
STUDYING AND

FORECASTING TRENDS FOR

CRYPTOCURRENCIES USING A

MACHINE LEARNING

APPROACH

JOHAN PETTER MÖLLER

Bachelor’s thesis
2018:K15

Faculty of Science
Centre for Mathematical Sciences
Numerical Analysis

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Lund University, Faculty of Science, Numerical Analysis

Bachelor thesis in Numerical Analysis

Studying and Forecasting Trends for
Cryptocurrencies Using a Machine Learning

Approach

Author :
Johan Möller

Supervisor :
Alexandros Sopasakis

October 16, 2018

Abstract

We consider a technique involving Neural Networks in order to try to predict
trends for cryptocurrencies such as Bitcoin, Ethereum etc. In that respect the
project involves construction, design and training of a deep learning Neural
Network based on historical trading data for these cryptocurrencies. Subse-
quently we apply this trained network in order to better understand its ability
to possibly forecast future trading trends.

1

Populärvetenskaplig sammanfattning

Genom att använda maskininlärning med fokus p̊a artificiella neuronnät ska
vi försöka preidktera trender för kryptovalutor, s̊a som Bitcoin, Ethereum etc.
För att genomföra detta krävs det att konstruera, designa och träna ett djupt
neuronnät baserat p̊a tidigare data. Sedermera används detta neuronnät för att
bättre först̊a maskininlärning och dess förm̊aga att prediktera framtida trender.

2

Acknowledgment

I would like to thank my supervisor Alexandros Sopasakis for all the help,
encourage and enthusiasm.

3

Contents

1 Introduction 6
1.1 Problem Statement . 7

2 Neural Network 8
2.1 Activation Function . 8
2.2 Training and Testing . 9

2.2.1 Example of Neural Network 9
2.2.2 Backpropagation Algorithm 9

3 Optimization of The Error Surface 12
3.1 Error Functions . 12
3.2 Optimization Algorithm . 12

3.2.1 Pseudocode for Adam Optimization Algorithm 13
3.2.2 Algorithm Description . 13

3.3 Biases and Weights Exemplified 16
3.3.1 Example of Backpropagation 18
3.3.2 Pseudocode for Backpropagation 20

4 Problems 20
4.0.1 Recall: Training and Testing Score 20

4.1 Normalization . 21
4.2 Vanishing Gradient . 21
4.3 Overfit . 21
4.4 Dropout . 22
4.5 Regularization . 22

5 Universal Approximation Theorem 22

6 Comparison Model 23
6.1 Geometric Brownian Motion: . 23
6.2 Pseudocode for Brownian Simulation 25

7 Rolling Prediction Forecast 26
7.1 Algorithm . 26

8 Result 27
8.1 Train and Test Score . 27

9 Predictions 31
9.1 Result from Rolling Prediction Forecast 31
9.2 Comparison Method . 34

9.2.1 GBM Result . 34
9.2.2 Bitcoin GBM Plots . 35
9.2.3 Ethereum GBM Plots . 37
9.2.4 Litecoin GBM Plots . 40

4

9.3 Neural Network Prediction versus True Change 43

10 Comparison 47

11 Conclusion 48
11.1 Further work . 48

12 References 49

5

1 Introduction

Forecasting trends for assets such as cryptocurrencies is not an easy task. In
this thesis the goal is to understand how a machine learning method can be used
for forecasting trends of time series data. Machine learning is, in some sense,
smart algorithms that can draw conclusions from data, i.e learn data patterns.
Further, a Brownian motion will be used for forecasting trends of the same data.
This method will be used as a comparison.

The author does not believe, what so ever, that one can easily predict the
future of cryptocurrencies or similar assets by constructing a machine learning
algorithm or Brownian paths for forecasting trends. The author does believe
that machine learning is a powerful tool for comprehending data pattern.

Cryptocurrencies are often in spotlight and then in context of wide volatility
and high returns. Therefore, it seems interesting to see how a machine learning
algorithm can be used for comprehend data pattern of such assets. The machine
learning algorithm will involve neural networks and a rolling prediction forecast.
Software such as: Keras, TensorFlow and Scikit-Learn are used for writing the
algorithms. All code is written in Python.

In this thesis a regression method with supervised learning will be investigated.
Regression meaning that the input map to an output and not a probability.
Supervised learning meaning that the user must provide a label to each input
so the algorithm can compare prediction output with true label. Subsequently,
the algorithm will make predictions on data inputs which have no labels.

6

1.1 Problem Statement

In this thesis, a method for predicting the closing price using neural networks
will be investigated. The prediction will be based on former closing prices. This
method will be compared with another method, a Geometric Brownian Motion.

Let ~X =
(
X1, X2, X3, ..., Xt

)
be a vector of closing prices at certain time points

from i = 1, ..., t. Further, let F (·) denote a neural network. Can a neural net-
work be used for forecasting trends of closing price of different cryptocurrencies,
~̂
X =

(
X̂t+1, X̂t+2, X̂t+3, ..., X̂t+k

)
where k is the prediction sequence length.

F (
(
X1, X2, X3, ..., Xt

)
) =

(
X̂t+1, X̂t+2, X̂t+3, ..., X̂t+k

)
(1)

7

2 Neural Network

Artificial neural networks (ANN) are designed to have layers. Layers consist of
neuros, sometimes called nodes. In the first layer, the input layer, the neurons
are sending the input further into the layers. The input is sometimes referred to
as the input signal or just the signal. The signal is provided by the user. Each
neuron in each layer is connected to each neuron in the next layer. Each connec-
tion is a weight. A weight is an unknown variable. The weight is combined with
the signal obtained from the previous layer. In each neuron two operations are
executed. One summoning junction which sum the signals from previous layer
combined with a weight. The second operation is called a “wrapper”. This is
a function, called activation function. The activation function takes the signal
as input The activation function is often a non-linear function which introduce
non-linearity to the network. This is called for when the relation between input
and output is non-linear. A smart choice of activation function may reduce the
training time. Training is optimization of the difference between network out-
put and desired output with respect to the weights. Training is discussed and
explained in subsection “Training and Testing” (2.2). The signal is traversed
through the hidden layers. If the network has more than one hidden layer, the
network is considered a deep learning neural network. When the signal has
traversed through the hidden layers it reaches the final layer. The output layer.
In the output layer each signals are summed. The output from the output layer
is the network output. The network output is compared to the desired output.
There is no optimal number of neurons or hidden layers. A rule of thumb is if
the problem the network is designed to solve is non-linear or complex, (i.e the
relations between input and output), a multilayered network may decrease the
training time and increase the test result. A design suitable for the problem is
found by trial and error.

2.1 Activation Function

The activation functions role is to introduce non-linearity to the network. This
is called for when the relationship between input variable and output label is
non-trivial. A couple of different activation functions are the following:

ReLU = max(0, x)

Sigmoid, σ(x) =
1

1 + e−x

tanh(x) =
2

1 + e−2x
− 1

Different activation functions fit different tasks better even though they all can
be used for all tasks. For example, σ(x) fits classification problems better and
ReLu fits better for a regression problem. It has been experimentally discovered
the choice of activation function mostly affects training time (1).

8

2.2 Training and Testing

Training is done be evaluating the difference between network-output and tar-
get and subsequently minimizing the differences. Target is the desired value.
The training data and test data must be provided by the user. The user has
data points which are divided into train and test data. these are often called
training-set and test-set. The test-set is unseen to the network and used to val-
idate the network ability to approximate the data. The training set is used for
training through backpropagation. Throughout training the goal is to modify
the weights, so the network-output approximate the target as good as possible.
The targets are also given by the user. The target is sometimes called label or
desired value.

2.2.1 Example of Neural Network

In figure below an artificial neural network with design 4-5-1 is considered. This
is a figure which is supposed to simplify the understanding of how a network is
functioning. The neurons which are exemplified by circles are the functions and
the connections (the lines between the nodes) are the weights. In this network
only one hidden layer is used, therefore it is considered a single layer feedforward
neural network. Feedforward refers to the input is traversed from right to left
(in this case). The output for the last neuron, the output layer, as compared to
the target. The difference referred to as the error. The error is then propagated
backwards to measure the error contribution in each neuron. This is what the
algorithm aims to minimize.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

2.2.2 Backpropagation Algorithm

Backpropagation is the algorithm used for training networks, i.e minimize the
difference between network output and target.

• f(·) denotes the activation function.

9

• xi denotes the input. Provided by the user.

• ŷi denotes neuron output.

• zi denotes network output.

• yi denotes target. Provided by the user.

• wi denotes weights. Set at random and the updated.

• wj0 denotes biases.

• E(·) denotes the error function, i.e the difference between network output
and target value.

• δi denotes the error.

Define a neuron with input signal as:

aj =
∑
i

wjiŷi + wj0 (2)

Remark that if ŷi = xi if aj = a1 as j = 1 implies the algorithm is in the first
layer.
Now, the activation function, f(·), is applied:

ŷj = f(aj) (3)

If ŷj is located in the last layer, the output layer, ŷj = zj . The error function1

is defined, the error function measures the difference between network output
and target.

E =

n∑
j

E(j) (4)

E is as function dependent on the signals aj , hence:

E = E(a1, a2, ..., ak) (5)

Look at equation (2) we see that the only unknown variable is wij . Hence, E =
E(a(w)). Now, differentiating the error function with respect to a particular
weight, wij :

∂Ej
∂wij

(6)

Using the chain rule2 the derivative is divided into two parts. Recall that Ej is
a function depending on aj which in its turn depends on wij , therefore:

∂E(j)

∂wij
=
∂E(j)

∂aj

∂aj
∂wij

(7)

1Error function can be defined in different ways, see Section ”Error function”
2Recall chain rule: y = f(x), x = f(t), ∂y

∂t
= ∂y

∂x
∂x
∂t

10

Define:

δj =
∂E(j)

∂aj
(8)

δj being the errors in neuron j.

Using Equation (2), one sees:

∂aj
∂wij

= ŷi (9)

Hence:
∂E(j)

∂wij
=
∂E(j)

∂aj
ŷi (10)

Recall δj = ∂E(j)

∂aj
,

∂E(j)

∂wij
= δj ŷi (11)

In Equation (11) one can see that the derivatives are the product of the neuron
output and the error from the previous layer (this is possible because we prop-
agate backwards and neuron output is obtained from forward propagation done
before). This can be calculated using the local derivative of the activation func-
tion in, f ′(·) because f ′(aj) = ŷi where ŷi is a neuron output from previous layer.

Consider the signal traversed through the hidden layers ending up in the output
layer. Here, the output is called zk instead of ŷi. k indicates that the signals is
located in the output layer. The signal is now referred to as ak. The error func-
tion in current point is still referred to as E(j). The equation below (Equation.
(12)) is formed.

δk =
∂E(j)

∂zk
f ′(ak) (12)

Equation (12) is the form to evaluate the deltas in the output layer. The deltas
in the hidden layers are calculated using the formula:

δj = f ′(aj)
∑
k

wkjδk (13)

This comes from splitting the derivatives of the error function using the chain
rule once more, like:

∂E(j)

∂aj
= δj

∂E(j)

∂aj
=
∑
k

∂E(j)

∂ak

∂ak
∂aj

(14)

We end up in a formula for calculating the errors in each neuron, Equation (13).

11

3 Optimization of The Error Surface

The graph of the error function (Eq. (4)) is referred to as the error surface.
Training a network consist of more than finding the error contributions in each
neuron. Training a network consists of optimizing the error surface. Through
optimization the training algorithm aims to find weights which represent a min-
ima on the error surface and therefore the weight update have more impact on
training. Backpropagation delivers the gradients of the network.

3.1 Error Functions

Measuring the error is executed by different error functions. Two of the are
Mean Squared Error (MSE) is one (Eq. (15)) and Absolute Error is another
(Eq. (16)).

E =
1

n

n∑
i

(
zi − yi

)2
(15)

E =
1

n

n∑
i=1

|zi − yi| (16)

3.2 Optimization Algorithm

Different optimization algorithms are used. They are mostly different methods
which originate from Newton’s method. One optimization algorithm commonly
used to optimize the error surface of a neural network is Adam. The name
Adam is derived from adaptive moment estimation. Below an algorithm will be
presented for using the Adam algorithm for calculating a minima of the error
surface.

12

3.2.1 Pseudocode for Adam Optimization Algorithm

Algorithm 1 Algorithm optimizing f(·) using Adam algorithm for optimizing

Result: w which minimizes f(·)
Require
η: stepsize
β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates
f(w): Function to be optimized
w0: Initial parameter vector
m0: Initial first moment vector
v0: Initial second moment vector
t = 0: First timestep
while w not converged do
t = t+ 1 (1)
gt = ∇f(wt−1) (2)
mt = β1mt−1 + (1− β1)gt (3)
vt = β2vt−1 + (1− β2)g2t (4)
m̂t = mt

1−βt
1

(5)

v̂t = vt
1−βt

2
(6)

wt = wt−1 − η m̂t

(
√
v̂t+ε)

(7)

end

3.2.2 Algorithm Description

Below, a description of every step on Adam will be presented.

1. Timestep is updated

2. gt is the gradient of f(·) at timestep t.

3. mt is the moment estimation. That is because the algorithm is minimizing
the function with respect to its expected value. I.e, mt is the expected
value of the gradient.

4. vt is the second moment, the mean squared calculated with: ∇f
(
(∂f
∂w1

)2, (∂f
∂w2

)2, ...
)

5. The estimation of the moment is biased and the term 1/1−βt1 is compen-
sating for the bias-term.

mt = (1− β1)

t∑
i=1

βt−i1 gi

E[mt] = E

[
(1− β1)

t∑
i=1

βt−i1 gi

]

13

E[mt] = E(gt)

[
(1− β1)

t∑
i=1

βt−i1

]
Consider t = 2. Then the above case ca be expandes as,

(1− β1)
(
β2−1
1 + β2−2

1

)
= (1− β1)(β1 + 1) = 1− β2

1

This is true for all t, therefore the algorithm compensating with 1/1− βt1
and becomes,

E(mt)

1− βt1
= E(gt) (17)

6. This is analogues to the case above.

7. Here, wt is updated and a new iteration is starting.

Empirically it has been shown that good hyperparameter settings are: β1 = 0.9,
β2 = 0.999 and η = 0.0001. For further improvements, η may be updated each
iteration as follows:

ηt = η

√
1− βt2

1− βt1
(18)

It has been shown that Adam is used preferably before other optimization al-
gorithms in machine learning problems, due its efficiency in a high dimensional
parameter space (9). Machine learning algorithms are often considered to often
be in high dimensional parameter space since the connections between nodes
quickly add up to many parameters.

Consider the Mean Squared Error,

MSE = 1/n
∑
i

(zi − yi)2 = 1/n
∑
i

E(zi, yi).

The MSE would normally be a convex function. Our MSE however is depend-
ing on function values depending on more variables, such as weights. Therefore
E(F (~X,w), y) where F (·) is a neural network, w is a vector of all weights and
~X is the input vector. In general F (·)is not convex and therefore E(z, y) is not
convex. This may cause a problem because the optimization algorithm does not
guarantee a global minima. Research have shown that the importance to find
a global minima decreases when the network structure becomes larger (6). If
the structure is large the algorithm only needs to find a ”big-enough-minima”.
With these explanations new questions arises. What is a ”big-enough-minima”?
Which structure is considered large? A ”big-enough-minima” simply refers to
a minima which as impact on training, i.e. lower the training and testing score.
However, a structure is large or small is connected to the problem (6). These
loosely defined problems and solutions may cause problems for the user to con-
struct a network that is able to train well. To plot the errors each epoch is a

14

good indication if the network behaves as the user want. In Figure 1 a plot
of a successfully trained network is shown. A common problem is overfitting.
This can be detected if the train score is decreasing and test score is increasing.
Remember, a low score is desirable.

Figure 1: Top plot: plot of training error. Bottom plot: plot of test score.
Error converging to a small error after five epochs. No overfitting. Successfully
trained network. If train loss would converge to zero but validation loss would
increase, it would indicate overfitting.
In the plot Train Loss and Validation Loss refers to train score and respectively
test score. A low score is desirable.

15

3.3 Biases and Weights Exemplified

In this section, the use of weights and biases will be exemplified. Note that bi-
ases in this section do not refer to a bias estimation but a trainable parameter.
A bias is added to make the neuron output more flexible.

Consider the input signal presented in Subsection 2.2.2.

aj = wjiŷi + wj0 (19)

The weight makes the approximation more or less steep and the bias has the
ability to move the signal on the x-axis, similar to a degree one polynomial.
First, initial bias and weights are set at random.

Figure 2: tanh-functions with different biases added. Weights are set to be one.
Here one sees how the bias may shift the activation function output on the x-
axis. Blue curve: tanh(x), Orange curve: tanh(x+ 1), green curve: tanh(x+ 2).

16

Figure 3: tanh-functions with different weights and biases, exemplifies the role of
the weights. Here one sees how the weights make the activation function steeper
and the biases shifting the curve on the x-axis. Blue curve: tanh(0.75x), Orange
curve: tanh(x+ 1), green curve: tanh(1.5x+ 2).

17

Figure 4: tanh-functions with different weights, exemplifies the role of the
weights. Here one sees how the weights increases or decreases the steepness
of the curve. Blue curve: tanh(0.75x), Orange curve: tanh(x), green curve:
tanh(1.5x).

3.3.1 Example of Backpropagation

Consider a single layer network with one input neuron, two neurons in one hid-
den layer and one output neuron in the output layer (see network below).

Input #1

Output

Hidden
layer

Input
layer

Output
layer

• f(·) denotes the activation function.

• xi denotes the input. Provided by the user.

• ŷi denotes neuron output.

• zi denotes network output.

• yi denotes target. Provided by the user.

18

• wi denotes weights. Set at random and the updated.

1. Forward propagate input x1 to the two neurons in the next layer, the
connections are weights. Here, only one operation is executed in each
neuron. This is because there is only one input so no summation is needed
for. For simplification the activation function used in the example is the
identity.

f(x1, w1) = x1w1 = ŷ1

f(x1, w2) = x1w2 = ŷ2
(20)

2. Each neuron output, ŷ1 and ŷ2 is now send forward to the output layer
via two new connections, i.e w3 and w4.

f(y1, w3) = ŷ1w3 = ŷ4

f(y2, w4) = ŷ2w4 = ŷ5
(21)

3. Now the network output is calculated. Here the summering operation is
demonstrated. Also, notice that in this step no weights are combined with
the output from this neuron. That is because the output is not traversed
forward. The connections between neurons are weights.

f(ŷ3, ŷ4) = ŷ3 + ŷ4 = z1 (22)

4. In this step the output z1 is compared with the target. Notice, y1 is the
target provided by the user.

z1 − y1 = δ5 (23)

5. δ5 is now propagated backwards and measure the error contribution in
each neuron.

w4δ5 = δ4

w3δ5 = δ3

w2δ4 = δ2

w1δ3 = δ1

(24)

6. In this step each weight, wi, is updated. This is done by an optimization
algorithm. Here η denotes the stepsize and ∂f

∂ŷi
is the partial derivative of

the activation function in each step.

w′1 = w1 + η
∂f

∂ŷ1
x1δ1

w′2 = w2 + η
∂f

∂ŷ2
x1δ2

w′3 = w3 + η
∂f

∂ŷ3
ŷ1δ3

w′4 = w4 + η
∂f

∂ŷ4
ŷ2δ4

(25)

19

7. w′i is the updated weight. This procedure is called an epoch. An epoch is
an iteration of the algortihm.

3.3.2 Pseudocode for Backpropagation

Algorithm 2 Algorithm for finding δ’s using backpropagation

Result: δj for j = 1, 2...k layers
while j ≤ k do

for each wi, i = 1,2,...n. n number of connections do
if j = k then

δj = f ′(aj)
∂E
∂zj

else

δj = f ′(ai)
∑
j wijδj

end

end

end

end

4 Problems

Training a network consists of training many parameters and adjusting hyper-
parameters. A hyperparameter is a parameter which can not be trained and
must be set by the user. Setting hyperparameter is done by trial and error.
Example of hyperparameters are the number of layers and neurons. Others are
stepsize, iterations and batch size. Problems that occur are vanishing gradient,
overfitting and optimization problems. The optimization problem is discussed
in ”Optimization of The Error Surface”.

4.0.1 Recall: Training and Testing Score

Training score and test core is the score obtained from training and testing
(sometimes referred to as training and validation). Measured, in our case,
with the Root Mean Squared Error-function. The train score is the score which
measures how good the approximation is of the train-set (training data). This
score is the mean difference between network output and target. The differ-
ence between network output and target is what the training algorithm aims
to minimize, i.e. obtaining low train score. If the network successfully trained
the test score will be low. To get an understanding of what is a low score one
may have to try different designs to try to find the lowest possible. Another
good indicator of a low score is to plot the approximation and the target to
get a visual if the approximation meets the user requirements. One example of
a function measuring the error is the Root Mean Squared, see Equation (26).

20

Here, Xi is the network approximation of the target, yi.

Error =

√√√√ 1

n

n∑
i

(
Xi − yi

)2
(26)

4.1 Normalization

The train and test score will be lower if the data is normalized. Popular nor-
malization ranges are: [0, 1] and [−1, 1]. If the data is not normalized the error
surface will range over a wide interval. The optimization will be easier and
better with normalized data and therefore lowering the train and test score.

4.2 Vanishing Gradient

Vanishing gradient occurs when the gradient which is propagated backwards
through the network is too small and therefore has no impact on training. The
reversed problem, exploding gradient, is when the gradient is too big and have
too much impact. Due to the fact that the gradient is traversed backwards
through the network, it is crucial for the training to beat vanishing/exploding
gradient. If it occurs it affects the whole network.

To solve this problem one can utilize an activation function whose derivative
is bounded and therefore the gradient will not blow up or explode. This can
affect the network ability to solve a problem due to the fact that such activation
function may obstruct the training. Instead of using such activation function
one may try to design the network differently. More clever neurons have been
developed to solve this problem. The most popular is a “Longs Short Term
Memory”-network (LSTM-network). These networks are, while back propagat-
ing, using adding operations and where multiplication is needed the network is
using the identity. Which derivative is 1 by construction. These networks are
hard to understand due to every neuron in an LSTM-network is in its turn a
small network itself. We encourage the reader to seek information elsewhere
because these networks are very powerful and do not need as much data as a
feedforward network.

One detects vanishing gradient when training does not lower the test score.

4.3 Overfit

Overfit occurs when the network memorizes the data pattern and not compre-
hend the data pattern. Overfit is detected by training score decreases while
the test score increases. The best solution to this is to feed more data to the
network. More data is in some cases not available and therefore other methods
have to be selected. One may have to change the network design. A simpler

21

network may beat overfitting. This must be balanced well so the reversed prob-
lem does not occur. This is the problem underfitting.

4.4 Dropout

Dropout simply refers to drop random neurons in an epoch. This implies that
each neuron do not get updated every epoch and therefore the risk of overfitting
decreases.

4.5 Regularization

Another way to combat overfitting is to add penalties to too strong signals.
Consider again the MSE cost function with added a penalty:

MSE =
1

n

n∑
i=1

((zi − yi)2) + λ

n∑
i=1

w2
i

where λ is our penalty, w is our corresponding weight and z is the network
output. Adding a penalty to too big signals and therefore their feature is not
taken in too large consideration. This method is called regularization.

5 Universal Approximation Theorem

One classic theorem when it comes to the theory of neural networks is the
”Universal Approximation Theorem”. Universal Approximation Theorem was
proven by George Cybenko in 1989 (10). George Cybenko stated that the
Universal Approximation Theorem only is true for Sigmoid activation function.
In 1991 Kurt Hornik showed that Universal Approximation Theorem is true for
an arbitrary activation function (10). Universal Approximation Theorem states
that a neural network is a universal approximator, i.e. it can approximate an
arbitrary function (10). The theorem is presented in this thesis for motivating
the use of a neural network as an approximator in our case.

Theorem 5.1 (Universal Approximation Theorem (10)) Let g(·) be an arbi-
trary activation function. let X ⊆ Rm and X compact. The space of con-
tinuous functions on X is denoted C(X). Then ∀f ∈ C(X), ∀ε > 0 : ∃n ∈
N,wij , bi, φi ∈ R, i ∈ {1, .., n}, j ∈ {1, ..,m}, such that:

F(n)(x1, x2, ..., xm) =

n∑
i=1

φig(

m∑
j=1

wijxj + bi) (27)

22

as an approximation of the function f(·);

||f − F(n)|| < ε

With a compact space we mean a space closed and bounded. Here subscript
n on the network, F (·). n denotes the number of neurons the network consists of.

Again, consider the input signal:

aj =
∑
i

wjiŷi + wj0

If we wrap this signal in the activation function, g(·) we get:

g(
∑
i

wjiŷi + wj0)

and then sum all of these with a scalar we obtain:∑
j

φjg(
∑
i

wjiŷi + wj0)

This is the same approximator used in Universal Approximation Theorem. Here,
i and j have changed places because of earlier notation, (see Equation (2)).

6 Comparison Model

For comparison a method involving a Monte Carlo simulation of a Brownian
Motion is used below. A Geometric Brownian motion is used for modeling un-
certainty and one of the fundamental equation for asset prices (2). The use
of this method was inspired of the article ”Modeling the price of Bitcoin with
geometric fractional Brownian motion: a Monte Carlo approach” by Mariusz
Tarnopolski.

6.1 Geometric Brownian Motion:

A Geometric Brownian Motion is described as follows:

dXt = µXtdt+ σXtdWt

X0 = x0
(28)

The solution to this equation is known,

X(t) = x0 exp

{(
µ− 1

2
σ2

)
t+ σW (t)

}
(29)

23

X(t) denotes the stock price at time point t, µ and σ are constants, µ is called
drift parameter and σ is called volatility parameter. µ is the expected value
and approximated as the arithmetic mean of the data (µ̂) and σ is the standard
deviation calculated as:

σ = s =

√√√√ n∑
i=1

(xi − µ̂)2

n− 1

xi is the observed value obtained from data. Wt is a sample from the normal
distribution with variance σ2 and expected value zero.

µ and σ2 are calculated from the variation in data, i.e the return between data
points. Calculated as follows:

Return = log
(xi
xi−1

)
Where xi is the observed data.

Equation (29) is used for pricing Bitcoin using a Monte Carlo-approach. Mean-
ing, the Brownian motion is simulated N times, where N denotes a constant
that the user choose, i.e the number of paths. The expected value of the pre-
dicted stock is calculated as the median of the values estimated at desired time
step. The expected value is evaluated as the median comes from the fact that
the return levels are log-normal distributed (2).

24

6.2 Pseudocode for Brownian Simulation

Algorithm 3 Algorithm for producing n paths of a Brownian motion.

Result: n paths for stock pricing
X0 =initial value
number of simulation = N #set to an integer n.
simulation = 0
Last T = a # last time step for prediction.
while simulation ≤ number of simulations do

predicted prices =
[]

T = 0
t = 1 #time step

while T ≤ last T do

XT = X0exp

[(
µ− σ2

2

)
t+ σε

√
t

]
XT append to predicted prices
T= T + 1

end

end

25

7 Rolling Prediction Forecast

Neural networks are, today, used for stock prediction based on its well ability
for non-linear mapping between input and output (5). This property makes a
neural network suitable for time series analysis.

Rolling prediction forecast comes from using the predictions recursively, as fol-
lows:

F (X1, X2, ...Xt) = Xt+1 (30)

F (X1, X2, ...Xt) = X̂t+1

F (X2, ...Xt, X̂t+1) = X̂t+2

F (X3, ...Xt, X̂t+1, X̂t+2) = X̂t+3...

7.1 Algorithm

Below a proposed algorithm for making a rolling prediction forecast will be pre-
sented. Here, F (·) is the network which performs the prediction. The network is
written in Keras and TensorFlow. Keras and TensorFlow are a machine learning
software available for the programming language Python.

Algorithm 4 Algorithm for a rolling prediction forecast

Result: Prediction for k time points
Require:
Data, ~X
Prediction length, k
t = 1
while t ≤ k do

X̂t+1 = F (~X)
~X = append X̂t+1 to ~X
~X = Drop first entry in ~X
j = j + 1

end

Return last k entries of ~X

26

8 Result

Training, testing and prediction result will be presented for the different meth-
ods and afterwards compared to the true outcome. Training score is the score
the network achieves on training data, i.e. the data where the network is per-
forming the training. This means that in the rolling prediction forecast the
algorithm iterates over target data and not predicted data. Test score refers to
the score achieved on testing, sometimes called validation. This measures how
well the network performs on unseen data. This data still has a target value,
meaning we can measure how well the network performs. During testing the
network still iterates over true data. First when making forecasts about the
future the algorithms iterates over predicted data points.

The score is measured using the function Root Mean Squared Error, ”RMSE”.

RMSE =

√√√√ 1

n

n∑
i

(X̂i − yi)2 (31)

Where X̂i denotes network output. yi denotes the target.

8.1 Train and Test Score

Below the different score will be presented. Further, plots will be presented to
indicate if the regression performs well or not.

Table 1: Score, the square root of the MSE.

Currency Epochs Train Score Test Score Samples

Bitcoin 10 0.00321 0.0436 1811
Bitcoin 50 0.00285 0.0490 1811
Ethereum 10 0.01175 0.0774 980
Ethereum 50 0.00913 0.0596 980
Litecoin 10 0.00555 0.0525 1811
Litecoin 50 0.00443 0.0502 1811

Looking at the result from table 1, we see the score obtained from training
and testing using different numbers of epochs, 10 and 50. Worth noticing is
that the score increases with less data (score obtained from Ethereum). This
seems intuitively correct due to the network has less training experience.

27

Figure 5: Network output on Bitcoin data (1811 samples). Top plot: network
output compared with true data. Red curve is the true data. Blue curve is the
network output on the train set (85 % of the data). network obtained train
score, 0.00321 after ten epochs (measured using the root mean squared error).
Indicating that the network trained well. Green curve: network output on test
set. Test score: 0.0436. Another indication that the network performed well is
that we almost do not see the network output, it is almost exactly looking as the
red curve. Bottom plot: Only network output. Blue curve: network output on
train set. Green curve: network output on test set. Orange curve: predictions
for the five following days (see Section ”Predictions”).

28

Figure 6: Network output on Ethereum data (980 samples). Top plot: network
output compared with true data. Blue curve is the network output on the train
set (85 % of the data). network obtained train score 0.00913 after ten epochs
(measured using the root mean squared error). Green curve: network output on
test set. Test score: 0.0596. An indication that the network performed well is
that we almost do not see the network output, it is almost exactly looking as the
red curve. Bottom plot: Only network output. Blue curve: network output on
train set. Green curve: network output on test set. Orange curve: predictions
for the five following days (see Section ”Predictions”).

29

Figure 7: Network output on Litecoin data (1811 samples). Top plot: network
output compared with true data. Blue curve is the network output on the train
set (85 % of the data). Obtained train score, 0.00443 after ten epochs (measured
using the root mean squared error). Green curve: network output on test set.
Test score: 0.0502. An indication that the network performed well is that we
almost do not see the network output, it is almost exactly looking as the red
curve. Bottom plot: Only network output. Blue curve: network output on train
set. Green curve: network output on test set. Orange curve: predictions for the
five following days (see Section ”Predictions”).

30

9 Predictions

From Section ”Rolling Prediction Forecast” an algorithm for prediction was
presented. In this section, the result will be presented. The predictions are for
five days ahead. Here, as stated in section ”Rolling Predictions Forecast” the
algorithm is iterating over predicted values.

9.1 Result from Rolling Prediction Forecast

Table 2: True and predicted prices from 18-04-14 to 18-04-18. In this table we
only take the neural network-method predictions in consideration.

Currency Price (18-04-14), USD Price (18-04-18), USD
Bitcoin 7984.24 8164.42
Ethereum 501.48 524.79
Litecoin 126.29 140.00
Currency Predicted price (18-04-14), USD Predicted price (18-04-14), USD
Bitcoin 8000 8710
Ethereum 442.5 464
Litecoin 122.5 129

31

Figure 8: Bitcoin: Predictions for the five following days, (April 14 to April 18,
2018). Network predict an increase of 10.89%. True change: 2.21%.

32

Figure 9: Ethereum: Predictions for the five following days, (April 14 to April
18, 2018). Network predict an increase of 4.90%. True change: 4.60%

Figure 10: Litecoin: Predictions for the five following days, (April 14 to April
18, 2018). Network predict an increase of 5.31%. True change: 10.85%.

33

9.2 Comparison Method

15000 simulated Geometric Brownian Motions are simulated and then the me-
dian is calculated. The median is the expected price. Below a plots and result
will be presented.

9.2.1 GBM Result

Table 3: Predicted price (pred.), predicted change (pred. change) and true
change.

Currency Pred. (18-04-14) Pred. (18-04-18) Pred. change (%) True change (%)

Bitcoin 7986.00 8052.41 0.832 % 2.21 %
Ethereum 501.000000 508.823070 1.5614 % 4.60 %
Litecoin 126.00 125.873274 -0.1005 % 10.85 %

34

9.2.2 Bitcoin GBM Plots

Below the paths, prediction and histogram of the Bitcoin will be presented.

Figure 11: Bitcoin: 15000 paths of GBM. Red line is last known price

35

Figure 12: Bitcoin: Histogram over last price. Red line is most likely price 18/4.

Figure 13: Bitcoin: Prediction. Most likely prices from 14.04 - 18.04

36

9.2.3 Ethereum GBM Plots

Below the paths, prediction and histogram of the Ethereum data will be pre-
sented.

Figure 14: Ethereum: 15000 paths of GBM.

37

Figure 15: Ethereum: Histogram over last price. Red line is most likely price
18/4.

38

Figure 16: Ethereum: Prediction. Most likely prices from 14.04 - 18.04

39

9.2.4 Litecoin GBM Plots

Below the paths, prediction and histogram of the Litecoin data will be presented.

Figure 17: Litecoin: 15000 paths of GBM.

40

Figure 18: Litecoin: Histogram over last price. Red line is most likely price
18/4.

41

Figure 19: Litecoin: Prediction. Most likely prices from 14.04 - 18.04

42

9.3 Neural Network Prediction versus True Change

Below a table of predicted changes and true changes will presented.

Table 4: True and predicted prices from 18-04-14 to 18-04-18. Only the neural
network-method predictions in consideration.

Currency Price (18-04-14), USD Price (18-04-18), USD
Bitcoin 7984.24 8164.42
Ethereum 501.48 524.79
Litecoin 126.29 140.00
Currency Predicted price (18-04-14), USD Predicted price (18-04-14), USD
Bitcoin 8000 8710
Ethereum 442.5 464
Litecoin 122.5 129

Table 5: True and predicted change. Only the neural network-method in con-
sideration.

Currency True change (%) Predicted change (%)
Bitcoin 2.21% 10.89%
Ethereum 4.60% 4.90%
Litecoin 10.85% 5.31%

43

Figure 20: Bitcoin: True change for the five following days, (April 14 to April
18, 2018). True change: 2.21%. Predicted 10.89%. The network could not
predict the drop after one day. Looking at the plots in Section ”Train and test
score” the predicted values have a more smooth curve which indicates that the
network seem to have problem detecting daily trends.

44

Figure 21: Ethereum: True change for the five following days, (April 14 to
April 18, 2018) True change: 4.60%. Predicted change: 4.90%. The network
has problem detecting daily trends.

45

Figure 22: Litecoin: True change for the five following days, (April 14 to April
18, 2018). True change: 10.85%. Predicted change 5.31%. The network has
problem detecting daily trends.

46

10 Comparison

Here a table will be presented were the predicted change will be compared to
each other, i.e the GBM prediction and neural network prediction, and the true
change.

Table 6: Neural network (NN) and Geometric Brownian Motion (GBM) change
and true change from April 14 to April 18.

Currency NN change (%) GBM change (%) True change (%)

Bitcoin 10.89% 0.832 % 2.21 %
Ethereum 4.90% 1.5614 % 4.60 %
Litecoin 5.31% -0.1005 % 10.85 %

In Table 6 the predicted changes from both methods and also the true changes
from April 14 to April 18, 2018 are presented. In all cases the GBM made a too
low prediction but predicted an increase with success in two cases. In one case
the GBM predicted a negative change, although the currency did increase with
10.85%. The neural network prediction predicted an increase in all cases, even
though the predictions are too small or too big.

47

11 Conclusion

From this result, we can tell that a machine learning algorithm involving neural
networks may be used to comprehend the data of a time series such as the clos-
ing price of a cryptocurrency. If the algorithm can be used for forecasting the
price for five days ahead is too early to say. The algorithm must be evaluated
over time to investigate the ratio of true prediction versus false prediction. If
the algorithm can predict an increase or decrease with an accuracy larger than
50% we believe it is a successful algorithm. The author does not believe that
just because the algorithm predicted an increase in all cases and it came true
in all cases it is not an indication that the algorithm may be used successfully
for trading cryptocurrencies. It may just be, and probably is, a lucky shot.

11.1 Further work

The algorithm can be improved. Now, the algorithm only takes the closing
price as an input variable but, more variables should be used for evaluating the
closing price. For example, market volume and open price. During the work
with the algorithm, a classification algorithm was developed to predict a prob-
ability which indicated an increase or decrease. Perhaps that would be more
interesting than an algorithm constructed to predict the exact price. In this
thesis a regression method was used based on the possibility to visualize the
approximation.

Also, it is important to notice that the price of an asset such as cryptocur-
rencies depends on much more variables than earlier data points. Some of these
variables seem to be impossible to use for modeling the closing price. Such as
political instability etc.

Such a algorithm will be developed and actual trading will be investigated with
more common assets such as stocks.

48

12 References

References

[1] Jeff Heaton. Artificial Intelligence for Humans, Volume 3: Deep Learning
and Neural Networks. Heaton Research Inc, St. Louis, 2015.

[2] Tomas Björk. Arbitrage Theory in Continuous Time Oxford University
Press, 1998

[3] Mariusz Bernacki and Przemys law W lodarczyk. Principles of training
multi-layer neural network using backpropagation.
http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html,
September 2004.

[4] Xiao Ding, Yue Zhang, Ting Liu and Junwen Duan. Deep Learning for
Event-Driven Stock Prediction. Research Center for Social Computing and
Information Retrieval, Harbin Institute of Technology, China, and Singapore
University of Technology and Design, Singapore. 2015. p. 2327- 2333.

[5] Takashi Kimoto, Kazuo Asakawa, Morio Yoda and Masakazu Takeok Stock
Market Prediction System with Modular Neural Networks. INVESTMENT
TECHNOLOGY RESEARCH DIVISION. Tokyo, Japan.

[6] Grzegorz Swirszcz, Wojciech Marian Czarnecki and Razvan Pascan Local
Minima in Training a Neural Network, London, UK

[7] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn TensorFlow
O’REILLY, 2017

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2009. p. 225-284

[9] Diederik P. Kingma and Jimmy Lei B.
ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION. University of
Amsterdam, OpenAI and University of Toronto. 2015

[10] Balázs Csanád Csáji. Approximation with Artificial Neural Networks.
Eötvös Loránd University, Hungary

[11] Mariusz Tarnopolski, Modeling the price of Bitcoin with geometric frac-
tional Brownian motion: a Monte Carlo approach. Faculty of Physics, As-
tronomy and Applied Computer Science, Jagiellonian University, Krakow,
Poland Available at: https://arxiv.org/pdf/1707.03746.pdf

[12] Brown, Brewer, Kevin D.; Feng, Yi; and Kwan, Clarence C. Y.
(2012) Geometric Brownian Motion, Option Pricing, and Simulation:
Some Spreadsheet-Based Exercises in Financial Modeling, Spreadsheets in
Education (eJSiE): Vol. 5: Iss. 3, Article 4. Available at: http://

epublications.bond.edu.au/ejsie/vol5/iss3/4

49

http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
https://arxiv.org/pdf/1707.03746.pdf
http://epublications.bond.edu.au/ejsie/vol5/iss3/4
http://epublications.bond.edu.au/ejsie/vol5/iss3/4

Bachelor’s Theses in Mathematical Sciences 2018:K15
ISSN 1654-6229

LUNFNA-4020-2018

Numerical Analysis
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

