appreciate the time you spent on
helping me and the advise you provided throughout my work. Thank you for your patience
in the times where I was lacking and your sense of humor that made this a fun experience. I
would like to also thank Dr. Miroslav Hopjan for all his help and his constructive feedback
during the writing of the thesis.

ii



CONTENTS

Abstract i

Acknowledgments ii

List of Abbreviations iv

1 Introduction 1
1.1 Scope of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 4
2.1 The Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Linear Response Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Density-Density Response Function . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The ExCITeD Code 10
3.1 Basis states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Kinetic energy operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Density operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Double density operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Exact Diagonlization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 The Response function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Results 18
4.1 Density-density response function . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 The effect of system size and the role of interactions . . . . . . . . . . . . . 22

5 Outlook and Future Work 24

References 25

A Booklet 27

iii



LIST OF ABBREVIATIONS

BO Born-Oppenheimer

DMRG Density-Matrix Renormalization Group

LRT Linear Response Theory

ExCITeD Exact Configuration Interaction Temporal Dynamics

QuTiP Quantum Toolbox in Python

HH Hubbard-Holstein

iv



CHAPTER 1

INTRODUCTION

In this day in age, modern technology is an integral part of our life and is extremely embed-
ded in our society. The quick pace at which devices are upgraded has become a norm, and
the demand for better devices and performance is never ending. Industries are striving after
shrinking the components in order to produce more compact devices with higher performance,
but these attempts go hand in hand with quantum effects becoming more present at that scale.
Those effects in solids can no longer be treated as being negligible, and one must go back to the
fundamentals, and study the physics of solids, particularly their electronic structures.

The Schrödinger equation in principle describes solids, and solving it explains different mate-
rials and unravels ways to design new and more superior ones. The famous non-relativistic
Schrödinger equation is given by

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (1.1)

with the full Hamiltonian

Ĥ = −
Nn∑

α=1

P2
α

2Mα
−

Ne∑

j=1

p2
j

2me
−

Ne∑

j=1

Nn∑

α=1

Zαe
2

|rj − Rα|
+

Ne∑

j<k

e2

|rj − rk|
+

Nn∑

α<β

ZαZβe
2

|Rα − Rβ|
, (1.2)

where Pα is the momentum and Rα is the position of nucleus α, Mα is the mass and Zα is the
atomic number. pj and rj correspond to the momentum and position of electron j and the
number of electrons and nuclei are donated by Ne and Nn respectively.

Solving the full Hamiltonian of a system is a tough task, and for a large number of particles it is
basically impossible. A major part of solid state theory is finding ways to determine electronic
properties of solids with sufficient accuracy. That is done by searching for simulation tech-
niques that are applicable to a wide range of problems while keeping the input to a minimum.
This is the perspective of so-called first principle approaches, where the starting point is lim-
ited to the sole knowledge of the type of atoms in the system, and the computational approach
is based on quantum mechanics. In this way, the atomic position and the consequent electronic
properties are fully determined. A very successful simplification to this program is to consider
the nuclei in their equilibrium position and replace the full Hamiltonian with a simplified one
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describing explicitly only electrons. This is the strategy of the Born-Oppenheimer approxima-
tion: the masses of the nuclei are much larger than the masses of the electron, and due to that
the nuclei move much slower than the electrons. This approximation decouples the nuclei from
the electrons, resulting in an electronic Hamiltonian that describes purely electronic systems.

Even with the BO approximation, the full electronic Hamiltonian is still extremely hard to solve
exactly. That is why physicists strive to construct even more effective many-body Hamiltonian
models, reducing the number of degrees of freedom and making it simpler to solve them nu-
merically. In electronic systems, the interplay of the Coulomb interaction and the kinetic energy
of the electrons is central. In the case when the kinetic energy dominates, electrons are delocal-
ized throughout the material. Most of these materials can be thought as having non-interacting
electrons, and are decently described by the free-electron model. However, in the case where
the Coulomb interaction is dominating, the movement of one electron is influenced by the lo-
cations of all other electrons in the material. Hence, one can not describe these materials by a
free-electron model. The problem in such systems is treated as a many-body problem, and this
regime is said to be correlated or strongly correlated. In this case, even very simple lattice mod-
els where electrons move on simple lattices with few (e.g. one) orbital /site can be helpful to
gain qualitative insight. For these simple models, a number of techniques are available, which
are usually not practically viable for a first-principle description.

Various numerical methods exist for ground-state and dynamical properties calculations for
model Hamiltonians, such as Monte Carlo, DMRG, Green’s functions and exact diagonaliza-
tion [1, 2, 3, 4]. Monte Carlo methods statistically evaluate properties of the wave function with
no restrictions on the number of dimensions of the problem, unlike DMRG which is only valid
for 1D geometries. DMRG, however, treats unusually large systems with outstanding accuracy
and does not have the famous “negative-sign problem” that exists in the Monte Carlo method.
In the method of Green’s functions one shifts the focus from the microscopic states to the be-
havior of specific correlation functions or average of observables. An example of this approach
could be studying the conductivity of the system. In this work, however, we use exact diag-
onalization as an entry to the many-body problem. Exact diagonalization is a basic technique
which constructs the basis states of a system explicitly, then one writes the quantum problem
as an eigen problem

Ĥ |ψ〉 = E |ψ〉 , (1.3)

and solves for the eigenvalues and eigenvectors of the Hamiltonian operator, providing the
possibility to compute observables in and out of equilibrium to study the properties of a given
system. Even though this technique scales dramatically with increasing the size of the system,
it is simple and reliable.

Numerical methods have provided the ability to simulate experiments in order to explain ma-
terials and explore new ways to improve on them. Typically in experiments, an external force
is used to probe systems driving them away from their equilibrium state and measuring their
response in order to learn more about them. In the regime where the external probe is weak
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compared to the internal interactions of the system, the response can be described within per-
turbation theory as linearly dependent on the external force applied. This project work is con-
cerned with a code which uses exact diagonalization to simulate electronic systems that will be
used to study their properties in this regime.

1.1 SCOPE OF THE WORK

This project focuses on optimizing and expanding a pre-existing configuration-interaction Python
code in order to study the behavior of electrons in finite systems. The purpose of this code is to
describe such systems in the finite-size, small-particle-number case, with chosen initial condi-
tions and parameters. The aim of this work is to add new functionalities to the code for future
applications. The code will be a great addition to the packages available for Python to be used
for conducting research as well as a pedagogical learning tool. The code was originally written
in FORTRAN, where numerous papers were published using it [5, 6, 7, 8, 9, 10]. The trans-
lated Python version aims at encapsulating the features of the original code, and adding the
pedagogical side for teaching/learning purposes.

In this diploma project, two new functionalities are added to allow the study of the response
of a system to an externally applied force, taken as a perturbation of the basic operator of
the system (Hamiltonian). These new functionalities compute the density-density response
function in the time and frequency domain for a given system. For this scope, a description of
Linear Response Theory and how it applies to the model used will be presented. Also, to show
how the new functionalities works, an illustration with three different systems is presented.

A written booklet enriched with worked out examples for the code is created. The booklet can
be found in the Appendix attached as a complete document.

As an extra task, we compare real-time evolution and linear response results with a chosen
perturbation. This was used to characterize the regime where the two approaches give the
same results, and where they differ.
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CHAPTER 2

THEORY

2.1 THE HUBBARD MODEL

To study the behavior of electrons in correlated systems, one attempts to work around all the
complexity of such systems. John Hubbard simplified this problem in a very insightful fashion
when he developed his well-known model. The beauty of his model lies in its simplicity. Since
atoms are arranged periodically in a lattice, each lattice site corresponds to an atomic site. The
atoms are assumed to have only one orbit, where that orbital state is non-degenerate. In reality,
atoms have more than one orbit, but it is reasonable for a qualitative description to assume that
the ignored states do not play a significant role in low-energy physics. Figure 2.1 shows the
steps of the simplification process.

Figure 2.1: A sketch that shows the philosophy of this model, starting with free atoms with
multiple electrons and orbits at the top. When atoms are brought together to form solids,
electrons in the outermost orbits become delocalized through the solid. The electrons in the
inner-most orbits are extremely localized. The electrons in the mid-orbit are mostly localized,
but tunnel to nearby orbits with some probability. The electrons in the mid-orbits are the only
ones considered in this model. If the mid-orbits are non-degenerate, one gets a lattice model
where electrons live on the lattice sites and hop from one site to another. Adapted from [11].
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The Hubbard Model [12] is one of the most important models in theoretical physics. It is a sim-
ple model that describes strongly correlated electrons and their motion in solids and is used in
cold atom physics as an accurate description of ultracold atoms in optical lattices. The model
offers a simple way to get insight on how the interaction between electrons gives rise to differ-
ent effects in solids. Physicists have studied this model using a range of analytic techniques,
but analytically one cannot always go very far. Arguably, at present the situations, the Hub-
bard model is best understood in 1D (where an exact solution is available) and in the limit of
infinite dimensions, in terms of many-body non-perturbative treatments. The model has also
been attacked with numerical methods such as diagonalization, which is rewarding for cases
with a small number of particles.

The Hubbard Hamiltonian is generally presented as the sum of two terms as:

Ĥ = Ĥkin + Ĥint, (2.1)

where Ĥkin is the hopping term of the Hamiltonian and Ĥint is the Coulomb interaction term.
The hopping Hamiltonian in the second quantization language is generally given by:

Ĥkin =
∑

i,j

∑

σ

hijc
†
i,σcj,σ where





if i 6= j, hij = t

if i = j, hii = εi
(2.2)

The hopping parameter t is assumed to be real (but it can become complex when magnetic
fields are present), and it describes the quantum mechanical amplitude that an electron hops
from site i to site j. The parameter εi is the single-particle potential which is usually called
on-site energy. The operator c†i,σ creates an electron with spin σ =↑, ↓ at site i, and cj,σ is the
annihilation operator which destroys an electron at site j with spin σ. These operators obey the
canonical anti-commutation relations:

{
c†i,σ, cj,σ′

}
= δi,jδσ,σ′

{
c†i,σ, c

†
j,σ′

}
= 0

{
c†i,σ, c

†
j,σ′

}
= 0. (2.3)

The interaction Hamiltonian is given by:

Ĥint =
∑

i

Uin̂i,↑n̂i,↓, (2.4)

where n̂i,σ is the number operator that is defined to be n̂i,σ = c†i,σci,σ and U is a constant
that represents the raise in energy when two electrons occupy a single site i. The Coulomb
interaction is a long ranged interaction, but for simplicity the only part that is taken into account
in this model is the local, intrasite one.
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2.2 LINEAR RESPONSE THEORY

An interacting many-body system can be described by a time-independent Hamiltonian Ĥ0. To
study how the system responds if driven away from equilibrium, one must examine the case
where Ĥ0 interacts with an external force. The total Hamiltonian for such a case is given by:

Ĥ(t) = Ĥ0 + Ĥ ′(t), (2.5)

where Ĥ0 is the Hamiltonian of the unperturbed system and Ĥ ′(t) is the time-dependent exter-
nal perturbation. In many cases, the perturbation can be expressed as the following:

Ĥ ′(t) = −f(t)Â, (2.6)

where f(t) is a generalized force and Â is an internal operator pertaining to the system which
the force couples to. Time-dependent perturbation theory can be formulated in terms of the
time-evolution operator. A convenient approach to this problem is to assume that the system
is in the ground state of Ĥ0 at time t0. The perturbation is then switched on and the state of the
system at time t can be given by:

∣∣ψ(t)
〉

= U(t, t0) |ψ0〉 , (2.7)

where U(t, t0) is the time evolution operator for the full Hamiltonian Ĥ(t) which has a compact
form given by:

U(t, t0) = Texp

(
−i
∫ t

t0

dt′Ĥ(t′)

)
, (2.8)

where T is the time ordering operator. The knowledge of U(t, t0) is needed to determine the
time-evolution of any state perturbed by Ĥ ′(t). At t0 the system is in its ground state, and the
expectation value of an arbitrary observable B̂ is given by 〈ψ0|B̂|ψ0〉. After switching on the
perturbation, the state of the system evolves in time according to (2.7). The expectation value of
B̂ at time t > t0 is then given by

〈
ψ(t)

∣∣B̂
∣∣ψ(t)

〉
. The change in this expectation value induced

by the external perturbation can then be calculated in the following way:

δ
〈
B̂(t)

〉
=
〈
ψ(t)

∣∣B̂
∣∣ψ(t)

〉
− 〈ψ0|B̂|ψ0〉 , (2.9)

where δ
〈
B̂(t)

〉
describes the deviation from equilibrium over time under the influence of the

external force. Here, we specialize to the linear regime by performing an expansion to first
order in Ĥ ′(t). The force f(t) is assumed to be sufficiently weak in order to preserve the appli-
cability of the approach. Noting that the expansion only affects the expression

〈
ψ(t)

∣∣B̂
∣∣ψ(t)

〉
,

the expression can be manipulated to simplify the task, rewriting it as follows:

〈
ψ(t)

∣∣B̂
∣∣ψ(t)

〉
= 〈ψ0|U(t0, t)B̂U(t, t0)|ψ0〉 (2.10)

= 〈ψ0|B̂(t)|ψ0〉 , (2.11)

where B̂(t) is the Heisenberg picture operator. A part of the manipulation process is to move to
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the interaction picture. It is suitable to describe a system in that picture when an external time-
dependent perturbation is applied, under the assumption that the solutions to the unperturbed
system are known. It can be shown that (2.11) can be written in the interaction picture as
follows:

〈ψ0|B̂(t)|ψ0〉 = 〈ψ0|UI(t0, t)B̂I(t)UI(t, t0)|ψ0〉 , (2.12)

where B̂I(t) is the interaction picture operator, and UI(t, t0) is the time evolution operator in
the interaction picture which is given by:

UI(t, t0) = Texp

(
−i
∫ t

t0

dt′Ĥ ′I(t
′)

)
, (2.13)

whereH ′I(t
′) is the perturbation operator also expressed in the interaction picture. At this point

it is easier to perform the expansion and carry on with the derivation. Expanding (2.13) to first
order in Ĥ ′, we get

UI(t, t0) ≈ 1− i
∫ t

t0

dt′Ĥ ′I(t
′), (2.14)

which by definition also means

UI(t0, t) =
[
UI(t, t0)

]† ≈ 1 + i

∫ t

t0

dt′Ĥ ′I(t
′). (2.15)

Inserting both expansions into (2.12) and performing some simple algebra:

〈ψ0|B̂(t)|ψ0〉 = 〈ψ0|UI(t0, t)B̂I(t)UI(t, t0)|ψ0〉

≈ 〈ψ0|
(

1 + i

∫ t

t0

dt′Ĥ ′I(t)

)
B̂I(t)

(
1− i

∫ t

t0

dt′Ĥ ′I(t)

)
|ψ0〉

≈ 〈ψ0|B̂|ψ0〉+ i

∫ t

t0

dt′ 〈ψ0|
[
Ĥ ′I(t

′), B̂I(t)
]
|ψ0〉 . (2.16)

Equation (2.16) describes how the expectation value of some arbitrary operator B̂ changes in
time under the effect of an external perturbation. Note that, in general,

Ĥ ′I(t) = eiĤ0tĤ ′(t)e−iĤ0t = −f(t)eiĤ0tÂe−iĤ0t = −f(t)ÂI(t). (2.17)

One can combine (2.9) and (2.16) to compute the deviation from equilibrium in terms of a linear
dependence, which is given by:

δ
〈
B̂(t)

〉
= i

∫ t

t0

dt′f(t′) 〈ψ0|
[
B̂I(t), ÂI(t

′)
]
|ψ0〉 . (2.18)

The result shows that the deviation of any physical quantity at time t is an integral over all
force history, times a quantity which is completely independent of the perturbation. Through
a redefinition,

δ
〈
B̂(t)

〉
=

∫ t

t0

dt′f(t′)φAB(t− t′), (2.19)
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where φAB is the response function. A key property of the response function is the preservation
of causality: The system cannot show any response before the force is applied. Therefore the
response function equals zero for t′ > t. This statement of causality can also be made explicit
by writing the linear response function with a step function where:

φAB(t− t′) = iθ(t− t′) 〈ψ0|
[
B̂I(t), ÂI(t

′)
]
|ψ0〉 . (2.20)

The time dependence of the system is only dependent on the time interval between the appli-
cation of the force and the observation.

2.3 DENSITY-DENSITY RESPONSE FUNCTION

Up untill this point, the response function has been kept general in the two operators Â and B̂.
We now specialize it to study the density-density response function by considering the exact
particle density operator at a specific site of the unperturbed system. Here, what we mean by
the density operator is the site-occupation number (n̂i = n̂i,↑ + n̂i,↓) which is appropriate for
calculations performed on a lattice, i.e. the expectation value of the density operator ni ≡ 〈n̂i〉
at site i can vary from 0 to 2 with half filling at ni = 1.

When specializing to the density-density response function, the general perturbation in (2.6)
becomes Ĥi

′
(t) = −fi(t)n̂i. This local perturbation physically describes an external field which

can be e.g. an electric potential that is coupled to the electronic charge density at a specific site
i. To proceed in calculating the density-density response function, we substitute the general
operators Â and B̂ in (2.20) with the density operators n̂i and n̂j respectively:

χij(t− t′) = −iθ(t− t′) 〈ψ0|
[
n̂I,i(t

′), n̂I,j(t)
]
|ψ0〉 . (2.21)

The subscripts i and j denote the site number, and the consequential minus sign is a result of
switching the order of the two operators inside the commutator in equation (2.20). Up to this
point, the response function has been in the time domain. We can Fourier-transform χij(t−t′) to
get the equivalent frequency-dependent equation. This allows studying the response at specific
frequencies. Setting t′′ = t′ − t and taking the Fourier transform

χij(ω) = −i
∫ 0

−∞
dt′′e−(iω−η)t

′′ 〈ψ0|
[
n̂I,i(0), n̂I,j(t

′′)
]
|ψ0〉 , (2.22)

where η is a Lorentzian broadening factor and eηt
′′

ensures that the external perturbation is
switched on in a smooth, adiabatic way, and the unwanted secondary effects may be removed
by taking the limit η −→ 0. One can choose the excited states of the system to be eigenstates of
the unperturbed Hamiltonian Ĥ0 such that:

e−iĤ0t |ψn〉 = e−iEnt |ψn〉 . (2.23)
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Inserting a complete set of the unperturbed states in the commutator in equation (2.22), we get

[
n̂I(0), n̂I(t

′′)
]

=

[
n̂I(0),

∑

n

|ψn〉 〈ψn| n̂I(t′′)
]
. (2.24)

Noting that n̂I = eiĤ0tn̂e−iĤ0t, equation (2.22) becomes:

χij(ω) = −i
∫ 0

−∞
dt′′ (

∑

n

〈ψ0|n̂i|ψn〉 〈ψn|n̂j |ψ0〉 ei(En−E0)t′′−(iω−η)t′′

−
∑

n

〈ψ0|n̂j |ψn〉 〈ψn|n̂i|ψ0〉 e−i(En−E0)t′′−(iω−η)t′′ ) . (2.25)

All the time dependence is now contained in the exponentials. Performing the integration over
time will yield the density-density response function χij(ω) in the frequency domain:

χij(ω) =
∑

n

[ 〈ψ0|n̂i|ψn〉 〈ψn|n̂j |ψ0〉
ω − (En − E0) + iη

− 〈ψ0|n̂j |ψn〉 〈ψn|n̂i|ψ0〉
ω + (En − E0) + iη

]
. (2.26)

The function has poles when ω → (En − E0), the excitation energies. Thus, one can determine
the excitation energies of a system by using this equation. The imaginary part of the density-
density response function is given by:

Sij(ω) = − 1

π
Im
{
χij(ω)

}
. (2.27)

In this thesis work, the new functionality added to the code gives the possibility to compute
the density-density response function χij(ω) for a given system. A demonstration of the new
functionality is presented in Chapter 4 by computing the response function for three different
clusters at half filling consisting of two, four and six sites respectively.

System 1

site 0 site 1

System 2

site 0 site 1 site 2 site 3

System 3

site 0 site 1 site 2 site 3 site 4 site 5

In System 1 we considered a dimer with two sites labeled 0 and 1, with the terms h01 = h10 = t,
U0 = U1 = U , while the on-site energy term is set to h00 = h11 = ε0 = 0. In System 2, with
four sites labeled 0,1,2 and 3, the sites 0 and 1 represent the previously defined dimer, and the
other terms considered are h12 = h21 = h23 = h32 = t, U2 = U3 = U and h22 = h33 = ε1 = 0.
In the last system, System 3, the six sites are labeled 0,1,2,3,4 and 5, this cluster consists of
the previously defined four-site system plus the two sites 4 and 5. The additional parameters
considered are h34 = h43 = h45 = h54 = t, U4 = U5 = U and h44 = h55 = ε2 = 0.
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CHAPTER 3

THE EXCITED CODE

In this chapter, we will provide a brief description of the code/module ExCITeD, which stand
for Exact Configuration Interaction Temporal Dynamics, while an equivalent description with
more detail and worked out examples can be found in the Appendix. We will also present the
two new functions1 added to the module, and explain their construction process in order to
demonstrate how one can use the code and build new functions catered towards a wide range
of problems. The long term aim of this work is to provide an open-source package that can be
installed and used also by a third party to possibly conduct research, but also for educational
purposes.

The purpose of this code is to investigate the dynamics of systems with electron-electron and
electron-phonon interactions. So far, the model Hamiltonian considered in this work has been
the Hubbard model, focusing purely on electron-electron interactions. We have integrated out
the nuclei effects in materials and took them as a passive background that electrons move in.
However, in many materials, this is not the case. The lattice vibrations interact with electrons
via the electron-phonon interaction. These interactions can give rise to superconductivity [13],
spin and charge density waves [14], and many more interesting phenomena. A simple model
Hamiltonian that describes those interactions in a specific way is the Holstein model [15]. It
was introduced in the 1950’s and describes a system of tight-binding electrons coupled to a
dispersionless phonon mode. However, the Holstein model is used to study systems in the
absence of electron-electron repulsion. A more general situation is where in the lattice we have
both the electron-electron and the phonon-electron interactions. The interplay of these two
quantities is incorporated in the Hubbard-Holstein model [16], which is a hybrid between the
Hubbard model (which has no electron-phonon coupling), and the Holstein model (which has
no Coulomb repulsion). The Hubbard-Holstein Hamiltonian is given by:

HHH = t
∑

<i,j>,σ

c†i,σcj,σ

︸ ︷︷ ︸
Hkin

+
∑

i

Uini,↑ni,↓

︸ ︷︷ ︸
HHub

+ω0

∑

i

b†ibi + g
∑

i,σ

niσ(b†i + bi)

︸ ︷︷ ︸
He−ph

, (3.1)

1Here we took a simple route and built two functions considering how simple it is to analytically compute them
in each domain. In the future, Fourier transform and convolution routines will be used to merge these into one
function.
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where Hkin describes the nearest-neighbor hopping of electrons, HHub is the Hubbard interac-
tion term and He−ph describes the kinetic energy of phonons with frequency ω0 and electron-
phonon interaction of strength g. The sum of the first two partsHkin+HHub are the already de-
fined Hubbard model in Section 2.1. b†i (bi) are the creation (annihilation) operators for phonons
at site i. The code can deal with electrons and boson modes (photons, phonons) mutually in-
teracting in a lattice (the HH model is an example of this sort). The code can also be used for a
pure Hubbard model, or just a simple tight-binding Hamiltonian.

The code was first developed and written by C. Verdozzi in FORTRAN language. Later, it was
augmented with the optimal control functionality and translated to the Python language by his
student S. Ydman as part of his work with electron-phonon dynamics in Hubbard rings and
chains [17] and magnetic rings [18, 19]. The code was built starting from an existing module
for Python called QuTiP [20] (Quantum Toolbox in Python). The Quantum Toolbox in Python
is an open-source framework that includes several classes for creating and managing quantum
objects; a quantum object is a Class in QuTiP that is capable of encapsulating the properties
of a quantum operator and ket/bra vectors. QuTiP has served as a good framework for the
code, and offered simple routines such as calculating expectation values. The main features of
the code such as defining and constructing the basis and the Hamiltonian of the system, the
more efficient Lanczos-adapted time evolution routine and the optimal control functionality,
are independent of QuTiP.

In this initial phase of the optimization of the code, only fermionic degrees of freedom will be
considered, i.e. bosonic systems and fermion-boson interactions are not discussed. Specifically,
we focus on the Hubbard Hamiltonian, with phonons not considered in what follows. Neither
we will take into account thermal effects, magnetic fields or optimal control, these are left for
future work. Finally, a Hubbard dimer (i.e. a two-site system) will be used as example to
illustrate some of the features of the code, e.g. the construction of the set of basis states and of
the Hamiltonian.

3.1 BASIS STATES

An important step in solving any problem in quantum mechanics is presenting the basis states
for a possible representation of the system’s wavefunction. The dimer problem defined in
Section 2.3 is simple enough to analytically find the different combinations to organize a spin-
up and a spin-down electron in two-sites:

↑↓ ↑↓ ↓ . ↑ . ↑ . ↓ . ↑↓ ↑↓
1 2 3 4

The code allows the user to choose the initial parameters of the system of interest to create a
set of basis states. The initial parameters include: number of fermions with the desired spin
(nup, ndw), number of sites/orbits (norb), and an optional parameter to include phonons
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(nmode, nph). However, as specified earlier, phonons are outside the scope of the present
discussion for the Hubbard model. The class

Basis( nup, ndw, norb, nmode, nph)

returns the set of basis states as an object which has different attributes, such as the density
operator, the double density operator and more. For the dimer problem, the configuration
above can be described by the Basis class in the second quantization language by acting with
creation operators on the the vacuum state |vac〉 in the following manner:

|0〉 = ↑↓ ↑↓ =⇒ c†0↑c
†
0↓ |vac〉

|1〉 = ↓ . ↑ . =⇒ c†1↑c
†
0↓ |vac〉

|2〉 = ↑ . ↓ . =⇒ c†0↑c
†
1↓ |vac〉

|3〉 = ↑↓ ↑↓ =⇒ c†1↑c
†
1↓ |vac〉

As an example, the first basis state |0〉 physically describes two electrons with spin ↑ and ↓
occupying the site 0. The order of the creation operators can be switched with the consequential
negative sign. The choice does not matter as long as one sticks to a convention.

Finding the basis states becomes a tedious task when increasing the number of electrons and
sites. For example, a 12 site problem with half filling has 853776 basis states, which is still
considered a small system to be studied. The code constructs the basis states by considering
the ways of distributing spin up electrons N↑ and spin down electrons N↓ into the sites Ns,
i.e N =

(
Ns

N↑,↓

)
. The number of ways can be used to construct N -element sets, which after

performing a Cartesian product [21] of these sets returns the set of basis states.

3.2 KINETIC ENERGY OPERATOR

The kinetic energy operator in the matrix representation can be found using an attribute of the
Basis class. The attribute

hop_op( [(i,j)] , Value )

uses the set of basis states to find the matrix representation of the fermonic hoppings by solving
the following matrix elements: ∑

σ

tij 〈λ| c†i,σcj,σ |ν〉 , (3.2)

where λ and ν represent basis states. The entry [(i,j)] specifies the sites that the hopping
occurs between, while the argument Value specifies the value of the hopping parameter of the
nearest neighbor tij . The attribute includes an optional argument Spin where one can specify
the spin instead of summing over both spins as in (3.2).
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3.3 DENSITY OPERATOR

The density operator n̂i in the matrix representation is found using another attribute of the
Basis class. The attribute

dens_op( Site )

uses the basis states to find the density matrix by solving the following matrix elements:

ñλν ≡ 〈λ| n̂i |ν〉 = 〈λ| c†i,↑ci,↑ + c†i,↓ci,↓ |ν〉 . (3.3)

The attribute requires the entry Sitewhich specifies the site i, and returns the density matrix at
the chosen site. The attribute also includes an optional argument Spin. If the spin is specified,
the attribute returns the matrix elements of the number operator

ñ
(σ)
λν ≡ 〈λ| n̂i,σ |ν〉 = 〈λ| c†i,σci,σ |ν〉 . (3.4)

This attribute can be used to find the on-site energy part of the Hubbard Hamiltonian.

3.4 DOUBLE DENSITY OPERATOR

The double density operator is the product of two density operators with same site index but
with opposite spin. The operator in the matrix representation can be found by using an at-
tribute of the Basis class. The attribute

double_dens_op( Site )

uses the basis states to compute the following matrix elements:

〈λ|ni,↑ni,↓ |ν〉 . (3.5)

The attribute requires the entry Site which specifies the site i, and returns the double density
matrix at the chosen site. This attribute can be used to find the interaction part of the Hubbard
Hamiltonian Hint.

3.5 HAMILTONIAN

The code allows the user to define the Hamiltonian by using the set of basis states. The class

Hamiltonian( Basis )

takes the set of basis states as an entry and creates an empty matrix with dimensions equal to
the number of basis states. The Hhop and Hint parts are defined individually and then added to
form the full Hamiltonian of the system. That is done by using the attribute add_part of the
Hamiltonian class.
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The parts needed to assemble the full Hamiltonian can be found using the attributes presented
in Sections 3.2, 3.3 and 3.4. The full Hamiltonian for a system is presented as the sum of all the
parts as the following:

Hλν =
∑

ij

hop_op([(i,j)]) +
∑

i

hii(dens_op(i)) +
∑

i

Ui(double_dens_op(i))

=
∑

σ

∑

ij

tij 〈λ| c†i,σcj,σ |ν〉 +
∑

i

hii 〈λ| n̂i |ν〉 +
∑

i

Ui 〈λ| n̂i,↑n̂i,↓ |ν〉 . (3.6)

For the dimer system, the Hamiltonian with the defined parameters in Section 2.3 reads:

H =




U t t 0

t 0 0 t

t 0 0 t

0 t t U



. (3.7)

The matrices are stored in sparse format, which means that the non-zero elements of the matrix
are the only stored elements, thus saving storage space. Another advantage of the sparse matrix
storage is when it comes to performing computations, where the zero elements of the matrix
are not considered during, for example, matrix-multiplication.

3.6 EXACT DIAGONLIZATION

The code includes a function that exactly diagonalizes the given Hamiltonian and returns the
eigenfunctions |ψi〉 with their respective eigenvalues Ei. The lowest eigenvalue with its re-
spected eigenfunction correspond to the groundstate energy and the groundstate. The function

qt_eigs( H , nval , maxiter )

is a wrapper to the ARPACK library which uses the implicitly restarted Lanczos method to find
the eigenvalues and eigenvectors [22]. nval is the number of eigenvalues and eigenvectors to
calculate, and maxiter is the number of maximum iterations.

3.7 THE RESPONSE FUNCTION

A part of this thesis work is to implement a new function to calculate the density-density re-
sponse function in the frequency domain (2.26). The new implemented function

dens_freq( H , basis, w, Site i, Site j, nay)

takes as an input the Hamiltonian of the system H, the set of basis states basis, the range of
omega w, the choice of sites i, j and the broadening factor nay (η) . The function is constructed
using the discussed functions and attributes in the code.

The density-density-response function is built from the expectation values 〈ψ0|n̂i|ψn〉 and the
eigenvalues En. One can expand the groundstate and an excited state n in the basis states as:
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〈ψ0| =
∑

λ

mψ0

λ 〈λ| (3.8)

|ψn〉 =
∑

ν

mψn
ν |ν〉 (3.9)

where mψ0

λ is the expansion coefficient for 〈ψ0| in the basis states 〈λ|. The expectation value can
be written as:

〈ψ0|n̂i|ψn〉 =


∑

λ

mψ0

λ 〈λ|


 n̂i

(∑

ν

mψn
ν |ν〉

)
(3.10)

=
∑

λ,ν

mψ0

λ m
ψn
ν 〈λ| c†i,↑ci,↑ + c†i,↓ci,↓ |ν〉 . (3.11)

This is an example of how to use the code to construct new functions for different problems.
The matrix elements can be found using the dens_op attribute

〈ψ0|n̂i|ψn〉 =
∑

λ,ν

mψ0

λ m
ψn
ν dens_op(i), (3.12)

where the expansion coefficients mλ and the eigenvalues En are provided by the Eigensolver
qt_eigs discussed in Section 3.6. The same procedure is done for the expectation value at the
site j, and the density-density response function is then subsequently computed.

3.8 TIME EVOLUTION

The time evolution of a system can be obtained using the function

lanczos_te( H , psi0 , tlist , e_ops )

implemented in the code. The function solves the time-dependent Schrodinger equation

i
∂ψ(t)

∂t
= H(t)ψ(t) (3.13)

in an efficient way using the Lanczos-adapted time-evolution method [23]. The function takes
as an input the Hamiltonian of the system, the time range, the groundstate of the system and
a specified operator. The function then time-evolves the system and returns the expectation
value of a specified operator. In this work, this function is used to look at the full dynamics
of the density operator for the three systems defined in Section 2.3 under a chosen perturba-
tion and compare that with LRT results. The LRT results are obtained by introducing another
new function, which time-evolves the system and returns the expectation value of the density
operator following the premise in (2.16) for a specific perturbation.

Substituting the general response function in (2.19) with the density-density response function
defined in (2.21), and setting the lower limit t0 = 0 in order to not consider negative time
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values:

δ
〈
nj(t)

〉
=

∫ t

0
dt′
∑

i

fi(t
′)χji(t− t′). (3.14)

Inserting a complete set of unperturbed states in the commutator as in (2.24), the density-
density response function becomes:

χij(t− t′) = i
∑

n

( 〈ψ0|n̂i|ψn〉 〈ψn|n̂j |ψ0〉 eiẼ(t′−t)

−〈ψ0|n̂j |ψn〉 〈ψn|n̂i|ψ0〉 e−iẼ(t′−t)), (3.15)

where Ẽ = En − E0. The matrix elements 〈ψ0|n̂i|ψn〉 and the eigenvalues are found following
the same procedure discussed in Section 3.7.

The local perturbation f0(t′) at site 0 for both approaches is chosen to be:

f0(t
′) =





g0(t
′) =

A

2

(
1− 1

2

(
ei
πt′
T + e−i

πt′
T

))
, if t′ < T

A, if t′ > T.

(3.16)

The perturbation as shown in Figure 3.1 can be thought to be controlled with a knob that has a
maximum value of A, making the parameter T the time it takes for the perturbation to go from
0 −→ A.

0 5 10 15 20 25 30
t ′

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A

Perturbation f(t ′) 
T
f(t ′)

Figure 3.1: A figure that shows the perturbation used for both approaches with the parameters
set to A = 1 and T = 15 as an example.

Here, we specify the local perturbation to site 0 only, and we take the expectation value of the
density operator at the same site (site 0). Taking into account the conditions on the perturbation,
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the change in the expectation value of the density over time at site 0 in (3.14) becomes:

δ
〈
n0(t)

〉
=





∫ t
0 dt

′g0(t′)χ00(t− t′), if t′ < T

∫ T
0 dt′g0(t′)χ00(t− t′) +

∫ t
T dt

′Aχ00(t− t′), if t′ > T.

(3.17)

The change in the expectation value δ
〈
n0(t)

〉
is analytically solved in order to construct the

function

exp_dens_t( H , basis, t , T , A , i , j )

which computes δ
〈
n0(t)

〉
for the specified perturbation in (3.16). Then, the function calculates

the expectation value of the density operator in the ground state 〈ψ0| n̂0 |ψ0〉, which is done
following the same procedure in Section 3.7. Finally, the function exp_dens_t returns the
expectation value over time of the density operator:

〈
ψ(t)

∣∣ n̂0
∣∣ψ(t)

〉
LRT

= 〈ψ0| n̂0 |ψ0〉+ δ
〈
n̂0(t)

〉
. (3.18)

The function exp_dens_t takes as an input the Hamiltonian of the system H, the set of basis,
the range of t, the speed of the perturbation T , the strength of the perturbation A and the choice
of sites i, j which in this case are set to 0. This could be done for any arbitrary geometry, choice
and number of sites, and also in the future, in the presence of electron-phonon interactions.
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CHAPTER 4

RESULTS

In this chapter, we present the results produced by the two new functions added to the code.
First, we compute the imaginary part of the density-density response function in the frequency
domain for the three clusters defined in Section 2.3. Then, we calculate the expectation value
of the density operator over time for the dimer system using both full time dynamics and
LRT approach. We also expand the computations to the four-site and the six-site system to
determine the role that the system size plays. Finally, we conclude this chapter with a sketch
characterizing the regime where the two approaches agree.

4.1 DENSITY-DENSITY RESPONSE FUNCTION

In this section, the imaginary part of the density-density response function in the frequency
domain Sij(ω) is computed for the three clusters discussed in Section 2.3. The results are pro-
duced using the new implemented function in the code dens_freq. In the following, the
lorentzian broadening is set to η = 0.1, and the sites i, j are chosen to be the first site i = j = 0.
The common hopping parameter for the neighboring sites t is set to 1 and the frequency range
is set to ω = 10.

In Figure 4.1, the imaginary part of the density-density response function in the frequency do-
main S00(ω) is shown as a function of ω. The parameters that are varied are the number of sites
for L = 2, 4 and 6, corresponding to the systems previously defined, and the common Coulomb
interaction energy for U = 0, 3 and 6. As mentioned in Section 2.3, one can determine the ex-
citation energies of the system by using equation (2.26). The poles in Figure 4.1 represent the
excitation energies of the system as they correspond to when ω −→ (En − E0). For the three
clusters considered, we can see that an increase in the value of the common Coulomb interac-
tion energy parameter U results in shifting the poles towards a higher ω value, i.e. increasing
the excitation energies of the systems.
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Figure 4.1: A figure that shows the imaginary part of the density-density response function
S00(ω) as a function of ω with t = 1 and U=0,3 and 6 for the three systems with L = 2, 4 and 6.

In this work we do not wish to further pursue the analysis of these results, since our main aim
is to introduce the code and its functionalities. A more detailed analysis is deferred to future
work.
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4.2 TIME EVOLUTION

In this section, both the full time evolution and LRT results will be presented and compared.
The results are produced using the lanczos_te function implemented in the code and the
new function exp_dens_t added. In the following, the site perturbed is site 0, which is also
the site that the expectation value of the density operator is taken at. Therefore, in (3.17) the
choice of site i and j for χij are set to site 0. The hopping parameter between the sites is set to
t = 1 and the time range is set to 30. The parameters that are varied are U , T and A, which are
defined in Section 3.8.

Since there are three parameters to vary, three plots have been produced to cover the compar-
ison over all the parameters for the dimer system at half filling. In Figure 4.2, the parameters
T and U are kept as constants at U = 1 and T = 3 and the expectation value of the density
operator is computed for different values for the perturbation strengths A = 1, 0.5 and 0.1.
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0.9

1.0

A=1
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t)⟩

A=0.5
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t

0.97
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1.00

A=0.1
LRT
⟩ull

Figure 4.2: A figure that shows the comparison between full dynamics and LRT results of the
expectation value of the density operator at site 0 as a function of time. The expectation value
was computed for U = 1, T = 3 and for A = 1 ,0.5 and 0.1.

The two approaches seem to deviate at a relatively high perturbation value A = 1, while the
agreement increases as the perturbation value is decreased. This is already expected, as it was
an assumption of the LRT approach.

In Figure 4.3, the parameters U and A are kept as constants at U = 1 and A = 1, and the
expectation value of the density operator is computed for different values for T = 3, 5 and 16,
which controls the speed of the perturbation.
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Figure 4.3: A figure that shows the comparison between full dynamics and LRT results of the
expectation value of the density operator at site 0 as a function of time. The expectation value
was computed for U = 1, A = 1 and for T = 3 ,5 and 16.

Increasing the parameter T slows the speed of the perturbation and results in an adiabatic
smooth switching on of the perturbation. Slowing the perturbation increases the agreement
between full dynamics and LRT results.

Finally, in Figure 4.4, the parameters T and A are kept as constants at T = 3 and A = 0.5 and
the expectation value of the density operator is computed for different values for U = 1 ,4 and
8, which is the Coulomb interaction energy parameter.
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Figure 4.4: A figure that shows the comparison between full dynamics and LRT results of the
expectation value of the density operator at site 0 as a function of time. The expectation value
was computed for T = 3, A = 0.5 and for U = 1 ,4 and 8.

The increase in the Coulomb interaction energy parameter U improves the agreement between
both approaches by making the perturbation strengthA less influent. In that regime, the pertur-
bation is very small compared to the interactions in the system, making it almost insignificant.
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One can also see that the fluctuations of the expectation value for both approaches appear more
dephased in this regime.

4.2.1 THE EFFECT OF SYSTEM SIZE AND THE ROLE OF INTERACTIONS

Here, we extend our comparison to the four and six site systems defined in Section 2.3. The
speed of the perturbation is kept at a constant value T = 3, and the time range is set to 50. The
parameters that are varied are U , A, and the number of sites L. In Figure 4.5 we compare the
results for U = 1 and 4, A = 0.5 and 0.1 and for L = 4 and 6 sites.
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Figure 4.5: A figure that shows the comparison between full dynamics and LRT results of the
expectation value of the density operator at site 0 as a function of time. The expectation value
was computed for T = 3, U = 1 and 4, A = 0.5 and 0.1 for the two systems with L = 4 and 6 at
half filling.
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One can see that for larger systems, the full dynamic and LRT results also agree well at low
perturbation values. We noticed that increasing the number of sites affected the expectation
value of the density operator. Looking at Figure 4.5 and 4.2 for U = 1, when the perturbation is
atA = 0.5, the expectation value for the two-site system hovers around 0.8, while for the six and
four site system it hovers around 0.8. The perturbation is more effective in a larger system. For
a higher interaction value, it seems like a situation where this is the best agreement. However,
this is only apparent, since a higher U hinders large density oscillations. Furthermore, the
discrepancies noted at A = 0.5 are fully consistent with all the other comparisons.

One can see that the agreement between the full dynamics (FD) and the LRT approach favors
low perturbation strength, slow perturbation speed and high Coulomb interactions with an
increase in the disagreement otherwise. We conclude with characterizing the regime where
the two approaches agree for the dimer system only. We determine that by computing the
disagreement between the approaches using:

1

n

n∑∣∣∣
〈
n(tn)

〉
LRT
−
〈
n(tn)

〉
FD

∣∣∣ , (4.1)

where tn is the time with n being the number of increments taken between the range 0 −→ t.
Another set of calculations was done for the dimer system considering different values for the
parameters. The range of the parameters was increased to cover a bigger regime. The strength
of the perturbation is varied between A = 0.5, 1.5, 3, while the speed of the perturbation is var-
ied between T = 3, 10, 26 and the Coulomb interaction parameter is kept between U = 1, 4, 8.
Figure 4.6 represents the agreement of the LRT approach taken as a function of parameters A,
U and T . If the disagreement is lower than %5, a check sign is placed, while if it is between %5
and %10, a bar is placed, and if it is greater than %10, a cross sign is placed.
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Figure 4.6: A sketch that characterizes the agreement between full dynamics and LRT results
in computing the expectation value of the density operator over time.
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CHAPTER 5

OUTLOOK AND FUTURE WORK

In this Chapter, we will provide a brief summary of the results and the work done with this
code during the course of this project. We will also provide some information on how we plan
to proceed with future work developments.

In Chapter 2 we presented a brief description of the Hubbard model. Starting from the general
response function for any electronic system coupled to an external perturbation, we specialized
it to study the density-density response function for the Hubbard Hamiltonian. In Chapter 3
we provided a general description of the code/module and some of its functionalities. We also
showed the construction process of the two new functions that were added in the linear sector.
The code was used in Chapter 4 to simulate three systems: a Hubbard dimer (two-sites), a four-
site and a six-site linear chain, where the density-density response function was computed in
the frequency and the time domain for all systems. The time domain density-density response
function was used to compute the expectation value of the density operator over time under the
specified perturbation in Section 3.8. The results were compared with the full time dynamics
characterizing the regime where the two approaches are equivalent. Overall, we saw that the
LRT results are applicable only in the presence of a weak perturbation. Lastly, in Appendix A
we expanded the preliminary document received by Simon Ydman to create a booklet for the
/ExCITeD/ code.

As mentioned in Chapter 3, the /ExCITeD/ code is originally aimed at solving the HH model,
while also being capable of solving the pure Hubbard model. The functions included in the
linear sector were applied to the Hubbard model, targeting purely electronic systems. A possi-
ble expansion of this work could be to generalize the functions in the linear sector to the more
general HH Hamiltonian, including electron-phonon interactions.

In physics programs all over the world, simulations are used in classrooms as a tool to help
students to understand concepts. The first and most familiar encounter is perhaps in the subject
of classical mechanics. Whether it was for projectile motion of objects, elastic collision or just
a simple pendulum, the simulations have proven to be a great supplement to the student’s
understanding. We believe that this code has the potential of being a useful simulation tool
used for teaching purposes. The obvious way to proceed on this route would be to construct
a graphical user interface (GUI) for this code, allowing teachers and students to use the code
without the requirement of having advanced skills in Python programming.
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APPENDIX A

BOOKLET

This booklet is a largely expanded version of a very preliminary private document received by
Simon Ydman. The aim of the booklet is to guide the user through the installation and running
process. It also include worked out examples for the purpose of familiarizing the user with the
functionalities of the code. The goal of this booklet is to get the user to use and combine the
functionalities of the code and apply them to solve problems.
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1 ABOUT

1.1 ABOUT THIS DOCUMENTATION

This documentation contains a user guide and an API documentation for the ExCITed
module.

1.2 ABOUT EXCITED

The purpose of this code is to investigate the dynamics of systems with electron-
electron and electron-phonon interactions. The target model of ExCITed is the
Hubbard-Holstein Hamiltonian, but it is also able to handle a pure Hubbard model
or a simple tight-binding Hamiltonian. The code provides the user with the ability to
perform different tasks. The following is a brief summary of what ExCITed is capable
of providing:

• Set up a system with chosen number of sites, number of electron and phonons.

• Construct different operators such as the density operator, kinetic energy opera-
tor, spin operators and more.

• Construct and diagonalize the Hamiltonian of the system.

• Expectation values for various operators.

• Time Evolution using Lanczos-adapted time-evolution method.

• Optimal control.

• Temperature dependent expectation values.
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2 INSTALLATION

2.1 REQUIREMENTS

ExCITed depends on several open-source libraries for scientific computing in the
Python programming language. The following packages are required:

Package Version
Python 2.7+
NumPy 1.8+
SciPy 0.15+
Matplotlib 1.2.1+
Cython 0.21+
Python Headers 2.7+
QuTiP 4.2+

2.2 INSTALLING ON MICROSOFT WINDOWS

ExCITed is built around the pre-existing open-source package QuTiP. The issue when
getting the package ExCITed to work on Microsoft OS is due to the installation of
the package QuTiP. Microsoft OS has some issues with its default compiler, and for
that reason installing QuTiP is not easy. The recommended way is through installing
Anaconda, and using Microsoft Visual Studio as a compiler.

2.2.1 ANACONDA

Download the Python 3 Version from Anaconda’s official website https://www.
anaconda.com/download/. When installing please make sure to check in the box
that says “Add Anaconda to my Path environment variable”. After finishing the in-
stallation, open the Command Prompt and type in python to check that your instal-
lation was successful.

2.2.2 MICROSOFT VISUAL STUDIO

Microsoft Visual Studio is essential for the installation of the QuTiP package; unfor-
tunately the default compiler on Microsoft OS will not do. Microsoft Visual Studio is
free to download from Microsoft’s official website. The recommended version is the
2015 version. Make sure to select the option for the C++ compiler.
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2.2.3 QUTIP

After installing Anaconda and Microsoft Visual C++ 2015 Build tools, we are now able
to install the QuTiP package. We can install the QuTiP package by opening Visual
C++ Command Prompt and using the pip command, which is done by typing in pip
install qutip in the Command Prompt. To check that QuTiP was successfully
installed we can open python and import the package by running the following code:

In [1]: import qutip as qt

2.3 IMPORTING

ExCITed does not currently include a "setup.py" file and so it can not be installed.
Importing the ExCITed package can be done by either adding a new path for python
to search in, or by moving the package to an existing python path.

2.3.1 ADDING A NEW PATH DIRECTORY

We have to add a new path to the list of directories Python goes through when search-
ing for modules. We can do that by using the append method to add a new directory
to the path, in the following example the ExCITed file (which contains __init__.py)
is on the desktop.

In [1]: import sys
sys.path.append("c:/users/yasse/desktop")

After that to import ExCITed by running the following code:

In [2]: import excited as ex

Pysparse not found -> davidson_gs cant be used!

2.3.2 MOVING EXCITED TO A PYTHON PATH

To identify the list of directories Python goes through to search for modules we run
the following code:

In [3]: import sys
print(sys.path)

['', 'C:\\Users\\yasse\\Anaconda3\\python36.zip',
'C:\\Users\\yasse\\Anaconda3\\DLLs',
'C:\\Users\\yasse\\Anaconda3\\lib'...]

Python will provide a list of options for us. We can move the ExCITed package to one
of those directories. After that, we can continue to import ExCITed in the same way as
we did before.
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3 GUIDE

The aim of this guide is to teach us how to use the ExCITed package. When solving a
problem using matrix representation, the first thing is to choose a basis. ExCITed does
this for us and we only have to specify the number of spin up and spin down electrons,
the number of electronic orbits and optionally phonon modes and trunkation for each
mode. In this guide however, we will only look at electronic systems.

3.1 BASIS

The Basis class constructs a complete set of basis states of the Hubbard-Holstein
Hamiltonian. It is also possible to use the class for a pure Hubbard or a simple tight-
binding Hamiltonian. We will look at a pure Hubbard model, and explain it with a
worked out example. The Hubbard model Hamiltonian formally is given by:

H = −t
∑

<i,j>σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑

i,j

ni,j↑ni,j↓ (3.1)

where c†iσ (ciσ) creates (annihilates) a fermion in a single particle orbital localized at site
iwith a specified spin σ, t is the hopping parameter, U is the Coulomb force parameter
and ni↑ is the number operator which is defined as ni↑ = c†i↑ci↑. The fermionic operators
satisfy the anti-commutation relations

{
c†i , cj

}
=δij

{
c†i , c

†
j

}
=0

{
ci, cj

}
=0. (3.2)

The easiest way to describe the essence of this model is by taking an example of the
two-site Hubbard model labeled 0,1 as follows:

↑↓︸︷︷︸
0

↑↓︸︷︷︸
1

the Basis class allows us to choose how many spin-up electrons and spin-down elec-
trons to add to the sites. In the following example we will stick to 1 spin-up electron
and 1 spin-down electron. For the two-site case it is possible to analytically find out
the set of basis sates for two electrons in a singlet configuration. The four possible
basis states are:

↑↓ ↑↓︸ ︷︷ ︸
c†0↑c

†
0↓

↓ . ↑ .︸ ︷︷ ︸
c†1↑c

†
0↓

↑ . ↓ .︸ ︷︷ ︸
c†0↑c

†
1↓

↑↓ ↑↓︸ ︷︷ ︸
c†1↑c

†
1↓

in terms of the creation operator. We can get the basis states through ExCITed by
running the following code:

In [21]: import excited as ex
nup, ndw = 1, 1
norb= 2
basis=ex.Basis(nup, ndw, norb)
print('# u d')
print(basis)
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# u d
0 [0 0]
1 [1 0]
2 [0 1]
3 [1 1]

where the output of the code is equivalent to:

|0〉 = c†0↑c
†
0↓ |vac〉

|1〉 = c†1↑c
†
0↓ |vac〉

|2〉 = c†0↑c
†
1↓ |vac〉

|3〉 = c†1↑c
†
1↓ |vac〉

the basis class contains a number of attributes to create various operators. In the fol-
lowing, we will discuss the first attribute which is the kinetic energy operator.

3.1.1 KINETIC ENERGY OPERATOR

This attribute provides us with the kinetic energy part of the Hamiltonian. Which
represents the probability of electrons tunneling from one site to another. We will
continue with the two-site example to show how the attribute works. In the two-site
case, the hoping can occur from site 0 to site 1 and the oposite. The attribute requires
as an input a list which contains the two sites chosen by the user for the allowed
hoppings. In the two-site case we choose that the electrons hops from site 0 to site 1.
The first step is to define the list.

In [3]: hoplist=[(0,1)]

now that we have defined the list of possible hoppings we can call on the attribute to
present the kinetic operator. The list that we chose is interpreted as the subscripts of
c†c. ExCITed then solves the the matrix elements 〈λ|c†icj|ν〉 where λ,ν runs over the
basis states defined previously. Analytically this is done by solving the following:

〈λ|c†icj|ν〉 =[λ = 0, ν = 1, i = 1 ↑, j = 0 ↑] (3.3)

= 〈0|c0↓c0↑c†1↑c0↑c†1↑c†0↓|0〉 = 1 (3.4)

ExCITed solves the matrix elements and provides us with the kinetic energy operator
by running the following code:

In [4]: h_hop=basis.hop_op(hoplist)
print(h_hop)

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper
, isherm = True
Qobj data =
[[ 0. -1. -1. 0.]
[-1. 0. 0. -1.]
[-1. 0. 0. -1.]
[ 0. -1. -1. 0.]]
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the attribute also includes optional inputs for the user to choose arguments such as
spin, symmetry, and the value of the hopping parameters. Check the API Documen-
tation section for details.

3.1.2 DENSITY OPERATOR

The density operator attribute allows the user to choose a specific site for which Ex-
CITed acts on that operator with the defined basis to produce the density matrix. For
example, if we choose the site 1 then ExCITed interpret that input as the subscripts of
c†ici and solves the matrix elements 〈λ|c†1c1|ν〉.
In [5]: basis.dens_op(1)

Out[5]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True




0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 2.0




3.1.3 DOUBLE DENSITY OPERATOR

The double density operator attribute allows the user to choose a specified site for
which ExCITed interprets the input as the subscripts of ni↑ni↓. For example, if we
choose site 0 then ExCITed solves the matrix elements 〈λ|n†

0n0|ν〉.
In [21]: basis.double_dens_op(0)

Out[21]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True




1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0




This attribute proves helpful when finding the interaction part of the Hubburd Hamil-
tonian in (3.1).

In [22]: U_value=2
ni_ni=sum([basis.double_dens_op(i) for i in range(norb)])
H_u=U_value*ni_ni
print(H_u)

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[2. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 2.]]
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3.1.4 SPIN OPERATORS

Spin-spin correlations provide information about the magnetic state of a system. Ex-
CITed allows us to choose two sites which then returns a list of operators used to find
spin-spin correlations and concurrence.

In [6]: basis.spin_ops(0,1)

Out[6]: [Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4),
type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]],
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4),
type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 0.]],
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4),
type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]],
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4),
type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]],
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4),
type = oper, isherm = True
Qobj data =
[[ 0. 0. 0. 0. ]
[ 0. 0. -0.5 0. ]
[ 0. -0.5 0. 0. ]
[ 0. 0. 0. 0. ]]]

where the first four operators correspond to:

ni↑ · nj↑
ni↑ · nj↓
ni↓ · nj↑
ni↓ · nj↓
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and last operator is the spin flip operator of sites i and j. For example, we can use the
operators above to find the spin-spin correlation operator:

SizS
j
z =

1

4
(ni↑ · nj↑ + ni↑ · nj↓ + ni↓ · nj↑ + ni↓ · nj↓) (3.5)

In [24]: SizSjz=0.25*sum([basis.spin_ops(0,1)[i] for i in range(4)])
print(SizSjz)

Out[24]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True




0.0 0.0 0.0 0.0
0.0 0.250 0.0 0.0
0.0 0.0 0.250 0.0
0.0 0.0 0.0 0.0




3.1.5 CURRENT OPERATOR

The current operator that represents the current from site i to j is given by:

Jij = t(−ic†icj + h.c.) (3.6)

ExCITed allows us to choose the two sites i and j and returns the current operator by
acting on it with the basis defined.

In [7]: basis.curr_op(0,1)

Out[7]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = False




0.0 0.0 0.0 0.0
−2.0j 0.0 0.0 0.0
−2.0j 0.0 0.0 0.0
0.0 −2.0j −2.0j 0.0




3.2 EXPECTATION VALUES

If we are interested in some observable we must turn to the functions in the QuTiP
package. In QuTiP, that is done by the function expect, which takes two arguments,
an operator and a state vector. Up untill this point, we know very well how to define
an operator. The state vector on the other hand, can be found using the groundstate
method in the QuTiP package. The groundstate method returns the grounstate
energy and the groundstate vector of a Quantum object1 . For example, if we want to
find the groundstate of the kinetic energy operator:

1A Quantum object is a class in QutTiP that has many attributes such as expect and groundstate.
For more information please check the package QuTiP.

8



In [10]: e0, psi0=h_hop.groundstate()
print('Groundstate energy:', e0)
print('\nGroundstate vector',psi0)

Groundstate energy: -2.0

Groundstate vector Quantum object: dims = [[2, 2], [1, 1]],
shape = (4, 1), type = ket
Qobj data =
[[-0.5]
[-0.5]
[-0.5]
[-0.5]]

Now that we have the state vector we can go on to calculate the expectation value
using the function expect. The simplest case is perhaps the density operator.

In [12]: dens_op_0=basis.dens_op(0)
print('Density at site 0:\t\t',qt.expect(dens_op_0,psi0))

Density at site 0: 1.0

The function expect can also take as an input a list of operators.

In [14]: dens_ops=[basis.dens_op(i) for i in range(norb)]
print('Density at [site0 , site 1]:\t',qt.expect(dens_ops,psi0))

Density at [site0 , site 1]: [1. 1.]

We will also demonstrate how useful the function groundstate is by a simple ex-
ample in which we compute the groundstate energy of different values of the on-site
Coulomb interaction in the dimer.

In [16]: import matplotlib.pyplot as plt #Importing the plotting package
%matplotlib inline
import numpy as np # Importing numpy for the linspace command

#Create onsite interaction operator.
h_u=sum([basis.double_dens_op(i) for i in range(norb)])
Us=np.linspace(0,10,11)
e0s=np.empty(11)

#For all the different U-values
for i,U in enumerate(Us):

e0,psi0=(h_hop+U*h_u).groundstate()
e0s[i]=e0

9



plt.figure(figsize=(9,5))
plt.plot(Us,e0s,'-o',linewidth=2,markersize=8)
plt.title('Groundstate energy of dimer',size=16)
plt.xlabel('$U/t$',size=20)
plt.ylabel('$\epsilon_0/t$',size=20)
plt.show()
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3.3 CONSTRUCTING THE HAMILTONIAN

The Hamiltonian in ExCITed is a class that is defined from the basis. ExCITed con-
structs the Hamiltonian by running the following code:

In [17]: H=ex.Hamiltonian(basis)

After we initialize the Hamiltonian we can start to add parts to it such as the kinetic
energy part by using the following attribute:

In [18]: H.add_part(h_hop)

The Hamiltonian class has the attribute evalutate for which ExCITed returns the
Hamiltonian evaluated at a specific time as a QuTiP quantum object. For example if
we want to evaluate the Hamiltonian at time zero:

In [19]: H.evaluate(0)

Out[19]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True




0.0 −1.0 −1.0 0.0
−1.0 0.0 0.0 −1.0
−1.0 0.0 0.0 −1.0
0.0 −1.0 −1.0 0.0



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Now we can us to use a QuTiP method such as the groundstate on the Hamiltonian:

In [27]: e0, psi0 = H.evaluate(0).groundstate()
print('Groundstate energy=',e0)
print('Groundstate:\n',psi0)

Groundstate energy= -2.0
Groundstate:
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[-0.5]
[-0.5]
[-0.5]
[-0.5]]

The Hamiltonian class has one more attribute which is assemble. The assemble at-
tribute combines all the added parts to the Hamiltonian and prints out the full Hamil-
tonian as a quantum object. For example, we can add the kinetic part and the interac-
tion part and then assemble the Hamiltonian by running the code:

In [29]: H.add_part(h_hop)
H.add_part(h_u)
H.assemble()

Out[29]: [Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4),
type = oper, isherm = True
Qobj data =
[[ 1. -1. -1. 0.]
[-1. 0. 0. -1.]
[-1. 0. 0. -1.]
[ 0. -1. -1. 1.]]]

3.4 TIME EVOLUTION AND QUANTUM SYSTEM DYNAMICS

In this section we will demonstrate how to compute the time evolution of a system
with external fields. In the following example we perturb the energy level of the first
site in time, and compute the time evolution of :

Ĥ(τ) = Ĥhop + γ(τ)n̂0 (3.7)

We have already defined Ĥhop and n̂0. What is left is to define the perturbation γ. The
perturbation chosen for this example is :

γ(τ) =





0 if, τ ≤ 0
t
4

if, 0 < τ < 4

1 if, τ ≥ 0

(3.8)

Time dependent functions like γ is declared using def keyword in python.
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In [30]: def linear_quench(t,args={}):
if t<= 0:

return 0.
if t<4:

return t/4.
else:

return 1.

we can see how our perturbation looks like by plotting it:

In [31]:# Vectorize function for plotting purposes
vquench=np.vectorize(linear_quench)

tlist=np.linspace(0,10,1000)
plt.plot(tlist,vquench(tlist),linewidth=2)
plt.ylim(0,1.1)
# Title and labels.
plt.title('$\gamma(\\tau), \quad \\tau \in [0,10]$',size=20)
plt.xlabel('$\\tau / [\hbar/t]$',size=18)
plt.ylabel('',size=18)
plt.show()

0 2 4 6 8 10
τ/[ħ/ħ]

0.0

0.2

0.4

0.6

0.8

1.0
γ(τ), τ∈ [0, 10]

note that linear_quench take two argument (t and args). This is one of the not so
pretty solution in QuTiP (it would have been possible to do this prettier using unpack-
ing dictionaries), but as it is now the extra argument (args) is needed to preform the
time-evolution.
Now that we have all the components of the full Hamiltonian we can add them:

In [32]: H.add_part(h_hop) # add h_hop to Hamiltonian
H.add_part(dens_op_0,linear_quench)# add dens as time dependent part
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ExCITed has a time evolution solver function which is lanczos_te. The
lancozs_te function evolves a given state vector using lanczos adapted time-
evolution, and returns the expectation values of specified operators.

In [55]: e0, psi0 = H.evaluate(0).groundstate()
#QuTiP Evolver
res_sesolve=qt.sesolve(H.assemble(),psi0,tlist,dens_ops)
# Lanczos Evolver
res_lanczos=ex.evolve.lanczos_te(H.assemble(),psi0,tlist,

dens_ops)
#Plot
plt.plot(tlist,res_sesolve.expect[0],'c-',

label='sesolve: site 0',linewidth=3)
plt.plot(tlist,res_sesolve.expect[1],'y-',

label='sesolve: site 1',linewidth=3)
plt.plot(tlist,res_lanczos.expect[0],'k--',

label='sesolve: site 0',linewidth=3)
plt.plot(tlist,res_lanczos.expect[1],'r--',

label='sesolve: site 1',linewidth=3)
plt.legend(bbox_to_anchor=(1.0,0.75),ncol=1,fancybox=True,

shadow=True)
plt.show()

0 2 4 6 8 10
t

0.6

0.8

1.0

1.2

1.4

 <
n(
t)

>
 

sesolve: site 0
sesolve: site 1
Lanczos: site 0
Lanczos: site 1

as you can see we have also used QuTiP’s evolver and plotted the results. The time
evolution solver in QuTiP is becoming very slow for large systems and that is why
ExCITed has its own time evolution solver
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In [56]: print('QuTiP se_solve speed test:')
%timeit qt.sesolve(H.assemble(),psi0,tlist,dens_ops)
print('excited lanczos speend test')
%timeit ex.evolve.lanczos_te(H.assemble(),psi0,tlist,dens_ops)

qutip se_solve speed test:
2.75 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
excited lanczos speend test:
980 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

3.5 DENSITY-DENSITY RESPONSE FUNCTION IN THE FREQUENCY

DOMAIN

In this section we will demonstrate how to compute the density-density response func-
tion in the frequency domain for the two-site system that we have been working with.
The response function in the frequency domain is given by:

χij(ω) =
∑

n

[ 〈ψ0|n̂i|ψn〉 〈ψn|n̂j|ψ0〉
ω − (En − E0) + iη

− 〈ψ0|n̂j|ψn〉 〈ψn|n̂i|ψ0〉
ω + (En − E0) + iη

]
(3.9)

where i and j are the sites chosen. The function dens_freq computes the imaginary
and real part of this quantity for us. As an input we must include the Hamiltonian that
describes the system, the basis of the system, the range of ω, the desired broadening
value η and the two desired sites. To remind us, we have:

In [59]: H=ex.Hamiltonian(basis)
H.add_part(h_hop)
H.add_part(h_u)
H.assemble()

Out[59]: [Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4),
type = oper, isherm = True
Qobj data =
[[ 1. -1. -1. 0.]
[-1. 0. 0. -1.]
[-1. 0. 0. -1.]
[ 0. -1. -1. 1.]]]

In the following example we will compute the response function χ00(ω) with the
broadening η = 0.1 and the range of ω goes from 0 −→ 10.

In [74]: Response_omega=
ex.response.dens_freq(H.assemble(),basis,10,0,0,0.1)
plt.plot(np.linspace(0,10,1000),np.real(Response_omega))
plt.xlabel('$\omega$')
plt.ylabel('$Re[\chi_{00}(\omega)]$')

14



0 2 4 6 8 10
ω

−2

−1

0

1

2
Re

[χ
00
(ω
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In [75]: plt.plot(np.linspace(0,10,1000),
(-1/np.pi)*np.imag(Response_omega))

plt.xlabel('$\omega$')
plt.ylabel('$Im[\chi_{00}(\omega)]$')
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Im
[χ

00
(ω

)]

15



4 API DOCUMENTATION

4.1 CLASSES

4.1.1 BASIS

class Basis ( nup , ndw , norb , nmode=0 , nph=[] )

A class that contains a constructor for the complete basis set as well as a number of
attributes that return different components of the Hubbard-Holstein Hamiltonian.

Parameters:
nup: Number of spin-up electrons.

ndw: Number of spin-down electrons.

norb: Number of orbitals (or sites).

nmodes: Number of phonon modes.

nph: List of phonon subspace dimension for each of the phonon
modes.

Attributes:
.dens_op( site, spin=’ ’, mat=False):

Returns density operator for the site chosen as a QuTiP qobject
(Scipy sparse matrix if specified).

Args:
site: Site for which to return the density operator

spin: Optional argument for spin densities (’up’ for spin up
density and ’dw’ for spin down density). Default is ’ ’.

mat: Optional argument. Set to True to return a Scipy sparse
matrix instead of QuTiP qobject.

.hop_op( hoplist, V=-1, spin=’ ’, sym=True):

Returns matrix representation for fermionic hoppings
as a QuTiP quantum object.

Args:
hoplist: A list containing tuples of the allowed hoppings.

For example, [(0, 1), (1, 3)] for fermionic hoppings
from site/orbital 0 to 1 and 1 to 3.

V: Optional argument for the hopping amplitude.
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Default value is -1 for regular fermionic site hoppings.

spin: Optional argument. Specify the spin.

sym: Optional argument that indicates if the hopping should
be symmetric (Default True). Change when different
values of the hopping is needed, e.g. 0 -> 1 and 1 -> 0.

.spin_ops( s1, s2):

Returns a list of operators used for spin-spin correlations
and concurrence.

Args:
s1: site i

s2: site j

.curr_op( i, j, V=-1, spin=”, func=None):

Returns the current operator for the bond from site i
to site j.

Args:
i: Number of the first site.

j: Number of the first site.

V: Optional argument, hopping amplitude. (Default -1).

spin: Optional argument for spin current. ’up’ for
spin up current and ’dw’ for spin down current.

func: Optional argument if the spin operator changes in time.

.double_dens_op(site):

Returns double density operator for site.

Args:
site: Site for which to return the density operator
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4.1.2 HAMILTONIAN

class Hamiltonian ( Basis )

Class object for handling Hamiltonians consisting of time dependent and time inde-
pendent parts. The class contains attributes for adding parts to the Hamiltonian, eval-
uate it at a specific time t, and to assemble it for time evolution solvers.

Parameters:
basis: excited basis object that contains the basis of the Hamiltonian

as well as other useful information.

Attributes:
.add_part( H_part, w=1):

Adds a part to the Hamiltonian.

Args:
H_part: New part of the Hamiltonian. H_part should be

a QuTiP Qobj with a dimension corresponding to
the full basis, the bosonic or the fermionic part.

w: Optional argument that specifies the weight of H_part.
If w is time independent, H_part will be added to H_0
otherwise it will be added to TD_parts. w can be a constant,
function or Cython string. (Default:1)

.evaluate( t,args=):

Returns the Hamiltonian evaluated at a specific time as a
QuTiP qobject.

Args:
t: Time.

args:Dictionary containing arguments for the time
dependent functions in TD_parts.

.assemble():

Return the Hamiltonian for TD solvers in QuTiP.
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4.2 FUNCTIONS

4.2.1 LANCZOS

lanczos_te(h, psi0, tlist, e_ops, **kwargs)

Time-evolve system the specified system and returns the expectation values of speci-
fied operators. This function, time evolves psi0 using Lanczos adapted time-evolution.
The structure and functionality mimics QuTiP solvers.

Args:
h: Hamiltonian of the system. This can be passed as a QuTiP

object or as a list of lists [[H1, f1], [H2, f2], ...], with f1, and
f2 being the corresponding weight functions to
the Hamiltonian parts H1 and H2.

psi0: Initial state of the system described by a QuTiP qobject.

tlist: List or array of times for which to evolve the system.
Typically tlist is the result of a numpy linspace
function call.

e_ops: List of operators for which to calculate expectation
values for. If the operators change with time, it is also
possible to pass a list of lists, e.g. [[o1,f1],[o2,f2], ...].
Here f1 and f2 are weight functions to operators
o1 and o2

4.2.2 DENSITY-DENSITY RESPONSE FUNCTION IN THE FREQUENCY DOMAIN

dens_freq(H , basis, w, i, j, nay, plot= ”)

Returns the density-density response function as a function of ω using the Hamilto-
nian.

Args:
H: Hamiltonian object (Qobj or a list containing a Qobj object).

basis: An excited object which represents the complete set
of Hubbard-Holstein basis vectors.

w: range of omega (The frequency).

i: Site i.

j: Site j.

nay: Broadening constant.

plot=’ ’: Optional argument for plotting:
-’real’: plots the real part of the function
-’imag’: plots the imaginary part of the function
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