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Abstract

A growing problem in many cities is that the traffic demand fluctuates heavily dur-
ing the day and that it grows larger as the years go by. This calls for, and the tech-
nology to easier measure traffic enables, more efficient traffic light controls that can
handle a greater traffic demand but also be adaptive. Centralised control of traffic
light might, even though it can be both adaptive and efficient, be costly to install
and expand due to the required communication between junctions. Decentralised
control however, might be cheaper to install and maintain while still being adap-
tive and efficient. This thesis explores the Proportional Allocation controller with
regards to its tuning parameter under conditions imposed by e.g., network size and
topology, and queue sensor length. Two aspects of its performance were measured:
optimality and fairness. In addition to the original controller two modifications are
proposed and evaluated. It was found that when simulating, smaller networks could
be used to approximate bigger ones, and that the queue sensor length is of critical
importance not to be too small. The proposed modifications were found to perform
similarly to the original one even though it in principal should not. The results herein
should give a good starting point of the optimal value of the tuning parameter in a
real-world implementation.
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1
Introduction

Figure 1.1 Image from [Long light]. Randall Munroe, Long light.

On the 9th of December 1868 the first traffic light in the world was installed. It was
situated just outside the Houses of Parliament in London and was a gas-lit contrap-
tion showing green light in one direction and red in the other. It soon exploded,
injuring the policeman who operated it. However, during its brief lifetime it is said
that it successfully controlled the traffic and lowered the congestion. The idea was
fruitful and just after the turn of the century, traffic signal systems like the one in
London were in place all over the United States of America. As time went by, with
the help of electric lights, the traffic signals in the same junction were made to
function from a central control box. Then several junctions were put together to be
controlled from the same control system. After the second world war, with the rise
of computers, the traffic lights started to be controlled by computers together with a
pressure plate sensor, to see if there was a queue waiting at a red light. For example,
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Chapter 1. Introduction

in Denver 1952, a computer controlled 120 lights with a total of 6 pressure plates as
the input signal. [Wikipedia, 2018]

As traffic demand, computer power and interconnectedness has increased, cen-
tralised control has been implemented. Centralised control is when a control unit
controls the traffic lights in several junctions simultaneously. This enables inven-
tions such as green waves, which is when a series of traffic lights, are coordinated
to allow continuous traffic flow over several junctions in one main direction.

The problem with centralised control is that the infrastructure to implement it
can be rather resource demanding because communication systems need to be set in
place. In recent years therefore, with more sophisticated sensors, and research done
in queue theory in computer networks, research has been done on decentralised
controllers. This means that the traffic light control system in each junction only
has information of that junction.

Most notably among the proposed decentralised controllers is the Max pressure
controller by [Varaiya, 2013] that is an adaptation of earlier works for communica-
tions networks in [Tassiulas and Ephremides, 1992]. However, this controller needs
information about the traffic turning ratios beforehand, i.e., what fraction of vehi-
cles that are going where. This type of controller is also called a Back-pressure
controller. In [Gregoire et al., 2014] it has been adapted to function without prior
known turning ratios. However, this adaptation is no longer throughput optimal.
Simulations done by the authors of that article shows that the loss of optimality is
around 20%.

The main problem of traffic junctions as pointed out in [Roess et al., 2011] is
that vehicles have to accelerate. This means that when a queue gets a green light it
takes some time to get up to full speed. The consequence of this is that each time the
lights switches, because of non-optimal flow in the beginning, some time that could
be used to let cars drive, is lost. This is called lost time. If drawn to the extreme: if
the lights are switched very frequently (a very short cycle length), i.e. disco-lights,
no vehicle has enough time to drive through the junction. On the other hand, if the
lights are switched every other day (a very long cycle length), in some sense it is no
longer a traffic light. Somewhere in between is the optimum between not having too
long to wait for green light and having enough time to drive, while still maintaining
traffic capacity.

The Max pressure/Back pressure controller does take this into consideration.
However, only with a static cycle time. In the last few years work has been done
to try to set the cycle length of the traffic lights in a decentralised control adap-
tively, with the queue lengths as inputs, so as to keep optimal control even with
varying traffic demand. Higher traffic demand requires a longer cycle time because
of the aforementioned time to switch lights. In [Kovacs et al., 2016] it is proposed
to change the cycle length dynamically and to set it to be proportional to the square
root of the sum of queues. However, the intent in that paper, is to change the cycle
times in an iterative learning control manner, using the traffic from previous days
to determine the cycle times of the upcoming day. This means that there is an as-
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Chapter 1. Introduction

sumption of traffic being very similar day to day, and that the adaptiveness is slow.
In [Nilsson and Como, 2018] the proposition is a cycle time that is proportional
to the sum of the queue lengths and inversely to a tuning parameter, which will be
more clarified later in Chapter 2.2. For now, it can be said that this controller works
independently of previous information in time.

All of the previously mentioned control strategies have been formulated and
explored in a highly theoretical way, with simplistic models to be able to prove
stability and to be able to understand them better. Some of them have been simu-
lated, where [Nilsson and Como, 2018] has gone the furthest. In that paper simula-
tions have been done with the proportional allocation controller with dynamic cycle
lengths in a microscopic traffic simulator, SUMO.

Aim of thesis
The main problem that this thesis tries to answer is how to tune the Proportional
Allocation controller. This, in essence, is an optimisation problem - to minimise or
maximise something. Here the main points of interest are to minimise the amount
of traffic in the network, in this thesis called optimality, and to do this in a fair way.
Both of these points will be presented later in Chapter 3. However, to achieve op-
timality in a certain city might require different settings than in another city. The
main interest then becomes to see how different operation conditions affect the tun-
ing of the controller. Two modifications to the controller are also suggested and the
same sort of results are produced for these. Performance comparison is also carried
out to a smaller extent. The different areas that are investigated are summarised in
the following list:

• Controller modifications

• Network particulars

– Size
– Topology
– Traffic demand

• Sensor length

• Performance

Outline of this Master’s thesis
This thesis first goes on to explain the traffic models and controllers along with
modifications in Chapter 2. In Chapter 3 the ”Network particulars” in the list are
investigated as well as some introductory investigations into the affects of the sen-
sor length. The sensor length, and its effects on stability and tuning, is more closely
examined in the next chapter, Chapter 4. Lastly, a comparison between the propor-
tional allocation controller and the Back-pressure controller is carried out in Chapter
5.

11



Chapter 1. Introduction

Figure 1.2 An illustration of the problem setting. This is a junction in a bigger net-
work of roads that are connected in a certain way. In the picture the lanes that allow
horizontal vehicles to drive straight and to turn right receive green light. Sensors are
used to detect queues, however, they may be limited in length and therefore might
not be measuring the whole queue.

Summary of introduction
To summarise: the problem at junctions is to control the traffic flow via traffic lights
to achieve better traffic flow. Reference Figure 1.2 for an image. This is not easy
because vehicles can collide and need to accelerate. Collision possibilities means
that not all vehicles can drive at the same time. Therefore, the lights need to switch
between green, yellow and red. Because of the need for acceleration, the switching
incurs overhead switching times. The need to switch also begs the question of how
long time to receive green light. This is determined by some controllers by having
sensors in the road to detects vehicles. However, the sensors have a limited length.
When a control strategy is decided the following problem is to tune it, if necessary.
This is not easy either since it can depend a great deal on a variety of things, e.g.
network topology and network size.
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2
Models of Traffic Networks
and Controllers of Traffic
Signals

In this chapter first a theoretical understanding of general traffic models will be
explained, then the macroscopic model used in MATLAB simulations will follow.
Lastly, the microscopic simulator SUMO and its associated tools will be described.

2.1 Mathematical theory

Traffic networks as graphs
Road networks can be described with mathematical graph theory and the mathe-
matical tools therein. Where different roads meet, i.e. an intersection or a junction,
is a node. Here the term junction will be used to mean the physical junction (or
a simulated one) and node will be used where a more mathematical language is
needed. Roads can consist of one or more lanes. The lanes will be represented in a
mathematical language by edges. Edges connect nodes. Edges are for the purpose
of this thesis directional, so the vehicles on a road can only go one way. To accom-
modate for travelling both ways between nodes, and multiple lane roads, more than
one edge needs to be in place. We define the network topology as G = (V,E) where
V denotes the set of nodes (V stands for vertices) and E denotes the set of edges
connecting these nodes.

Nodes as junctions
For every node (or junction) v∈V we can define the lanes where vehicles enters it as
input lanes i ∈ IV and the lanes where traffic is leaving it as output lanes m ∈OV . A
junction may be traffic light controlled and in the context of this thesis they always
are. Every lane has a traffic light that can allow the traffic from that lane to drive or
not.
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Chapter 2. Models of Traffic Networks and Controllers of Traffic Signals

Continuous model of flow
The states in the model used in this thesis consist of the queue lengths on every lane.
The queues are measured in number of vehicles. They are denoted xi(t) for every
lane i at time t, and x(t) is used to denote the vector containing all the queues at
time t. To model how the vehicles move through the network on a statistical level,
the routing matrix R ∈ RE×E is created. The entries Ri j in the matrix denotes what
fraction of incoming traffic on lane i that goes to lane j. These are called turning
ratios. For example: if incoming traffic from lane turns right 60% of the time, goes
straight 40% of the time and left 0% of the time, the turning ratios would be (left,
straight, right) = (0, 0.4, 0.6). With these turning ratios on all the incoming lanes
in the junction in Figure 2.1, the resulting routing matrix would have the following
values, given that the junction is the whole network:

R =



0 0 0 0 0 0 0.4 0.6
0 0 0 0 0.6 0 0 0.4
0 0 0 0 0.4 0.6 0 0
0 0 0 0 0 0.4 0.6 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(2.1)

By necessity of mass conservation, so that the routing matrix does not add vehicles
to the network, the sum of every row has to be smaller or equal to 1. Furthermore
every entry naturally has to be 0 or larger. A value smaller than 0 would mean that
vehicles are flowing backwards. An entry Ri j can only be larger than 0 if there is an
edge from i to j.

Along with the turning ratios, there may also be exogenous inflow to a subset
of the lanes. Exogenous inflow is flow that comes from outside the network. This is
denoted λi for a lane i. There is also outflow from the lane that goes to other lanes
according to the aforementioned turning ratios. Flows are denoted zi for lane i. The
full balance equation for a given lane i becomes:

ẋi = λi +∑
j

R jiz j− zi. (2.2)

The change in the queue is equal to the exogenous flow plus the inflow from other
lanes minus the outflow from the lane itself. The outflow is limited because of phys-
ical constraints, mostly by the saturated flow rate which is a number indicating the
maximum flow on a lane in veh/s (vehicles per second). This is here denoted si and
by necessity zi ≤ si. Moreover, the challenge for a junction with traffic lights is to
give a control signal ui ∈ [0,1] that determines how large the fraction of time is used
to serve (give green light to) a queue xi such that the queues are kept stable. With
the control action the outflow zi is limited so that zi ≤ uisi.
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2.1 Mathematical theory

Figure 2.1 A junction that is helpful when trying to understand the turning ratios
in (2.1).

In the context of this thesis a queue is said to be stable if the length of the queue
is bounded. And since the traffic cannot be negative this also means that the limit

lim
t→∞

xi(t) (2.3)

is bounded for every i. This, in turn means, that
∫

∞

0 ẋi(t) ≤ ε for an arbitrarily big
value of ε and in turn that∫

∞

0
(λi +∑

j
R jiz j)dt ≤

∫
∞

0
zidt + ε (2.4)

which in words can be expressed as: the inflow over time must be less than or equal
to the outflow over time to keep the queue stable.

Introduction to control of Traffic lights
By necessity, to avoid collisions and so to make traffic light controlled junctions a
viable option instead of having a junction without traffic lights, the control signal
needs to be discretized so that the control can be divided into phases. A phase
consists of one or more lanes that receive green light simultaneously. Usually a
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Chapter 2. Models of Traffic Networks and Controllers of Traffic Signals

Figure 2.2 A junction with phases to reference when trying to understand the phase
matrix construction. Lanes are numbered for reference.

phase matrix is constructed so that the problem can be understood and used in a
more mathematical way. A phase matrix P(v) is a binary p× l matrix where p is the
number of possible and l is the number of lanes. Every junction has its own phase
matrix associated with it as indicated by the index v. The phase matrix may be
unique for every junction depending on what lanes are included in what phase, but
in this thesis the phase matrix is the same for every junction in the whole network
and might only change when the network topology changes. Every row in the phase
matrix indicates a phase. Every lane l that is executed during phase i has a 1 on row
i and column l. All other entries are zero. So the single junction in figure 2.2 would
have the phase matrix

P =

1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 1 1 0

 (2.5)

indicating that the red phase allowing vehicles from lanes 1, 3, and 4 to drive is the
first phase, followed by blue and then green. If every lane l belongs to one and only
one phase, the phases are said to be orthogonal, which they are in this example.

The main challenge of every controller is to choose the desired phase at every
time. This affects if a lane can actually empty. The dynamical flow equation 2.2 now
has to be rewritten as

ẋi(t) = λi +∑
j

R jiz j−uisi (2.6)

where fi(u,x) is the flow from lane i but now depending on the queues and control
signal. Moreover, the assumption is that the outflow from a lane is at the maximum
when vehicles are present:

xi(t)> 0⇒ zi = uisi. (2.7)
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2.1 Mathematical theory

Usually, the control strategy is decided at discrete time intervals. This interval is
called a cycle. In classical fixed control strategy this cycle time is fixed and all the
phases have to be executed in it, see [Roess et al., 2011]. It can also be dynami-
cally set as done in [Nilsson and Como, 2018] such that the next point of control is
decided upon from the queues as

t(v)k+1 = t(v)k +T (x(v)(tk)) (2.8)

where t(v)k are the points in time at a certain junction (indicated by the indices v)
when the control action up to the next point is calculated, and T (x(v)(tk)) is a func-
tion of the queues that determines how long the upcoming cycle length will be.
Now the full problem formulation can be described as trying to achieve stability
with control under the influence of discretization. Different control strategies will
be more explained in the next chapter, for now it will suffice to say that discretiza-
tion of the control (and the real world) bears with it artefacts (start-up and clearance
lost time) that needs to be accounted for in the control strategies.

Modelling of junction lost time
The fundamental problems of traffic at junctions are that vehicles need to accelerate
and that they can collide. The collision issue is what calls for traffic lights in the first
place. When a queue is waiting for the green light the vehicles in it stands still. After
some reaction time when the light turns to green, the first vehicle starts to accelerate
and pass the stop line to the junction. After some time again the second vehicle
passes. This time between the vehicles is called the headway. The first headway is in
relation to the rest long, due to reaction time and acceleration. The second headway
is shorter because the vehicle has had time before the junction to accelerate. The
headways are progressively shorter until a certain time called saturated flow head-
way is reached when the queue has come up to speed. Here denoted h, with unit
s/veh since it measures the time between vehicles (how long time it takes for a
vehicle to pass), it is the minimum average time between vehicles in a stable moving
queue that can be achieved. See [Roess et al., 2011, Figure 20-1]. If the extra time
used to get the queue up to speed is taken away, the queue would move at the
saturated headway all the time from the beginning of receiving green light. This
extra time is called the start-up lost time and is here denoted l1. The problem of
acceleration also works in the opposite direction when the phase is about to switch.
This means that yellow lights have been introduced so that the vehicles have a fair
chance of stopping when the light turns to red.

To stop vehicles from colliding in the junction, beside the necessity of having
the control action working in phases, the traffic lights needs to have all red time to
allow vehicles to safely leave the junction. All red means that all the lights into the
junction show red light. This is more time lost that could have been used to allow a
queue to drive. This is called clearance lost time and is denoted l2 or Tw. The cycle
lost time Ltot is the total start-up lost time and clearance loss over the entire cycle.
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Chapter 2. Models of Traffic Networks and Controllers of Traffic Signals

Cycle times and capacity
Every time a phase switch occurs time that could have been used to serve a queue
is then lost. Since a cycle is made up of one or more phase switches, in every cy-
cle, time is lost. This is important to know as it heavily affects the capacity of the
junction, the volume of traffic that the junction can process. If the cycle time is very
short so that the vehicles have less time than the start-up lost time to move, not
many vehicles can pass the junction. The capacity is very low. On the other hand, if
the cycle time is made very long it has very high capacity, but a vehicle might have
to wait too long of a time to pass it. Somewhere in between is the cycle time that is
just enough to process the traffic demand but not so long so that the vehicles have
to wait longer than necessary. Traffic demand can loosely be defined as the volume
of traffic that the network, road, or junction needs to handle. In other words, the
number of cars that have a route through the defined time period and place.

Critical lane volume
The critical lane volume is used as a measurement of traffic demands. It is the
measurement of the lane in a phase that has the most traffic demand. The unit is
veh/s. This measurement is really related to how much time is needed to process the
traffic in that lane, so modifiers need to be added for e.g. left-turning vehicles that
take longer time to flow through the junction, uphill queues and downhill queues.
The measurement that is used to define total traffic demand is called the sum of
critical lane volume, which is rather obviously the sum of the critical lane volumes
over all the phases in a junction. It is denoted Vc. The critical lane volume differs
from the capacity in that it does only count the lane in each phase that has the highest
traffic demand.

2.2 Macro and Micro Simulations

When simulating, in essence two approaches can be made. Macro, where traffic is
modelled as a continuous mass, where only the traffic volume is known, and Mi-
cro simulation where every vehicle is simulated individually, perhaps with some
dynamic to mimic driver behaviour. The reason to use a macro model is that it is
almost necessary to be able to do anything theoretical. It is also a lot less compu-
tationally heavy than a microscopic simulation since every vehicle does not need
simulating. The downside is that when using a simpler model, it is simpler and
therefore the conclusions that can be drawn from the results of the simulations are
fewer. However, since a microscopic model might to some extent model driver be-
haviour and have more built in dynamics, even if the conclusions from the micro
simulator might be greater in number they may be of lower certainty and more care
must be taken to ensure the causal links when analysing the results. For the most part
in this thesis the Microscopic simulator SUMO is used - the Macroscopic model is
only used to test stability in Chapter 4.
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2.2 Macro and Micro Simulations

Figure 2.3 The single junction with the lanes numbered for reference and the dif-
ferent phases draw with different colours.

Macroscopic model used in the MATLAB simulations
A very simple model was used in MATLAB to test some of the more theoretical
work in this paper, namely investigations into stability. It was chosen in this case
because it can be made to simulate in a more deterministic way than in SUMO.
The microscopic model used in SUMO to some extent models user behaviour and
this induces a stochastic element to the simulation, granting less control over the
outcome. Coding from scratch in MATLAB was thus chosen as a complement. The
network model used in MATLAB uses infinite-buffer-point-queues. This means that
the storing capacity of the queues are not formally upwards limited (the computer
hardware might still impose restrictions), and that there is no simulated travelling
time between junctions.

Two networks were used in the MATLAB simulations. The first one was the
single junction in Figure 2.3, and the second network was the simple 2 by 2 junction
network in Figure 2.4.

The model furthermore works as follows. Each simulation step all the queues
in which vehicles are allowed to drive are emptied at a rate of the saturated flow
rate. Vehicles are allowed to drive during a green light after start-up lost time has
passed. The vehicles that leave a queue are then added to other queues according to
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Chapter 2. Models of Traffic Networks and Controllers of Traffic Signals

Figure 2.4 The simple 2 by 2 junction network with the different coloured phases.
The phases have been drawn on different junctions for ease of seeing them even
though all phases exist on all junctions. The different numbers are numbers used for
reference.

which queues are connected to which, and turning ratios. The queues x(t) updates
according to

xn+1
i = xn

i +h(λ n
i +∑

j
R jizn

j − zn
i ) (2.9)

commonly known as the Euler method of the first order, where h is the step length,
and the superscript n is the time step number. Furthermore,

zn
i ≤ un

i (t
v
k )s

n
i (2.10)

for all queues in the network where k is he maximum value such that h · n ≥ tv
k .

Remember that tv
k are the times where the control is calculated at a junction v. In all

MATLAB simulations a step size of 0.05 was used.
This model is not different from a time average model in theory, however, it

was implemented actually executing the phases. A time average model instead of
executing phases, lets the queues empty at a rate that is proportional to the fraction
of allocated time in a cycle for the phases.
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2.3 Proportional allocation controller

Even though the queues are not upwards limited in size, the measurements of
them were saturated to simulate limited detector length.

The SUMO microscopic traffic simulator
SUMO - Simulation of Urban MObility is a suite of tools and programs developed
partly as open source on the initiative by the Institute of Transportation under DLR -
Deutches Zentrum für Luft- und Raumfahrt. The suite is centered around main tools
for creating networks and traffic, then simulating these. Via an API, programs can
interface with a variety of things inside the simulation. The actual simulator, SUMO,
is a so called microscopic simulator, simulating every vehicle independently.

The SUMO simulator uses the Krauss vehicle following model which is a model
that in essence allows the vehicles to drive as fast as possible within the speed
limits, as long as they can break to avoid a collision safely should the vehicle in
front of them break [SUMO wiki 2018]. The vehicle following model is based on
the accelerations of the vehicles.

ACTIVITYGEN and DUAROUTER are two tools that were extensively used
during the simulations. First a population statistics file has to be created. This file
specifies statistically where workplaces and homes are placed and is used by AC-
TIVITYGEN to create a file specifiyng where each person lives and works. Then
DUAROUTER is used to create routes from this information. DUAROUTER cre-
ates routes according to shortest way and can be called again with the created routes
to iteratively approach dynamic user equilibrium. However, the iterative approach
was not done for this thesis. DUAROUTER was only run once to obtain routes.

In this chapter the different controllers used in this thesis are explained. They are
the proportional allocation controller (with dynamic cycle length) using different
mathematical norms (ways to measure the size of a set of values) and the Back-
pressure controller. In the explanation of the controller the phase matrix is used
extensively for ease of notation. Pi is used to mean a row i in the phase matrix,
and, therefore means the set of lanes that have green light during phase i. Since
the phase matrix is a binary matrix all the matrix calculations boils down to simple
sums. Pix(t) means the sum of the queues in phase i. The notation |Pi| is the L1

norm over row i in the phase matrix (the Taxi or Manhattan norm) and since it is a
binary row it boil down to the number of queues in phase i. Another notation that is
used hereafter is A�B. In this thesis it means element wise multiplication of vectors
i.e. that ck = ak ·bk, where c is the resulting vector from the operation.

2.3 Proportional allocation controller

The proportional allocation controller is a decentralised controller that does not
need a priori information. It instead relies on measuring the queues that are queuing
to the different phases. It, depending on the queue lengths, dynamically determines
the cycle length and phase time allocation. The cycle time T as a function of the
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Chapter 2. Models of Traffic Networks and Controllers of Traffic Signals

queues x(t) to the junction is determined by

T (x(t)) = Tw(1+
∑1≤i≤nl

(xi(t))
κ

) (2.11)

where κ is the design parameter that needs to be tuned, Tw is the total clearance
lost time, and nl is the number of lanes. This controller works both with orthogonal
phases and with non-orthogonal phases, but for the sake of simplicity of calculation,
orthogonal phases are always used in this thesis. The interested reader that wants to
know how to make it work with non-orthogonal phases, should read [Nilsson and
Como, 2018]. The proportion of time pi allocated to a phase i is calculated from

pi(x(t)) =
Pix(t)

κ +∑k xk(t)
(2.12)

where Pi means the row i in the phase matrix corresponding to phase i. The nom-
inator is simply the sum of the queues in the phase. Since pi(x(t)) is the fraction
of time that phase i receives service during the next cycle this corresponds to the
control signal ui in the more general case.

The proportional allocation controller as evaluated by [Nilsson and Como,
2018] and explained here, measures the sum of all the lanes included in the phase.
This could be problematic since it is not taking the critical traffic volume into con-
sideration but rather the total traffic volume. Think of a simple example: a junction
with a one-lane phase and a six-lane phase. If there are six cars queuing for each
phase they will get allocated the same amount of time even though the six lane
phase would require a lot less time to empty the queues (if the cars on the six-lane
phase are distributed evenly).

Therefore, two other ways of measuring the queues to the controller are here
proposed using different norms. It should be noted that stability for these have not
yet been proven. The two different norms are the mean norm and the max norm. The
mean norm takes the mean queue length of every queue as the regulator parameter.
It can be expressed as

T (x(t)) = Tw(1+
∑1≤i≤np(Pix(t)/|Pi|)

κ
) (2.13)

with np being the number of phases, for cycle time, and

pi(x(t)) =
Pix(t)/|Pi|

κ +∑1≤i≤np(Pix(t)/|Pi|)
(2.14)

for the fraction of time allocated to phase i. The max norm uses the common norm
|| · ||∞ as the argument resulting in the cycle time being calculated as

T (x(t)) = Tw(1+
∑1≤i≤np max(Pi� x(t))

κ
) (2.15)
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2.4 Back-pressure control

with phase time allocation according to

pi(x(t)) =
max(Pi� x(t))

κ +∑1≤i≤np max(Pi� x(t))
(2.16)

again with the same notation as in expressing the mean norm modification. These
two different approaches are two attempts to combat the initial problem posed here
regarding critical traffic volume.

The model for which the proportional allocation controller is
proven stable
The model in which the proportional allocation controller is proven stable is a
macroscopic, time-average, infinite-buffer-point-queues model. This means that, as
usual for macroscopic models, the vehicles are not modelled individually, but rather
as a continuous mass of vehicles. Time-average means that during control execution
all queues get serviced at the same time, completely disregarding that vehicles in
real life can collide. This works because of the fact that they get a fractional rate
of service of the saturated flow rate, corresponding to the fraction amount of time
of the cycle that has been allocated by the controller. For example: The controller
decides to allocate 1/5 of the cycle time to a queue. In this model then, the queue
gets to empty at a rate of 1/5 of the saturated flow rate, the entire cycle.

2.4 Back-pressure control

It might be argued that the Back-pressure controller is not decentralized in the sense
that it needs information at surrounding junctions to function properly. It is decen-
tralized in the sense that there is a separate controller for every junction. The Back-
pressure controllers most basic component is the time slot that has a length t in
time which can be said to be the cycle. During this time slot the phase in which the
queues exerts the most pressure on the junction gets serviced.

The weight wi of the queue xi on the lane i is dependent also on the destination
lanes j and the turning ratio Ri j as

wi = xi−∑
j

Ri jx j. (2.17)

So the weight is the difference between the queue length and the weighted average
queue lengths of its destinations according to turning ratios. The pressure exerted
by a phase i is then calculated as

γ(i) = Pi(s�w) (2.18)

where s is the vector with the saturated flow rates and w is a vector containing the
different weights of the lanes. In conclusion, each time slot the phase with the largest
pressure gets all the service. Hence, the control ui is during a cycle the control signal
is binary with the phase exerting the largest pressure receiving all the service.
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3
Tuning of the Proportional
Allocation Controller

To see how different operation conditions of the proportional allocation controller
might affect the optimal value of κ , three different networks were simulated. They
were the Manhattan network, see Figure 3.1, the Brickwall network which is a net-
work with only T-junctions, see Figure 3.2, and a single junction network. The Man-
hattan network was varied in size, and traffic demand for the Manhattan and Brick-
wall networks was varied with the help of ACTIVITYGEN and DUAROUTER.
The single junction networks had arriving traffic with a Poisson distributed arrival
rate, that varied from a nominal value which is presented as the sum of critical lane
volume (see Appendix A for details). Throughout this thesis the name of the net-
work is used to specify the topology, it is then followed by the size specifications,
and after a ”-” the population is specified. For the Manhattan and Brickwall net-
works the size is the number of junctions on a side. The single junction networks
have instead the number of avenues followed by the number of streets, and, since
the nominal traffic demand for the single junction was not varied, no traffic demand
specification is necessary aside from in Table 3.1. Avenues are vertical roads and
streets are horizontal.

As an example: Manhattan 8 - 4000, would mean a grid type network that is
8 by 8 junctions in size, with a population of 4000. In Table 3.1 all the simulation
scenarios carried out in this thesis are presented. More detailed information about
the simulations and network setups can be found in Appendix A. From there the
most valuable things to know is that the phases for all the networks are orthogonal,
and that the phase setup is different depending on the topology of the network.
Furthermore, the queue sensor length is the length of the road in most cases.

3.1 Optimality

To be able to say anything about the optimal value of κ , first optimality in the
context of this thesis needs to be defined. Out of a pure network capacity perspective
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3.1 Optimality

Figure 3.1 The Manhattan network used in simulations. Size of the depicted one
is 10 by 10 junctions.

Figure 3.2 The Brickwall network used in simulations. Size of the depicted one is
10 by 10 junctions.

it would make sense to be able to process vehicles as fast as possible, to get them
to their destination and therefore out of the network. This would mean that vehicles
stay a shorter time in the network, which in turn means fewer vehicles present at
every time instance. If vehicles on roads travelling between junctions are neglected
this would also mean shorter queues. The most optimal κ therefore, would result in
a control signal that produces the lowest integral of the sum of queues,

min(
∫ f inish

start
∑

i
xi(t)dt) (3.1)

where the queue vector x here includes all the queues in the network. However,
since this approach might mean that the optimal way to control a junction would be
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Chapter 3. Tuning of the Proportional Allocation Controller

Table 3.1 Summation of the different simulation scenarios. *Junction with 80 me-
ters sensor length.

Name Type Population Vc
Manhattan 10 - 10000 10 by 10 junction grid 10000
Manhattan 10 - 5000 10 by 10 junction grid 5000
Manhattan 10 - 2500 10 by 10 junction grid 2500
Manhattan 5 - 5000 5 by 5 junction grid 5000
Manhattan 5 - 2500 5 by 5 junction grid 2500
Manhattan 5 - 1250 5 by 5 junction grid 1250

Brickwall 10 - 10000 10 by 10 junction brickwall 10000
Brickwall 10 - 5000 10 by 10 junction brickwall 5000
Brickwall 10 - 2500 10 by 10 junction brickwall 2500

Junction 2-3 junction, 2 by 3 incoming lanes 1326
Junction 2-3* junction, 2 by 3 incoming lanes 1326
Junction 2-6 junction, 2 by 6 incoming lanes 1178
Junction 2-6* junction, 2 by 6 incoming lanes 1178

to always have green light to a heavily trafficked phase and almost never to a phase
that has almost no traffic, drivers might feel like they are being treated unfairly.
Fairness will be treated in the next section. All results in this section comefrom
SUMO.

As can be seen from the plots in Appendix B and from Table 3.2 the most
optimal κ for the Manhattan type networks seems to be very stable with regards
to traffic demand and network size. However, the single junctions simulations do
not appear to have a clear minimum as can be seen in e.g. Figure 3.7 and the rest
of the figures in Appendix B. This might be due to the smallness of the network.
A single junction wont produce spillover effects when the road is full. That is, the
queue cannot go backwards past a previous junction (spill over) as it can in bigger
networks.

A visual comparison between the different Manhattan networks indicates that
a reasonable hypothesis, if a smaller network is used to approximate a larger one,
is that the queue behaviours are the same for half the population in a half as big a
network. However, this is not a completely satisfactory fit and it might be because of
the fact that the traffic mostly commute in the east-west direction, thereby, in effect
seeing the network as half the size. If the traffic were to have a more complicated
driving pattern the results should change, with the same reasoning. This, however,
remains to be verified.

The optimal value of κ for the Brickwall networks varies greatly with different
traffic demand. Even though the general picture is the same with very long queues
for lower κ , a minimum somewhere and increasing queues at higher values, the
optimal κ seems to be higher for higher traffic demand.

One might question the validity of these results due to there being a small
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3.1 Optimality

Figure 3.3 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Manhattan 10 - 5000 network with
a lane area detector covering the whole road.

Figure 3.4 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Manhattan 5 - 2500 network with a
lane area detector covering the whole road.
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Chapter 3. Tuning of the Proportional Allocation Controller

Figure 3.5 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Brickwall 10 - 2500 network with
a lane area detector covering the whole road.

Figure 3.6 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Brickwall 10 - 10000 network with
a lane area detector covering the whole road.
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3.1 Optimality

Figure 3.7 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Junction 2-3 network with a lane
area detector covering the whole road, and a sum of critical lane volume of 1326.

Table 3.2 Summation of the results from the simulations. *Single junction net-
works with shorter sensor lengths. Max means when using equations (2.13) and
(2.14). Mean means when using equations (2.15) and (2.16). Sum means when using
equations (2.11) and (2.12).

Network Optimal κ

(max) (mean) (sum)
Manhattan 10 - 10000 10 5 15
Manhattan 10 - 5000 10 5 10
Manhattan 10 - 2500 10 5 10
Manhattan 5 - 5000 10 5 10
Manhattan 5 - 2500 10 5 10
Manhattan 5 - 1250 9 5 10

Brickwall 10 - 10000 16 8 15
Brickwall 10 - 5000 15 3 15
Brickwall 10 - 2500 5 3 6

Junction 2-3 7 9 18
Junction 2-3* 9 7 15
Junction 2-6 12 5 14
Junction 2-6* 9 5 15

29



Chapter 3. Tuning of the Proportional Allocation Controller

stochastic element to the creation of traffic. To produce confidence intervals on all
the results would simply take to much time. However, box plots of the Manhattan
5 - 2500 network run 39 times can be found in Appendix B to make the results
believable.

3.2 Fairness

Since optimal control of a junction might result in an unfair waiting time for some
vehicles, the fairness of the control will here be examined. The main interest will be
between the three different norms, the second point of interest how the most fair κ

correlate with the most optimal κ for the three different norms. First Jain’s fairness
index [Jain et al., 1998] will be presented as the tool to measure fairness together
with what should be fair. After that, fairness measurements from the previous sim-
ulations in Table 3.1 will follow. Lastly a small discussion of the results will ensue.
All results in this section come from SUMO.

Jain’s fairness index
Like optimality, the concept of fair needs to be defined. Here the mean speed is
chosen as a measurement to make comparisons with, because this is probably what
the commuters wants to be equal. This would mean that it takes the same time
to drive the same distance no matter in what direction the commute is desired. This
would mean that a commute is predictable in an easier manner. The mean speed was
calculated by adding the commute time and the waiting time to start the commute
due to the road being blocked by a queue, then dividing by the commute length. To
compare the mean speed of the vehicles, Jain’s fairness index is used. Jain’s fairness
index is

fairness =
∑d2

i
M(∑di)2 (3.2)

where M is the number of arguments, here vehicles, and di are the arguments, which
here, as mentioned, are the mean speed of the vehicles. If all vehicles drive at the
same speed the fairness would be 1. If instead the fairness is 0.8, this would mean
that 80% have the same speed while 20% have no speed at all.

When looking at the results (all results are presented in Appendix C) the most
fair κ seems to be quite consistent for the Manhattan networks. The value shifts
slightly to lower values as the traffic demand increases as can be seen in Table 3.3
created from the figures in Appendix C. Between the different norms there seem
to be no significant difference in fairness achieved (with different values of κ for
the different norms). The Brickwall networks show results that are changing a lot
with the highest traffic demand compared to the other two. This might have to do
with the capacity of the network. Since roads have been removed in the Brickwall
network, the capacity in this network is lower. This does not explain that the value
of κ becomes higher however, since a higher value means shorter cycle times. For
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3.2 Fairness

Figure 3.8 The Jain’s fairness index for the Brickwall 10 - 10000 network.

Figure 3.9 The Jain’s fairness index for the Manhattan 5 - 5000 network.
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Figure 3.10 The Jain’s fairness index for the Junction 2-3 network.

Figure 3.11 The Jain’s fairness index for the Junction 2-6 network.

32



3.2 Fairness

Figure 3.12 The Jain’s fairness index for the Junction 2-3 network with the short-
ened queue length.

Figure 3.13 The Jain’s fairness index for the Junction 2-6 network with the short-
ened queue length.
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Table 3.3 Summation of the fairness of from the simulations. *Results from the
shortened sensor length to 80 meters. Max means when using equations (2.13) and
(2.14). Mean means when using equations (2.15) and (2.16). Sum means when using
equations (2.11) and (2.12).

Network Most fair κ

(max) (mean) (sum)
Manhattan 10 - 10000 5 4 7
Manhattan 10 - 5000 6 3 9
Manhattan 10 - 2500 7 3 7
Manhattan 5 - 5000 4 3 7
Manhattan 5 - 2500 6 3 8
Manhattan 5 - 1250 8 4 8

Brickwall 10 - 10000 5 18 5
Brickwall 10 - 5000 6 2 5
Brickwall 10 - 2500 5 2 5

Junction 2-3 12 7 18
Junction 2-3* 9 6 15
Junction 2-6 14 5 18

Junction 2-6* 4 11 9

Table 3.4 Summation of the fairness from the simulations. *Results from the short-
ened sensor length to 80 meters. Max means when using equations (2.13) and (2.14).
Mean means when using equations (2.15) and (2.16). Sum means when using equa-
tions (2.11) and (2.12).

Network Most fair value
(max) (mean) (sum)

Manhattan 10 - 10000 0.884 0.860 0.858
Manhattan 10 - 5000 0.966 0.959 0.950
Manhattan 10 - 2500 0.986 0.985 0.984
Manhattan 5 - 5000 0.795 0.776 0.780
Manhattan 5 - 2500 0.920 0.903 0.910
Manhattan 5 - 1250 0.969 0.961 0.971

Brickwall 10 - 10000 0.789 0.832 0.791
Brickwall 10 - 5000 0.923 0.913 0.918
Brickwall 10 - 2500 0.983 0.981 0.982

Junction 2-3 0.956 0.952 0.944
Junction 2-3* 0.947 0.951 0.936
Junction 2-6 0.955 0.935 0.944

Junction 2-6* 0.597 0.943 0.590
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3.2 Fairness

the one junction networks with shortened sensor length there seem to be significant
fairness loss for the sum norm, but a little unexpected also for the max norm, since
the max norm was an attempt at producing fair results. See Figure 3.13 for reference.
The mean norm far outperforms the two others. However, as can be seen in figures
3.10 and 3.11, the unfairness may, to some extent be countered by a longer sensor
length. Since the waiting time to enter the network is accounted for in the fairness
calculations, spillover effects are somewhat taken into consideration.
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4
Required sensor length

So far the lane detector area, the sensor, has covered almost the whole of the length
of the road (more than 95% of the length). Since this might be a bad reflection
of reality, this chapter will delve into what sensor length is required to be able to
use the optimal values of κ that was previously obtained. It will also investigate a
little bit how that value might change as the sensor length gets shorter. Only the sum
norm will be investigated here since it is proven to be stable in previous work and of
demarcation reasons, to keep the work and results manageable. Similar calculations
for the other norms should be rather straightforward.

4.1 Two analytic approaches

This section tries to come up with an analytical approach to establish the hard lim-
itations on the guaranteed stable flow in a junction. First an approach without the
start-up lost time is tried and then an approach where start-up lost time is consid-
ered as well. Since the clearing time is accounted for in the proportional allocation
controller this need not be thought of.

Without start-up lost time
Let f denote the expected traffic demand on a single lane in veh/sec. The saturated
headway is as usual denoted by h, and therefore the capacity of a single lane is
h−1. The fraction of the total time the lane receives service when controlled by the
proportional allocation controller is

T (x(t)) · pi

T (x(t))
=

Pix(t)
κ +∑k xk(t)

, xm ≤ L (4.1)

where L is the lane detector length measured in vehicles. The notation xm ≤ L and
serve as a reminder that the sensor length is limited on all lanes. The fraction f/h−1

of flow has to be lower than the fraction of allocated time to the phase (and therefore
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4.1 Two analytic approaches

the lane). It follows therefore that the allowed flow becomes

f h≤ Pix(t)
κ +∑k xk(t)

, xm ≤ L (4.2)

which can be rewritten as

f h≤ Pix(t)
κ +Pix(t)+ P̄ix(t)

, xm ≤ L (4.3)

to aid following arguments. The P̄ (it really is a d, but ignore that) is here used
to mean the complement to P if viewed as a boolean matrix, i.e. every 0 has been
replaced by a 1 and vice versa. If the lane area detector is not full, the controller
will not allocate the full amount of time it is able to do. Hence the queue will grow
until the controller allocates enough time to stabilise the queue. The problem is as
mentioned before that the lane area detector can only measure up to a certain length.
Because of these two reasons it is of interest to see what constraints are imposed
when one of the sensors is fully saturated. Let one of the sensors for a lane in a
phase be saturated, i.e. that e.g. lane 1 is saturated (x1(t) = L). Also, for notations
sake, let P̂ be the modified phase matrix with the elements telling if x1(t) is in the
phase be set to 0. This lane will be the investigated lane, i.e. the lane of which the
capacity is of interest. The equation becomes

f h≤ L+ P̂ix(t)
κ +L+ P̂ix(t)+ P̄ix(t)

, xm ≤ L (4.4)

which has minimum with respect to the queues not in the phase, when these queues
are L long and maximum when they are empty. Since it is the minimum that is of
interest to calculate allowed flow, let these lane area detectors be saturated and a
number n such lanes. It follows that P̄ix(t) = nL The equation now becomes

f h≤ L+ P̂ix(t)
κ +(n+1)L+ P̂ix(t)

, xm ≤ L (4.5)

To find minimum the derivative of the equation is taken and then set equal to
zero. For readability let X = P̂ix(t).

0 =
d

dX
L+X

κ +(1+n)L+X
= (4.6)

=
1

κ +(1+n)L+X
− L+X

(κ +(1+n)L+X)2 =

=
κ +(1+n)L+X−L−X

(κ +(1+n)L+X)2 =
κ +nL

(κ +(1+n)L+X)2 , xm ≤ L (4.7)

37



Chapter 4. Required sensor length

This clearly cannot be zero within the limits of xm(t). The boundary then has
to have the minimum and maximum. For P̂ix(t) = 0 the previous equation (4.5)
becomes

f h≤ L
κ +(1+n)L

(4.8)

and for saturated measurements of the other queues in the phase P̂ix(t) = |P̂i|L the
equation becomes

f h≤ aL
κ +(a+n)L

(4.9)

where a is the number of lanes in the phase including the lane of interest. As can be
seen, the value of equation (4.8) is clearly smaller than the value of equation (4.9).
This means that the minimum is when the rest of the queues in the phase in which
the lane of interest is in are empty (P̂ix(t) = 0). The capacity of this lane then is
guaranteed to be

f ≤ L
h(κ +(1+n)L)

. (4.10)

Figure 4.1 The allowed flow on one lane in a four phase junction with one lane in
each phase. Saturated headway is 2,4.

With start-up lost time
Let f once again denote the expected traffic demand on a single lane in veh/sec, and
the saturated headway is again denoted by h. Now, l1 is the start-up lost time for a
cycle. The time lost per hour due to the start-up lost time is therefore l1 times the
number of cycles. The number of cycles in an hour is the inverse of the cycle length.
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Therefore an additional fraction l1/T (x(t)) needs to be accounted for. The equation
to investigate now becomes

f h≤ Pix(t)
κ +∑k xk(t)

− l1
Tw(1+∑k xk(t)/κ)

, xm ≤ L (4.11)

which can be rewritten to

f h≤ TwPix(t)− l1κ

Tw(κ +Pix(t)+ P̄ix(t))
:= E, xm ≤ L (4.12)

and called E to make the following calculations simpler. The minimum with regards
to the queues not in the phase of interest is once again obvious to be x(t) = L. Let
there be n such queues. The new equation is now called E ′.

min(E)P̄ix(t)) =
TwPix(t)− l1κ

Tw(κ +Pix(t)+nL)
:= E ′, xm ≤ L (4.13)

Remaining is now to minimise with respect to the queues in the phase and the
queue of interest. The queue of interest is called queue a. For the same reasons as
before with no start-up lost time, let queue a grow until saturated measurement.
Thus, this queue becomes L long.

E ′ =
Tw(P̂ix(t)+L)− l1κ

Tw(κ + P̂ix(t)+(n+1)L)
(4.14)

For readability let P̂ix(t) = X .

min(E ′)X = min(
Tw(X +L)− l1κ

Tw(κ +X +(n+1)L)
) (4.15)

To find minimum differentiate with respect to X and set equal to 0.

dE ′

dX
=

d
dX

Tw(X +L)− l1κ

Tw(κ +X +(n+1)L)
=

1
κ +X +(n+1)L

− Tw(X +L)− l1κ

T 2
w (κ +X +(n+1)L)2 =

(4.16)

=
T 2

w (κ +X +(n+1)L)−Tw(X +L)+ l1κ

T 2
w (κ +X +(n+1)L)2 = 0

Solved for X this becomes:

X =
TwL− l1κ−T 2

w (κ +(n+1)L)
T 2

w −Tw
≤
{

Tw > 1,all constants positive
}
≤ 0 (4.17)

The greatest limitation is therefore when all the queues not in the phase are full and
all the other lanes in the phase are empty. The flow therefore is limited by equation
(4.18).

f ≤ TwL− l1κ

hTw(κ +(n+1)L)
(4.18)
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4.2 Simulations in MATLAB

To verify the results obtained in the theoretical work MATLAB, simulations were
performed using the model described in the model chapter (Chapter 2). During the
simulations the incoming flow rate was kept constant while the detector length and
value of κ were varied. This requires a rearranging of equation (4.10) to

κ ≤ (
1
f h
− (1+n))L (4.19)

and (4.18) to

κ ≤ Tw(1− f h(n+1))
f hTw + l1

L. (4.20)

To simulate the lane detector length the measurements of the queues were saturated
at the desired number before control signals where calculated. As a measurement
of under what circumstances a network becomes unstable, the external net flow
to the network was calculated as the main indicator. The net flow is the flow out
from the network subtracted from the flow into the network. Therefore, when the
external net flow is larger than zero the queues in the network are unstable. As
complementary information the aggregated queue lengths of the simulations are
presented in Appendix D.

Single junction network
To get the simplest test of how the stability is limited under the circumstances
layed out in the theoretical section, a single junction was simulated. To test both
approaches, simulations with a 2 seconds start-up lost time and no start-up lost time
was simulated. Clearing time for both simulations was 2 seconds. The junction is
depicted in Figure 2.3 with the lanes numbered for reference. Incoming traffic was
here added on only lane 1 with a rate of 0.052 vec/s (1/8 of the saturated flow rate).
However, the controller was made to believe that the other incoming lane detectors
were always full. Lane detector length was varied from 1 to 12 vehicles in steps of
1 and κ was varied from 1 to sufficiently large to get unstable, in steps of 1. Only
the sum norm was used. Both the aggregated queue lengths and the net flow to the
network was plotted to get indications for the stability. The simulation was run for
10000 seconds in steps of 0.05. The calculation of net flow was started after 2500
seconds to accommodate for transients in the system.

The resulting figures showing net flow are figures 4.2 and 4.3 for the no start-up
lost time and 2 seconds start-up lost time respectively. The aggregated queue lengths
can be found in Appendix D.

As can be seen in the results the relationship between the lane detector length
and the last stable κ seems to be linear for both simulations. This is confirmed by
linear fits of the last stable κ , against the corresponding lane detector length. The
linear fits can be seen in Figure 4.4 together with predictions from the analytical
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Figure 4.2 Net flow in the 1 junction network with no start-up lost time. Measured
after 2500 seconds. Numbers next to the coloured lines are lane detector lengths in
vehicles.

expressions. As can be seen the prediction when no start-up lost time was simulated
or accounted for, is rather good, however, when start-up lost time is accounted for
the prediction is poor.

Simple 2 by 2 junction network
Here a 2 by 2 junction network was simulated to see if the results from the simu-
lation follow the same pattern as before. In Figure 2.4 depicting the network, the
phases have been drawn on different junctions for ease of seeing them. All phases
exist on all junctions though. The lanes are numbered for reference.

Incoming traffic was here added on all incoming lanes to the network (lanes
(1, 4, 6, 7, 12, 13, 18, 19)) at a rate of 0.052 vec/s (1/8 of the saturated flow rate,
the same as in the single junction network). The turning ratios was for all lanes
(left, straight, right) = (0.2,0.5,0.3). Both start-up lost time and clearing time was
2 seconds. Lane detector length was varied from 1 to 12 vehicles in steps of 1
and κ was varied from 1 to 40 in steps of 1. Only the sum norm was used. Both
the aggregated queue lengths and the net flow to the network was plotted to get
indications for the stability. The simulation was run for 10000 seconds in steps of
0.05. The calculation of net flow was started after 2500 seconds to accommodate
for transients in the system. The results for this simulation is shown in Figure 4.5
and complementary in Appendix D.
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Figure 4.3 Net flow in the 1 junction network with 2 seconds start-up lost time.
Measured after 2500 seconds. Numbers next to the coloured lines are lane detector
lengths in vehicles.

The relationship for the 2 by 2 network seems to be linear as well which is
confirmed by the plot in figure 4.6.

4.3 Simulations in SUMO

To test how the optimal κ would depend on lane detector length in a more real-
istic setting, a Manhattan 5 network was simulated in SUMO with varying sensor
lengths. First a population of 5000 was simulated going to work at the same time,
for all three norms, and then a population of 10000 using only the sum norm, for
reasons of limited time to run simulations. Both with a probability 0.58 of owning
a car. The optimal kappa with respect to aggregated queue lengths was then found
and plotted against detector length. In SUMO the detector length is in meters. The
results from these where complemented with the results from the Manhattan 5 -
5000 with 375 meter lane detector length (length enough to cover the whole length
of the road, same as in the simulations mentioned in Chapter 3). They can be seen in
Figure 4.7. As can be seen in the figure, the optimal value of κ doesn’t change when
the sensor length is above a certain length. It might be that the lane detector was not
fully utilised throughout the simulations due to not high enough traffic demand.

The results here have shown that there exists a linear relationship between the
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Figure 4.4 Linear fit of the last stable kappa in the single junction network with
respect to lane detector length. The analytical prediction for the two different cases
with and without start-up lost time is also plotted. Sensor length is in vehicles.

Figure 4.5 Net flow in the simple 2 by 2 junction network. 2 seconds start-up lost
time. Measured after 2500 seconds. Numbers next to the coloured lines are lane
detector lengths in vehicles.
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Figure 4.6 Linear fit of the last stable kappa in the simple 2 by 2 junction network
with respect to lane detector length. Sensor length in vehicles.

Figure 4.7 Optimal κ from the Manhattan 5 - 5000 network with varying lane
detector length, and the from the sum norm from a Manhattan 5 - 10000 network.
The green data points from the sum norm are shifted 0.05 down for visibility. Sensor
length in meters.
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sensor length and the last stable κ given a certain flow. This relationship is for
one junction almost correctly predicted by an analytical deduction, given a very
simple model. When a more complex model is used the analytical approach predicts
stability issues earlier than the simulations show. With this said, since the optimality
results rarely show the optimal κ above 10 (there is an outlier for the Manhattan 10 -
10000 network, in Figure B.7 but the results for κ = 10 and κ = 15 are very similar),
from the results in Figure 4.7 it would seem that a sensor length above 100 meters
in implementation in the real world, would be of little use. If a shorter sensor length
is required for other reasons, the value of κ should be chosen lower as can be seen
in Figure 4.7. This is however dependent on the assumed traffic demand as a lower
traffic demand would have the same optimal κ until the detector length becomes
smaller.

The stability issues would in real life most likely be encountered at a slightly
higher κ except in more extreme cases with single lane phases competing with
heavily trafficked multi-lane phases. In this case the max or mean norm should be
considered since they in theory should produce more fair phase allocation. However,
there exists no stability proof of these norms as of yet. Furthermore, the simulations
with the single junction networks show that if the sensor length is long enough, the
sum norm does not become unfair.
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5
Performance comparison
with Back-pressure control

To do a quick comparison between the Proportional Allocation and the Back-
pressure controller a Manhattan 5 network was simulated. However, since turning
ratios are required for the Back-pressure controller to work, traffic was created a
little bit differently. Instead of a population statistics file, 6 sources and destinations
were set up, reference Figure 5.2 for more details. Routes where then created with
the help of turning ratios and the sumo tool JTRROUTER. The turning ratios were
the same for all junctions and they are presented in Table 5. The turning ratios were
the same for the two horizontal directions and different from the two vertical di-
rections. The two vertical approaches had the same turning ratios. The amount of
traffic that was added varied throughout the simulation time according to the num-
bers in Table 5.2. The simulation was stopped after 8000 seconds. Time slot lengths
varying from 5 seconds to 90 seconds were tried.

With the Back-pressure controller there is a problem with input lanes that allow
vehicles to drive to multiple output lanes, if there is another input lane that simul-
taneously allows vehicles to drive to one or more of those output lanes. The funda-
mental problem is that it is somewhat undetermined how to calculate the pressure of
a lane in these cases. In this thesis the pressure calculations have been implemented
as follows. If there are multiple input lanes that share an output lane, the input lanes
are treated as a single lane. This will be called a combined lane and the lanes that
make it up will be called sublanes. The queue that is on a combined input lane is
calculated as the total queue of the sublanes. Sublanes on a combined output lane
gets, in calculations, a queue that is the average of the sublanes. There is nothing
that can prevent a combined lane to only consist of a a single sublane.

Now reference Figure 5.1. As can be seen it is rather straight forward to calcu-
late the final turning ratios of the different output lanes once the approximation of
combined lanes has been done. With mathematics all this can be expressed as the
following. Let x̂l denote the queue of a combined input lane and x̄l the queue of
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Chapter 5. Performance comparison with Back-pressure control

Figure 5.1 How the statistical distribution of vehicles will be downstream from
the go straight or turn right horizontal phase in the Manhattan networks used in
this thesis (the blue phase in Figure A.1). Final turning rates are in red. Reference
Appendix A for more details on this phase setup.

Table 5.1 The turning ratios depending on the approach to the junction.

right straight left
Horizontal 0.166 0.50 0.333
Vertical 0.25 0.25 0.50

Table 5.2 The amount of traffic added to every source of traffic.

time interval number of vehicles
0-500 50

500-1000 300
1000-1500 100

sublanes of a combined output lane. The calculations of the pressure now become

wl = x̂l−∑
m

Rlmx̄m (5.1)

which gives the following expression (which is simplified further because of the
standardised saturated flow rate s in the simulations) for the pressure exerted by a
phase i as

γ(i) = Pisw. (5.2)

The results are hard to interpret due to the fact the the simulation time is to small
to let all the vehicles finish their route. This is a problem. First of, one observation is
that the minimum of the proportional allocation controller seems to be reasonably
consistent with previous results in this thesis even though it is somewhat skewed
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Chapter 5. Performance comparison with Back-pressure control

Figure 5.2 The sources and destinations of the traffic used in the comparison be-
tween the Back-pressure controller and the proportional allocation controller.

because of the simulation time constraint. Secondly, it can from first glance seem
like the Back-pressure controller produces shorter aggregated queue lengths if the
slot time is correct. This is confirmed by the figures 5.4 and 5.6 that indicates that
the Back-pressure controller indeed is able to process the traffic at a higher rate.
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Chapter 5. Performance comparison with Back-pressure control

Figure 5.3 Aggregated queue lengths from the different controllers with different
settings. These results cannot be interpreted straight off since all the vehicles have
not left at the simulation end time. Slot time is in milliseconds.
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Chapter 5. Performance comparison with Back-pressure control

Figure 5.4 Queue lengths over time during the simulation. Back pressure con-
troller. Slot time 10 seconds.

Figure 5.5 Queue lengths over time during the simulation. Back pressure con-
troller. Slot time 70 seconds.
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Chapter 5. Performance comparison with Back-pressure control

Figure 5.6 Queue lengths over time during the simulation. Proportional allocation
controller, sum norm, κ = 10.
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6
Discussion

The results herein do depend to some extent on a stochastic element which is the
populace probability of owning a car. The consequence of this is that many more
sets of simulations need to be produced to be able to set confidence intervals on the
results. With this said, it might still be possible to draw some general conclusions.
First of all the results obtained from the optimality agrees with the results in [Nils-
son and Como, 2018] in as so far as the optimal κ for the sum norm is around 10
(see Table 3.2). Next thing to say is that the optimal κ does not seem to depend
on the traffic demand in a Manhattan type network, with regards to the results as
can be seen in Table 3.2. Therefore, to ease the burden on the CPU and speed up
simulations, networks can be made smaller in size when simulating uniform grid
networks. Not too small though, as the results from the Junction 2-3 network are
different than the bigger networks. Spillover effects might be a big error factor here
but if these can be accounted for, single junction simulations might prove useful.
One way might be to see if a shorter sensor length might emulate spillover effects,
but the results showed that it cannot, as the results in Table 3.2 show different opti-
mal κ than the bigger networks. Another way could be to count the number of cars
waiting to enter the junction as additional queue. More extreme traffic demands
might prove that smaller networks cannot be used instead of bigger.

A thing that might be a big affector of the choice of κ is the saturated headway
that is remarkably small in SUMO ( 1.1 from [Wikipedia, 2018]) compared to what
is cited in [Roess et al., 2011] (2.4). This should have a great impact on how one
would choose κ since the saturated headway directly affects how long it will take to
empty a queue. If the case is that saturated headway is of great importance, weights
might also need to be added to junctions that are placed in such a way that the
saturated headway is dependent on from which direction the vehicles arrive. The
required time to empty a queue, if to believe [Roess et al., 2011] and the saturated
headway cited in [Wikipedia, 2018], should be a little bit more than twice the time
in reality which would mean that all values of κ in the SUMO simulations should
be halved.

When the network topology and phase setup is changed, this heavily affects the
optimal κ . If it is the phase change or the network topology that influences this
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Chapter 6. Discussion

change is hard to say, a guess is that it is both, but this needs more investigation.
One thing to note is that the Brickwall network of a certain size has roughly only
3/4 the capacity of a similar sized Manhattan network due to the removal of one of
the roads in each city block.

Among the norms, for the multi-junction networks, over all they perform simi-
larly for their respective optimal κ . When looking for fairness, the max norm per-
forms best by a small margin (see figures in Chapter 3). However, for another κ

than the optimal one. This produces a problem of compromise between fairness and
optimality.

From figures 3.13 and 3.12 for the fairness it can clearly be seen that in an
unfair junction with short sensor length, the mean norm produces almost unchanged
fairness results between a fair and an unfair junction, while the other norms are
severely worsened compared to a more fair junction. However the unfairness effect
seems to be compensated for with a longer sensor length as can be seen in figures
3.10 and 3.11. This in turn might only work if the traffic demand is low enough since
the controller is stabilising. The stabilising property means, as mentioned before,
that a queue will grow until the allocated time is enough to stabilise the queue. This
means that the queues themselves might be very uneven, but that the service time as
a result of this becomes more fair. This of course does not work if the traffic demand
is so large that it will saturate the sensor, which will happen if the traffic demand is
to large or the sensor to short.

Over all the mean norm’s fairness is more sensitive to the value of κ compared
to the others. This might not be a problem however, since the most fair value of κ

when using the mean norm is very close to the optimal value.
It has been shown in Chapter 4 that the sensor length has a big impact on the

choice of κ for the controller to remain stable. The relationship is shown to be linear
in a simple model, but the relationship might prove to be more complicated in a
more complex model. The important thing to take into consideration is how a very
short sensor length (<40m) might affect the value of κ . For such short sensor lengths
it seems like the most optimal thing for the controller to do is to allocate more
time than necessary for the measured queue, so that the vehicles in the unmeasured
queue has a chance to drive, congruent with standard static control practices (see
for example [Roess et al., 2011]), to over allocate cycle time so that the peak hour
traffic can be processed. To over allocate time in turn might prove to be unoptimal
if the measured queue in fact is the whole queue.

The results in this paper would suggest that if not much resources are available
when tuning traffic lights controlled by the proportional allocation controller, the
mean norm should be used with κ = 4 and a sensor length of at minimum approx-
imately 60 meters. Higher traffic demands would require a longer sensor length. If
more resources are available, first the compromise between optimality and fairness
should be taken into consideration and if possible the junction in itself should be
made more or less fair depending on the expected traffic. Then simulations should
be carried out to determine the optimal κ . In this case the max norm with values
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Chapter 6. Discussion

from 5 to 11 can be used as a starting point. Here, κ should also be checked so that
the value is well inside the stable region with regards to sensor length and estimated
maximum traffic demand. In both cases, if guaranteed stability is required, proofs
of the stability of these norms first needs to be provided.

As a final note it can be said that the Back-pressure controller achieves better
results under similar circumstances, however, it can be argued that it is not a truly
decentralised controller.
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7
Future work

To construct a decentralised self tuning controller might prove tricky to do. The
only information available would be the queue lengths from the sensors, but as have
been discussed here, the optimal κ would be one that is over-allocating time. One
way might be to check if any significant queue is left after phase execution. If there
is, decrease κ . However, to make this tuner stable might prove difficult if done in
a sophisticated way. The simplistic way would be to have the value of κ saturated
between, let’s say 4 and 15. This was not explored during the work here, but remains
as a future challenge.

Even though the exploration in this thesis is quite extensive it still leaves many
variables’ impact on the optimal value unanswered. Most notably could be if it is
the topology or phase setup that affects the optimal value to such a large extent.
Why is the value in the Brickwall network fluctuating so much while it is stable in
the Manhattan network, and what is the impact of varying saturation headways?
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A
Simulation scenarios

A number of different simulation scenarios were tried in simulation. In general three
main components were varied: traffic volume in most cases in the form of popula-
tion, size of the network, and network topology. In all networks vertical roads will
be called avenues and horizontal roads will be called streets. All networks where it
is not explicitly written otherwise, the networks had 2 lanes per direction on avenues
and 3 lanes in each direction on streets. The centre of the junctions are in all net-
works placed 400 meters apart creating road lengths of a minimum of 375 meters.
These 375 meters are, where not written otherwise, covered with a sensor counting
the number of vehicles in the queue (if the vehicle is moving it is not in the queue).
When simulating all the bigger networks (Manhattan 10 and 5, and Brickwall 10)
the populace was set to start working 1000 seconds after simulation start, and the
simulation was stopped after 4000 thereby allowing almost all the vehicles to finish
their commute.

A.1 Phase setup

In this section the different networks phase set up will be presented.

Manhattan networks
The cycle is divided into 4 orthogonal phases that do not allow the vehicles to col-
lide. They are the same as used in [Nilsson and Como, 2018] and are depicted in
Figure A.1. They are always executed in the same order starting with the phase
allowing traffic flowing east to west and west to east, the blue phase in the figure.

Brickwall network
The phases in this network will understandably be different because of being T-
junctions. Still orthogonal, the number of phases is reduced to 3. The order of
execution is always the same but different for T-junctions that are oriented in the
opposite way. Refer to Figure A.2 for a clear layout of the phases.
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A.2 Traffic generation

Figure A.1 The phase setup of the junction used for simulation in all of the grid
networks. The phase execution order is always the same starting with the blue one.

Single junction network
Of a smaller but still noticeable importance two different single junctions were sim-
ulated. A junction that looks exactly as in Figure A.1 and a junction that looks like
the one in Figure A.3. This second junction has 2 lanes in each direction of the av-
enues and 6 lanes in each direction on each street. The phases are still orthogonal
and are executed in the same order every time. The junctions are the Junction 2-3
and the Junction 2-6 respectively congruent with the number of lanes on the avenues
and streets.

A.2 Traffic generation

Mahattan 10 and 5, and Brickwall 10
For all networks bigger than a single network the previously mentioned AVTIVITY-
GEN and DUAROUTER was used with different population sizes to create routes
and thereby traffic demands. For the networks Manhattan 10 and Brickwall 10, the
area east of Avenue 6 was designated the living zone where there are 10 times more
people living than working. West of Avenue 6 was the working zone with the re-
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Appendix A. Simulation scenarios

Figure A.2 The phases used in the junctions in the Brickwall network. If the junc-
tion is rotated 180 degrees the phases stay true with the junction.

versed relation. For the Manhattan 5 network this break point of relation between
work and living numbers was at Avenue 2. There is a small stochastic element be-
tween sets of simulation - the probability to own a car. The same routes were used in
the same set of simulations, so the same plot in the results has no stochastic element
within itself.

Junction 2-3 and Junction 2-6
For the single junction networks there is no viable way of generating traffic with
a population file. Instead traffic with a Poisson distributed arrival rate was created
since this was simpler. The total traffic volume were the same in both the junctions
throughout the set of simulations. However, because of the difference in the number
of lanes the sum of critical lane volumes was different. The incoming traffic was
produced at equal intensity from all 4 directions and the turning ratio was the same
(left, straight, right) = (1/4, 1/2, 1/4), for all directions. Sum of critical lane volume
were 1326 for the 2 by 3 lane junction and 1178 for the 2 by 6 junction. This
was only the nominal value though. At different time steps this was changed to
simulate different traffic demands throughout the day. The relative change in traffic
demand is shown in Table A.1. Vehicles had a probability of being created until time
10000 and the simulation was finished when no vehicles remained in the network.
To investigate fairness and scalability these networks were also simulated with a
shorter sensor length.
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A.2 Traffic generation

Figure A.3 The phase setup of the 2 by 6 lanes junction used for simulation. The
phase execution order is always the same.

Table A.1 The different modifiers at the different times as compared to the starting
intensity.

Time (s) 1500 3000 6000 9000
Modifier from
nominal traffic arrival intensity 0.5 1 1.2 0.996
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B
Optimality results

The results from the simulations on the Manhattan 10 network are presented in
figures B.1, B.2, and B.3; the results from the Manhattan 5 network in figures B.4,
B.5, and B.6; the results from the Brick-wall 10 network in figures B.7, B.8, and
B.9; and the results from the Junction 2-3 and Junction 2-6 in figures B.10 and B.12
respectively. The results from the single junction networks are shown in figures
B.11 and B.13. The results are summarised in table 3.2. Box plots from 39 different
simulation sets of the Manhattan 5 - 2500 are presented in figures B.14, B.15, and
B.16.

Figure B.1 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Manhattan 10 - 10000 network with
a lane area detector covering the whole road.
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Appendix B. Optimality results

Figure B.2 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Manhattan 10 - 5000 network with
a lane area detector covering the whole road.

Figure B.3 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Manhattan 10 - 2500 network with
a lane area detector covering the whole road.
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Figure B.4 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Manhattan 5 - 5000 network with a
lane area detector covering the whole road.

Figure B.5 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Manhattan 5 - 2500 network with a
lane area detector covering the whole road.
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Appendix B. Optimality results

Figure B.6 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Manhattan 5 - 1250 network with a
lane area detector covering the whole road.

Figure B.7 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Brickwall 10 - 10000 network with
a lane area detector covering the whole road.
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Appendix B. Optimality results

Figure B.8 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Brickwall 10 - 5000 network with
a lane area detector covering the whole road.

Figure B.9 The aggregated queue lengths for values of κ ∈ [1,20] ∈N, and for the
3 different norms. These are the results from the Brickwall 10 - 2500 network with
a lane area detector covering the whole road.
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Appendix B. Optimality results

Figure B.10 The aggregated queue lengths for values of κ ∈ [1,20] ∈ N, and for
the 3 different norms. These are the results from the Junction 2-3 network with a lane
area detector covering the whole road, and a sum of critical lane volume of 1326.

Figure B.11 The aggregated queue lengths for values of κ ∈ [1,20] ∈ N, and for
the 3 different norms. These are the results from the Junction 2-3 network with a lane
area detector 80 meters long, and a sum of critical lane volume of 1326.
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Figure B.12 The aggregated queue lengths for values of κ ∈ [1,20] ∈ N, and for
the 3 different norms. These are the results from the Junction 2-6 network with a lane
area detector covering the whole road, and a sum of critical lane volume of 1178.

Figure B.13 The aggregated queue lengths for values of κ ∈ [1,20] ∈ N, and for
the 3 different norms. These are the results from the Junction 2-6 network with a lane
area detector 80 meters long, and a sum of critical lane volume of 1178.
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Appendix B. Optimality results

Figure B.14 Box plot from 39 runs of the Manhattan 5 - 2500 network with the
max norm.

Figure B.15 Box plot from 39 runs of the Manhattan 5 - 2500 network with the
mean norm.
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Figure B.16 Box plot from 39 runs of the Manhattan 5 - 2500 network with the
sum norm.
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C
Fairness results

The fairness results from the simulations on the Manhattan 10 network are presented
in figures C.1, C.2, and C.3; the fairness results from the Manhattan 5 network
in figures C.4, C.5, and C.6; the fairness results from the Brick-wall 10 network
in figures C.7, C.8, and C.9; and the fairness results from the Junction 2-3 and
Junction 2-6 in figures C.10 and C.11 respectively, and in figures C.12 and C.13
with shortened sensor length. The results are summarised in tables 3.3 and 3.4.

Figure C.1 The Jain’s fairness index for the Manhattan 10 - 10000 network.
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Appendix C. Fairness results

Figure C.2 The Jain’s fairness index for the Manhattan 10 - 5000 network.

Figure C.3 The Jain’s fairness index for the Manhattan 10 - 2500 network.
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Figure C.4 The Jain’s fairness index for the Manhattan 5 - 5000 network.

Figure C.5 The Jain’s fairness index for the Manhattan 5 - 2500 network.
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Figure C.6 The Jain’s fairness index for the Manhattan 5 - 1250 network.

Figure C.7 The Jain’s fairness index for the Brickwall 10 - 10000 network.
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Figure C.8 The Jain’s fairness index for the Brickwall 10 - 5000 network.

Figure C.9 The Jain’s fairness index for the Brickwall 10 - 2500 network.
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Figure C.10 The Jain’s fairness index for the Junction 2-3 network.

Figure C.11 The Jain’s fairness index for the Junction 2-6 network.
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Appendix C. Fairness results

Figure C.12 The Jain’s fairness index for the Junction 2-3 network with the short-
ened queue length.

Figure C.13 The Jain’s fairness index for the Junction 2-6 network with the short-
ened queue length.
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D
Stability results

In this appendix the aggregated queue lengths of the MATLAB simulations are
presented.

Figure D.1 Aggregated queue lengths in the 1 junction network with no start-up
lost time. Numbers next to the coloured lines are lane detector lengths in vehicles.

78



Appendix D. Stability results

Figure D.2 Aggregated queue lengths in the 1 junction network with 2 seconds
start-up lost time. Numbers next to the coloured lines are lane detector lengths in
vehicles.

Figure D.3 Aggregated queue lengths in the simple 2 by 2 junction network. Num-
bers next to the coloured lines are lane detector lengths in vehicles.
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E
Performance

In this appendix more results from the performance comparison are presented. First,
in Figure E.1 the summarised results are presented again. After that, in the rest if
the figures, some of the data points in Figure E.1 are displayed. The data points
displayed are selected based on the best performance from the different controllers
and some of the worst performance.

Figure E.1 Aggregated queue lengths from the simulations.
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Figure E.2 Queue lengths over time during the simulation. Back pressure con-
troller. Slot time 10 seconds.

Figure E.3 Queue lengths over time during the simulation. Back pressure con-
troller. Slot time 70 seconds.
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Figure E.4 Queue lengths over time during the simulation. Proportional allocation
controller, max norm, κ = 1.

Figure E.5 Queue lengths over time during the simulation. Proportional allocation
controller, mean norm, κ = 1.
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Figure E.6 Queue lengths over time during the simulation. Proportional allocation
controller, sum norm, κ = 1.

Figure E.7 Queue lengths over time during the simulation. Proportional allocation
controller, max norm, κ = 10.
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Figure E.8 Queue lengths over time during the simulation. Proportional allocation
controller, mean norm, κ = 5.

Figure E.9 Queue lengths over time during the simulation. Proportional allocation
controller, sum norm, κ = 10.
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