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Abstract

Earthquakes, wind and traffic may cause unwanted vibrations in buildings. Vibra-
tion control devices are often installed between floors to suppress such disturbances.
In the context of buildings, controllers are commonly designed using methods which
are subject to a number of limitations: we cannot discuss optimal performance or
conclude that no controller exists which satisfies a given set of design specifications.

In this thesis, we address these shortcomings by considering convex optimisa-
tion for controller design in buildings. Given a restricted set of design specifications
typical in vibration control, we show that the controller design problem may be for-
mulated as a convex optimisation problem when the building is modelled as a chain
of masses interconnected by linear springs and dampers. The design specifications
for which this is shown are internal stability, achievability by some controller, and
upper and lower bounds in the frequency and time domain.

This method is then demonstrated for a chain of five masses subjected to an
impulse. A set of controller design problems are formulated and solved using CVX
in Matlab. A specific design problem is also solved for different finite-dimensional
approximations, and the result suggests convergence to some minimum. Tradeoff
curves comparing actuator effort to intermass displacement in both the frequency
and time domain are successfully computed. These results are then compared with
the performance of the corresponding passive system in which dampers have been
added. It is found in particular that the greatest damper force can be over 200 times
larger than that of an optimal controller achieving the same performance.
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Nomenclature

(C) a convex optimisation problem

δi the intermass displacement xi− xi−1

Ĥn a special function from Rnunyn to H

D∗ the design specification that a given set of design specifications {Di} be
simultaneously satisfied

D{stab the design specification that D∗ while excluding Dstab

Dδ f ,αδ f
the design specification that φδ f (H)< αδ f

Dδ t,αδ t
the design specification that φδ t(H)< αδ t

D f d∗, n the design specification that both D f dstab, n and D{stab

D f dstab, n the design specification that H ∈H belong to the finite-dimensional
part of Hstab generated by means of the n first basis functions Qk

Di a design specification indexed by i

Dstab the design specification that H ∈H be achieved by some stabilising
controller

Dut,αut the design specification that φut(H)< αut

H the set of all nz×nw transfer matrices

Hi the set of all H ∈H for which Di is true

R the set of all stable nu×ny transfer matrices

Vn the set of all x ∈ Rnunyn such that Ĥn(x) ∈H{stab

φδ f a functional such that φδ f (H) = max
1≤i≤N

sup
ω∈[0,ω0]

|Hδix0(iω)|
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Contents

φδ t a functional such that φδ t(H) = max
1≤i≤N

sup
t∈[0,t0]

|L −1(Hδix0)(t)|

φut a functional such that φut(H) = max
1≤i≤N

sup
t∈[0,t0]

|L −1(Huix0)(t)|

ξ the damping ratio

{Dφ ,α} a design objective given an associated functional φ

di the damping coefficient of the damper located between the i-1:th and
the i:th mass

Fdi the force affecting the i:th mass as caused by the i:th damper

Fki the force affecting the i:th mass as caused by the i:th spring

H the closed-loop transfer matrix

H0 Ĥn applied to the solution of (C)

I the identity matrix

J the dimension of the constraint set

K the controller matrix

ki the spring constant of the spring located between the i-1:th and the i:th
mass

mi the mass of the i:th storey

N the number of masses included in the mass chain

n the number of elements included in the finite sequence Qk

nw the number of elements of the vector w

Pyu the transfer matrix from u to y

Qk a basis function for any positive integer k

u the actuator inputs: ui is the force affecting mi as caused by the i:th
controller device

w the exogenous inputs: w = x0

x0 the ground displacement

xi the displacement of the i:th mass

y the sensed outputs: yi is taken as δi

z the regulated outputs: zi is taken as δi and ui
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1
Introduction

Background
Earthquakes, traffic and wind are examples of disturbances which tend to cause un-
wanted vibrations in buildings. Dampers and vibration control devices are often in-
stalled between storeys to combat this issue. Requirements on the system behaviour
are formulated and controllers are designed to meet these requirements. However,
commonly used design methods are lacking in some important respects. For in-
stance, if such methods are unsuccesful in generating an acceptable controller, one
cannot conclude immediately that the constraints are too tight: a different approach
could very well be more successful. Conversely, even if an acceptable controller
were to be obtained, other more efficient choices may have been overlooked. It is
useful for the designer to know, for instance, that there are other controllers which
satisfy the constraints with much less effort; it is just as useful to know that a con-
troller with simple structure performs almost as well as a best achiever.

In order to arrive at such a best achieving controller, it is natural to resort to
some kind of minimisation over a set of candidate controllers. Local minima will
not suffice, however, as the above shortcomings will have to be dealt with once
more. Instead, we require global minima in order to properly evaluate such limits of
performance. Convex optimisation is the key to this.

A convex optimisation problem is a type of minimisation problem for which
there exist efficient numerical algorithms which guarantee convergence to a global
minimum. More specifically, we are guaranteed to arrive to within an arbitrarily
small distance of a global minimum in a finite number of iterations. Thus, if the
particular controller design problem could somehow be translated into a convex
optimisation problem, we would be in a position to remedy the above shortcomings.
As it happens, recent theoretical developments has led [Boyd et al., 1990] to propose
a programme for doing exactly this for a restricted set of systems and constraints.
In this thesis, we adapt these results to the context of vibration control in buildings.

11



Chapter 1. Introduction

Purpose and Task
This thesis examines the circumstances under which it is possible to formulate the
controller design problem for buildings as a convex optimisation problem. As a
point of entry, the building is modelled as a chain of masses connected by linear
springs and dampers. We verify that this system along with an accompanying set of
requirements on system behaviour are on the right form to be amenable to the con-
troller design procedure suggested in [Boyd et al., 1990]. The requirements which
we consider are typical in the context of vibration control.

We then proceed to demonstrate the design method for a system of five masses
subjected to an impulse disturbance. A set of controller design problems are formu-
lated and restated as convex optimisation problems; these are subsequently solved
using CVX in Matlab. The results are compared with the corresponding passive
system in which external damping is added. We also evaluate the best achievable
performance, comparing actuator effort to intermass displacement in both the fre-
quency and time domain by means of tradeoff curves. Finally, a specific design
problem is solved with different finite-dimensional approximations.

Outline
The thesis is structured as follows:

Chapter 2 is the background chapter in which we make important definitions and
assumptions. In particular, the mass chain model for modelling buildings is intro-
duced along with the related assumptions. Further, we review some basic concepts
about structural engineering and control theory.

Chapter 3 describes the general procedure for translating a controller design
problem into a convex optimisation problem. Here, we introduce design specifica-
tions, a formalisation of the demands on the system behaviour, and convexity, the
crucial restriction which must be imposed on the design specifications in order to
arrive at a convex optimisation problem.

Chapter 4 applies the design method outlined in Chapter 3 to the mass chain
model described in Chapter 2. In particular, we put up the equations of motion for
the mass chain system and describe it within the framework introduced in Chapter
2. This allows us to connect it to the contents of Chapter 3. We then consider various
sets of material parameters and determine when the design method in question may
be exploited to yield a convex optimisation problem.

Chapter 5 considers a specific mass chain system with five masses. In this chap-
ter, the method detailed in Chapter 3 is put into practice. A set of controller design
problems are posed and their corresponding convex optimisation problems are for-
mulated and solved. In particular, we consider best achievable performances and
compute tradeoff curves.

Chapter 6 discusses the results of Chapter 3, 4 and 5 and points at suggestions
for future work on the subject.

12



2
Buildings and Control

In this section, we lay the foundation on which the remainder of the thesis depends.
We discuss relevant facts about buildings and vibration suppression for later use.
Further, we establish the conceptual framework within which we will carry out our
analysis.

In particular, Section 2.1 discusses the physical reality of buildings and earth-
quakes. From this, various goals of regulation are anticipated and formulated as in-
formal design specifications. The mass chain model for modelling buildings is then
introduced in Section 2.2 alongside the necessary assumptions that such a model
entails. Passive interconnections are considered in some detail. Finally, in Section
2.3 we review basic concepts and terminology from systems theory, including sta-
bility. In connection with this we also consider controller action. The definitions are
adopted to a large extent from [Boyd et al., 1990].

2.1 Vibration Suppression in Buildings

There are many sources of disturbance associated with buildings, e.g. traffic, wind
and earthquakes. Various means of disturbance rejection may be implemented either
passively or actively. In the passive case, there is only dissipation and no external en-
ergy is added. A realisation of this appears, for instance, as a set of dampers between
floors designed to absorb vibrational energy. By contrast, in the active case, energy
is funnelled into the system from an external source. Controller devices positioned
between floors could constitute this external agent. A combination of dampers and
controllers is also employed, and a comparison between active and passive distur-
bance rejection is therefore interesting.

The difficulties we face as a result of vibrations will depend in general on the
nature of the disturbance. For instance, surrounding traffic may be more of a comfort
issue for the residents, whereas earthquakes will threaten the structural integrity
of the building. The better known the disturbance profile, the more efficient the
means of counteracting it will be. In the following, we therefore restrict ourselves
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Chapter 2. Buildings and Control

to earthquakes. This is because earthquakes constitute a recurring feature in some
parts of the world, and their particular characteristics are well understood.

Earthquakes come in a variety of shapes and sizes. They may be analysed by
means of their acceleration/velocity/displacement time histories and corresponding
spectrums. There are many factors that come into play in determining the appear-
ance of these graphs. For instance, the location of the hypocenter, the fault type and
the distance away from the rupture will all be of consequence [USGS, 2018].

A particular kind of earthquake with which we concern ourselves in Chapter 4
can be caused by near-fault ground motion resulting from forward-directivity. This
kind of ground motion is pulse-like and intense, and may be characterised by a small
number of parameters [Mavroeidis and Papageorgiou, 2003]. However, under some
circumstances, a pulse in the accelerogram associated with such ground motion may
be idealised as an impulse [Kojima and Takewaki, 2015]. In the same vein, we allow
an impulse to model the characteristic pulse in the displacement time history.

There are many aspects to take into account when reducing the impact of earth-
quakes. An important such factor is their low-frequency character: the highest activ-
ity in displacement tends to be located in the 0-10 rad/s frequency band [Yamamoto,
2016]. The natural frequencies of the building ought therefore not to coincide with
that particular range. From a control perspective, the goal is to reduce the horizontal
displacement between neighbouring floors: too great a distance would fracture the
supporting columns and result in building collapse.

Special care has to be taken with the equipment designed to aid. For instance,
in response to a violent quake, dampers themselves could damage the columns.
The damping mechanism would have to be reworked such that nonlinearities be
introduced to remedy this.

Controllers also require special attention. Minimising actuator effort is always
beneficial, if not for damage prevention, then at least for the sake of economy. In re-
sponse to large signals - a given with earthquakes - the controller device might over-
heat or incur mechanical damage. Saturation and the related windup phenomenon
also have to be accounted for, and so forth.

In the following, we restrict ourselves to a particular subset of these pitfalls:

• Reduce horizontal displacement between adjacent floors in some appropriate
sense.

• Reduce actuator effort in some appropriate sense.

Of course, the exact quantity we reduce will depend on what we wish to achieve,
and there are different metrics for different purposes. This will be specified later on.

The choice in the list strikes a balance between the relative importance of these
goals in engineering, and the mathematical width they offer. In the chapters to come,
a suitable framework will be introduced in which these goals may be formalised as
design specifications for controller design.
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2.2 The Mass Chain Model

2.2 The Mass Chain Model

The main aim of this project is to examine the circumstances under which controller
design via convex optimisation is possible in the domain of buildings. It therefore
stands to reason that a simple model for buildings be used: should the results look
promising, one may proceed to more sophisticated models. The model we will em-
ploy is called the mass chain model.

Considered through the mass chain model, the continuous mass distribution of a
building is discretised and lumped into N point masses corresponding to the N floors
of the building. The mass mi corresponds to the mass of the i:th floor, 1≤ i≤N. Tor-
sion or rotation of the masses is assumed to be non-existent. These masses are then
interconnected with passive or active components, in our case springs and dampers
(passive) and controllers (active). An additional layer of these components separates
the first floor m1 from the disturbance source. The components are assumed to be
connected in parallel. A schematic of this interconnection is shown in figure 2.1.

The disturbance is assumed to enter at ground level. It is further assumed to
act horizontally in one dimension. This is not unreasonable for an earthquake. In
response, the N masses are likewise assumed to move horizontally in one dimen-
sion. The default state in which there is no disturbance and the building is at rest is
referred to as the zero state.

With these assumptions in mind, let x0 = x0(t) denote the horizontal deviation
of the ground from its position in the zero state. Further, let xi = xi(t) denote the
displacement of the i:th mass such that xi = 0 corresponds to its position in the zero
state. A visual representation of this is shown in figure 2.2.

We close this section on the definition of the mass chain model by comment-
ing on its applicability. Despite its simplicity, the model is widely employed in the
field of structural engineering, not least in relation to earthquakes, e.g. [Yamamoto,
2016]. However, the same model appears also in various other domains, such as in
the study of vehicle platooning [Rajamani, 2005]. A platoon is a close-packed group
of vehicles proceeding in the same direction, and they become relevant in the area of
automated highway systems in which the vehicles are fully automated. Altogether,
the work in this thesis may find use beyond vibration control in buildings.

K1 K2 KN

m1 m2 mN. . .

Figure 2.1 A schematic of the mass chain model. Here, Ki represent controller
devices.
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Chapter 2. Buildings and Control

x0

xN

xN−1

x2

x1

Figure 2.2 An abstraction of a building subjected to shear forces. The dashed lines
represent the building at rest.

The Passive Interconnection
Consider now the springs and the dampers between the masses. The spring will
model the inherent elasticity of the columns which support the structure. Due to
gravity, the floors above a column will press down upon it. However, this vertical
compression is not a parameter with which we will concern ourselves. Rather, we
will consider only the horizontal column stretching caused by shear forces as the
floors slide sideways.

This horizontal column stiffness will be modelled by linear springs obeying
Hooke’s law. The spring between mi and mi−1 is therefore associated with a spring
constant ki > 0. In our case, the spring is at rest if its two ends overlap. This may
be interpreted as the supporting column being completely vertical. When this state
of rest is disturbed, the spring responds by generating a force proportional to the
difference in horizontal position between its two ends. Seeing as these are attached
to mi and mi−1, we may instead consider the intermass displacement δi = xi− xi−1.
Defining Fki as the force affecting the i:th mass mi as caused by the i:th spring,
Hooke’s law then gives

Fki =−ki(xi− xi−1) =−kiδi (2.1)

Note that if mi lies to the right of mi−1, then δi > 0 and so, by (2.1), Fki < 0. Hence,

16



2.3 Systems and Related Concepts

the force exerted on mi by the i:th spring will attempt to drag mi to the left towards
mi−1, as it should.

As for damping, there are two main sources from which it is produced. One
kind of damping stems from the material properties of columns, which dissipate
energy by default. This is called structural damping. The other is an external addi-
tion of damping, perhaps in the form of a cylindrical device placed between floors
containing a viscous fluid [Yamamoto, 2016].

We will assume a linear law for either form of damping, analogous to (2.1).
The damper between mi and mi−1 is therefore associated with a damping coefficient
di > 0. Unlike in the case of a spring, however, we consider the difference in velocity
between mi and mi−1. Defining Fdi as the force affecting the i:th mass mi as caused
by the i:th damper, we have

Fdi =−di(ẋi− ẋi−1) =−diδ̇i (2.2)

Note that if mi moves faster than mi−1 to the right, then δ̇i > 0 and so by the above
Fdi < 0. Hence, the force exerted on mi by the i:th damper will attempt to increase
the velocity of mi to the left so as to match the velocity of mi−1, as it should.

The damping coefficient may be further separated into

di =
2ξ ki

ω
(2.3)

where the natural frequency ω is given by

ω =
2π

0.1N
(2.4)

ξ is called the damping ratio. It is customary in structural engineering to choose ξ ∈
[0,0.02] when modelling structural damping, and ξ ∈ [0,0.2] when modelling added
external damping. Note that the denominator in (2.4) has been retrieved empirically.

2.3 Systems and Related Concepts

The system with its internal dynamics will be acted on by input signals to produce
output signals. Sometimes, a controller is connected to modify the dynamics. An
example is offered by the system detailed above. There, a reasonable input signal
would be the ground movement x0. By contrast, any signals of interest, such as the
intermass displacements δi, would constitute the output signal. Controller action
enters between floors, as shown in figure 2.1.

More formally, a distinction will be made between the signals that are directly
related to the controller and those that are not. Input signals are divided into actuator
inputs u = u(t), signals that are generated by the controller and are funnelled into
the system, and exogenous inputs w = w(t), all remaining signals that somehow
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Chapter 2. Buildings and Control

affect the system from the outside. Output signals are similarly divided into sensed
outputs y= y(t), signals that the controller may access directly, i.e. controller inputs,
and regulated outputs z = z(t), which ideally consist of every signal required such
that various performance measures may be fully evaluated. Therefore, z will often
include the actuator inputs u and might overlap to some extent with the sensed
outputs y. When no controller is connected, w and z are referred to simply as input
and output signals respectively. In general, w,u,z and y are vector-valued, and their
corresponding number of elements are denoted nw,nu,nz and ny respectively.

LTI Systems
We now turn to consider systems in general. The model of the system together with
the signals w and z will be referred to as the plant, denoted P. In the following, the
plant P and any controller K are assumed to be linear and time-invariant (LTI).

Consider a plant with a scalar input signal w = w(t) and a scalar output signal
z = z(t). The LTI property implies that there exists a unique signal-independent
function p = p(t) such that for any w, we may obtain z by convolving w with p. p
therefore describes the plant and its dynamics completely.

Now, in the Laplace domain, the convolution operation becomes simple mul-
tiplication. In other words, given an LTI system, there exists a unique signal-
independent function P = P(s), called the transfer function, such that for any w

Z(s) = P(s)W (s)

where L w(s) =W (s) and L z(s) = Z(s). We establish the convention that for any
signal for which the Laplace transform L is well-defined, the transformed function
is denoted by the corresponding capital letter.

For a general LTI plant with several input and output signals, the plant may be
similarly described by a set of transfer functions, one for each input-output pair.
The transfer function from w j to zi describes the relation between w j and zi in the
Laplace domain, and is denoted Pziw j . The transfer functions may be collected into a
transfer matrix P to express the relation between input and output signals concisely
as Z = PW . Assuming some of those signals are related to a controller according to
the discussion above, this becomes(

Z
Y

)
= P

(
W
U

)
where P may be partitioned as

P =

(
Pzw Pzu
Pyw Pyu

)
so that

Z = PzwW +PzuU (2.5)
Y = PywW +PyuU (2.6)

18



2.3 Systems and Related Concepts

The Closed-Loop System
The closed-loop system arises when a controller K is introduced to modify the dy-
namics of the plant, as shown in figure 2.3. This new system has as input signal the
exogenous inputs of the plant w and as output signal the regulated outputs z. Clos-
ing the loop and invoking the assumption that the controller K be LTI, the actuator
signal U may now be expressed as

U = KY (2.7)

Inserting (2.7) into (2.6) yields

Y = PywW +PyuKY

which may be solved for Y to obtain

Y = (I−PyuK)−1PywW

By substituting this new expression for Y into (2.7) and then plugging (2.7) into
(2.5), we arrive at an expression for Z as a function of W

Z = (Pzw +PzuK(I−PyuK)−1Pyw)W

From this relation between W and Z we may identify the closed-loop transfer matrix
H

H = Pzw +PzuK(I−PyuK)−1Pyw (2.8)

The matrix H is an nz×nw transfer matrix consisting of various transfer functions.
The entry in the i:th row and j:th column will be denoted Hi j. H is fundamental for
the kind of design procedures we intend to employ, as we shall find in the chapters
to come.

P

K

u y

zw

Figure 2.3 System, controller and signals visualised in a standard configuration.
The dashed box represents the closed-loop system.
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Chapter 2. Buildings and Control

Stability
We now consider the important concept of stability for transfer functions and ma-
trices.

There are various definitions of stability depending on purpose. In this thesis,
we will directly adopt the definitions used in [Boyd et al., 1990]. A rational transfer
function is said to be stable if there are no more zeros than poles and the poles have
negative real part. A transfer matrix is said to be stable if all of its elements are
stable.

Stability is preserved under matrix addition and multiplication. To see this, con-
sider two rational functions Qn1

Qd1
and Qn2

Qd2
where the numerators and denominators

are all polynomials and Qd1,Qd2 6= 0. Then

Qn1

Qd1
+

Qn2

Qd2
=

Qn1Qd2 +Qn2Qd1

Qd1Qd2

and
Qn1

Qd1
· Qn2

Qd2
=

Qn1Qn2

Qd1Qd2

If the zeros of Qd1 and Qd2 have negative real part, then so do the zeros of the
new pole polynomial Qd1Qd2. Further, if deg(Qn1) ≤ deg(Qd1) and deg(Qn2) ≤
deg(Qd2), then the resulting numerator degree after addition or multiplication is
seen to be the same or less than the denominator degree. Hence, by the fundamental
theorem of algebra, there are no more zeros than poles. The sums and the products
of stable transfer functions are therefore stable. Now, since matrix addition and
multiplication are just a combination of normal addition and multiplication in each
element, the sums and products of stable transfer matrices also remain stable.

For a closed-loop system, internal stability is the property that the four transfer
matrices

K(I−PyuK)−1Pyu

K(I−PyuK)−1

(I−PyuK)−1Pyu

(I−PyuK)−1 (2.9)

be stable. Here, actuator and sensor noises are assumed to be added to the actuator
inputs and the noiseless sensed outputs respectively. They are also assumed to be
included in w, while u and y are assumed to be included in z, so that the four ma-
trices in (2.9) appear in H. In this way, if the system is controllable and observable,
internal stability is equivalent to the stability of H. Finally, if the closed-loop system
is internally stable, K is said to stabilise the plant P.
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3
Controller Design

In this chapter, we discuss controller design via convex optimisation in general
terms. For a restricted set of systems and constraints on system behaviour, the con-
troller design problem may be cast as a convex optimisation problem. This enables
us to use efficient methods to solve the problem numerically. We will establish in
this chapter under which circumstances a convex optimisation problem may be for-
mulated, and how this is accomplished. The aim for the remainder of the thesis is to
apply the contents of this chapter to the contents of the previous one.

An overview and some background to the subject is given in Section 3.1. Section
3.2 then goes on to establish the foundation on which the remainder of the chapter
will depend, discussing constraints in a more formal manner. Section 3.3 may be
regarded as a continuation of Section 3.2 and introduces a fundamental restriction
on the constraints, namely convexity. In Section 3.4, the design procedure is outlined
and the necessary theory is established. The material in this chapter is based on
[Boyd et al., 1990].

3.1 Overview

There are many ways to go about controller design. The general objective is to find
a controller K such that the dynamics of a given plant is modified to behave in a de-
sired way. This desired behaviour is often expressed as a set of design specifications
on, for instance, the performance and robustness of the system. Controllers may be
subjected to constraints as well, e.g. on their structure or order.

Often, heuristic methods are employed to this end. However, the designer might
be unable to find a suitable controller which satisfies the demands. A consequence
of using various rules of thumb is that it is impossible to conclude whether the
design method/designer is at fault or whether there is in fact no controller to be
found. Conversely, even if a controller were to be obtained, other more efficient
choices may have been overlooked. In order to address these and other shortcom-
ings, it is reasonable to minimise some appropriate quantity under said constraints.
An optimisation scheme for which only local minima are guaranteed would not be
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Chapter 3. Controller Design

acceptable, however, as one cannot know for certain if other approaches would have
been more successful.

In this chapter, we outline a design method based on [Boyd et al., 1990] in which
certain systems and constraints result in a particular type of optimisation problem
for which there exist special numerical algorithms. These algorithms are special in
the sense that convergence to a global minimum is guaranteed. The kind of optimi-
sation problem for which this can be accomplished is called a convex optimisation
problem. We state this problem formally.

THE CONVEX OPTIMISATION PROBLEM

min
x∈V

f (x) (C)

for some f : V → R and V ⊆ RJ which are both convex.

Convexity for sets and functions is defined in Section 3.3. Here, f is referred to as
the objective function and V as the constraint set.

In general, (C) will not yield an analytical solution and must be solved numer-
ically. Note that (C) may still be amenable to the numerical treatment described
above even if the assumptions are relaxed somewhat. For instance, f may be quasi-
convex, see [Boyd and Barratt, 1991].

In order to systematically arrive at such a problem formulation, the system and
the demands on system behaviour must themselves be subjected to constraints. In
particular, we require that the system be LTI and that the constraints on the system
be convex. In other words, given an LTI plant and a set of convex design specifica-
tions, the controller design problem can be cast as a convex optimisation problem
[Boyd and Barratt, 1991].

Once (C) has been reached, there are many numerical methods dedicated to
the task of solving it, see [Boyd and Barratt, 1991]. We will not concern ourselves
with this aspect of controller design, however, and will instead regard the controller
design problem as solved upon reaching (C).

As for the design procedure itself, it relies fundamentally on the inclusion of
one particular design specification, namely achievability and internal stability. The
set of closed-loop transfer matrices which satisfy this design specification may then
be generated by the set of stable nu× ny transfer matrices, as is shown in Section
3.4. This set is readily restricted to a finite-dimensional set which may in turn be
parameterised by a vector x ∈ RJ .

From this point on it is assumed that a controller is connected to the system and
that both system and controller are LTI. For a review of concepts in systems theory
for which we will have use in the following, consult Section 2.3.

22



3.2 Design Specifications

3.2 Design Specifications

We begin by considering various requirements on the system behaviour in a more
formal setting. A design specification D is a statement about the closed-loop trans-
fer matrix. In the following, it is assumed that all constraints on the system may
be expressed in terms of the closed-loop transfer matrix. This is not unreasonable,
as our main concern lies with the behaviour of the system after a controller has
been connected to modify it in a manner which pleases us. Recall further that the
regulated outputs z were defined in Section 2.3 in such a way that we were given
the possibility to include the transfer functions of interest in H. In light of this as-
sumption, all desires or requirements we might wish to impose on the system should
correspond to a design specification.

Suppose now we are given a set of design specifications {Di} indexed by i
(not necessarily a number in this context). Our main objective at this point is to
determine if there exists a closed-loop transfer matrix which satisfies all Di and
therefore behaves in a desired way. Further, if several such matrices exist, we would
also like to find the best performing one in some appropriate sense. Only if such a
matrix exists do we attempt to retrieve the corresponding controller which achieves
the closed-loop system.

In order to confront this problem systematically, it must first be restated in a
more direct form. To this end, let H denote the set of all nz×nw transfer matrices.
Given an element of H , by definition Di should be either true or false for each i.
Collecting all H ∈H for which Di is true into a set Hi ⊆H , i.e.

Hi = {H ∈H |Di is true}

it is clear that given a Di, Hi is well-defined. Conversely, an arbitrary subset Hi of
H defines a Di through the statement H ∈Hi. In other words, there is a one-to-one
correspondence between Hi and Di. When referring to a design specification then,
we also refer to its corresponding subset in H .

We may combine several design specifications into one. Demanding that {Di}
be simultaneously fulfilled is a design specification on its own – call it D∗ – as it
says something about H. As such, there is a corresponding subset H∗ ⊆H . Since
D∗ requires the simultaneous satisfaction of all Di, it demands that H ∈Hi for all
i. This in turn corresponds to an intersection in H , i.e.

H∗ =
⋂

i

Hi (3.1)

We are now in a position to restate our main objective more directly as deciding
whether H∗ is empty or not. If H∗ is non-empty, we say that Di are achievable; if
empty, they are said to be unachievable.

23



Chapter 3. Controller Design

Design Objectives and Limits of Performance
Some desires on the behaviour of the system are not necessarily constraints and as
such are not intended to be strictly observed. We will refer to these as design objec-
tives. As an example of a design objective, consider keeping the highest magnitude
of some transfer function over some interval as low as possible. In some contexts,
this is desirable, and the lower the better. More generally, design objectives often
have this structure: a transfer matrix is associated with some number α ∈R, and the
lower α is the better. In the following, we shall assume design objectives appear on
this form.

What is actually discussed above is a function φ : H → R. Given a design
objective defined by φ , we have a direct way of comparing the performance of two
transfer matrices H̄, H̃ ∈H . If φ(H̄) ≤ φ(H̃), then H̄ performs better than H̃ and
hence is more desirable. Now, confronted by a set of design specifications and a
design objective, the aim is to determine whether H∗ in (3.1) is empty or not. If
non-empty, we would further like to find an H0 ∈H∗ such that φ(H0)≤ φ(H) for
all H ∈H∗. The corresponding controller which achieves this H0 – assuming there
is such a controller – may be considered an optimal controller and a solution to the
controller design problem.

There are often several conflicting design objectives at once. This means that
lowering all of them at the same time may be impossible. Conversely, settling for
high values is unnecessary if lower values overall may be attained. It is in this sense
that we speak of the best achievable performance, or limit of performance, for sev-
eral design objectives. This is best done in the framework of design specifications.

Given a function φ , for every α ∈ R we define the design specification Dφ ,α

such that
Hφ ,α = {H ∈H | φ(H)≤ α}

Clearly, Hφ ,α1 ⊆Hφ ,α2 if α1 ≤ α2, since φ(H) ≤ α1 ≤ α2. In other words, re-
ducing α corresponds to restricting Dφ ,α . In order to emphasise the connection
between design specifications and design objectives, we will represent the latter as
a set of design specifications {Dφ ,α} parameterised by the real number α . Low-
ering/minimising a design objective {Dφ ,α} means finding the lowest α such that
Dφ ,α is still achievable.

There are many ways in which to handle several competing design objectives.
In this thesis, we compare two design objectives at most. In such cases, the best
achievable performance is most conveniently represented in graphical form. To this
end, suppose two design objectives {Da,α} and {Db,β} are given. Each number pair
(α0,β0)∈R2 corresponds to the combined design specification that Da,α0 and Db,β0
both be demanded. If this combined design specification is achievable, i.e. there is
an H ∈H for which Da,α0 and Db,β0 are both satisfied, let the corresponding point
(α0,β0) be shaded; otherwise, let it be white. Figure 3.1 illustrates how such a re-
sult might look. The boundary curve separating the white area from the shaded area
is called a tradeoff curve and represents the limit of performance. Moving along it
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α

β

Figure 3.1 This curve represents a comparison between two conflicting design ob-
jectives. Each point in the shaded zone corresponds to an achievable design specifi-
cation.

shows what must be surrendered in one design objective in order for the other to be
lowered and vice versa. Similarly, proceeding from the top-right towards the trade-
off curve suggests a lowering of the two design objectives while still maintaining
achievability: we improve the performance to the limit of achievability.

We now describe the strategy used in Chapter 5 for computing tradeoff curves.
To this end, consider the related problem P of minimising {Da,α} under the con-
straint Db,β0 for some fixed β0. Let the minimum be given by α0. This means that
there exists a H0 ∈H which satisfies both Da,α0 and Db,β0 . This H0 therefore also
satisfies Da,α and Db,β0 for α ≥ α0: by definition, Da,α is less tight than Da,α0 .
All points (α,β0) for α ≥ α0 on the vertical line above (α0,β0) should therefore
be shaded. Conversely, assume there is an α < α0 such that both Da,α and Db,β0
are achievable. Then the minimum of problem P is at most α and so cannot be α0,
a contradiction. All points (α,β0) for α < α0 on the vertical line below (α0,β0)
should therefore be white. But this means that (α0,β0) lies exactly on the trade-
off curve. Solving problem P repeatedly for various β0 now generates the tradeoff
curve.

3.3 Convexity

The set H is a vector space under ordinary matrix addition and multiplication by
scalar [Boyd et al., 1990]. It is therefore meaningful to discuss the geometry of
its subsets. In particular, consider the concepts of infinite lines and line segments.
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Figure 3.2 The convexity of sets illustrated in R2. The right set is not convex, since
there is at least one pair of elements for which at least one convex combination is not
contained in the set.

Take for instance the set L = {λv+u | λ ∈ R} where v,u ∈ R2 are constants. If the
elements of L were to be marked in the plane as λ ranges over the real numbers, we
would obtain an infinite line through u. However, if instead v and u were abstract
vectors in an arbitrary vector space, L would still be well-defined. This is because
the vector space, by definition, is closed under addition and multiplication by scalar.
It is therefore meaningful to speak about lines even in vector spaces.

Certain set geometries are associated with theoretical or computational benefits.
Convexity is one such example. A subset C of a vector space is said to be convex if
for any pair of vectors u,v ∈ C it is true that λu+(1−λ )v ∈ C for all real numbers
λ ∈ [0,1]. The new element λu+(1−λ )v is referred to as a convex combination
of u and v. In essence, then, a set is convex if for any two of its elements, the entire
line segment between them is contained in the set. This is illustrated in figure 3.2.

We now consider a useful property of convex sets concerning their combina-
tions. For quick referencing, we gather it in the lemma below.

LEMMA 3.1 The intersection of convex sets is itself convex.

Proof Take any two elements of the intersection and consider the resulting convex
combinations. Belonging to the intersection, the pair must belong to every set sep-
arately. Because these sets are all convex by assumption, all convex combinations
will be contained in each set separately. The convex combinations must therefore
belong to the intersection, which thus is convex. 2

We also define convexity for real-valued functions defined over convex subsets
C in arbitrary vector spaces. A function f : C → R is said to be convex if for any
pair u,v ∈ C , it is true that f (λu+(1− λ )v) ≤ λ f (u)+ (1− λ ) f (v) for all real
numbers λ ∈ [0,1].

Recall now that for each design specification, there is a way of assigning a set
of transfer matrices and vice versa. Thus, it is reasonable to extend the notion of
convexity such that it also encompasses design specifications. We therefore say that
a design specification Di is convex if the corresponding set Hi ⊆H is convex.
Given a set of convex design specifications {Di}, by Lemma 3.1 the equivalent
design specification D∗ defined by (3.1) is also convex.
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Note that convexity has been defined for three separate entities: sets, functions
and design specifications. We make the analogous definitions for affinity. This es-
sentially corresponds to extending λ ∈ [0,1] to λ ∈R and exchanging≤ for = in the
function definition. In particular, affinity implies convexity. Note that for functions,
it is meaningful to extend the definition of affinity beyond real-valued functions.

We now turn to some important design specifications and show that they are con-
vex. The performance criteria discussed below are relevant for the informal design
goals listed in Section 2.1. They are also quite central on their own, independently
of the context of this thesis. This means that many design goals likely fit into the
general framework presented below.

We begin by considering bounds in the frequency domain.

THEOREM 3.1
Let the design specification D f req be the statement that the magnitude of Hi j(iω) be
bounded above by some function h : I → R+ over some frequency range I ⊆ R+.
Then D f req is convex.

Proof Let such a function h be given. We proceed by showing that the correspond-
ing subset

H f req = {H ∈H | |Hi j(iω)| ≤ h(ω), ω ∈ I}
is convex. To this end, let H̃ and H̄ denote two elements of H f req. Since H̃, H̄ ∈
H f req it is true that

|H̃i j(iω)| ≤ h(ω)

|H̄i j(iω)| ≤ h(ω) (3.2)

for all ω ∈ I.
Consider now the convex combination H = λ H̃ +(1−λ )H̄ for some λ ∈ [0,1].

By definition of addition and scalar multiplication for matrices, Hi j = λ H̃i j +(1−
λ )H̄i j. Taking the absolute value and exploiting the triangle inequality for complex
numbers, we get

|Hi j(iω)|= |λ H̃i j(iω)+(1−λ )H̄i j(iω)| ≤ |λ ||H̃i j(iω)|+ |(1−λ )||H̄i j(iω)|

Because λ ∈ [0,1]⇔ λ ≥ 0 and 1−λ ≥ 0, the absolute value bars may come off so
that |λ |= λ and |1−λ |= 1−λ . We substitute the inequalities (3.2) to obtain

λ |H̃i j(iω)|+(1−λ )|H̄i j(iω)| ≤ λh(ω)+(1−λ )h(ω)

for all ω ∈ I, where the cancellation of λ terms finally yields

|Hi j(iω)| ≤ h(ω)

This means that H ∈H f req for all λ ∈ [0,1]. Any convex combination of elements
in H f req must therefore belong to H f req. This shows that H f req, and hence D f req,
is convex. 2
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jHij(i!)j

h(!)

Figure 3.3 The magnitude of a transfer function bounded above.

The design specification D f req is illustrated in figure 3.3.
We now turn to restrictions in the time domain. Often, one proceeds directly to

the output signal to impose constraints on its shape, e.g. upper bounds for suppress-
ing overshoots.

THEOREM 3.2
Let the design specification Dtime be the statement that the response of Hi j to some
scalar input w be bounded above and below by the functions bu : I→R and bl : I→
R respectively over some time interval I ⊆ R+. Then Dtime is convex.

Proof Let such functions bu and bl be given. As before, we show that the corre-
sponding subset

Htime = {H ∈H | bl(t)≤L −1(Hi jW )(t)≤ bu(t), t ∈ I}

is convex.
Take two elements H̃ and H̄ from Htime. Since H̃, H̄ ∈H f req it is true that

bl(t)≤L −1(H̃i jW )(t)≤ bu(t)

bl(t)≤L −1(H̄i jW )(t)≤ bu(t) (3.3)

for all t ∈ I.
Consider again the convex combination H = λ H̃+(1−λ )H̄ for some λ ∈ [0,1].

As before, we have Hi j = λ H̃i j + (1− λ )H̄i j. Multiplying by W and taking the
inverse Laplace transform, we get

L −1(Hi jW )(t) = L −1((λ H̃i j +(1−λ )H̄i j)W )(t)
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bu(t)
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Figure 3.4 The step response s(t) of a transfer function bounded above and below.

By the linearity property of L −1 inherited from the integral, the above expression
may be further broken down to

L −1(λ H̃i jW +(1−λ )H̄i jW )(t) = λL −1(H̃i jW )(t)+(1−λ )L −1(H̄i jW )(t)

Invoking the inequalities (3.3) and noting that λ ∈ [0,1] then yields

λL −1(H̃i jW )(t)+(1−λ )L −1(H̄i jW )(t)≤ λbu(t)+(1−λ )bu(t) = bu(t)

and

λL −1(H̃i jW )(t)+(1−λ )L −1(H̄i jW )(t)≥ λbl(t)+(1−λ )bl(t) = bl(t)

for all t ∈ I. In other words,

bl(t)≤L −1(Hi jW )(t)≤ bu(t)

and so, by definition of Htime, H ∈Htime for all λ ∈ [0,1]. Any convex combination
of elements in Htime must therefore belong to Htime. This shows that Htime, and
hence Dtime, is convex. 2

The design specification Dtime is illustrated for a step response in figure 3.4.

Transfer Matrix Achieved by Stabilising Controller
We now turn to the most important design specification of this chapter. It is funda-
mental not only from a design perspective, but also for the design method outlined in
Section 3.4. It is in fact a combination of two crucial constraints on the closed-loop
transfer matrix. We discuss them separately.
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The vector space H generally consists of all kinds of matrices. Even if we were
to find a closed-loop transfer matrix representing desirable dynamics, the question
remains whether there is any controller for us to close the loop with that could
possibly achieve such dynamics. Therefore, most H ∈H would likely be useless,
however favourable the dynamics represented by them. In other words, we would
like to demand of H that it appear on the form H = Pzw +PzuK(I−PyuK)−1Pyw for
some nu×ny transfer matrix K, see (2.8). This design specification Dach corresponds
to the subset

Hach = {H ∈H | H = Pzw +PzuK(I−PyuK)−1Pyw for some K = K(s)}

If H ∈Hach, we say that H is achieved by some controller K.
There is also the issue of stability, a standard demand on a closed-loop system.

It is desirable for such a system to be internally stable, as defined in Section 2.3.
We wish to restrict Dach and make the additional demand that H be internally sta-
ble. Thus, let Dstab denote the design specification that H should be achieved by
some stablising controller K. In order for Dstab to be well-defined, the four transfer
matrices in (2.9) must somehow be connected to H, so that Dstab may be expressed
on H only. This is the case if the exogenous inputs are augmented by the actuator
and sensor noise, and the regulated outputs are augmented by the actuator inputs
and sensed outputs. Due to the structure imposed on H by Dach, the four tranfer
matrices in (2.9) will now appear as blocks in H. Note that this inclusion of signals
is quite consistent with the signal definitions in Section 2.3, since these are either
signals which affect the system or signals in which we are interested. Dstab is now
well-defined and corresponds to a subset Hstab of H

Hstab = {H ∈H | H = Pzw+PzuK(I−PyuK)−1Pyw for some stabilising K = K(s)}

We end this discussion by noting that more than just convexity holds for Dstab.

THEOREM 3.3
Dstab is affine.

Proof The result appears in [Boyd et al., 1990]. As there is a lot of algebra involved,
we omit the proof for convenience. The basic idea is simple enough, however. The
affine combination of two elements in Hstab is formed. One then proceeds to rewrite
the combination on the form (2.8), identifying an expression for the corresponding
controller. With this at hand, the four transfer matrices (2.9) may be evaluated and
shown to be stable by the stability of their constituents. The affine combinations
therefore belong to Hstab and the result follows. 2

Non-Convex Design Specifications
There are some important design specifications which are non-convex. We men-
tion briefly two such cases which both concern controllers. Design specifications
formulated through H can reach the controller via (2.8).
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Consider the design specification that the controller be decentralised. This
means that only yi affects ui, and so K is diagonal. This design specification is
not convex.

Suppose instead we require the order of a controller, i.e. the largest degree of any
polynomial found in K, to be at most some positive integer. This design specification
is not convex either. In both cases, a simple counterexample suffices to disprove
convexity, see [Boyd et al., 1990]. The demand that the controller be passive is
likewise non-convex, as far as the author is aware.

Violations of either of these constraints are of enormous practical importance.
The first means in essence that the controller input/output interconnection may be
much more complex than what may be realisable in practice. As for the second, a
controller with too great an order might not even be implementable. The fact that
the constraints are not convex means that an optimal controller matrix may be dense
and of high order, in which case it might be completely useless in practice.

3.4 The Design Procedure

In this section, we assume that we are given the design specification Dstab along
with a separate set of convex design specifications {Di} and a design objective
{Dφ ,α}. These define our controller design problem according to Section 3.2. The
objective is to arrive at the corresponding problem formulation (C). At this point,
efficient numerical algorithms for solving the problem become available and so (C)
is solved in principle.

Let D{stab denote the design specification that all design specifications of the set
{Di} be simultaneously fulfilled. The corresponding subset in H is therefore

H{stab =
⋂

i

Hi

By Lemma 3.1, D{stab is convex. Our demands on the system behaviour are now
gathered concisely in the equivalent design specification D∗, the combination of
Dstab and D{stab. In other words, the transfer matrices which satisfy our design
specifications – if indeed there are any that do – are contained in

H∗ = Hstab∩H{stab (3.4)

cf. (3.1). Another use of Lemma 3.1 shows that this set is convex.
H∗ is infinite-dimensional in general. In order to exploit the numerical tools

at our disposal, the problem must be made finite-dimensional. This means we must
truncate H∗. There are many different ways in which to accomplish this, some more
appropriate than others. For the particular design method outlined in this section,
we will search for a finite-dimensional restriction inside Hstab. In order to do this,
however, Hstab must first be restated in a different, more useful form. Recall how
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Hach by definition is

Hach = {Pzw +PzuK(I−PyuK)−1Pyw | K}

As it turns out, under certain circumstances, Hstab may be similarly expressed.

THEOREM 3.4
Given an LTI system, assume that Pyu is stable. Then

Hstab = {Pzw +PzuRPyw | R is stable} (3.5)

Additionally, given such a stable R, the controller K which achieves the correspond-
ing H is given by

K = (I +RPyu)
−1R (3.6)

Proof Consider the definition of Hstab in the previous section. An equivalent but
more explicit description is offered by

Hstab =

Pzw +PzuK(I−PyuK)−1Pyw

∣∣∣∣∣∣∣∣∣∣
K(I−PyuK)−1Pyu

K(I−PyuK)−1

(I−PyuK)−1Pyu

(I−PyuK)−1

stable for some K


(3.7)

We now make the transformation

R = K(I−PyuK)−1 (3.8)

The expression (3.8) for R may now be inserted directly into the upper two expres-
sions in (3.7) to yield RPyu and R respectively. As for the remaining two,

I = I−PyuK +PyuK︸ ︷︷ ︸
0

= (I−PyuK)+PyuK
(
(I−PyuK)−1(I−PyuK)

)
︸ ︷︷ ︸

I

=
(

I +Pyu K(I−PyuK)−1︸ ︷︷ ︸
R

)
(I−PyuK) = (I +PyuR)(I−PyuK)

Multiplying by (I−PyuK)−1 from the right, we have (I−PyuK)−1 = I +PyuR. This
accounts for the fourth expression in (3.7). Another multiplication from the right
by Pyu accounts for the third. Altogether, because (3.8) suggests a one-to-one cor-
respondence between R and K (see below), (3.7) may be rewritten in simpler terms
according to

Hstab =

Pzw +PzuRPyw

∣∣∣∣∣∣∣∣∣
RPyu

R

(I +PyuR)Pyu

I +PyuR

stable for some R

 (3.9)
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Suppose now that R is stable. By the assumption that Pyu be stable, we may con-
clude that the four transfer matrices in (3.9) are stable. This is because the sum and
the product of two stable transfer matrices are stable, see Section 2.3. Conversely,
if the four transfer matrices are stable for some R, then the second one in particular
is as well, i.e. R is stable. In other words, when Pyu is stable, the condition in (3.9)
is equivalent to the condition that R be stable, and so

Hstab = {Pzw +PzuRPyw | R is stable}

As for the second part of the theorem, assume that we are given a stable R. We
multiply both sides of (3.8) from the right by (I−PyuK) and solve for K so that

K = (I +RPyu)
−1R

Note that this expression also confirms the one-to-one correspondence between R
and K, which concludes the proof. Note that the idea of the proof is adopted from
[Boyd et al., 1990]. 2

The result of Theorem 3.4 tells us that Hstab is generated by sweeping over the set
of all stable nu× ny transfer matrices R. Instead of moving through the entire set,
however, we restrict ourselves to a finite-dimensional part of it. The consequence is
that only part of Hstab is generated, namely

H f dstab = {Pzw +PzuRPyw | only some R ∈R}

so that H f dstab ⊆Hstab. This means that H f dstab ∩Hstab = H f dstab, and so the
closed-loop transfer matrices which now satisfy our constraints are given by

H f d∗ = H f dstab∩H{stab

cf. (3.4). In essence, we have added a new design specification corresponding to
H f dstab, which is not necessarily convex.

The H ∈H which now satisfy our constraints are contained in H f d∗. Since
H f dstab ⊆Hstab, we have H f d∗ ⊆H∗. This means that if H f d∗ 6=∅, we may take
an element, express it on the form in (3.5) for some R ∈ R, and use (3.6) to find
the corresponding controller. This controller will then achieve a closed-loop system
which is acceptable also with respect to D∗. However, if H f d∗ =∅, we know only
that if H∗ is non-empty, the elements do not belong to H f d∗. This information can
be useful in itself, but more can be said if H f dstab is chosen appropriately.

We would like H f dstab to take up as much of Hstab as possible in order to
reduce the loss incurred by the truncation, thereby closing the gap between H f dstab
and Hstab. In other words, we would like to use as much of R as possible. In
order to discuss this more systematically and prepare for matters of convergence, we
construct below an entire family of sets H f dstab, n such that H f dstab, n⊆H f dstab, n+1
for positive integers n.
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The Finite-Dimensional Approximation H f dstab, n

Consider the finite sequence

Qk(s) = (s+a)−k k = 1, . . . ,n (3.10)

for some fixed complex number a, Re(a) > 0. We refer to Qk as basis functions.
Note that the restriction on a means that all elements of the sequence are stable.
Also, for the remainder of the section we assume that n is a positive integer.

We now proceed to define a function R̂n : Rnunyn→R such that

R̂n(x) =
n

∑
k=1

Xk(x)Qk (3.11)

for a fixed n. Here, each Xk is an nu×ny matrix defined by

Xk(x) = ((Xk)i j) = (x(k−1)nuny+( j−1)nu+i)

where x(k−1)nuny+( j−1)nu+i is the ((k−1)nuny +( j−1)nu + i):th component of x ∈
Rnunyn. As an example, for nu = 4 and ny = n = 3, X2(x)Q2 becomes

X2(x)Q2 =


x13 x17 x21
x14 x18 x22
x15 x19 x23
x16 x20 x24

(s+a)−2 =


x13(s+a)−2 x17(s+a)−2 x21(s+a)−2

x14(s+a)−2 x18(s+a)−2 x22(s+a)−2

x15(s+a)−2 x19(s+a)−2 x23(s+a)−2

x16(s+a)−2 x20(s+a)−2 x24(s+a)−2


It is clear from this and (3.10) that each XkQk is a stable transfer matrix for all
x ∈ Rnunyn. Therefore, the sum R̂n(x) is as well, and so R̂n is well-defined.

A more natural function to define is ĤR : R→H given by

ĤR(R) = Pzw +PzuRPyw

Since it is well-defined on the entire R, so is the composition Ĥn : Rnunyn →H ,
Ĥn = ĤR ◦ R̂n, i.e.

Ĥn(x) = Pzw +Pzu

( n

∑
k=1

Xk(x)Qk

)
Pyw

Define now H f dstab, n as

H f dstab, n = {Ĥn(x) | x ∈ Rnunyn}

for fixed n. It is clear by the definition that H f dstab, n is finite-dimensional. Because
R̂n is not surjective in general, only some R ∈R may be reached from Rnunyn and
thus H f dstab, n ⊆Hstab for all n. Further, given H f dstab, n and H f dstab, n+1, every
element of the former may be reached from the latter simply by extending x∈Rnunyn

with nuny zeros. This means that H f dstab, n ⊆H f dstab, n+1, as desired.
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The Convex Optimisation Problem
The original objective was to determine whether the convex design specifications
Dstab and {Di}, i.e. D∗, were achievable or not. If achievable, we also wished
to find the best performing closed-loop system according to the design objective
{Dφ ,α}. After having applied the necessary finite-dimensional design specification
D f dstab, n, the new objective concerns the design specification D f d∗, n, a restriction
of D∗.

Consider now the set Vn such that

Vn = {x ∈ Rnunyn | Ĥn(x) ∈H{stab}

for a fixed integer n and assume that it is non-empty. Thus, there exists an element
x̄ ∈ Vn. By definition of Vn, we have Ĥn(x̄) ∈H{stab. Further, since H f dstab, n was
defined above to contain any H ∈H for which H = Ĥn(x) for some x ∈Rnunyn, we
must also have Ĥn(x̄) ∈H f dstab, n. Therefore, since H f d∗, n =H f dstab, n∩H{stab, it
follows that Ĥn(x̄) ∈H f d∗, n and H f d∗, n is non-empty.

Conversely, if H f d∗, n is non-empty, then there is an element H ∈H such that
H ∈H f dstab, n and H ∈H{stab. By definition of H f dstab, n, the former implies there
must exist some x̄ ∈Rnunyn such that H = Ĥn(x̄). The latter then gives Ĥn(x̄) = H ∈
H{stab and so x̄ ∈ Vn and Vn is non-empty.

We have just shown that Vn is non-empty if and only if H f d∗, n is non-empty.
The objective of whether D f d∗, n is achievable or not is therefore translated to de-
termining whether Vn is empty or not.

The question is now whether Vn is convex. In order to answer this, we first
proceed to establish a special property of Ĥn.

LEMMA 3.2 Ĥn is affine for all n.

Proof Suppose we are given x̄, x̃ ∈ Rnunyn. We form the affine combination

x = λ x̄+(1−λ )x̃

for any λ ∈ R. By addition and scalar multiplication for vectors,

x = λ (x̄1, x̄2, . . . , x̄nunyn)+(1−λ )(x̃1, x̃2, . . . , x̃nunyn)

= (λ x̄1,λ x̄2, . . . ,λ x̄nunyn)+((1−λ )x̃1,(1−λ )x̃2, . . . ,(1−λ )x̃nunyn)

= (λ x̄1 +(1−λ )x̃1,λ x̄2 +(1−λ )x̃2, . . . ,λ x̄nunyn +(1−λ )x̃nunyn)

and so
xk = λ x̄k +(1−λ )x̃k (3.12)

Consider now the action of R̂n on the affine combination. By definition of Xk,
(Xk)i j = x(k−1)nuny+( j−1)nu+i. With l(i, j,k) = (k−1)nuny +( j−1)nu + i, inserting
(3.12) yields

(Xk)i j = xl = λ x̄l +(1−λ )x̃l
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Chapter 3. Controller Design

With this expression inside every element of Xk, we may separate Xk into two ma-
trices with elements λ x̄l and (1−λ )x̃l , namely Xk(λ x̄) and Xk((1−λ )x̃). Further,
since every element has λ and 1−λ in common respectively, we may factor them
out of the matrices so that (3.12) becomes

R̂n(x) =
n

∑
k=1

Xk(x)Qk =
n

∑
k=1

(
λXk(x̄)+(1−λ )Xk(x̃)

)
Qk

= λ

n

∑
k=1

Xk(x̄)Qk +(1−λ )
n

∑
k=1

Xk(x̃)Qk = λ R̂n(x̄)+(1−λ )R̂n(x̃)

This shows that R̂n is affine for all n.
Similarly, for any two R̄, R̃ ∈R,

ĤR(λ R̄+(1−λ )R̃) = Pzw +Pzu(λ R̄+(1−λ )R̃)Pyw

= λPzw−λPzw︸ ︷︷ ︸
0

+Pzw +λPzuR̄Pyw +(1−λ )PzuR̃Pyw

= λ (Pzw +PzuR̄Pyw)+(1−λ )(Pzw +PzuR̃Pyw)

= λ ĤR(R̄)+(1−λ )ĤR(R̃)

which shows that ĤR is affine as well.
Finally, consider the composition Ĥn. Since both parts out of which it is made

are affine, we have

Ĥn(x) = ĤR(R̂n(λ x̄+(1−λ )x̃)) = ĤR(λ R̂n(x̄)+(1−λ )R̂n(x̃))

= λ ĤR(R̂n(x̄))+(1−λ )ĤR(R̂n(x̃)) = λ Ĥn(x̄)+(1−λ )Ĥn(x̃)

for all x̄, x̃ ∈ Rnunyn, all λ ∈ R and all n. This proves that Ĥn is affine for all n. 2

With Lemma 3.2, H f dstab, n is easily seen to be convex (and even affine).
The next theorem justifies our overall restriction to convex design specifications.

THEOREM 3.5

Vn = {x ∈ Rnunyn | Ĥn(x) ∈H{stab}

is convex for all n.

Proof Take two elements x̄, x̃ ∈ Vn and consider the convex combination x = λ x̄+
(1−λ )x̃, λ ∈ [0,1]. By Lemma 3.2, we have

Ĥn(x) = Ĥn(λ x̄+(1−λ )x̃) = λ Ĥn(x̄)+(1−λ )Ĥn(x̃)
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3.4 The Design Procedure

Now, since x̄, x̃ ∈ Vn, by definition of Vn we have Ĥn(x̄), Ĥn(x̃) ∈H{stab. Exploiting
the convexity of H{stab by Lemma 3.1, the convex combination λ Ĥn(x̄) + (1−
λ )Ĥn(x̃) must therefore also belong to H{stab, i.e.

Ĥn(x) = λ Ĥn(x̄)+(1−λ )Ĥn(x̃) ∈H{stab

But by definition of Vn, Ĥn(x) ∈H{stab means x ∈ Vn. This shows that the convex
combination of any two elements of Vn also belongs to Vn. Vn is therefore convex.2

We now proceed to the second objective and assume that H f d∗, n is non-empty.
Consider the design objective {Dφ ,α} and its associated function φ . As assumed in
Section 3.2, a lower value of φ(H) for some H ∈H is considered better. To find
the best value over H f d∗, n, we may consider the function f : Rnunyn→ R such that
f = φ ◦ Ĥn and assume that there is an x0 ∈ Vn (it is non-empty since H f d∗, n is)
such that f (x0) ≤ f (x) for all x ∈ Vn. Then, with H0 = Ĥn(x0) and H = Ĥn(x), we
have

φ(H0) = f (x0)≤ f (x) = φ(H)

Now, by definition of Vn, we have H f d∗, n = Ĥn(Vn), and so sweeping through all
x ∈ Vn implies sweeping through all H ∈H f d∗, n. Therefore, φ(H0)≤ φ(H) for all
H ∈H f d∗, n and so H0 = Ĥn(x0) is the optimal performer over H f d∗, n. In other
words, the function Ĥn preserves the minimum attained over Vn.

Altogether, the controller design problem defined by D f d∗, n and {Dφ ,α} may
be formulated as a convex optimisation problem

min
x∈Vn

φ(Ĥn(x))

assuming that φ is convex (the composition will then be convex due to Ĥn being
affine). Ĥn may be used to find the corresponding optimal performing closed-loop
system, and (3.6) may then be used to obtain the optimal controller which achieves
such a system. Note that softwares such as CVX also examine achievability when
confronted with (C). In practice, then, the above formulation solves both of the
objectives stated in Section 3.2.
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4
Vibration Control in
Buildings

In this chapter, we examine the possibility of designing controllers for vibration
suppression in buildings using the theory of Chapter 3. In particular, for a building
modelled by the mass chain model, we formalise the informal design goals listed in
Section 2.1 and establish when exactly it is possible to employ the design procedure
outlined in Section 3.4. Alongside this, we also discuss passive control.

The aim of Section 4.1 is to integrate the building model from Section 2.2 with
the framework presented in Section 2.3. In Section 4.2, we proceed to exploit the
machinery developed in Chapter 3 in the context of vibration control. Note that the
system we refer to from this point on is the mass chain model, and that all the related
notation and assumptions of Chapter 2 are observed throughout this chapter.

4.1 The Plant

We begin this section by considering the various signals associated with the system.

Input and Output Signals
The input signals will consist of both actuator inputs u and exogenous inputs w,
as detailed in Section 2.3. Beginning with the latter, the most obvious choice for
a signal affecting the system, unrelated to the controller, is the ground movement
x0. In light of the definition of internal stability, we should also include actuator
and sensor noise in w. As we will see in Section 4.2, however, this turns out to be a
formality we need not observe, given that we are assuming a noiseless environment.
We therefore set w = x0 and let the exogenous input be a scalar signal.

As for the actuator inputs, we assume that there is a controller device installed
between each floor as in Section 2.2. Their influence on the building enters via the
opposite forces they exert on two neighbouring floors. For the sake of convenience,
we refer directly to these forces as actuator inputs. Specifically, we denote by ui
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4.1 The Plant

the force that affects mi as caused by the i:th controller device; u is the column
vector which contains these scalar signals ui, 1≤ i≤ N. Finally, we assume that the
controller is LTI.

The output signals are similarly partitioned into two categories: sensed outputs
y and regulated outputs z. The latter includes the intermass displacement δi = xi−
xi−1 and the actuator signals ui. The reason for this is that when we formalise the
informal goals of Section 2.1 as design specifications, we must do so through the
closed-loop transfer matrix, see Section 3.2. To this end, let zi = δi and zN+i = ui
for 1≤ i≤ N. We now lump these scalar signals into the column vector z. Note that
u contains N entries whereas z contains 2N.

Finally, given our interest in the intermass displacement, it is reasonable to mea-
sure this quantity as well, so that the controller may have access to this information
when issuing commands. It is likely also a more practical unit to measure than, say,
the individual displacements xi of each floor. We therefore set yi = δi, 1 ≤ i ≤ N,
and collect these scalar signals into the column vector y.

The System
We now turn to the system itself. The aim of this section is to connect the above
signals on the form (2.5) and (2.6). In order to accomplish this, we first derive the
equations of motion for our system.

Recall from Chapter 2 that the building is modelled by the mass chain model.
As such, each floor is a mass point limited to one-dimensional movement. Further,
as a consequence of the assumptions in Section 2.2, there are only three kinds of
forces acting on the masses: spring Fki , damper Fdi and actuator ui forces. These
were defined in Section 2.2.

With Newton’s second law dictating that the force sum be proportional to the
acceleration of the body, the above suggests the following N equations.{

miẍi = Fki −Fki+1 +Fdi −Fdi+1 +ui−ui+1, 1≤ i < N
mN ẍN = FkN +FdN +uN

(4.1)

Note that as there are no mechanical devices above the top floor, mN is subjected to
half as many forces.

We would now like to be more specific about the impact of the passive elements.
To this end, we invoke (2.1) and (2.2). The related discussion in Chapter 2 suggests
the following way of rewriting (4.1).

miẍi =−ki(xi− xi−1)+ ki+1(xi+1− xi)−di(ẋi− ẋi−1), 1≤ i < N

+di+1(ẋi+1− ẋi)+ui−ui+1

mN ẍN =−kN(xN− xN−1)−dN(ẋN− ẋN−1)+uN

Rearranging the terms slightly and dividing by mi and mN , we finally obtain the
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Chapter 4. Vibration Control in Buildings

equations of motion for the system.

ẍi =
ki

mi
xi−1 +

di

mi
ẋi−1−

ki + ki+1

mi
xi−

di +di+1

mi
ẋi, 1≤ i < N

+
ki+1

mi
xi+1 +

di+1

mi
ẋi+1 +

1
mi

ui−
1
mi

ui+1

ẍN =
kN

mN
xN−1 +

dN

mN
ẋN−1−

kN

mN
xN−

dN

mN
ẋN +

1
mN

uN

(4.2)

As we can see from (4.2), the plant is LTI.
We now proceed by making the transformation

x̄2i−1 = xi, x̄2i = ẋi, 1≤ i≤ N (4.3)

The derivatives of these new functions depend on whether the subscript is odd or
even. For odd subscripts, we have simply ˙̄x2i−1 = ẋi = x̄2i, using both expressions in
(4.3). For even subscripts, we have ˙̄x2i = ẍi and therefore have to invoke (4.2). The
result is 

˙̄x2i−1 = x̄2i

˙̄x2i =
ki

mi
x̄2i−3 +

di

mi
x̄2i−2−

ki + ki+1

mi
x̄2i−1−

di +di+1

mi
x̄2i

+
ki+1

mi
x̄2i+1 +

di+1

mi
x̄2i+2 +

1
mi

ui−
1
mi

ui+1

(4.4)

for 1 ≤ i ≤ N, except for the two special cases ˙̄x2 and ˙̄x2N . These are collected
separately below.

˙̄x2 =−
k1 + k2

m1
x̄1−

d1 +d2

m1
x̄2 +

k2

m1
x̄3 +

d2

m1
x̄4

+
k1

m1
w+

d1

m1
ẇ+

1
m1

u1−
1

m1
u2

˙̄x2N =
kN

mN
x̄2N−3 +

dN

mN
x̄2N−2−

kN

mN
x̄2N−1−

dN

mN
x̄2N +

1
mN

uN

(4.5)

Recall that w = x0.
We now apply the Laplace transform to the expressions in (4.4) and (4.5). Since

ki,di and mi are constants, by the linearity of the transform, the transformed expres-
sions will barely have changed. The exception is the occasional derivative turning
into a multiplication by s. Note that L ( k1

m1
w+ d1

m1
ẇ) = ( k1

m1
+ d1

m1
s)W .

The terms in each expression are now readily structured into a sum of matrix
products according to

sX̄ = AX̄ +BwW +BuU (4.6)
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4.1 The Plant

Here, the newly defined states have been collected into a 2N × 1 column vector
x̄ with Laplace transform X̄ . A and Bu are constant matrices of size 2N× 2N and
2N×N respectively, whereas Bw is of size 2N×1 and depends on s.

(4.6) is easily solved for X̄ to yield

X̄ = (sI−A)−1BwW +(sI−A)−1BuU (4.7)

In order to form the sensed outputs Y , we must extract the relevant parts out of X̄ .
Simple multiplication by a certain matrix C achieves this: recall that the i:th row of
Y is defined as the intermass displacement Xi−Xi−1 = X̄2i−1− X̄2i−3. There is an
exception in the first row, namely X1−X0 = X̄1−W , and so we must add a term
CwW so that

Y =CX̄ +CwW (4.8)

Substituting (4.7) into (4.8), we get

Y = (C(sI−A)−1Bw +Cw)︸ ︷︷ ︸
Pyw

W +C(sI−A)−1Bu︸ ︷︷ ︸
Pyu

U (4.9)

from which we may identify Pyw and Pyu.
As for the regulated outputs Z, recall that it was defined to contain both the in-

termass displacements, now collected in Y , and the actuator inputs U . We therefore
have

Z =

(
Y
U

)
=

(
Pyw
0

)
︸ ︷︷ ︸

Pzw

W +

(
Pyu
I

)
︸ ︷︷ ︸

Pzu

U (4.10)

With (4.9) and (4.10) at hand, we finally have the corresponding expressions for
(2.6) and (2.7), and the four important transfer matrices which describe the plant
are given by 

Pyw =C(sI−A)−1Bw +Cw

Pyu =C(sI−A)−1Bu

Pzw =

(
Pyw
0

)
Pzu =

(
Pyu
I

) (4.11)

From the way in which the important matrices A, Bu, Bw, C, Cw were defined in
(4.6) and (4.8) based on (4.5), it is clear that the A matrix especially will have a
somewhat complex structure. We therefore postpone displaying them until Chapter
5, at which point they will be shown explicitly for the N = 5 case.
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Chapter 4. Vibration Control in Buildings

4.2 Vibration Control

We now close the loop and consider the closed-loop transfer matrix which follows
from (2.8). The aim of this section is to formalise the informal design goals listed in
Section 2.1 and establish under what circumstances the controller design problem
may be formulated on the form (C) according to Section 3.4. This controller design
method may be contrasted with other alternative means of control, such as passive
control, see e.g. [Yamamoto, 2016]. We touch upon the subject of passive control at
the end of this section.

As stated in the list in Section 2.1, we would like to reduce |δi(t)| and |ui(t)|
for 1 ≤ i ≤ N in some appropriate sense. In order to show that constraints in both
the frequency and time domain are supported by the theory, we involve both kinds.
This is also reasonable from a control perspective: different kinds of regulation are
achieved depending on where the constraint is applied.

We begin with constraints in the frequency domain. Recall that in the spectrum
of an earthquake, the highest activity in displacement tends to occur in the 0− 10
rad/s frequency band. Now, the connection between x0 and δi is represented by
the closed-loop transfer function Hδix0 = Hziw. One way to suppress the influence
of low-frequency vibrations is to limit the low-frequency part of |Hδix0(iω)| and
demand that it not exceed a given number 0 < αδ f < 1 over some frequency range
I = [0,ω0]. According to Theorem 3.1, this is a convex design specification (take
h(ω) = αδ f ). Demanding that this hold for all 1 ≤ i ≤ N is also a convex design
specification by Lemma 3.1. The corresponding subset in H is given by

Hδ f ,αδ f
= {H ∈H | |Hziw(iω)| ≤ αδ f , 1≤ i≤ N, ω ∈ [0,ω0]}

We now introduce the function φδ f : H → R given by

φδ f (H) = max
1≤i≤N

sup
ω∈[0,ω0]

|Hδix0(iω)|

to the effect that Hδ f ,αδ f
may be expressed more concisely as

Hδ f ,αδ f
= {H ∈H | φδ f (H)≤ αδ f } (4.12)

We assume that the supremum taken in φδ f exists.
Similarly, reducing actuator effort could involve the same type of design speci-

fication over different closed-loop transfer matrices, namely Huix0 = HzN+iw for all
1≤ i≤ N: these form the connection between x0 and ui. The corresponding subset
in H is given by

Hu f ,αu f = {H ∈H | |HzN+iw(iω)| ≤ αu f , 1≤ i≤ N, ω ∈ [0,ω0]} (4.13)

for some constant number αu f . By defining an analogous function φu f , (4.13) can be
restated concisely just as (4.12). Note also that by varying αδ f and αu f , we generate
different design specifications.
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4.2 Vibration Control

The exact manner in which design specifications on the form (4.12) and (4.13)
affect the regulated outputs in the time domain is not clear in practice. Reducing
|Hi j(iω)| does not necessarily imply that big transient spikes are suppressed. It is
not difficult to imagine that such violent pulse-like behaviour may in fact be quite
devastating. Too large |δi(t)|, even for a brief moment, could fracture the supporting
columns, and too large |ui(t)| could damage the columns or the controller devices
and render the latter inactive for the remainder of the earthquake, see Section 2.1.
We therefore proceed more directly and apply constraints in the time domain as
well.

The aim of this kind of constraint would be to control big transient spikes after
short but particularly intense quakes. According to Section 2.1, such a quake can be
approximated by an impulse so that W = 1. For the intermass displacement, we thus
demand that the magnitude of the impulse response |L −1(Hδix0)(t)| not exceed a
given number 0 < αδ t over the time interval I = [0, t0]. By Theorem 3.2, this is a
convex design specification (take bu(t) = αδ t and bl(t) =−αδ t ). Further, demand-
ing that this hold for all 1 ≤ i ≤ N is once more also a convex design specification
by Lemma 3.1. The corresponding subset in H is given by

Hδ t,αδ t
= {H ∈H | |L −1(Hziw)(t)| ≤ αδ t , 1≤ i≤ N, t ∈ [0, t0]}

The analogous demand for actuator effort is given by

Hut,αut = {H ∈H | |L −1(HzN+iw)(t)| ≤ αut , 1≤ i≤ N, t ∈ [0, t0]}

We now define two functions φδ t ,φut : H → R such that

φδ t(H) = max
1≤i≤N

sup
t∈[0,t0]

|L −1(Hδix0)(t)|

and
φut(H) = max

1≤i≤N
sup

t∈[0,t0]
|L −1(Huix0)(t)|

Hδ t,αδ t
and Hut,αut are now expressed concisely as

Hδ t,αδ t
= {H ∈H | φδ t(H)≤ αδ t} (4.14)

and
Hut,αut = {H ∈H | φut(H)≤ αut} (4.15)

Note that φδ t , φδ f , φut and φu f are convex functions.
Finally, as our last design specification, we will demand Dstab. Not only is in-

ternal stability an important performance criterion in itself, but the entire design
procedure outlined in Section 3.4 rests on its inclusion through Theorem 3.4. For
the implications of that theorem to hold, however, Pyu must be stable. The next the-
orem verifies that this is the case for our system regardless of parameter choice, as
long as there is stiffness and damping.
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Chapter 4. Vibration Control in Buildings

THEOREM 4.1
Pyu is stable for all N ≥ 1 and all material constants mi,ki,di > 0 for 1≤ i≤ N.

Proof Consider the definition of Pyu from (4.11)

Pyu =C(sI−A)−1Bu

As seen above, the matrices Bu and C are constant. As for (sI−A)−1, recall that
it is given by 1

det(sI−A)adj(sI−A). The latter matrix, called the adjugate, is simply
a collection of determinants of parts of sI−A. Since sI−A contains only polyno-
mials (A is constant), so will the adjugate: the determinant of a matrix is merely a
particular sum of products of its elements. Therefore, Cadj(sI−A)Bu contains only
polynomials as well, and the final multiplication by 1

det(sI−A) to obtain Pyu turns
every polynomial into a rational polynomial. In other words, if a transfer function
element of Pyu has a pole, it must be one of the zeros of det(sI−A).

Consider now the system ˙̄x = Ax̄ obtained by setting w = 0 and u = 0. Because
of the springs and dampers between each floor, there will be a constant energy dis-
sipation and x̄ will get arbitrarily close to x̄ = 0 from any initial state, given enough
time. In other words, ˙̄x = Ax̄ is globally asymptotically stable in a Lyapunov sense,
and all eigenvalues of A must therefore have negative real part. But the eigenvalues
of A are given exactly by the zeros of det(sI−A), and so, by the above, every pole of
the transfer function entries of Pyu must have negative real part. Further, the adjugate
contains only determinants of parts of sI−A, and so the orders will not surpass that
of det(sI−A). Therefore, by the definition of stability for rational transfer matrices,
Pyu is stable as long as mi,ki,di > 0 for 1≤ i≤ N. 2

Altogether, combining the design specifications Dstab, Dδ t,αδ t
, Du f ,αu f , Dut,αut ,

Dδ f ,αδ f
with the corresponding design objectives, we may formulate the controller

design problem on the form (C) according to Section 3.4 for all number of masses
N and every material parameter configuration, as long as mi,ki,di > 0 for 1≤ i≤N.

We close this chapter by commenting briefly on a particular kind of control strat-
egy: passive control. In our case, passive control refers to the inclusion of dampers
between floors. As explained in Section 2.2, this addition of external damping man-
ifests as an increase in the damping ratio ξ . By (2.3), Fdi may be separated into one
part representing structural damping and another part representing the action of the
damper devices, the latter of which is consequently identified as ui in (4.1). This
means that ui has the form

ui = ci(ẋi− ẋi−1)

for some real constants ci. Given our choice of sensed outputs (see Section 4.1),
Ui = cis(Xi−Xi−1) = cisYi and so damper action is equivalent to controller action
governed by a particular kind of decentralised controller matrix K such that Kii =
cis. The force exerted by the controller devices should therefore correspond to that
exerted by the dampers, i.e. the part of Fdi which is not due to structural damping.
It is in this way that passive and active control are compared in the next chapter.
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5
The Five-Storey Building

Recall that in Chapter 4, we showed that the design procedure outlined in Section
3.4 could be employed for all chains of N masses and all choices of material pa-
rameters with mi,ki,di > 0, given a restricted set of design specifications. In this
chapter, we demonstrate the design method outlined in Section 3.4 for a building of
reasonable size (N = 5) subjected to some of the design specifications formulated
in Section 3.3. Various design problems are stated and solved using the method in
question to yield optimally performing closed-loop systems. The performance of
these optimal systems is then compared to the performance of the corresponding
passive system when external damping is added.

In Section 5.1, we describe the system explicitly and formulate some design
problems as convex optimisation problems. The solutions to these problems are
then reported in Section 5.2. Matlab was used for all computations involved and the
convex optimisation problems were solved using CVX, see [CVX]. For a descrip-
tion of the notation used to formulate the design problems, see Section 3.2.

5.1 The N = 5 System

We begin by describing the system. This means we specify the template for the
plant supplied in Chapter 4. Setting N = 5, we must decide on 15 material constants,
namely mi,ki,di for 1 ≤ i ≤ 5. The spring constants are adopted from [Léger and
Dussault, 1992], where they had been retrieved experimentally for a specific set of
masses, which we also use here. The damping coefficients are then calculated from
(2.3). ξ is set to 0.02 for structural damping. The resulting parameter choices are
summarised in table 5.1 below.

Given this set of material parameter choices, we may proceed to (4.2) for the
equations of motion of the system. From these, the four important transfer matrices
Pzw,Pzu,Pyw and Pyu may be derived, as shown in Chapter 4. By (4.11), they are
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i = 1 2 3 4 5

mi (kg) 105 105 105 105 105

ki (MN/m) 245.7 210.6 175.5 140.4 105.3
di (kNs/m) 782.09 670.36 558.63 446.91 335.18

Table 5.1 The material parameter choices for the system.

described by the matrices A, Bw, Bu, C, Cw, displayed below for the N = 5 case.

A =



0 1 0 0 0 0 0 0 0 0
− k1+k2

m1
− d1+d2

m1
k2
m1

d2
m1

0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
k2
m2

d2
m2

− k2+k3
m2

− d2+d3
m2

k3
m2

d3
m2

0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 k3

m3
d3
m3

− k3+k4
m3

− d3+d4
m3

k4
m3

d4
m3

0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 k4

m4
d4
m4

− k4+k5
m4

− d4+d5
m4

k5
m4

d5
m4

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 k5

m5
d5
m5

− k5
m5
− d5

m5


,

Bw =



0
d1
m1

s+ k1
m1

0
0
0
0
0
0
0
0


, Bu =



0 0 0 0 0
1

m1
− 1

m1
0 0 0

0 0 0 0 0
0 1

m2
− 1

m2
0 0

0 0 0 0 0
0 0 1

m3
− 1

m3
0

0 0 0 0 0
0 0 0 1

m4
− 1

m4
0 0 0 0 0
0 0 0 0 1

m5



C =


1 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 −1 0 1 0

 , Cw =


−1
0
0
0
0


With the above matrices set, the N = 5 plant is completely characterised.

Some Controller Design Problems
We now turn to some controller design problems that we formulate as convex opti-
misation problems. For the notation and terminology used below, see Section 3.2.

A. Establish whether each set of design specifications below is achievable or not.
If achievable, minimise the given design objective.
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5.1 The N = 5 System

1) Dstab and Dut,10 GN with the design objective {Dδ t,αδ t
}

2) Dstab, Dut,10 GN and Dδ t,αδ t
for αδ t = 17,20 m with the design objective

{Dδ f ,αδ f
}.

B. Establish whether Dstab and Dut,1 GN is achievable or not. If achievable, min-
imise {Dδ f ,αδ f

}. Repeat this procedure for n = 2,4,6,8,10,12,14 when ap-
plying the finite-dimensional constraint D f dstab, n.

C. Given Dstab, compute the tradeoff curve between

1) {Dδ f ,αδ f
} and {Dut,αut}

2) {Dδ t,αδ t
} and {Dut,αut} for n = 2,5.

In each problem, ξ = 0.02, n = 5, t0 = 2 s and ω0 = 20 rad/s were chosen, see
Section 4.2 for the latter two. The exception is problem B and C2, in the sense that
n is allowed to vary. The constant a in the basis functions Qk was taken as a = 2.
Note that a problem on the form (C) is assumed to solve the achievability problem
in practice, see 3.4. Finally, recall that if the demands are achievable, then there is
a closed-loop transfer matrix with good enough behaviour for which (3.6) may be
used to compute the controller which achieves it.

We now proceed to formulate the corresponding convex optimisation problem
(C) for each problem listed above according to the instructions in Section 3.4.

Problem A By definition of H{stab, we have

H{stab = Hut,10 GN

for the setup A1. In other words,

H{stab = {H ∈H | φut(H)≤ 10 GN}

With the finite-dimensional approximation H f dstab, 5 applied, we therefore have V5
more explicitly as

V5 = {x ∈ Rnunyn | Ĥ5(x) ∈H{stab}=
{

x ∈ R125
∣∣∣ φut(Ĥ5(x))≤ 10 GN

}
As for the design objective {Dδ t,αδ t

}, it corresponds to the objective function f (x)=
φδ t(Ĥ5(x)). With V5 and f well-defined, (C) finally becomes

min
x∈V5

φδ t(Ĥ5(x))

As for the second setup A2,

H{stab = Hut,10 GN∩Hδ t,αδ t
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for αδ t = 17,20 m and so

V5 =

{
x ∈ R125

∣∣∣∣∣ φut(Ĥ5(x))≤ 10 GN

φδ t(Ĥ5(x))≤ αδ t

}
The design objective {Dδ f ,αδ f

} corresponds to the objective function f (x) =

φδ f (Ĥ5(x)). Thus, once more we have (C)

min
x∈V5

φδ f (Ĥ5(x))

Note that the convex optimisation problem is computation-ready only when αδ t =
17 m or αδ t = 20 m is chosen.

Problem B For this problem, consider the design specifications Dstab and Dut,1 GN
and the design objective {Dδ f ,αδ f

}. To formulate (C), we proceed precisely as in
problem A2. With one less constraint, H{stab becomes

H{stab = Hut,1 GN

The significant difference compared to A2 is that we now allow n to vary. Thus,
J = nunyn = 5 ·5 ·n = 25n. We therefore have

Vn =
{

x ∈ R25n
∣∣∣ φut(Ĥn(x))≤ 1 GN

}
With objective function f (x) = φδ f (Ĥn(x)), (C) becomes

min
x∈Vn

φδ f (Ĥn(x))

Note that for each n, there is an optimisation problem; we pose seven of these by
allowing n to range over the even integers up to n = 14.

Problem C The setup C1 is handled first. Confronted by two design objectives,
we consider instead the related setup Dut,αut and {Dδ f ,αδ f

}. (C) is formed as

min
x∈V5

φδ f (Ĥ5(x))

for
V5 =

{
x ∈ R125

∣∣∣ φut(Ĥ5(x))≤ αut

}
Here, a distinct convex optimisation problem is generated for each αut : we sweep
over many αut and match them with the corresponding minima. By Section 3.2,
these pairs will form the tradeoff curve between {Dδ f ,αδ f

} and {Dut,αut}.
Similarly, in the C2 case, we consider the related setup Dut,αut and {Dδ t,αδ t

},
with (C) for n = 2,5 formed as

min
x∈Vn

φδ t(Ĥn(x))

for
Vn =

{
x ∈ R25n

∣∣∣ φut(Ĥn(x))≤ αut

}
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5.2 Results

In this section, we gather the computation results to the problems A, B and C of
the previous section. Before doing so, however, we turn briefly to the correspond-
ing passive system and remark on some values against which later results will be
compared.

The Passive System
The passive system is obtained by taking x∈Rnunyn as the zero vector, thereby effec-
tively breaking the loop: there is no longer any active component involved. Below,
we consider two passive systems in parallel: the default system (ξ = 0.02) in which
damping stems only from the columns, and the system (ξ = 0.2) in which dampers
have been added between floors. This external addition of damping is modelled
precisely by raising the damping ratio ξ from 0.02 to 0.2, see Section 2.1.
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Figure 5.1 The magnitude of Hδix0
(iω) for i = 1 (blue) and i = 5 (dashed orange)

when ξ = 0.02 in the passive case.

Consider first the greatest value of the frequency response magnitude |Hδix0(iω)|
on the interval [0,ω0] as 1 ≤ i ≤ 5 when ξ is taken as 0.02 and 0.2 respectively.
These values are gathered in table 5.2 below. The frequency response magnitudes
for i = 1 and i = 5 are shown in figure 5.1 for the case ξ = 0.02. Note that ξ = 0.2
means that the damping coefficients di in table 5.1 are increased by a factor 10, see
(2.3).

Consider now instead the response of the masses and the dampers when sub-
jected to an impulse in ground movement, see Section 4.2. The greatest values of
the impulse response L −1(Hδix0)(t) on the interval [0, t0] as 1 ≤ i ≤ 5 when ξ is

49



Chapter 5. The Five-Storey Building

t (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

δ
i(t

) 
(m

)

-20

-10

0

10

20

30

40

δ
1
(t)

δ
5
(t)

Figure 5.2 The impulse response L −1(Hδix0
)(t) for i = 1 (blue) and i = 5 (dashed

orange) when ξ = 0.02 in the passive case.

i 1 2 3 4 5
ξ = 0.02 6.6158 7.2211 7.4199 6.8847 4.9614
ξ = 0.2 0.6942 0.7413 0.7515 0.6919 0.4966

Table 5.2 The greatest value of |Hδix0
(iω)| on the interval [0,ω0] for 1 ≤ i ≤ 5

when ξ is varied.

taken as 0.02 and 0.2 are collected in table 5.3 below. The impulse responses for
i = 1 and i = 5 are shown in figure 5.2 when ξ = 0.02.

In the case of ξ = 0.2, the greatest force produced by the added dampers in the
time interval [0, t0] is 85.342 GN. This value, paired together with the greatest value
of |Hδix0(iω)| – 0.7515 according to table 5.2 – is marked by a red cross in figure
5.10 for a comparison with the corresponding active system.

i 1 2 3 4 5
ξ = 0.02 32.6600 m 25.5540 m 22.0200 m 21.7474 m 28.8980 m
ξ = 0.2 78.2087 m 78.2087 m 14.7659 m 7.6747 m 4.7627 m

Table 5.3 The greatest value of |L −1(Hδix0
)(t)| on the interval [0, t0] for 1≤ i≤ 5

when ξ is varied.
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Some Convex Optimisation Problems
We now turn to the computation results of the problems A, B and C. The solu-
tions to each convex optimisation problem was computed using CVX, see [CVX
Research Inc., 2017], a Matlab-based modelling system for convex optimisation.
The computation time associated with various results was obtained using the tic-toc
command in Matlab. Furthermore, all attempts to compute the controller matrix K
corresponding to the acquired minima failed due to overflow. This was attempted
using the Control System Toolbox in Matlab.
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Figure 5.3 The magnitude of H0
δix0

(iω) for i = 1 (blue) and i = 5 (dashed orange)
in problem A1.

Problem A In the first problem A1, the resulting minimum was 17.4666 m. The
coordinate x0 for which this miminum was attained corresponds to the closed-loop
transfer matrix H0 = Ĥ5(x0). The functionals φδ f , φδ t and φut were then evaluated
at H = H0 with their values gathered in table 5.4. The magnitude of H0

δix0
(iω) and

the impulse response of H0
uix0

are plotted in figures 5.3 and 5.4 respectively for i = 1
and i = 5.

φδ f (H0) φδ t(H0) φut(H0)
13.4103 17.4666 m 10 GN

Table 5.4 φδ f , φδ t and φut evaluated at H = H0 for problem A1.

In the case of A2, the design specifications with αδ t = 20 m yielded the min-
imum 0.1851, whereas those with αδ t = 17 m yielded unachievability. The coor-
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Figure 5.4 The impulse response L −1(H0
uix0

)(t) for i = 1 (blue) and i = 5 (dashed
orange) in problem A1.

ω (rad/s)

10-2 10-1 100 101 102 103

|H
δ

i x
0

0
(i
 ω

)|

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|H
δ

1
 x

0

0
(i ω)|

|H
δ

5
 x

0

0
(i ω)|

Figure 5.5 The magnitude of H0
δix0

(iω) for i = 1 (blue) and i = 5 (dashed orange)
in problem A2.

dinate for which the minimum 0.1851 was attained once more corresponds to a
closed-loop transfer matrix H0. Table 5.5 collects the values of the functions φδ f ,
φδ t and φut at H = H0. Further, figures 5.5 and 5.6 show the magnitude of H0

δix0
and

the impulse response of H0
δix0

respectively for i = 1 and i = 5.
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Figure 5.6 The impulse response L −1(H0
δix0

)(t) for i = 1 (blue) and i = 5 (dashed
orange) in problem A2.

φδ f (H0) φδ t(H0) φut(H0)
0.1851 20.0000 m 9.6161 GN

Table 5.5 φδ f , φδ t and φut evaluated at H = H0 for problem A2.

Problem B For this problem, seven convex optimisation problems were solved for
n = 2,4,6,8,10,12,14. The computation times for the optimisation process ranged
from about 1 minute (61 s) in the n = 2 case to about 15 minutes (891 s) in the
n = 14 case. The minima corresponding to each n are gathered in table 5.6 below,
and a plot thereof is shown in figure 5.7.

n 2 4 6 8 10 12 14
minimum 0.3276 0.3094 0.2945 0.2818 0.2772 0.2762 0.2762

Table 5.6 The minima for the seven convex optimisation problems in B.

Problem C Consider first the setup C1 for the problem of computing tradeoff
curves. 100 points were used in generating the resulting tradeoff curve which is
shown in figure 5.8. The computation time was about 5 hours.

As for the setup C2, the two resulting tradeoff curves appear together in figure
5.9. Similarly, the curves consist of 100 points each. The computation times were
about 1 hours and 2.5 hours in the n = 2 and n = 5 case respectively. Note that
in figure 5.9, although seemingly overlapping, the orange curve is in fact situated
slightly above the blue curve at all time.
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6
Discussion and Conclusion

In this final chapter, we analyse the contents of the previous chapters and conclude
the project. In Section 6.1, we perform a critical assessment of the thesis material
and make suggestions for future work on the subject. Section 6.2 then summarises
the important conclusions reached in the previous section.

6.1 Discussion

We begin our analysis by considering the first major objective of this thesis, namely
that of formulating the controller design problem as a convex optimisation problem.

The Controller Design Problem
In Chapter 3 and 4 we showed that given a restricted set of controller design prob-
lems for a mass chain system, they could be formulated as convex optimisation
problems. This could be accomplished for any number of masses joined together
by linear springs and dampers, as long as the spring constants and damping coeffi-
cients were all positive. The controller design problems amenable to this procedure
are those defined by the convex design specifications presented in Chapter 3. In
particular, we may introduce an arbitrary real-valued function as an upper bound
to the magnitude of any closed-loop transfer function. Similarly, we may confine
the response in the time domain to an arbitrary input signal between two arbitrary
real-valued functions. The closed-loop system may also be required to be internally
stable and achievable by some controller.

As far as performance criteria are concerned, these are arguably quite exhaus-
tive. However, important design specifications relating to such qualities as robust-
ness and controller structure/order are neglected in the above. The latter was men-
tioned in Chapter 3, where it was identified to be non-convex. In other words, we
cannot demand that the controller be either low ordered or decentralised if we wish
to employ the above method for arriving at a convex optimisation problem. The
optimal controllers obtained by the method could therefore be impossible to imple-
ment in practice. On the other hand, there is the option of resorting to various model
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reduction techniques for simplifying the controller, e.g. [Glad and Ljung, 2003]. If
this could be accomplished without too great a sacrifice in performance, the de-
sign method would find more use. For the purpose of evaluating the best achievable
performance, however, the above performance specifications will suffice.

Another important limitation to the design method concerns the plant. The mass
chain model is a simple description of a building; they are often represented by
more complex models in practice. The mass chain model could therefore be made
more complex to increase its availability as an approximation. Now that the model
has been shown to be compatible with our design method, verifying compatibility
for a more complex variant would be a natural next step. Of course, the plant has to
remain LTI for this to be successful.

In such cases of linear approximation, robustness would be valuable in suppress-
ing model perturbations caused by nonlinearities. This is especially true if model
reduction were to yield a realisable controller. As it happens, a considerable amount
of robustness specifications are in fact convex, see [Boyd et al., 1990]. Robustness
specifications relevant to vibration control are therefore likely convex as well. Al-
together, it might be interesting for future projects to establish whether relevant
robustness specifications are convex or not, to what extent model reduction tech-
niques may be applied to controllers and if the mass chain model can be made more
complex while still retaining compatibility with the design method in question.

Finally, note that the internal stability demand does not immediately imply that
all closed-loop transfer functions are stable. As explained in Chapter 2, we must
further require of the system that it be observable and controllable. Because the
main purpose of internal stability is to allow a free parameter representation of Hstab
according to Theorem 3.4, we will not verify observability/controllability. We note
that if it should not hold, the measuring/controller equipment may be improved, e.g.
by measuring the individual mass displacements or even the velocities to the effect
that the matrix C changes. Only the matrices Bu and C are affected by such changes
and so in general, Pyu should still be stable. Note that for this particular plant setup,
the proof in Theorem 4.1 may be extended to encompass parts of the remaining
three transfer matrices in (4.11) to the effect that H can easily be seen to have all its
poles confined to the strict left half-plane.

We now turn to discuss the results in Chapter 5. Recall that we stated some
problems A, B and C for a system of five masses. The corresponding convex opti-
misation problems were successfully formulated and solved, and the optimal closed-
loop transfer matrices were obtained. However, the associated controllers could not
be retrieved in symbolic form using the Control System Toolbox. This was due to
overflow. Studying the formula K = (1+ RPyu)

−1R, however, this should be ex-
pected. Even for a modest amount of basis functions, we expect polynomials of
very high order. The controller would be useless in practice for this reason alone,
and so in this respect, retrieving it is not essential. For the purpose of examining its
structure, there may be more efficient ways in which to accomplish this, something
an extension of the project could be concerned with.
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The Passive System
Consider first the results for the corresponding passive system with damping ra-
tio ξ = 0.02. This damping ratio corresponds to structural damping, i.e. no added
damping. The behaviour of the transfer functions in figure 5.1 is expected: send-
ing in a low frequency wave, the masses should have an easy time to locate each
other, i.e. keeping the magnitude of the intermass displacement low. Additionally,
high-frequency ground movement should affect the masses closest to the ground
more.

The peaks are also expected. The greatest appears at around 12 rad/s. This is
consistent with (2.4), an empirical formula for the natural frequency of the mass
chain model. Setting N to 5, (2.4) gives 12.5664... rad/s. We compare the peak
values with the second row of table 5.2 and note that this first peak appears to
represent the greatest value. In particular, it appears to be present in all five transfer
functions. Recall now that the spectrum of the displacement for earthquakes tends
to have the highest activity in the 0-10 rad/s frequency band. It is therefore crucial
that this particular peak is suppressed.

Adding external damping by increasing the damping ratio to ξ = 0.2 appears
to achieve just this: the peak is reduced by approximately as much as the damping
ratio is increased – a factor 10. This is shown in the third row of table 5.2. The
transfer functions are effectively smoothened out.

Returning to the case with structural damping, we now consider the impulse
response. The behaviour of the curves in figure 5.2 is expected in the sense that
an impulse should produce a violent reaction at the beginning; dampers between
the floors dissipate energy and so the oscillations are expected to gradually become
smaller. Because m1 is closer to the ground, we expect its first major peak to oc-
cur before that of m5 as the violent reaction spreads down the mass chain. This is
consistent with the behaviour of the curves.

The values themselves do not seem reasonable, however: 30 m in horizontal
distance between adjacent floors is not realistic. On the other hand, neither is the
ground moving as an impulse. The large values could be a consequence thereof. As
explained in Section 2.1, the impulse is a crude approximation of a particular kind of
pulse-like ground motion called forward-directivity near-fault ground motion. For
more realistic models of such earthquakes, see e.g. [Mavroeidis and Papageorgiou,
2003] or [Kojima and Takewaki, 2015]. One of these could be employed instead of
the impulse for more realistic results.

The other anomaly we must address appears in table 5.3. We would expect a
higher ξ to better dampen the impulse response. This also appears to be the case
for i = 3,4,5. However, not only are the values more than twice as large for i = 1,2
compared to the case of structural damping (cf. 32.6600 m and 78.2087 m), but
they are identical to four decimals. After some closer investigation of the values
involved, a possible explanation is as follows. Increasing the damping ratio ξ in-
creases d1 in particular. This makes the structure between m1 and the ground more
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rigid, and so m1 should better track the ground impulse, thereby resulting in a larger
displacement. This observation is further supported by increasing d1. Interestingly,
it appears as though added external damping, while efficient in quelling oscilla-
tions, could likewise lead to a more violent response shortly after an abrupt change
in ground displacement.

Regarding the value 78.2087 m, it also appears to be the first value in the
data vector corresponding to t = 0. For L −1(Hδ2x0)(t), the corresponding value
is −78.2087 m (78.2087 m with the absolute value taken). Now, as it happens, the
same phenomenon occurs for ξ = 0.02. In that case, though, the phenomenon is
masked because higher values are reached for t > 0. In other words, we seem to
have x1− x0 = −(x2− x1) at t = 0 in Matlab. But this is reasonable if the ground
is assumed to have just completed its impulse. The enormous force exerted on m1
by the ground leads to instantaneous response. However, m1 itself does not move as
an impulse, and so the force exerted on m2 is not comparable to that of the ground
exerted on m1. Therefore, the speed built up by m2 in that flash of a moment around
t = 0 will be negligible compared to that of m1, i.e. x2(0) = 0 and so δ1 =−δ2. Note
that t = 0 refers to the first element in the time vector in Matlab.

Controller Design and Problem A
We consider now the controller design problems formulated in Section 5.1, begin-
ning with problem A1. It appears to have been successfully solved, reducing the
largest impulse response peak from 32.6600 m in the passive case (table 5.3) to
17.4666 m (table 5.4), while confining the actuator effort to within 10 GN. Figure
5.4 shows how the greatest force produced by the first controller device reaches 10
GN precisely. This appearance of the curve is likewise reasonable, and the large
numbers are accounted for as in the above discussion.

On comparing this closed-loop system with the passive system, however, we see
that the overall low-frequency magnitude of the transfer functions has increased, cf.
figure 5.1 and 5.3. In particular, the peak at around 12 rad/s has increased too. This
bodes ill in conjunction with the low-frequency profile of earthquakes. Hence, we
try to reduce at least the peak as much as possible in problem A2 while demanding
an intermass displacement of at most 20 m in absolute value, close to the current
minimum 17.4666 m.

The result is quite encouraging for the transfer functions of interest: the largest
value on the interval 0− 20 rad/s for all five transfer functions has been reduced
from around 10 (at least) to 0.1851. We see clearly in figure 5.5 how the magni-
tude of two of the transfer functions stays below this value in the range 0− 20
rad/s. Compare this with the corresponding value 0.7515 when external damping
was added in the passive case (table 5.2). At the same time, we have successfully
kept the impulse responses down to below 20 m, cf. 78.2087 m for the case of added
external damping (table 5.3). Figure 5.6 shows how |δ1| just barely reaches 20 m
several times. Note how the demand to stay below 17 m resulted in unachievability,
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as consistent with the result of problem A1.
On the other hand, the oscillations which follow in the wake of the impulse are

not damped as well as they are in the passive case for ξ = 0.2. As an example of
this, consider |δ5|, which remains below 5 m and 12 m in the passive and active
case respectively, cf. table 5.3 and figure 5.6. Altogether, controller action appears
to complement damper action even when demanding only design specifications with
simple structure. Note that the upper and lower bound functions which define the
time domain design specification can be made more complex while still preserving
convexity, see Theorem 3.2. This could be useful in addressing the oscillations.

Finally, we observe that the second peak in the frequency domain appears to
have risen slightly as compared with the passive case, cf. figure 5.1 and 5.5. This
is an example of a general phenomenon in which suppressing one part of the mag-
nitude of a transfer function tends to amplify another part. Fortunately, the design
specification relating to the frequency domain can be made more complex to ac-
count for this while still preserving convexity: the upper bound function h may be
customised accordingly, see Theorem 3.1. Comparing the results of A1 to A2, we
observe that we do not necessarily have to sacrifice much by applying tighter con-
straints in order to see dramatic improvements.

Basis Functions and Problem B
In problem B, the same controller design problem is solved for different finite-
dimensional approximations. The number of basis functions Qk included in the ap-
proximation is increased from n = 2 to n = 14 (even numbers only). The resulting
minima in table 5.6 are plotted against the number of Qk in figure 5.7.

The general downward slope of the curve is reasonable: a higher n corresponds
to a less tight finite-dimensional approximation, and so there are more closed-loop
systems to choose from, including those generated in tighter approximations. As a
result, the minimum corresponding to some n0 must be equal to or lower than the
minimum corresponding to any n < n0.

The curve further suggests some form of convergence as n increases. Whether
this is due to failed solution attempts for higher n or an underlying mathematical
behaviour is difficult to say. Numerical difficulties could be expected on the basis
of high-order rational functions like (s+2)−14 alone.

At the same time, the convergence behaviour is not wholly unexpected: there are
convergence results relating to the sequence Qk in the one-dimensional case [Boyd
and Barratt, 1991]. The free parameter R was constructed so as to allow independent
linear combinations of Qk in each matrix element for a chance at convergence. Re-
call that Hstab is generated by the set of stable nu×ny transfer matrices. Ideally, we
would be able to get arbitrarily close to any such transfer matrix in some appropri-
ate sense by choosing a high enough n. This would mean escaping the inconvenient
constraint imposed on the design problem by the necessary finite-dimensional trun-
cation.
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There is also the possibility of generating the matrix R in a different manner
entirely. In particular, Qk can be chosen differently, e.g. by changing the constant
a in its definition. However, there is also the possibility of opting for a different
structure altogether for Qk than the one suggested in Chapter 3. As an example, the
related Laguerre filters could possibly prove to be a more suitable candidate for Qk,
see [Heuberger et al., 2005]. Either way, this topic of convergence and choosing the
free parameter R appropriately could benefit from future examination.

Limits of Performance and Problem C
Consider now problem C and the comparison between actuator effort and inter-
mass displacement in both the frequency and time domain. The tradeoff curve
for {Dδ f ,αδ f

} and {Dut,αut} under the constraint Dstab is shown in figure 5.8. In
essence, this curve attempts to approximate the boundary between that which is
achievable and not achievable, thereby representing the best achievable perfor-
mance. For instance, choosing (αδ f ,αut) = (0.4,0.4 GN), the point is seen to lie
below the curve. Hence, there is likely no controller which can achieve a closed-
loop system such that |Hδix0(iω)| ≤ 0.4 for 1≤ i≤ 5 and ω ∈ [0,20], while simulta-
neously maintaining internal stability, achievability by a controller and confinement
of the actuator effort to within 0.4 GN in the time interval 0−2 s.

In practice, due to the finite-dimensional approximation, the actual boundary
between achievability and non-achievability will lie at or below the one in figure 5.8.
However, the discussion of problem B above and C2 below suggests this boundary
should be close in some sense to the curve in figure 5.8.

The curve itself behaves in a reasonable way in the sense that it appears to be
convex, as it should be. Further, it begins with large values for small αut while
sloping downward for increasing αut . This represents the sacrifice we have to make
in one design specification in order to tighten the other: it is intuitive that more
actuator effort results in better peak suppression. By keeping the actuator effort
below some critical value in the time domain, we may ensure that no column or
controller damage is incurred. In choosing a safe upper bound, the actuator effort
would arguably remain low even if the ground were not to move as an impulse.
Conversely, knowing that we wish to stay below a certain αδ f , we could reinforce
the columns and the controller devices accordingly.

The analogous tradeoff curves between {Dδ t,αδ t
} and {Dut,αut} shown in figure

5.9 have the same properties as the C1 curve, including convexity. Further, the two
curves in figure 5.9 appear to be almost identical. With the discussion of problem
B in mind, this suggests that the real tradeoff curve (when the finite-dimensional
constraint is lifted) is also very similar. The fact that the blue curve appears to be
situated just below the orange curve at all time is a direct consequence of the relation
between n and the minima of a problem, see the discussion of problem B above.

Unlike the C1 curve, however, the two curves appear to be less smooth and
almost linear over some intervals. The cause for this is not known, but it could
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be related to the computation of the curves, see below. Note that the curves were
generated by 100 points each, so a lack thereof cannot be the cause.

Another observation is that of the orange curve abruptly becoming horizontal
at approximately αut = 19 GN after nearly having overlapped with the blue curve.
The natural interpretation is the following. If we were to solve the corresponding
problem D of reducing {Dδ t,αδ t

} while demanding only Dstab, the minimum m0
(assuming it exists) would correspond to a closed-loop system with some maxi-
mum actuator effort value α

(0)
ut on the interval 0− 2 s. Now, gradually loosening

the restriction on actuator effort for the corresponding convex optimisation problem
for the setup C2, we will eventually reach the point when the max value of α

(0)
ut is

allowed. The corresponding minimum at this point must be the same as m0, or else
one of them is not an actual minimum, a contradiction. Proceeding by raising the
max value αut allowed cannot further reduce the minimum, however, for in this case
m0 would no longer be the minimum to problem D, another contradiction. Similarly,
the minimum cannot increase (take the solution to problem D). The curve therefore
has to be horizontal from this point on. We argue that α

(0)
ut ≈ 19 GN.

The fact that the blue curve continues downwards is reasonable, again due to
differences in the tightness of the finite-dimensional constraint: the minimum in the
n = 5 variant of problem D should be equal to or lower than m0, cf. the discussion
of problem B. However, we still expect an abrupt change for high enough αut .

Altogether, with the exception of the lack of smoothness of the C2 tradeoff
curves, the actuator effort and the intermass displacement have been successfully
compared in both the frequency and time domain by means of reasonable-looking
tradeoff curves. This representation of various limits of performance was one of our
main goals according to Chapter 1. As noted there, the strength of these tradeoff
curves lies mainly in comparisons with alternative controller design methods. To
this end, as a first application of this, we compare directly the method of passive
control with the limits of performance of the system.

According to Section 4.2, the two are directly comparable: the controller de-
vice corresponds to the added damper device. Figure 5.10 shows the result of such
a comparison: it consists of the tradeoff curve of figure 5.8 and a red cross mark-
ing the performance of the corresponding passive system. We see that while the
dampers exert forces greater than 80 GN to achieve the result in table 5.2, an opti-
mal controller will require at most 0.4 GN for the same kind of performance. In this
sense, an optimal controller can be over 200 times more efficient than a damper.

Some Notes on Computation
In general, the computation was prone to instability in the sense that small changes
in input value could result in dramatic changes in CVX solution status. For instance,
changing an upper bound constraint by a decimal could render CVX completely in-
capable of solving the problem, returning "Status: Failed" with minimum "NaN"
when before it had returned "Status: Solved" along with a number. Changes in the
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code, such as expressing as many operations as possible in matrix multiplications,
helped remedy this to some extent. All computations performed for the result sec-
tion had "Status: Solved".

A similar phenomenon occurred when the input values were either too small or
too great. In this case, though, the status returned was often "Inaccurate/solved",
and the corresponding minima were unreasonable, unlike in the previous case. In
practice, then, solving design problems works only for some mid-range inputs.

The choice of basis functions Qk is yet another factor which comes into play in
deciding the quality of computation. The constant a in the definition of Qk was not
chosen arbitrarily, and some tentative tests were run prior to the main ones to decide
on an a which would yield stable results. As it turns out, even small differences in
the constant a could influence the result considerably. In order to improve compu-
tation in general, then, attention should be paid to the particular choice of Qk. It
appears to be well worth exploring alternative options for Qk, possibly even beyond
the structure suggested in this thesis, because the choice affects the results in more
than one way, see e.g. the discussion about problem B.

Computation times tended to be excessively long, cf. several hours to compute
a tradeoff curve. Prior to our attempts to make the code more efficient, they had
been substantially longer. The computation time also increased with the number
of basis functions n included in generating the finite-dimensional approximation,
which is natural. However, figures 5.7 and 5.9 suggest that n may be kept low for
better solution times without much difference in minima obtained. Note that the
difference in computation time between adjacent n would likely increase for more
complex systems, as the solution vector x ∈ Rnunyn increases by nu ·ny elements.

Finally, we remark on the value φut(H0) = 9.6161 GN in table 5.5. Recall that
the max actuator effort allowed was 10 GN. This suggests that the minimum could
possibly have been lowered slightly by maximising the actuator effort within the
allowed limits. This in turn could be confirmed for cases in which two very similar
design problems a) and b) with the fixed constraint Dδ t,αδ t

were solved, as in A2.
The problem b), which allowed more actuator effort, resulted in a lower minimum.
However, the allowed actuator effort was not fully exploited in the optimal solution,
and the solution satisfied the tighter actuator effort constraints of problem a), whose
minimum was slightly higher. This implies that the minimum of problem a) was no
actual minimum: it should be at most the minimum reported for problem b).

The phenomenon in question tended to occur for large numbers when Dδ t was
somehow involved. The cause for this could be computational, since improving the
code tended to reduce the likelihood of this phenomenon. As it happens, the code
was necessarily more complex for time domain evaluations of intermass displace-
ments. The linear intervals in the tradeoff curves of figure 5.9 could similarly be
related to the code: note how the interval lengths increase with αut .

Altogether, the coding required much attention in order for well-behaved solu-
tions to be attained in CVX. Future work on the subject could investigate the exact
causes of the above anomalies and further improve the code for wider applicability.
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6.2 Conclusion

In this thesis, it was shown that under special circumstances, the controller design
problem for a mass chain system may be formulated as a convex optimisation prob-
lem. This is true for chains consisting of any number of masses interconnected
by linear springs and dampers for which the corresponding spring constants and
damping coefficients are all positive. Additionally, the constraints on the system
behaviour have to be on a special form, namely as arbitrary real-valued functions
acting as bounds in the frequency and time domain. The closed-loop system may
also be required to be internally stable and achievable by some controller.

The design method in question was then demonstrated on a system of five
masses subjected to an impulse disturbance. A set of controller design problems
were posed, and the corresponding convex optimisation problems were success-
fully formulated and solved. Tradeoff curves were generated comparing actuator
effort with intermass displacement in both the frequency and time domain. The op-
timal closed-loop systems were probed in various ways and the appearance of the
resulting graphs was judged to be reasonable and consistent with theory.

On the other hand, the controller matrices which achieved the optimal closed-
loop systems were not succesfully obtained: the structure was too complex and the
order too high for computation. Such closed-loop systems would therefore not be
realisable in practice. Also, the displacements and forces in the resulting simula-
tions were rather large if considered in the context of buildings. This was mainly
attributed to crude approximations, such as the use of an impulse as an earthquake.

The optimal solutions were subsequently compared with the performance of
the corresponding passive system in which dampers were added. As expected, the
optimal closed-loop systems performed several times better than the passive sys-
tem in every comparison. In particular, it was found that the greatest damper force
can be over 200 times larger than that of an optimal controller achieving the same
performance. It was also found that added external damping results in more vio-
lent behaviour in the first few milliseconds of some impulse responses. However,
this adverse effect of increased damping can be negated using a simple form of the
permitted constraints.

A specific controller design problem was also solved for different finite-
dimensional approximations. The resulting minima indicated convergence to some
specific value as the number of basis functions was increased. Additionally, the
minima were close enough together so as to suggest that the advantage of choosing
a large number of basis functions over a small one is modest at best. In exchange
for making the approximation more crude, the computation is stabilised and the
computation times are lowered significantly.

As for the computation involved, it was prone to instability and was less well-
behaved for more complex problems. Enhancements to the code were noted to im-
prove the situation considerably, but the solver still failed for low enough and high
enough input values.
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