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Abstract

The current field of object detection and image recognition is huge but not
without complications. Processing large amounts of high resolution videos
needs powerful hardware and also risks breaching the privacy of those who
are recorded. In times of increasing demand for decentralized solutions and
stricter privacy protection regulations being put in place a new approach is
needed.

We present an alternative to traditional object detection in video where we
analyze changes to its metadata over time rather than the content of the video
frames. This approach has several benefits over traditional object detection: it
is incredibly fast, lightweight and protects the privacy of its subjects.

We have trained and evaluated several neural network models tasked with
detecting and counting vehicles in various scenes and have achieved accuracies
above 90%. Finally, we take the first steps toward a decentralized solution
running entirely on embedded devices.

Keywords: Machine learning, Neural networks, Vehicle detection, CNN, Metadata,
Bitrate, QP, Fast, Privacy
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Chapter 1
Introduction

The availability and utility of machine learning and data analysis has made it increasingly
more common to extract information from all kinds of data, to the point where it is done
everywhere. In the field of object detection in images we see the rise of self-driving cars,
more extensive object tracking and face recognition. Already there exist several powerful
neural networks designed for detecting objects, such as YOLO [37] and Faster-RCNN [39].
It is very much possible to locate arbitrary objects with high accuracy and at relatively high
speeds, given enough training.

However, despite being powerful, today’s neural networks are simply too large and
complex to run on smaller, embedded systems or too slow to keep up with real time video.
In order to process video of increasingly high resolution, in real time, a new approach is
required. In this thesis we have found one such approach that solves this problem.

We have focused on the task of counting vehicles in video using machine learning and
neural networks. Unlike traditional systems our networks differ in that they do not actually
look at the video image. Instead we look at the video’s so called metadata, information
about how it was encoded. Specifically we track each frame’s bitrate and QP-values (dis-
cussed in detail in Section 3.2). By looking at the changes over time our networks can
estimate how many vehicles have passed.

Depending on the model pipeline and network structure this method can be both very
small in size and extremely fast. This is because the metadata is much smaller, more com-
pact and has much fewer features compared to raw video, which drastically reduces com-
plexity. The downside is that with less information available it is not as accurate as ded-
icated state-of-the-art image networks, particularly because there exist no pre-annotated
datasets to train the networks on. Our goal was to examine this approach and evaluate how
well it works in practice; both how small the models can be and how well they work.

We have performed this thesis project at Axis Communications AB, a world leading
company specialized in network surveillance cameras. In order to present vehicle counting
as a feature in their cameras, Axis would currently be required to upload the video into
the cloud to do the object detection. This does not only result in an extra cost but also
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1. Introduction

presents a potential privacy issue as data is sent from the cameras to third party servers.
By only using the metadata values our models make the videos anonymized, keeping the
subject’s privacy intact. Finally, by deploying our networks on Axis’ surveillance cameras
and automating the training of the networks they can be tailored to each particular scene
where they are installed, improving their accuracy compared to a single global model.
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Chapter 2
Background

This chapter is aimed at providing a basic level of knowledge of the different types of neural
networks that we have used in our thesis project. The following sections start by explaining
the fundamental concepts in brief, followed by some sections on various architectures.
Finally we devote a section to network training.

2.1 A brief introduction to neural networks
Artificial Neural Networks (ANN) have been around for a long time. You can trace the
original idea to the McCulloch-Pitts model in 1943 [27]. Since their conception neural
networks have provided a mathematical model that tries to mimic the structure of biolog-
ical brains. Each network consists of a number of nodes (or neurons) in some structure,
usually in layers, with connections to other nodes. See Figure 2.1 for an illustration.

Input OutputHidden

Figure 2.1: A simple ANNwith three layers. The first layer repre-
sents the input variables, the second layer performs internal (hid-
den) computations and the final layer represents output nodes.
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2. Background

Figure 2.2: Some common activation functions: logistic sigmoid
(left), ReLU (middle) and leaky ReLU (right).

Each node in the network performs a simple calculation using some of its neighbors
and propagates its result to other nodes. This computation usually consists of a linear
combination of its inputs using a set of weights followed by the application of an activation
function. The following equation describes this procedure:

y j = φ

 N∑
i=0

xiθi j

 (2.1)

where xi are the inputs, θi j are the weights, φ(·) is the activation function and y j is the
output of the jth node. There is usually constant terms (biases) in the sum as well, using
our notation we have included them by defining x0 = 1 and letting θ0 j represent the biases.

The activation function is chosen when building the network and may be more or less
arbitrary. There are two main constraints; it must be non-linear, at least for the hidden
layers, and it must be differentiable. In Figure 2.2 you can see three common activation
functions. The first is the logistic sigmoid which is commonly used for classification, the
second is called the rectified linear units (ReLU) [31] which has proven useful as a way to
deal with vanishing gradients, and the third one is called leaky ReLU which extends the
ReLU to have non-zero output for negative inputs.

The weights determine how the network behaves and to give them reasonable values a
training procedure is usually applied. We will discuss this more in Section 2.3.1.

When the node output is propagated to other nodes they will use it as input to compute
their own result and so on. To make this useful you define some nodes as inputs to the
network and some nodes as outputs; by feeding in a set of inputs you will eventually get a
set of outputs after propagating it through the network.

During the time between 1943 and 2018 there have been several periods were the in-
terest in neural networks has peeked. In 2012 the paper on AlexNet [21] was published
which marked the start of the current boom. During all this time many new algorithms
have been invented and the computer hardware has improved significantly, making the use
of neural networks feasible. Since our goal is to use neural networks as a machine learning
tool the following sections will focus on that.

2.2 Neural network types
There are a multitude of different types of neural networks that you can use depending on
what type of problem you are trying to solve. We have selected a small subset of these
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2.2 Neural network types

during our thesis project and the following sections aim at explaining what they are and
how they work.

When we talk about different types of networks what we really mean is networks with
different structures and interpretations. In most cases the basic building blocks are still the
same as we discussed in Section 2.1.

2.2.1 Multi-layer Perceptron
One of the most basic types of neural networks is the Multi-layer Perceptron (MLP) [24].
In MLPs all nodes are split into layers of varying size and every node in each layer is
connected to every node in the next layer; this is a dense network structure. An example
of this type of network can be seen in Figure 2.1. When evaluated the input is fed into the
first layer whereafter the result is propagated layer by layer until the end is reached.

TheMLP is a simple type of feed-forward neural network. There are a lot of specialized
types of networks with other structures (see the succeeding sections). This basic structure
is still commonly used, both by itself and in conjunction with other techniques.

2.2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are also feed-forward networks like the MLPs but
designed in a different way. They assume that the data is some sort of signal, like an image
(in 2D) or a sensor reading over time (in 1D), thus containing local structures that can be
detected. The overarching idea is to use many layers, each containing filters, which will
gradually build a more abstract understanding of the input [22]. For example, given an
input image and the task to detect a car the network will detect simple shapes in the first
layer, like edges, while the succeeding layers use the edges to detect more complex shapes,
like rectangles or circles. The complexity of shapes gradually increases through the layers
until a single filter could principally become a car detector.

In order to detect features in each layer convolution filters are used. The idea is to define
a small matrix with scalars and sweep it over the input, calculating the scalar product at
each position. Whenever the input contains a feature that corresponds to what the filter
detects its output will have a large value at that position. To make this more powerful you
define multiple filters for each layer, thus generating a series of feature maps that can be
used as the input for the next layer.

The filter sweep allows for local structures to appear anywhere in the input signal and
still being detected by the same filter. For instance, consider the problem were the input
is an image that contains a dog and we would like to determine where it is located. A
filter in a CNN can detect the dog anywhere since it is swept over the whole input signal.
By contrast, if you instead used an MLP to perform the same task you would essentially
need one node for each image position to indicate whether or not it contains a dog. This
causes the knowledge of what a dog is to be duplicated across the weights of all nodes. In
practice this means that you would need a lot more training data, with dogs in all possible
positions, or the accuracy of the model might suffer.

In order for the CNN to get a high level understanding of the input many layers of
convolutions may be needed. For fully connected networks a large number of layers could
become a problem since you get a huge number of weights between each pair of layers,
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2. Background

Figure 2.3: An example of a CNN architecture. Note its structure
with several convolution-pooling pairs followed by dense layers.
The figure was made by Long [26].

Input OutputHidden

Figure 2.4: A simple RNN with a single hidden node. The output
depends on both the input and on the previous state of the hidden
node.

however thanks to the CNN structure with the filters the model has much fewer weights.
The reason for this is that each filter uses the same weights for the whole input space which
results in a lot of weight sharing.

CNNs are usually split into two different types of layers called Convolutional layers and
Maxpooling layers. Both use the filter-structure we have described above but in different
ways. See Figure 2.3 for an illustration of how a CNN network might be constructed using
these layers. Also note that the figure contains fully connected layers at the end, this is
commonly added to compose all the features that the CNN has derived.

The Convolutional layers have a set of filters with unique weights, as we discussed
above, but also includes activation functions that are computed after summing the results
of the filter application.

The Maxpooling layers, on the other hand, consist of only a single filter and uses no
weights at all. Instead it finds the maximum value in the input each time it is applied.
Usually maxpooling layers have a stride set to the size of the filter which means that every
input will only be processed once. Maxpooling is used to strongly reduce the size of the
data, however information is also lost, particularly the location of features. If the task is to
classify images maxpooling can be a good way to reduce the complexity, however if the
task is to locate objects in images it may instead ruin the precision.

2.2.3 Recurrent Neural Networks
Recurrent Neural Networks (RNN) are a more general type of neural networks than the
feed-forward networks we have discussed previously. The RNNs allow for feed-back con-
nections as well as feed-forward connections, i.e. there may be circular dependencies
between nodes in the network. See Figure 2.4 for a simple example.

This type of network is often used when the input is a sequence of data. Since the
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2.3 Training neural networks

output of the hidden node depends both on the input and on its previous state it can be
viewed as a simple memory. The network is updated in discrete time steps, each step you
introduce the next input from the sequence and calculate a new hidden state [22]. It is easy
to realize that this procedure can be performed for sequences of arbitrary length which is
one of the big advantages that RNNs have over feed-forward networks.

There are many different types of RNNs that each have their advantages and disadvan-
tages. In our thesis we have focused on using the LSTM structure.

Long Short Term Memory
The Long Short Term Memory (LSTM) is not a type of RNN but rather an improvement
to existing network structures. The simple RNNmodel in Figure 2.4 has well documented
problems that makes it very hard to train for long input sequences when it uses the logistic
sigmoid or the hyperbolic tangent as its activation function [14][4]. The weight updates
have an exponential dependency on the length of the input sequence which causes them to
either vanish or explode.

Thanks to the structure andmathematical properties of the LSTM the issuewith vanish-
ing gradients can be solved and the likeliness of exploding gradients can be decreased [15].
To use the LSTMyou simply replace the hidden nodes with themuchmore complex LSTM
node, thus this can be done for both simple and complex networks.

Another much more recent approach to solve the same problem is to use Gated Recur-
rent Units (GRU). The GRU was devised by Cho et al. [7] and is based on the same idea as
the LSTM but with the goal of being simpler and easier to implement. The performance of
both these types of units is roughly the same if you compare models with the same amount
of parameters [8].

2.3 Training neural networks
When constructing a neural network model the desired end result is that it should perform
some operation on your data. However, the building blocks of the model itself do not con-
tain any information about your particular task. In order to make it do what you want you
will need to assign its weights to appropriate values. Since neural networks in general are
very complex and non-convex models there exists no closed form solution for the optimal
weights. Instead a learning procedure is applied to derive an approximation of the their
values iteratively.

2.3.1 The backpropagation algorithm
The most common procedure to do this derivation is to use the backpropagation algo-
rithm [22] together with some version of gradient descent. This is done by first defining
a loss function which quantifies how far off the network is from the expected output. By
computing the derivative of the loss function with respect to every single weight in the
model we can determine in which direction we need to change the weight values to mini-
mize the loss.
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2. Background

This procedure might seem very difficult at first but it turns out that it is quite simple.
By exploiting the layered structure of the model it is possible to compute the derivatives
using only the output from the previous layer and the derivatives from the next. To do this
we compute two sets of derivatives for each layer, firstly with respect to the weights and
secondly with respect to the output from the previous layer. When the expressions for the
derivatives have been derived we can just stack them on top of one another to match the
shape of the network we are using. It is even possible to use this approach for RNNs by
unfolding them in time [22].

To use the backpropagation algorithm we first propagate the input through the network
to get the outputs of each layer and to compute the loss. We then compute the derivatives
layer by layer, starting with the last one, backpropagating the loss towards the first layer.
When the derivatives are computed we ask an optimizer to decide how they should be used
to update the weights.

In order for the backpropagation algorithm to work effectively it is important to choose
the correct types of loss function and optimizer. The following sections will discuss this
briefly.

Choice of loss function
Perhaps the most important part of the backpropagation algorithm is the loss function. If
chosen correctly it will cause the model to converge faster and get a better result during
training. How the function is defined depends verymuch on themodel and the problem you
are solving. Commonly the mean squared error is used for regression tasks and the cross
entropy error is used for classification tasks, but in theory it could be defined arbitrarily as
long as it is a good, continuous estimate of the model error.

The mean squared error was the most important loss function in our thesis project, it
is defined as follows:

L(θ) =
1
N

N∑
n=1

(y(n, θ) − t(n))2 (2.2)

where θ are the weights, y(n, θ) is the network output, t(n) is the target value for input
sample n and N is the total amount of samples. Minimizing this type of loss is intuitive
since it penalizes outputs that diverge a lot from the correct values, while still allowing for
some leeway close to the targets.

The cross entropy error for binary classification was also used and is defined as:

L(θ) = −
N∑

n=1

(
t(n) log y(n, θ) + (1 − t(n)) log(1 − y(n, θ))

)
(2.3)

where log(·) is the base 2 logarithm, θ are the weights, y(n, θ) ∈ [0, 1] is the network
output, t(n) ∈ [0, 1] is the target value for input sample n and N is the total amount of
samples. This function heavily penalizes misclassification and is more apt to result in
quick convergence for classification tasks compared to using the mean squared error.

The difference is illustrated by the following example. Let y(0) = 0.95 and t(0) =
0. Now the cross entropy loss is Lcross = 4.32 while the squared loss is Lsquare = 0.9.
Furthermore we can see that Lcross → ∞ as y(0)→ 1, while Lsquare → 1. Clearly the cross
entropy error penalizes the classification errors more than the mean squared error.
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2.3 Training neural networks

Choice of optimizer
After computing the loss and all the gradients of the weights they need to be applied in
some sort of update step. There are manymethods to do this, ranging from simple Stochas-
tic Gradient Descent (SGD), to RMSprop [13], Adam [19] and AdaGrad [10]. The differ-
ent methods experiment with a variety of heuristics to achieve a good convergence speed.
In this thesis we have used the Adam optimizer so this section will focus on that method.

The Adam optimizer tries to combine the benefits of both RMSprop and AdaGrad
while also having small memory requirements. The method tries to estimate the first and
second moments of the gradients and use them to calculate individual, adaptive learning
rates for each weight.

Mathematically the Adam optimizer is defined as follows:

mt = γ1mt−1 + (1 − γ1)OθL(θt−1) (2.4)

vt = γ2vt−1 + (1 − γ2)OθL(θt−1)2 (2.5)

m̂t =
mt

1 + γt
1

(2.6)

v̂t =
vt

1 + γt
2

(2.7)

θt = θt−1 − α
m̂t

√
v̂t + ε

(2.8)

where t is the iteration number, θ are the weights and L(·) is the loss function. Note
that γt

1 denotes exponentiation to the power of t rather than a time index. The equations 2.4
and 2.5, are the estimates of the first and second order moments of the gradients. These
estimates are moving averages that are both controlled by one decay factor each: γ1 and γ2
respectively. The initial values for these estimates are zero which makes them biased. To
counter this equations 2.6 and 2.7 compute bias-corrected estimates. Finally the weight
update is done in 2.8 by combining the bias-corrected estimates. The weight update is
controlled by two additional hyperparameters, ε and α, which serve as protection from
division by zero and the maximum learning rate, respectively.

The learning rate is a scale factor that controls the step size when updating the weights
in a model. In Adam the learning rates are individual which means that each weight will
get its own learning rate assigned. In the equations above the learning rate is computed
using both the bias-corrected estimates as well as the global scale factor α. This causes
the optimizer to target the weight updates towards the weights that are in the biggest need
of an update.

As you can see above, this optimizer contains four hyperparameters that needs to be
assigned. Determining the best values can be tricky, however Kingma and Ba gave some
recommendations in their paper that can serve as a good starting point[19]. Their values
are summarized in Table 2.1.

Adam has emerged as a very popular optimization algorithm in recent years, in part due
to its speed of convergence. However, recently the convergence proof of the method has
been brought to question [35]. Still, the method has strong empirical evidence of working
for many different optimization problems, it is just important to be vigilant when using it.
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2. Background

Table 2.1: The recommended initial values for the hyperparame-
ters of the Adam optimizer.

Parameter Initial value

γ1 0.9
γ2 0.999
ε 10−8

α 0.001

2.3.2 Training procedure
The backpropagation algorithm is not a single stepmethod, it needs to be applied iteratively
to arrive at a good solution. To put it into the context of a larger system we formulate the
following general training procedure:

1. Split input into training and validation sets, T and V

2. Split T into a set batches B

3. Perform training for E epochs

(a) For each batch in B
i. Compute network output and loss
ii. Apply backpropagation

(b) Compute loss for V

4. Evaluate result

Here we assume that we have an input dataset available to use for training.
The first step is very important. In order to get an unbiased measure of the performance

of the model the available training data is split into two disjoint sets: a training set and a
validation set. During training only the training set will be used for backpropagation while
the validation set will be used to measure the performance.

Secondly the training set is split into a set of batches. By applying the backpropagation
algorithm to mini-batches rather than the entire dataset we make the process stochastic
which improves the convergence speed. Since only a small amount of samples is con-
sidered at each update step their gradients will have a much larger effect on the weights
compared to what they would have had if all of the data was used at once. This will cause
the optimization steps to be both bigger and jerkier which leads to quicker convergence
and helps avoid small local minima in the loss surface. However, the batch size must not
be too small or the model risks becoming unstable.

The third step involves the training itself. Like we have stated several times, the training
is an iterative procedure. For how many iterations the training should continue can be
decided in many different ways but the easiest method is to just select a value and use the
evaluation step to see if it was large enough. The iterations are commonly called epochs in
machine learning. A single epoch is equivalent to a single pass through the entire training
set.
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2.3 Training neural networks

Figure 2.5: An illustration of how the training and validation error
behaves over time. The optimal model is marked with a dashed
line.

For each epoch every mini-batch is selected and used to compute the network outputs
and the corresponding loss. This can then be used to apply backpropagation and update
the model weights. Typically the losses you get for each mini-batch are also accumulated
to acquire a total training loss, this can be an important metric when analyzing how well
the training is going. After training on all the batches the model performance is estimated
using the validation set. The resulting loss values can be saved for the evaluation step.

The fourth and final step is to examine the result of the training procedure and decide if
any changes should be made. Typically this is done by plotting the training and validation
losses versus time to see how they behave. This is discussed in more detail in the following
section.

2.3.3 Overfitting and Underfitting
To get the optimal model with the best ability to generalize it is important to know when
to stop training. Generally the performance improves the longer you train until you reach
a certain point. This is illustrated, somewhat idealistically, in Figure 2.5.

The best model is marked with a dashed line and is located at the minimum of the
validation loss. This is the best model since the validation loss is an indicator of how well
the model will generalize to new data. If you stop training before reaching the optimum
your model is underfitting and if you stop after passing it your model is overfitting.

Underfitting is when the model has not become complicated enough to describe the
underlying distribution of the dataset. In this case the model has not yet extracted all useful
information from the training data. It could also be the case that the optimum would have
been even better if the training had been done on a more advanced model to begin with.

Overfitting is when the model becomes too complicated and starts describing the pe-
culiarities of the training data rather than the true underlying distribution. Overfitting is a
common problem for complex machine learning tasks and can be mitigated by choosing a
simpler model or by using regularization (see the next section).
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While real loss curves probably will not look like the example in the figure the same
principle applies: if you train too little (or the model is too simple) you will underfit, if
you train too much (without regularization) you will overfit.

2.3.4 Regularization
Regularization is a group of techniques that try to prevent overfitting by keeping the model
simple. There are three main ways to do this which are outlined below, the last two were
the most relevant ones for our thesis.

The first idea is to simply add some norm of the weights as a term in the loss function,
thereby causing the training to keep the weights small when finding the optimal solution.
There exist many variants of this approach including ridge and lasso regression [47] among
others.

The second idea is to use a technique called Early stopping [34]. It works by aborting
the training when the validation error starts to increase. This could easily be done by
running two training passes, using the first to determine when to stop and the second to
stop at the chosen time. Another way could be to implement a mechanism that saves
every model that achieves a smaller error than previously encountered, then when you
have trained for some time you just keep the last one.

The third idea is to use a technique called Dropout [41]. This works by randomly
removing nodes from parts of the neural network model during training. For each training
sample that is processed by the network a set of nodes is randomly removed from every
layer that uses dropout. The idea behind this is to stop adjacent nodes from becoming too
dependent on each others. When the network models are deployed on real data the dropout
is disabled.

2.3.5 Normalization
Apart from the previously discussed topics there is one more important thing to consider
when training neural networks and that is whether to use normalization. This technique
is very common in machine learning and the reasons behind this are twofold: firstly to
avoid differences in scale between various input features and secondly to help the network
converge faster.

For instance, if a model has two inputs, one in the range [0, 1] and one in the range
[0, 1000] the model will have to adapt to this which might take a long time during training.
When using neural networks this is particularly true since the input weights would need
to iteratively increase until they differ with a factor of 1000 to let both inputs have equal
contributions. This also holds if you have a model were all the variables are contained in
the same interval but the scale is huge. You will still need to train a lot to reduce the input
weights enough to not oversaturate the model.

There are multiple techniques to perform normalization, two of the common ones are
min-max normalization and standard deviation normalization (also known as Z-score nor-
malization) [17]. The latter is the one we focused on during our thesis project.

The standard deviation normalization is computed using the following formula:

datanorm(i) =
data(i) − meandata

stddata
(2.9)
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for each input sample i, where the normalization parameters meandata and stddata are the
mean and standard deviations of the dataset, respectively. It is important to use the same
normalization parameters for both training, validation and when deploying to real data,
otherwise the behavior of the model becomes undefined.
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Chapter 3

Approach

Neural networks are very flexible and are commonly used for problems where a lot of data
has to be analyzed. Being a state-of-the-art approach they are also interesting for Axis to
explore, which was a key reason why we chose to use them over more traditional machine
learning techniques or simpler algorithms.

Constructing neural networks for vehicle recognition and vehicle counting involves
several steps which are documented in this chapter. There are two major parts to creating
a powerful network: designing it and training it. But before we can do either of those parts
we need to have a clear idea of what the network is meant to do.

We want our networks to count vehicles passing through a scene and we want them to
do so by looking at the metadata we can extract rather than the video streams themselves.
In order to create such networks we have to consider what data to train on and how to get
hold of it.

To get realistic training data we recorded videos from three cameras at two different
locations, presented in Section 3.1. From these videos we extract metadata to train the
network on. In Section 3.2 we introduce the various metadata we have looked at, what
they are and how they relate to detecting vehicles.

Before the metadata can be used to train the network it must be properly annotated so
that we know if there is a vehicle or not in the data we show the network. This is discussed
in Section 3.3 were we consider data annotation and how it can be automated. Finally,
Section 3.4 details the construction of our neural networks and how the design differs for
each type of metadata. Here we also explain our training process and how we evaluated
the networks. This is followed by Section 3.5 where we discuss the process of porting the
network models so that they can be deployed on cameras. The complete system can be
seen in Figure 3.1 which shows how the various parts relate to each other.
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Figure 3.1: An overview of the system as a whole and how its
pieces connect to each other. Metadata and annotations are pro-
duced from the videos and are then combined to train neural net-
works. This results in a model that can be deployed on real data,
giving a final vehicle count. The dotted regions indicate subsys-
tems described in the various subsections.

3.1 Data collection
Initially we had intended to train the networks on three different scenes in order to cover a
variety of cases. This turned out to be difficult given that the laws and regulations on where
and how recordings are allowed to be made are very strict. In the end we had to settle for
three cameras in two scenes. The first camera filmed a moderately trafficked road, seen
from a distance with a slightly elevated perspective, and the other two filmed the gates
to an indoor parking garage, viewed from the inside. Figure 3.2 through 3.4 show these
scenes.

We added black privacy masks to the road scene when recording in order to avoid film-
ing various parking areas. We feared that the large number of stationary cars would ruin
our observations if they were detected as false positives. Adding them to the annotations
would ruin the network training since we only want to detect moving vehicles. Ideally the
camera should be set up in such a way that this step would not be necessary or so that the
undesired detections could easily be pruned away (more on this in Section 3.3.4).

The recordings were done using Axis’s cameras. We recorded the videos in clips of
15 minutes. Seeing how we might have to record several days worth of footage we felt this
struck a good balance between having continuous videos while still being small enough
chunks that we could easily pick out and work with them individually.

We recorded around 2000 videos from the road scene which covered various weather
conditions, such as snow, rain and fog, and different times of day. From these videos we
would later select a smaller subset to use since there were many more than we needed (see
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Figure 3.2: An image taken from the road scene. Parking areas
with stationary cars have been masked out.

Figure 3.3: An image taken from the first garage scene.

Figure 3.4: An image taken from the second garage scene.
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Section 3.4.2). Certain scene conditions were also more prevalent than others, making the
dataset biased towards them, which could have a negative impact on performance. From
the two garage scenes we recorded 1000 and 1500 videos respectively. Because we could
only access one garage camera at a time these numbers differ slightly. Furthermore, it is
worth noting that an average road video contains around a hundred vehicles, including a
few buses and trucks, while a garage video average at only a single car.

3.2 Feature selection
Metadata is used to describe information about the video rather than its content. Thanks
to the dynamic compression algorithms that the cameras used many of these metrics vary
between frames in the video depending onwhat currently is in the scene. Before we discuss
the metadata we used we will briefly explain the basics of the H.264 compression standard
(also known as MPEG-4 AVC) [12] which has been used for all our recordings. We will
then continue to the various metrics we considered, such as bitrate and QP-values, and
describe them in detail.

3.2.1 H.264 Compression
Raw, uncompressed video takes a lot of space, even more so if it is recorded in both
high resolution and high frame rate. For example, recording a video with a resolution
of 1920x1080 pixels (HD) in 30 frames per second and using 8 bits per color channel per
pixel gives approximately a gigabit (109 bits) of data per second. In order to reduce the
amount of data to a manageable quantity (especially if that data is also streamed over a
network) different compression algorithms are used.

H.264 is one of the most common video coding standards thanks to its high compres-
sion performance and versatility [11]. It was created in a collaboration between ITU-T (in-
ternational Telecommunication Union) and ISO/IEC (International Organisation for Stan-
dardisation / International Electrotechnical Commission) to be efficient in a wide range of
applications [12] [40] [48]. The standard defines how the compressed form of the video
data should look and the algorithms used to decode it. Only the decoding algorithms are
specified in the H.264 standard, the encoding algorithms are left for the implementor to
decide on. With a good implementation of the encoder it is possible to reduce the amount
of data by a factor of 100 depending on the video, reducing the load in the example above
to just 10 megabit (107 bits) per second.

The encoding algorithm
While there may be no specification for the H.264 encoding algorithm there is an expected
procedure, which is the decoding done backwards. H.264 encoding yields a lossy com-
pression. For each frame it starts by dividing the frame into macroblocks, small groups
of pixels, for which it then makes so called predictions. These predictions are done by
either comparing the blocks to other blocks within the frame (called intra prediction) or
to blocks in previously encoded frames using motion vectors to represent temporal depen-
dencies (inter prediction). The idea is to "predict" the current image using as little new
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information as possible.
By subtracting the prediction from the original image a residual is created. Each mac-

roblock in the residual is transformed to a set of quantized coefficients to reduce their size.
A set of quantization parameters (QP), is used to regulate how aggressive the quantization
should be. A large QP value results in less detail as more of the coefficients are set to zero.
Conversely, a small QP will keep more information. The final step of the compression is to
combine the predictions with the quantized transform coefficients and encode them, using
variable length coding or arithmetic coding.

Because there are many ways to create the encoder, existing encoders vary in their
performance and can often be customized to better suit specific needs. Deciding which
blocks are best to create a prediction from is by itself a difficult problem that can be solved
with varying success, especially when more complex techniques are introduced such as
varying frame types. As a result, a trade off has to be made between encoding speed,
quality and complexity.

Frame types
Many compression formats, including H.264, use a concept called frame types, or pic-
ture types. There are three common types of video frames: I-frames, P-frames and B-
frames [50]. These frame types define if the video frame depends on other frames in order
to be decoded. I-frames use intra prediction only and can therefore be decoded directly
while P-frames depend on one or several previous frames. B-frames are bi-directional and
may have inter prediction dependencies to both earlier and later frames.

Because P- and B-frames can rely on other frames for parts of the video that are un-
changed they can be significantly cheaper to encode in terms of bit count compared to
I-frames, however due to the many options available when choosing an earlier frame the
encoding process is usually slower. Both P- and B-frames commonly point back to the
previous frame, as seen in Figure 3.5, because there are likely fewer differences there than
in earlier frames. This is especially true if there is a lot of motion in the video, which usu-
ally increases the number of bits required to encode it as the similarities between frames
decrease. For the algorithm to work there must still be at least some I-frames or the video
would be impossible to decode; without them there would be no anchor point for the other
frames to refer to.

There is also the issue of memory usage: with many frames to sample from more
frames must be stored in memory while encoding and decoding. In the videos we recorded
and used in this thesis most frames are P-frames but I-frames appear once every two sec-
onds.

Including both I- and P-frames has an interesting effect on the metadata where some
frames suddenly differ from the rest because they are I-frames and are encoded differently.
This will be especially prominent when looking at the bitrate (later in Section 3.2.2) where
special care must be taken to avoid these frames becoming outliers.

Zipstream
Axis Zipstream [2] is a specialized H.264 encoder that improves the video compression
further. It has three main areas of focus: finding regions of interest (ROI), dynamically
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I P P P P I P

Figure 3.5: An example of a video sequence with frames encoded
using inter prediction. P-frames are referring to the previous frame
continuously until a new I-frame breaks the pattern.

changing the frequency of I-frames and reducing the frame rate of static scenes. Of these
techniques the ROI is the most significant for our work as it means that foreground objects
and areas with motion will have a lowered QP-value while the static background remains
aggressively compressed at a higher value. The dynamic frame rate and I-frame frequen-
cies were kept turned off. When we started recording we were unsure of what effect they
would have on the results and therefore we decided to not introduce additional parameters.
There is a possibility that having a lower frame rate when there is no movement could help
reduce the noise in the data which might help but would not necessarily improve the re-
sults. It would, however, require additional preprocessing of the data before we could use
it, making it harder for us to work with the videos. For example, with varying frame rate
we could no longer estimate a frame count from how long a video has played and would
have to account for that when writing our tools for manual annotation.

3.2.2 Bitrate

The bitrate of the compressed video is simply the rate at which data is transferred, mea-
sured in bits per second or a similar unit. A heavily compressed video frame will require
fewer bits to be sent which lowers the bitrate while a feebly compressed frame results in a
higher bitrate.

By using ffprobe, a tool provided by FFmpeg [1] we could extract the size in bytes
of each frame in the recorded video. For our purposes we define this as the bitrate, that
is the rate of bytes per frame. We also extracted the timestamps and frame types for each
data point which we needed for preprocessing of the data. Figure 3.6 shows an example
of bitrate over time. The large, periodical spikes in bitrate correspond to I-frames where
significantly more data is being sent. These spikes would be a problem for a neural network
as they are extremely large outliers compared to the values of the P-frames. When the
values are normalized the interesting variations found in the P-frames would be practically
invisible and the networks would most likely have a harder time following them.

In order to deal with this we preprocessed the recorded bitrate to smooth out the spikes.
We used the frame types we had extracted from ffprobe and replaced all I-frames with
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Figure 3.6: An example of bitrate where the I-frames produce
massive spikes.

an average of the preceding and succeeding frames through the following equation:

bi =


bi+1, i = 1
bi−1, i = N
bi−1+bi+1

2 , otherwise
(3.1)

where bi is the bitrate of the ith frame out of N frames. The result of this smoothing can
be seen in Figure 3.7.

3.2.3 QP-values
As described in Section 3.2.1, QP-values are the rate of compression for blocks of pixels
within the image (16x16 pixels in our case). Normally these quantization values are rel-
atively large but they are lowered to enhance details. Thanks to the H.264 encoder areas
with lots of changes, a moving car for instance, are given a low QP while the static back-
ground is kept at high values. Figure 3.8 shows an example scene where blocks with low
QP form the silhouette of moving vehicles.

To further reduce the bitrate only QP-values that have changed between frames are ac-
tually sent. Thismeanswe lackQP-values formost blocks but given that these blocks likely
were not interesting (or theywould have been encodedwith a lowQP and not skipped in the
first place) we decided to ignore the missing blocks and replace them with a maximized
QP-value. This seemed to be a good approximation as we could not spot any incorrect
mappings when comparing a video converted to QP-blocks with the original video.

We used the reference implementation of the H.264 decoder [44] to extract the QP-
values from our recorded video clips. We modified it slightly to be able to go through
each frame of the videos and write the frame’s QP matrix directly to a file on a format we
could later read. It was not possible to extract QP-values from every video since some of
them had frames missing due to network latency and the use of the UDP-protocol. This
meant that we lost up to 10% of data for QP compared to bitrate. Because of how many
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Figure 3.7: With I-frames removed it gets a lot clearer. Now the
spikes come from vehicles passing through the scene.

Figure 3.8: A frame from the road scene and its corresponding
QP-values. The QPs go from bright (low) to dark (high). The
bright blobs represent the two cars while the darker dots are noise.
Note that some temporal and gaussian smoothing has been applied
to the QP-values to make the image more readable.

videos we had, this was not a big issue but it caused our QP network to have slightly fewer
videos in its evaluation set than the bitrate network had.

3.2.4 Motion vectors
During encoding when the predictions are made for a new frame, each macroblock is com-
pared to blocks in the earlier frames to find the one that is themost similar. Themacroblock
is then assigned a motion vector that points to that block. The vector is two-dimensional
and simply indicates the relative location between the two blocks. By extracting these vec-
tors we would get data similar to the QP-values but instead of just a level of compression
we would see both how much the block has moved and in which direction.

These values could potentially be very powerful features but we decided not to use
them in our research. The reason for this is twofold. Firstly, being an internal part of the
encoding algorithm we thought the motion vectors would be harder for us to extract when
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running the network models on the camera compared to the bitrate and QP-values. Sec-
ondly, having two-dimensional values as input would require a larger network compared
to using QP-values. Because we did not yet know what limitations we were working with
we decided to focus on the QP-values instead. In Section 4.2.8 we will discuss how using
motion vectors could change our results.

3.2.5 Signal to noise
The signal to noise ratio (SNR) can be extracted per frame and gives an indication of the
noise level of the scene. Noise is introduced as the light levels decrease which makes the
SNR away to estimate the time of day. While very limited as information source on its own
it is possible that combining SNR with another input, such as bitrate which varies greatly
depending on the time of day, would help the network balance changes to the average
amplitude of bitrate, thus making it more robust. Because of time constraints this feature
was never implemented into the networks and remains as a theoretical possibility.

3.3 Data annotation
In order to train our own neural networks we needed data to train on. As we saw in Sec-
tion 3.1 we collected a lot of video material from which we extracted both bitrate and
QP-values. However all this data is useless unless it is annotated.

The point of the annotation is to mark where in the video sequences all vehicles are
located, both in time (which frames) and in space (where in the frame). Together with
labels of what kind of object it is this can then be used to train neural networks. To avoid
having to go through and label thousands of frames manually (which would have been both
tedious and impossible to scale) we decided to use an existing neural network to annotate
the video footage for us.

In the following sections we will describe the network we used to detect vehicles in
the videos, how we modified it to do a count of the vehicles and how we improved it to fit
our scenes and raise its performance.

3.3.1 You Only Look Once
Object detection in images is nothing new and there already exist several powerful neural
networks that can do it. For our project we needed a model that could recognize cars and
preferably also buses and trucks so that our networks could learn the differences between
these vehicles (or at least recognize them all as vehicles). We also needed the network to be
fast enough to be able to annotate all videos in a reasonable timeframe. Most importantly
it had to be accurate. The annotating network’s performance would put an upper bound on
the performance we can achieve with our own networks and if it could not detect vehicles
in the scene it would mean we would be using inaccurate labeling and poorly annotated
data for training.

We decided to use a TensorFlow implementation ofYOLOv2 (YouOnly LookOnce [37])
called Darkflow [46]. YOLO is a state of the art object detector designed to be fast while
still being on par with other powerful networks such as Faster R-CNN [39]. It also comes
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with pre-trained weights for the COCO object detection datataset [23], which conveniently
for us contains labels for cars, buses and trucks among others. While the original imple-
mentation of YOLO is written for Darknet [36] we decided against using it since our co-
workers at Axis have a lot of experience with TensorFlow. Furthermore, it would also be
more consistent with the rest of the project since we were planning to build our own neural
networks using TensorFlow as well (see Section 3.4).

By default YOLO outputs bounding boxes around objects it found in the input image.
However, Darkflow also provides functionality which enables annotation of videos by ex-
tracting their individual frames and sending them to YOLO. Using this system we could
annotate our videos at 33 frames per second on our Nvidia GeForce GTX 1080 Ti graphics
cards. We modified the source code to output the bounding boxes on a JSON format for
videos as the original implementation only provided JSON output for still images.

3.3.2 Counting cars

YOLO can tell where in the image objects are located but every frame of a video is being
considered individually, i.e. there is no continuity. Lacking the notion of tracking, the
system cannot by itself be used to count vehicles; it does not know if two bounding boxes
in subsequent frames depict the same vehicle or not.

This issue applies to our networks as well. As Figure 3.8 showed, a QP-frame is very
similar to a video frame. Thus, if we were to use a network similar to YOLO on the QP data
it too would need some kind of post processing in order to count the vehicles. If we instead
were to use the bitrate the network would return the total amount of appearing vehicles in
a sequence. In the latter case no post processing is necessary for the network, however a
tracker will still be needed to generate the true vehicle counts that are used during training.
To solve this we created a tracker that takes YOLO’s output and converts it into a list of
timestamps, one for when each new vehicle appears. This lets us get a total vehicle count
from YOLO (to train the bitrate networks) and later from the QP-network as well.

There are a few important things we considered when building this tracker. Firstly, be-
cause it will be used during the annotation procedure its performance will have an imme-
diate effect on the performance of our neural networks. Much like YOLO its performance
will put an upper bound on how high accuracy our networks can achieve. With that said,
if the tracker is really good it might compensate for YOLO’s misclassifications, thereby
not causing any further reduction in accuracy and possibly even an increase.

Secondly, we had multiple options for how to implement the tracker. We settled for
writing a simple program that checks if two bounding boxes in subsequent frames are close
enough in Euclidean distance. This solution proved to be very fast and with some tweaking
and fine-tuning (see Section 3.3.4 for details) it ended up being fairly accurate.

Other possible solutions could be to use more machine learning, for example another
neural network that does tracking, or to use existing implementations. Both of these op-
tions were considered too time consuming to try unless our own tracker proved too unre-
liable.
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Table 3.1: The initial set of manually annotated videos for the
road scene. All videos were 15 minutes long and recorded at 30
frames per second. The asterisks mark the videos that were in the
set of most common scenarios.

Location Description Vehicle count

Road* Sunny day 109
Road* Sunny day, snow covered ground 99
Road* Sunny day, dense traffic 203
Road* Clear evening 177
Road Thick fog 179
Road* Clear night 68
Road* Rainy day 79
Road* Rainy day, alternate 100
Road Snowy day 139

3.3.3 Evaluating performance
To get an idea of how accurate YOLO and our tracker were we annotated some videos
manually. Because of the work required to manually place bounding boxes in the videos
we decided to only specify when new vehicles entered the scene. While this is not enough
to estimate the performance of YOLO by itself, it would tell us how well YOLO performed
in combination with our tracker.

In Table 3.1 we present our initial set of videos that were annotated manually and used
for evaluation. More videos were added to these at a later point, including videos from
other scenes to get more accurate measurements when evaluating the networks we built
ourselves. For a complete list, see Appendix A.

It is worth noting that all our initial videos were from the road scene because it took us
some time before we could start recording from the garage. This means that our annotation
and network construction were based primarily on this scene and only modified to perform
better at the garage scenes.

The manual annotation was performed by letting a person watch a video sequence and
press a button to record a timestamp whenever a vehicle entered the scene. We could
then decide on how lenient we would be when mapping them to detections generated by
the tracker. The person then re-watched the videos and added classes to the timestamps
specifying what kind of vehicle it was. We counted only cars, buses and trucks: while
bicycles could have been included as well we noted that they were too small to be reliably
classified by YOLO over the large distances present in the road scene.

There were some inconsistencies as to when a vehicle should be considered inside the
scene. We decided not to count a vehicle unless it was entirely within the camera’s field
of view even though YOLO would still count these half-occluded vehicles on occasion.
We were also unsure how to clearly separate cars from trucks in several cases since their
size and shape could fall under either of the two categories. In the end we decided, sub-
jectively, that larger vans should be considered as trucks and smaller should be cars. If
our manual classifications would turn out to introduce a lot of errors we could ignore the
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Table 3.2: Accuracy of the original YOLO model trained on the
COCO dataset + tracker without modifications, compared to man-
ual annotations. Road scenes only.

Scene Vehicle count True count Matches Precision Recall F1 score

Road, sunny 147 109 87 0.5918 0.7982 0.6797
Road, traffic 272 203 174 0.6397 0.8571 0.7326
Road, night 118 68 30 0.2542 0.4412 0.3226
Road, evening 228 177 167 0.7325 0.9435 0.8247
Road, fog 294 179 109 0.3707 0.6089 0.4608
Road, rain 130 79 54 0.4154 0.6835 0.5167
Road, rain 2 157 100 65 0.4140 0.6500 0.5058
Road, snow 204 139 94 0.4608 0.6763 0.5481
Road, white 159 99 56 0.3522 0.5657 0.4341

Average — — — 0.4701 0.6916 0.5597

classes altogether and ask YOLO to recognize trucks and buses as cars, with the obvious
drawback that our neural networks would no longer be able to tell them apart.

Using the manual annotations we computed the precision and recall of our YOLO +
tracker combination. At this point we also consider a wrongfully labeled vehicle as a miss
(i.e. the vehicle types are significant). The precision and recall metrics are measurements
of accuracy, with precision being the fraction of counted vehicles that were correctly clas-
sified (i.e. matched a real vehicle) and recall being the fraction of real vehicles that were
counted. Formally they are defined as:

precision =
TP

TP + FP
=

matches
vehicles counted

(3.2)

recall =
TP

TP + FN
=

matches
true count

(3.3)

Here TP, FP and FN are true positives, false positives and false negatives respectively.
This means that a low precision corresponds to a large number of false positives while a
low recall is the result of missing several vehicles. The metrics have an inverse relation-
ship such that an increase of recall often reduces precision and vice versa. This is not a
one-to-one relationship but rather a side effect of their definitions. For example, if only a
single one of several passing vehicles was counted the recall would be near zero but pre-
cision would be one. Conversely, if many objects in the scene were incorrectly counted
as vehicles then the recall would be one and precision zero. Ideally, both precision and
recall should be close to one. We have also calculated the harmonic F score (known as the
F1 score). This is a weighted measurement that describes accuracy and is defined using
precision and recall as follows:

F1 = 2 ·
p · r
p + r

(3.4)

The results we got when evaluating the YOLO + tracker combination are presented in
Table 3.2. Evidently the performance was mediocre: although our systemmanaged to spot
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a majority of vehicles, it has a large number of false positives. We also see the performance
go down significantly at night and when weather conditions apply, likely because YOLO
was not trained on those scenarios so it provides worse data for the tracker. We believe
the main reason for the poor results still lies with the tracker. By watching the videos and
comparing the annotated bounding boxes with the vehicles found by the tracker we saw
that many of the false positives came from re-emerging vehicles that were occluded by
obstacles in the scene. The tracker also struggled when multiple vehicles passed near each
other. In order to raise performance we decided to improve the tracker but also to fine-tune
YOLO to focus on vehicles only, hoping that this would raise its detection rate.

3.3.4 Fine-tuning
The initial version of our annotation framework had poor accuracy (see Table 3.2) and we
identified several problems which could be amended. We decided to fine-tune our system
to increase its performance and in the following sections we discuss improvements to both
the YOLO network as well as our tracker.

Specializing YOLO
The version of YOLO that we used was initially trained on the COCO object detection
dataset as we stated earlier. The dataset consists of 80 different classes, ranging from
vehicles to animals, furniture, accessories, etc... By targeting this wide range of object
classes the network needs to store knowledge ofmany different types of shapes. In contrast,
if you would train the same model on fewer categories, say three or four, there will be a
lot fewer features it needs to adapt to, which means that a larger part of the network can
specialize on each class.

Following this line of reasoning we decided to fine-tune the YOLO model by using a
restricted dataset which only contained a few of the original classes. This was done by
loading the pre-trained model with 80 classes and performing additional training on the
restricted dataset. While we could have trained the network from scratch it would take
much longer than we were willing to spend, especially as the original 80 class YOLO
model had already been trained for a week to reach its current state.

In order to get a diverse set of models we decided to fine-tune on both one, three and
four classes, see Table 3.3 for a short summary. For each of these cases we created a dataset
by taking all images from COCO that contained the corresponding classes. The goal was
to create all of these models and then perform comparisons to determine which one gave
the best performance. When fine-tuning we used Darkflow with the Adam optimizer, a
learning rate of 0.00001 and a batch size of eight.

In order to perform fine-tuning successfully we needed to figure out at which point
during training we had found the optimal model. We did this by running a validation
pass after each iteration of fine-tuning. We computed the error on a subsample of the
validation data in the COCO dataset and summarized the result in a few plots. By default
Darkflow does not include any method for model validation so we had to implement one
of our own to get this to work. Figure 3.9 shows how the training and validation errors
behaved over a large number of training steps for the model with four classes — the plots
for the other models looked similar. As you can see the error initially dropped only to
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Table 3.3: The different sets of classes we fine-tuned YOLO on,
including the amount of training images we used for each of these
networks.

# Classes Images

1 Car 8606
3 Car, Truck, Bus 11432
4 Car, Truck, Bus, Bicycle 12667

Figure 3.9: The validation and training errors versus training
steps when fine-tuning the YOLO model on 4 classes. Each step
corresponds to the computation of one batch. A moving average
of size 100 was applied to smooth the curves. Note the increase in
validation error after the initial drop.

start increasing again after a while. Using the information in the graph we arrived at three
different approaches to finding the best model.

The first approach was to just train the model for a long time and keep the last result.
The rationale behind this idea was that even if it has overfit slightly to the training data it
would still have a solid representation of the vehicles. When we watched the annotated
videos that YOLO produced using this model the bounding boxes tended to be smaller and
slightly more stable than with the other models.

The second approach was to stop training at around 10000 steps when the validation
error is at its smallest, using early stopping. Adapting this strategy we should be able to
capture the model before it starts overfitting, however the drawback could be that the result
is less stable since the model might not have been trained enough. When we watched the
resulting videos using this model we observed that the bounding boxes indeed were more
prone to flicker and vary in size compared to the first approach.

The third approach was to train for a long time but only keep the model that got the
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Figure 3.10: The average recall versus precision for models with
different amounts of classes and using different approaches for
model selection. The left graph represents an average over all
weathers and times of day (see Table 3.1), while the right rep-
resents an average of the most common scenarios (entries with as-
terisks in the table). These graphs were generated using the initial
version of the tracker.

smallest validation error (i.e. the lowest point in the graph). Using this approach we
thought we could capture a point in time when the model momentarily performed really
well. This turned out to work poorly in practice however. When we watched the result
it seemed to overfit at least as much as the first approach if not more. This method was
probably incorrect since the validation only considers a sample from the validation set at
each time step, this means that a small error could be due to chance rather than the model
being good.

To determine which of the above approaches was the best one we performed some
manual validation by observing the output YOLO produced. Since the third approach
appeared to perform poorly at best and could be downright incorrect at worst we decided to
focus on the other two. To make a robust comparison we constructed a number of different
combinations of the one, three and four class models with the different approaches. For
each of the models we computed the average recall and precision over all the different
scenarios in Table 3.1. We also made the same computations and averaged over the most
common scenarios for comparison (marked with asterisks in the same table). The results
of this can be seen in Figure 3.10.

The figure is constructed such that the bottom-left contains the worst results and the
top-right contains the optimal values. Determining the best model from these graphs will
be done differently depending on whether a high recall or precision is the most desirable.
We decided to prioritize a balanced trade-off between the two, using the precision to break
ties. Since the output of the model will be used for training neural networks later we
want to keep both the precision and recall high to avoid false positives/negatives as far as
possible.

With that in mind we can analyze the contents of the graph. The original model with 80
classes performs the best, followed by the three and four class models which have approx-
imately the same performance. Lastly we have the single class models which performed
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Figure 3.11: The average recall versus precision for models with
different amounts of classes and using different approaches for
model selection. The left graph represents an average over all
weathers and times of day (see Table 3.1), while the right repre-
sents an average of the most common scenarios (entries with aster-
isks in the table). These graphs were generated using the improved
version of the tracker. Note the different axis limits compared to
the previous figure.

poorly.
Since the single class models only looked for cars while the manual annotations also

contained buses and trucks there is a natural degradation in accuracy for those models.
We can also see that the version that kept the lowest validation error had the worst result
which confirms that this approach did not work.

The reasons the 80 class model outclassed all of our fine-tuned models may be several.
Firstly, the initial version of the tracker was constructed on top of this model which may
have caused overfitting. Secondly, by watching the resulting videos from all our mod-
els it seems that the 80 class model supplies a more stable output than the others which
makes it easier for the tracker to work correctly. The original version of YOLOwas trained
with other values for the hyperparameters, such as a higher batch size, which might have
resulted in a more stable model.

Both the three and four class models performed similarly with the early stop approach
having slightly higher precision and lower recall than the long run approach. These models
also had a higher recall compared to the 80 class model which might be an effect of the
less stable output (e.g. flickering bounding boxes can count as several vehicles).

Even though the above discussion seems to indicate that we should keep the 80 class
model and discard our fine-tuning we must also consider the final result after the tracker
was improved. Figure 3.11 displays the same graphs as before using the improved tracker
(see the next section). This figure shows a completely different result compared to the
previous one. While the single class models are still performing the worst the three and
four class models are now outperforming the 80 class model. In particular the three class
early stopping model seems to be the best one. Consequently it is the model we used
during the rest of the thesis project.
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Figure 3.12: Plots showing how recall and precision for some of
the networks increase as the allowed detection deviation increases.
The key point to take from this graph is how the accuracy always
rises quickly followed by a slower increase as the window grows
wider and more unlikely matches are let through.

Improved tracking
As mentioned earlier we had to decide how many frames a vehicle would be allowed to
deviate from our manual timestamps before we considered it a mismatch. If the window
was set to too small a value the inherent inaccuracies of our measuring approach would
make us lose a lot of otherwise correct matches. Conversely, if we were too lenient we
would potentially match false positives with our manual timestamps, giving us a mislead-
ing boost in precision and recall. By plotting the precision and recall against how many
frames of leniency we used, illustrated in Figure 3.12, we could see that there was a large
increase in accuracy early on from very low levels. From this we decided that an interval
of plus minus two seconds (60 frames) was a reasonable time window, seeing how it en-
capsulates the steep rise of accuracy but little more, and limited ourselves to that. If other
changes to the tracker would speed up the increase in accuracy, or drastically improve it,
we could then lower this threshold and still get good results.

The next step was to enhance the system’s ability to keep track of vehicles. This was
done through many iterations of trial and error where we compared the new precision and
recall on the manually annotated data with previous results to see if we had improved. We
did this by plotting precision and recall for all different YOLO versions we had for each
video, then we compared the graphs by overlapping them and keeping the optimal ones.

To deal with bounding boxes disappearing between frames (either because YOLO fluc-
tuated or because of temporary occlusion) we allowed them to be missing for up to 40
consecutive frames before we flagged them as gone. We added an estimation of veloc-
ity, calculated as the difference in horizontal and vertical position compared to their last

37



3. Approach

known position and then dividing by the time they had traveled. This let us predict their
movement over time if they disappeared. Because the road scene is (almost) limited to
horizontal movement, we decided it was enough to only predict the horizontal velocity as
large vertical movements were more likely to be the result of errors. This also reduced the
risk of confusing bounding boxes of vehicles that passed each others in opposite directions.
To further limit accidental mis-predictions caused by vertical proximity to other vehicles
we changed the range inside which movement was accepted to a rectangle of 100 by 50
pixels (in width and height) rather than our original range of 100 by 100 pixels. Finally we
averaged the velocity predictions using the 40 last occurrences for each bounding box to
smooth out large sudden changes in movement. This helped when the size of the bounding
boxes was varying a lot between frames.

We also tried to remove bounding boxes that were completely wrong. We added re-
quirements that they would have to move a minimum of 100 pixels from their initial posi-
tion and appear in at least five frames throughout their lifetime to be considered real (these
did not have to be consecutive). We experimented with requiring a higher level of confi-
dence from YOLO’s annotation, discarding all bounding boxes with a confidence of less
than 0.63 (the default is 0.6). This turned out to work well for some networks but after we
had implemented more of the constraints mentioned above we found that reverting back
to the default gave better results.

Our last step was to disable classes. By accepting any vehicle class as just a vehicle
we could get a significant boost in both precision and recall because we could avoid mis-
classifications where YOLO knew the position of a vehicle but failed to predict its type.
Here we argued that it was better for us to start with a simpler problem with more accurate
training data and perhaps later add support for classes again if our networks performed
good enough.

Compared to earlier (Table 3.2) the precision has increased drastically across the board
with around 30 percentage points. The recall has been reduced somewhat which is to be
expected given the inverse relationship described earlier. Furthermore, the precision and
recall are now very close to each other, which means that the number of vehicles counted
by the tracker should be fairly accurate because there are about as many false positive as
false negatives in each video. In Table 3.4 we have taken the three-class, early stopping
version of YOLO together with the improved tracker. Here the performance increase is
even larger and both precision and recall lie around the 90% mark.

It would be possible to further tune the tracker to increase its performance, for example
by introducing uncertainty to the model or forbidding sudden changes to the direction
of motion to reduce the risk of bounding boxes getting mixed up. We could also try to
determine when bounding boxes are occluding each others (e.g. a car passing behind a
bus) and treat it as a special case. Despite all options for improvements we chose to stop
here in order to limit the scope of the thesis. The accuracy we got is good enough for our
needs.

Tracking in the garage scenes
Until now the tracker has only been adapted to the road scene with no consideration taken
to other locations. Unfortunately, the improved tracker still performs poorly on videos from
the first garage scene. Studying the videos annotated by YOLO we noticed that YOLO has
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Table 3.4: Accuracy of YOLO, fine tuned on three classes and
stopped early + tracker with all modifications, compared tomanual
annotations. Using the road scene only.

Scene Vehicle count True count Matches Precision Recall F1 score

Road, sunny 108 109 100 0.9259 0.9174 0.9216
Road, traffic 204 203 184 0.9020 0.9064 0.9042
Road, evening 181 177 174 0.9613 0.9831 0.9721
Road, night 69 68 63 0.9130 0.9265 0.9197
Road, fog 201 179 149 0.7413 0.8324 0.7842
Road, rain 86 79 74 0.8605 0.9367 0.8670
Road, rain 2 103 100 95 0.9223 0.9500 0.9359
Road, snow 146 139 135 0.9247 0.9712 0.9474
Road, white 112 99 91 0.8125 0.9192 0.8626

Average — — — 0.8848 0.9270 0.9054

trouble detecting cars viewed from the front or rear. It also lost track of cars if the driver
opened the door to access the gate terminal. Moreover, the garage had several cars passing
outside the gate that YOLO detected but we did not want to count.

By significantly increasing the number of frames we allowed a vehicle to be missing
and returning the tracking range to a 100 by 100 pixel square we could improve tracking
somewhat. The increased leniency meant that we could find the vehicle again when the
driver was done with the terminal and had closed the car door. The increase in vertical
tracking range (100 compared to 50 pixels) compensated for the road no longer being
strictly horizontal. We could ignore the irrelevant passing vehicles by requiring YOLO’s
bounding boxes to have a center coordinate lower than a certain threshold. This has an
effect similar to the black privacy masks in the road scene, with the difference that it is
added after the video is recorded. However, bitrate and qp-values will still be affected by
objects passing in the background which might complicate training.

These changes improved the precision and recall slightly but they were still not near the
levels of the road scene. We attributed most of the poor performance to YOLO’s inability
to track the cars from the camera angle in this scene since it produced too few frames for
the tracker to work with. We lowered YOLO’s confidence threshold from 0.60 to 0.25 in
order to get more detections. By requiring less certainty from YOLO, frames that would
otherwise have been discarded would now be approved but this naturally decreased the
accuracy of the predictions as well. The result was a major boost in both precision and
recall for the tracker. We concluded that the lower quality detections were not an issue
in this scene as the tracker could either use the additional detections or discard them as
incorrect, given the constraints put on it.

Worth noting is that the second garage scene, which showed only a straight lane to the
gate, did not benefit as much from these tweaks to the tracker. We did keep most of the
changes but let YOLO’s confidence threshold stay at its original, higher level. This may
not have been optimal as some vehicles were still hard to detect but we lacked time to
experiment and find the best value.
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3.4 Network construction
Once the data annotation and fine-tuning was done it resulted in a lot of preprocessed
annotated data that could be used by neural networks to perform vehicle counting. The
next step was to construct the networks. However, how the networks should be structured
and how they function depends on what input is used and how the input is interpreted.
Since the bitrate and QP data are of very different formats their models will need to be
constructed in different ways. Moreover, we also implemented the bitrate network using
three unique ways of interpreting the bitrate data, resulting in four networks in total. We
decided to count every type of vehicle as a single class to make the models less complex.

This section starts by detailing our training setup and the common components that
are shared across the different bitrate networks, then we dive into the specifics for all the
networks.

3.4.1 TensorFlow environment
We decided to build our networks using TensorFlow [3] since it is widely known to per-
form well and since Axis has a lot of experience using it. To get a clean environment
for TensorFlow to run in we created a Docker [16] image using nvidia-docker [32]. Apart
from TensorFlow the docker environment also contained the Jupyter notebook system [18]
which we used as our primary IDE when building the networks. The networks themselves
were trained using a computer with the following specifications:

• Intel®CoreTM i7-7700K CPU @ 4.20GHz

• 16 GB RAM

• Nvidia GeForce GTX 1080 Ti GPU/Nvidia GeForce GTX Titan X GPU

3.4.2 Dataset selection
Because we recorded the videos during the course of the thesis project we only had very
limited data early on when creating our networks. This, combined with the wish to iterate
quickly, led us to use smaller datasets when iterating on and evaluating the designs of our
networks. These datasets varied in size but ranged between 30 to 300 videos, with the
latter being most common. They often included both day and night scenes and cloudy but
clear weather, creating a baseline to work from.

When evaluating the final network designs we used several more videos. Table 3.5
shows the exact count for the different scenes and the distribution of time and weather
between them. When deciding on which videos to include we wanted a natural mix of
possible scenarios. We focused on clear weather and daytime videos as those were the
most likely videos to contain many vehicles. We then made sure to include special weather
conditions at least once, picking videos from days with rain, fog and snow. For the garage
scenes weather had a very small effect, which was fortunate for us as we had less of those
videos to choose from.
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Table 3.5: The final datasets we trained the networks on. The
weather distributions are somewhat approximative, especially for
the garage scenes where it was harder to discern. In general the
garage scenes have slightly more snow and sun and less rain and
fog.

Dataset Video count

Road scene 560
Garage 1 571
Garage 2 579

Daytime distribution (Day / Night)

Road scene 300 / 260
Garage 1 255 / 316
Garage 2 395 / 184

Weather distribution (Sun / Overcast / Rain / Snow / Fog)

Road scene 25 / 395 / 60 / 50 / 30
Garage 1 Similar
Garage 2 Similar

3.4.3 Bitrate training setup
Even though the network models differ a lot in their implementation there are several com-
ponents and techniques that were the same for most of them. Our training pipeline, includ-
ing input pruning, parsing, preprocessing and normalization; our choice of loss function
and optimizer; and our use of regularization were the same across all networks. The only
major exception to this setup is the QP network which instead is detailed in Section 3.4.8.

Pruning and parsing
Before loading all the data we decided to apply some pruning in order to remove bad
entries. Some of the videos ended prematurely or missed large chunks of bitrate statistics
which could cause problems during training. All videos that were missing more than ten
seconds of footage or bitrate statistics were pruned during this procedure.

After the pruning was done the remaining data was loaded and parsed in preparation
for the next steps. The data contained both the bitrate statistics and the corresponding
annotations that were generated by YOLO and our tracker (see Section 3.3).

Preprocessing
The first step in the preprocessing was to remove all the I-frames, like we discussed in
Section 3.2.2. Since the I-frames are infrequent and their magnitude is much larger than
the P-frames they are simply a huge source of noise and outliers.

The second step was to handle fluctuations in the recording speed. Even though the
videos we used as input were recorded at a fixed framerate there were still fluctuations
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Time

Bitrate

Figure 3.13: An illustration of our bitrate post processing. The
circles represent the uneven input and the crosses represent our
evenly interpolated output. Note how the last cross is handled.

during the recording due to network delays. This causes both the amount of frames in
each video as well as their distribution to differ slightly. To make the input to our networks
deterministic and predictable we ideally want a fixed amount of equally spaced frames for
each input.

We solved this problem by placing the input on a time line and interpolating between
adjacent points to get an approximation of the true input at a fixed frame rate. See Fig-
ure 3.13 for an illustration. After applying this preprocessing we always get the same
amount of frames from each video and they will always be equally spaced.

Theoretically, removing the fluctuations is important to get optimal performance out
of our networks because it removes the "noise" a varied input spacing would cause (a slope
could be seen as either steep or gentle depending on the input width). If we were to train
them on input with some distribution of frames but the input it receives when running live
has another distribution (due to other network delays for instance) its output could become
undefined. The problemwould become even worse if dynamic frame rate is used since that
could make the frame distribution very uneven. Interpolating also makes sure the videos
have an amount of bitrate samples that is divisible by the network input size. Otherwise
we might have to throw away the end if a few frames are missing.

The final preprocessing step was to randomize the order of the input data. This step
was important to give every batch a more even distribution of different types of input.
Without randomization we risk "temporal overfitting" because the videos would be in the
order they were recorded. This happens since every contiguous chunk of videos would
have approximately the same light conditions, weather and traffic intensity. For the same
reason randomization is also important when using cross-validation (see Section 3.4.4).

Normalization
Normalization is important tomake themodel behave as predictably as possible, especially
when the scale differs a lot among the input. Our dataset consists of bitrate curves which,
depending on the weather or time of day, could stay both close to zero or in the range
of thousands, see Table 3.6 for some examples. The curve can also change quickly when
there is movement in the scene. Both themagnitude and the fluctuations would have caused
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Table 3.6: Examples of typical ranges of bitrate values for differ-
ent conditions (for the road scene).

Weather Typical bitrate range

Sun 50 - 4000
Cloudy 100 - 6000
Rain 300 - 14 000
Fog 30 - 2000
Snow 1000 - 70 000
Night 50 - 3000

problems for our networks without normalization.
When implementing the normalizationwe decided to try two different approaches. The

first approach normalized over all the training data and stored the normalization parameters
for later use on the test data or when running live. The second approach normalized each
input sample by itself without reusing the normalization parameters, this meant that no
values were stored for later use. The normalization procedure itself was a simple standard
deviation normalization as defined in Section 2.3.5 and it was applied according to the two
approaches above.

Loss function and optimizer
Apart from the preprocessing of the input the main part our system is the network models.
While the network structures differed between our models the loss function and optimizer
were kept the same.

Since the bitratemodels are all regressionmodels with continuous output we decided to
use themean squared error as our loss function. We also decided to use theAdamoptimizer
since it is known to work well for many problems. The hyperparameters of Adam were
left to their recommended default values during training, except for the learning rate which
varied depending on the model. We chose learning rates large enough that the networks
converged quickly but small enough that the convergence is stable. An example can be
seen in Figure 3.14 where the smaller learning rate improves the network performance.

Regularization
Like we have mentioned before the validation error starts to increase as a result of overfit-
ting when you train for too long. To avoid this we decided to use a combination of early
stopping and dropout rather than weight penalties. In order to do early stopping effectively
we followed the following procedure:

1. Build model/pipeline

2. Train for many epochs (≥ 500)

3. Inspect loss curves and do early stopping
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Figure 3.14: The convergence of a network with a large and small
learning rate. The smaller rate makes the graph much more stable
and improves convergence.

We applied this procedure for each configuration of preprocessing, network setup and hy-
per parameters that we used. Since we did early stopping independently for every network
setup they ended up running for a varying number of epochs. The intermediary results we
obtained from Step 2 are omitted from the report, instead we only present the final results
we got using early stopping.

During the procedure we used dropout with a probability of 40% for each node in every
dense layer. We never used dropout on the output nodes. In their paper Srivastava et al.
recommended a probability of 50% which achieves maximum regularization [41] but we
decided to stay slightly beneath that since our models only overfit a little.

3.4.4 Performance evaluation
There are many ways to construct a network model and in order to select the best one
you need some measure of performance. Previously when fine-tuning YOLO we used
the validation error for this, however using the result of a single training run for each
network you are comparing is not really sufficient to get a reliable result. It becomes hard
to determine which model works the best, especially if the difference in performance is
small.

In order to make the comparison of our own models more accurate we applied k-fold
cross-validation [20] to get a better estimate of the performance. The idea behind cross-
validation is to split the dataset into k parts and then train k different networks using every
subset of k − 1 parts for training and the remaining part for validation, see Figure 3.15.
This results in k networks that were all trained on a slightly different dataset and were all
validated on different data. Finally you take the average of all these networks to get an
estimate of the performance.

Typical values of k are 5 or 10, however which value you use depends on how much
data you have and how long it takes to train the models. We decided to set k = 5 to make
training faster, after all we are constructing many different models. We used the cross-
validation approach when constructing each of the networks in the upcoming sections,
starting out with an initial version of the models and then iteratively changing them using
the validation results to compare the performance.
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Figure 3.15: An illustration of the data partitioning when using
cross validation. Every row corresponds to the dataset for a single
network: the white parts are training data and the highlighted parts
are validation data.

This method was also valuable when making the final comparison between all our
different network models. By using the models that were created during training and eval-
uating them on our manually annotated test data (see Section 3.3) we could get accurate
estimates of their performance. Both means and standard deviations were computed for
all the models using the networks from the cross-validation folds.

Themain drawback of using cross-validation is that it can be very slow to train multiple
models. For instance, when fine-tuning YOLO it could take several days to train a single
model which made it infeasible for us to perform cross-validation. It becomes a trade-off
between accuracy and time. All our models used cross-validation except for the QP-model.

3.4.5 Bitrate CNN - 1 Dimensional
The bitrate is a time series of some length, consisting of measurements. By splitting it
into segments of a fixed size you can view it as a sequence of short signals, each of which
might be interpreted by a CNN. In this case the task for the network would be to count the
amount of vehicles that appear for the first time in each segment. You could then let it run
for all segments of bitrate that you have and sum the result to get a vehicle count.

Selecting a length of the segments is a trade-off between several factors. Longer se-
quences contain more information, however when running live it also means that you will
need to wait longer between each output. Moreover, we should select a length that every
video is easily divided into. In the end we decided to use segments of 30 seconds which
we thought was a good trade-off.

We constructed a simple CNN model as an initial guess for what a good model could
look like. The setup we used corresponds to the one described in Section 3.4.3, with the
only exception being an added pass that performs the segmentation of the input before the
normalization. We decided to set the learning rate to 0.0001 for this network model since
it gave us a good trade-off in convergence speed and performance.

Structure
To create our initial model we studied some examples of bitrate curves to identify its basic
features. The three main features were uphills, downhills and plateaus. If you disregard
differences in slope steepness you would need at least three filters and one convolution
layer in the model to recognize these features. To make the network more robust to tilting
we added some more filters to this layer. By adding a second convolution layer it becomes
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Table 3.7: The network specifications for the bitrate 1D CNN:
the initial version (left) and the final version (right). All the con-
volutions and max pooling were computed in 1D. The activation
functions were set to leaky ReLU for the convolution and dense
layers, and to linear for the output layer.

Node Details

Input 30s per sample
Convolution 8 filters, 5x1 kernel size
Maxpooling 2x1 pool size
Convolution 5 filters, 3x1 kernel size
Maxpooling 2x1 pool size
Dense 10 nodes
Output 1 per sample

Parameters 11 444 weights
FLOPS 22 847

Node Details

Input 30s per sample
Convolution 8 filters, 5x1 kernel size
Maxpooling 2x1 pool size
Convolution 8 filters, 5x1 kernel size
Maxpooling 4x1 pool size
Convolution 8 filters, 5x1 kernel size
Maxpooling 4x1 pool size
Dense 10 nodes
Output 1 per sample

Parameters 2965 weights
FLOPS 5868

possible for the network to compound the basic features into a notion of hills. This layer
should also include several filters to handle multiple hill shapes. Finally we added a dense
layer of nodes which served to combine the feature maps from the CNN to accumulate an
output for the vehicle count. An overview of this model can be seen to the left in Table 3.7.

We used the leaky ReLU as the activation function for both the convolution layers and
the dense layer. The main reason for this was to speed up the training by avoiding problems
with vanishing gradients. The ReLU is also cheaper to compute compared to alternatives
like the logistic sigmoid, which is ideal since we want to run the model on the cameras.
We decided to use the leaky version of the ReLU to make sure the nodes always have an
output, otherwise they may become "dead" and always output zero.Lastly, the output node
used a linear activation function since we are just interested in accumulating the dense
layer into a single output.

The initial model performed quite well on our tests so the focus when improving the
network was mostly geared towards reducing the number of weights without loosing per-
formance. This was done by trial and error, through trial and error, by increasing the max
pooling and changing the structure a little bit. The final structure of this network is out-
lined to the right in Table 3.7. Note that both the tables include the number of weights and
float operations (FLOPS) that the models use. The FLOPS is the amount of 32bit float
operations the processor needs to perform to evaluate the network.

Training
We first trained the model using the initial guess and then iteratively made changes and
compared them using cross-validation. In the end we arrived at the final design.

When we had found the final network structure we trained it using both the normaliza-
tion approaches we discussed earlier as well as varying segment overlap. Segment overlap
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Figure 3.16: An illustration of segment overlap. To the left is a
video with two segments and no overlap, and to the right is the
same video with 10% overlap per segment. Note that the last 5%
of the video becomes unused since it is too small to fit another
segment.

means that instead of splitting the video into disjoint segments we let them overlap by
some percentage. The rationale behind this was to try to catch vehicles that appeared at
the start or end of the videos better. For instance, if we miss a car in the end of a segment
we would likely catch it in the beginning of the next. When doing this we have to scale the
final vehicle count to account for vehicles that are being counted twice. The scale factor
is calculated as:

Scale = Nno overlap/Noverlap (3.5)

where Noverlap and Nno overlap are the amount of segments a video results in with and without
overlap, respectively. The reason we use this scaling rather than the more intuitive:

Scale = 1 − overlap percent (3.6)

is that the overlap will cause parts of the video to go unused. For instance, using 10%
overlap in a video of two segments we would still have two segments, but lose the last
5% of the video since it is too small to turn into a third segment (see Figure 3.16 for an
illustration). The two segments have an overlap of 10% of their lengths which corresponds
to 5% of the entire video since it contains two segments. We still process the same amount
of video, although with overlap, which means that our scale should have a value of one.
In contrast, the more intuitive method would have given us a scale of 0.9.

Note that this technique only improves the result if there are enough vehicles at the
start and end of the videos to make the average result better. For instance, consider a video
with 10 segments and 30% of overlap, this would result in Noverlap = 13 and a scale of 0.77.
Now, if every vehicle is in the middle of the segments and none are in the beginnings or
ends we will never count any vehicles twice since they never appear in the overlapping
sections. After scaling this results in an output that is 23% too low. In contrast, if instead
every vehicle is in the beginnings and ends of the segments we would count all of them
twice but only scale down the result by 23%. The output only becomes more accurate
when the vehicles are evenly distributed over the segments so that we can catch the vehi-
cles on the edges. We think that assuming a uniform distribution of vehicles is a realistic
approximation given the huge amount of videos we are using.

By trial and error we concluded that using a segment overlap at around 10% gave
the best results. We decided to train four different models using combinations of the two
normalization approaches we discussed earlier and segmentation overlap at 0% and 10%,
see Table 3.8 for an overview.
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Table 3.8: The different model variations we used for the 1DCNN
and RNN. Normalization was either done over the full dataset or
per input sample and segment overlap was either disabled or set at
10%.

Model Normalization Overlap

Base Full 0%
Truncated Sample 0%
Overlap Full 10%
Both Sample 10%

3.4.6 Bitrate RNN
Since the bitrate is a time series the natural approach would be to model it as one. By
using an RNN it would be possible to feed the bitrate to the network time step by time
step and let the network predict the total amount of vehicles it has encountered thus far.
While RNNs in theory can handle time series of any length we settled for using the same
segmentation approach as in the previous section and only let the RNN work with time
series of a fixed length.

The main reason for using segmentation was to handle inputs that were longer than the
training samples; as soon as the input surpasses all our training data in length the RNN
would have undefined behavior. There could also be a benefit in keeping the sequence
length short because it decreases the problem of vanishing and exploding gradients during
training.

Apart from using segmentation the network pipeline was the same as in Section 3.4.3.
The loss function was also the same but it was changed to include terms for every time
step in the input sample. Previously we have only computed the loss on the final network
output but in this case we get an output for every time step, which in turn allows us to
compute the loss more accurately.

The Adam optimizer was used but we changed the learning rate to 0.0005 to try to
smooth out the loss curves and avoid sudden spikes in magnitude. Figure 3.14 above
shows the convergence of the RNN before and after this change. To smooth the curve even
further we added exponential learning rate decay that decreased the learning rate by 25%
every 10 epochs during training.

However, even though these changes improved the loss curves we still occasionally
had spikes that caused them to become undefined. To overcome this issue we implemented
gradient norm clipping [33] which simply puts an upper bound on the norm of the gradients
before each update step. If the norm is too large the gradients are scaled down to be within
our upper bound.

Structure
Whenwe created the initial model for the RNNwe first decided to use LSTMnodes instead
of simple RNN nodes since they perform better and remedy the problem of vanishing
gradients. Using the same line of reasoning as we did in the previous section we decided
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Table 3.9: The network specifications for the bitrate RNN: the
initial version (left) and the final version (right). The activation
function were set to leaky ReLU for the dense layer and to linear
for the output layer.

Node Details

Input 1 per frame
LSTM 3 nodes
Dense 10 nodes
Output 1 per frame

Parameters 111 weights
FLOPS 716

Node Details

Input 1 per frame
LSTM 10 nodes
LSTM 10 nodes
LSTM 10 nodes
Dense 10 nodes
Output 1 per frame

Parameters 2281 weights
FLOPS 15 622

to start out with a small model with a single layer of three LSTM nodes. Each of them
should allow us to capture uphills, downhills and plateaus, respectively. We also added a
dense layer afterwards to combine the LSTM outputs into a vehicle count that could be
presented as output. An overview of this model can be found in Table 3.9.

We decided to use leaky ReLU as the activation function in the dense layer in this
model as well, for the same reasons as for the 1D CNN. We also used a linear activation
for the output node to sum everything up to a single result.

The initial model performed quite poorly on our tests and showed tendencies of slow
convergence. In order to get a better result we decided to increase the size of the existing
layers and to add several extra layers of LSTM nodes. One way to improve the conver-
gence speed could have been to implement truncated back propagation through time [43]
or something similar but we decided to skip this and just let the training run for longer.
After some experimenting we decided on the final structure of the model which can be
found in Table 3.9.

Training
We used the same approach to training as with the 1D CNN, iteratively making changes
and using cross-validation for comparison. When evaluating the final model structure we
trained it using both the normalization approaches and segment overlap at 0% and 10% to
create four different network pipelines, see Table 3.8 for an overview.

3.4.7 Bitrate CNN - 2 Dimensional
In the beginning of the project we played with the idea of using a 2D CNN but we quickly
realized that it does not make much sense when we only have 1D data. In the two previous
network models we have split each input segment into chunks of 30 seconds each and
processed them as either a signal or as a time series. Just doing the same thing but somehow
artificially expanding it to two dimensions should not give us better results, instead we
opted for doing some more preprocessing.
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Figure 3.17: Spectrogram (left) and Mel spectrogram (right) of
a bitrate segment. Note that the y-axis of the mel spectrogram is
non-linear.

We decided to do a frequency analysis and create spectrograms out of the bitrate data.
By using this approach we can expand the 1D data to two dimensions in a way that might
expose some useful information. While one of the key features of neural networks is their
ability to transform the input, like converting it to a spectrogram if that is the best represen-
tation, it requires that the network is large enough since it may take several layers of nodes.
By instead doing the transformation ourselves we can have a smaller network that only has
to focus on interpreting the input. If the spectrogram indeed makes the information easier
to parse, then this new network model should perform better than the previous ones.

We made the spectrograms using a combination of the Signal processing package of
SciPy [9] and the LibROSA [28] library. The implementation added some steps to the
common input pipeline from Section 3.4.3 just before the normalization:

1. Split the videos into chunks of 15 minutes

2. Create spectrogram using scipy.signal

3. Create mel spectrogram using librosa

The first step was trivial since our videos were recorded with 15 minutes of length by
default, however the second and third step needed some changes to the code. There were
a lot of parameters to assign when doing this, to give an overview the relevant code is
included in Appendix B.

The reason why we chose to transform the curves into spectrograms was as follows.
If you study a bitrate curve (e.g. Figure 3.7) you can see both the high frequency noise
as well as the low frequency rises and falls which represent moving cars and other inter-
esting things. By creating a spectrogram out of this we can separate the frequencies into
a spectrum of bins that the neural network can use to its advantage. For instance it could
learn to ignore the high frequency components and just focus on the low frequencies. An
example of a spectrogram can be seen to the left in Figure 3.17.

The example shows a nice separation between high and low frequencies but the draw-
back is that they are linearly distributed. We are more interested in lower frequencies than
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higher since the amount of new vehicles at each time step is small. To facilitate this we
would like to make the distribution non-linear to give more room for the low frequencies,
and one way of doing that is by using mel spectrograms. A mel spectrogram is basically a
transformation of a normal spectrogram using the mel scale, originally defined by Stevens
and Wolkmann [42]. While this method is primarily intended to be used when analyz-
ing sound we still thought it might improve our results so we decided to try it out. The
mel spectrogram corresponding to the previous spectrogram can be seen to the right in
Figure 3.17.

As you can see the lower frequencies are attenuated in a way reminiscent of a loga-
rithmic scale. This is especially apparent if you compare the horizontal bands between
the figures. The resolution is also lower in the new figure since a lot of information about
the higher frequencies has been discarded. During the training and cross-validation there
turned out to be no difference in accuracy between using spectrograms or mel spectro-
grams, however the latter were faster to compute due to their lower resolution.

Apart from adding the above steps to the pipeline we kept it the same as the common
setup. We left the learning rate at 0.001 for these networks.

Structure
For the previous models we created the initial guess by analyzing the bitrate curve and
trying to identify features and corresponding building blocks for the networks. In this
case we found that to be much harder since the spectrograms have no obvious features.
Instead we opted for doing an educated guess and used two convolution layers with some
filters and a dense layer on top. This structure is outlined to the left in Table 3.10. The
input size was chosen to fit the size of the mel spectrograms. All the activation functions
were set to be the same as for the 1D CNN.

As with the 1D CNN the initial guess performed quite well but used a huge amount
of parameters. When improving it we tried to achieve a balance between performance
and fewer parameters. As before the changes were done empirically and resulted in one
additional convolution layer as well as increased max pooling. The final structure can be
seen to the right in Table 3.10, especially note the huge reduction in parameters.

Training
We used the same approach to training as with the 1D CNN; iteratively making changes
and using cross-validation for comparison. When evaluating the final model structure we
trained it using both the normalization approaches which resulted in two different network
pipelines, these correspond to the first two rows in Table 3.8.

3.4.8 QP CNN
The QP network differs significantly from the bitrate networks in that its goal is to locate
vehicles rather than counting them, which is a much more complex task. There are many
advanced models for localizing objects in images, including YOLO amongst others, but
we decided to settle for a much simpler solution. We let the model output a grid which
contains zeros and ones, representing whether or not a vehicle is centered on that position
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Table 3.10: The network specifications for the bitrate 2D CNN:
the initial version (left) and the final version (right). The activation
functions were set to leaky ReLU for the convolution and dense
layers, and to linear for the output layer.

Node Details

Input 420x210 per sample
Convolution 8 filters, 7x7 kernel size
Maxpooling 2x2 pool size
Convolution 8 filters, 5x5 kernel size
Maxpooling 2x2 pool size
Dense 10 nodes
Output 1 per sample

Parameters 438 829 weights
FLOPS 877 612

Node Details

Input 420x210 per sample
Convolution 8 filters, 5x5 kernel size
Maxpooling 2x2 pool size
Convolution 8 filters, 5x5 kernel size
Maxpooling 4x4 pool size
Convolution 8 filters, 5x5 kernel size
Maxpooling 4x4 pool size
Dense 10 nodes
Output 1 per sample

Parameters 9685 weights
FLOPS 19 309

in the input. The output grid was 30x30 cells in size, mapping to the input matrix of size
80x45.

The structure of the input pipeline was quite different from the bitrate networks but
still shared some similarities. One of the big differences between the bitrate networks and
the QP network is that the former uses a sequence of frames as a time series while the
latter looks at each frame in isolation. This means that the QP model had no need for the
time line interpolation or I-frame pruning. The input values were also limited to the range
[0, 51] which was small enough that normalization was not really necessary.

However, input pruningwas still necessary for the QP network and it was even extended
to remove frames where YOLOwas uncertain in its annotations. This was needed since the
QP network was trained directly against them and we wanted to avoid incorrect detections
in the training data as much as possible. We implemented this through an extension of the
tracker that could flag individual frames as bad if they contained annotations for a vehicle
that appeared or disappeared within a span of ±10 frames. We could then run the modified
tracker on the annotations to prune them before we trained the QP model. We hoped that
this would reduce the risk of training on incorrectly classified data.

The parsing step was also similar to the previous models, but with some added com-
plications. Since the QP values are a matrix of values for each frame in every video the
dataset quickly grew very large. It turned out that we could only load a fraction of a single
video at a time to avoid running out of memory. To make this work we had to change the
pipeline to continuously load and unload video segments during training. The drawback
became a massive increase in training time, sometimes several hours per epoch. We could
remedy this slightly by increasing the batch size to around 1000 frames at a time, however
it quickly became a balancing act between increasing the batch size and increasing the
model complexity with limited memory.

We still needed to randomize the order of the input data to avoid temporal overfitting
but this was slightly complicated by our inability to keep all the data in the memory at
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once. We therefore implemented a two-fold randomization by both randomizing the order
of the video segments, before loading them, and the order of the segment frames, after
loading them. The resulting randomness was not as evenly distributed as for the bitrate
networks but it came close.

Regarding the optimizer we decided to keep using Adam but with a learning rate set
to 0.0005. We exchanged the mean squared loss with the cross-entropy loss because this
model was performing classification rather than regression.

To use the QP network to actually count the vehicles rather than locating them we
added our tracker as a post-processing pass. The tracker does not care about the size of
the vehicles, only where their centers are located, which made it easy for us to send our
network output to it.

Structure
We did not have a clearly defined initial guess for the QP network model, instead we started
out with the same network structure as the 1DCNNused (but widened into 2D). Themodel
structure was developed side by side with other improvements such as input randomization
and the exchange of loss functions. Like the previous models we used leaky ReLU for the
convolution layers, however, since themodel does a classification for each cell in the output
grid (car or no car) we used the logistic sigmoid as the activation for the output nodes.

After a while we reached the upper limit for how large the model could be without
running out of memory during training. Like we said earlier it was a balancing act between
an increased batch size and an increased model complexity. While it is not uncommon to
have several hundred filters in a CNN (YOLO for instance has 1024 filters for some of its
layers) we had to limit ourselves to using fewer. We could have used heavy max pooling
to reduce the model size but that would have had a significant cost in accuracy, especially
when the size of the feature maps becomes smaller than the output.

In the end we arrived at a huge model that we trained on around ten million images,
see its structure in Table 3.11. Even though the model was so large it still had significant
performance problems; likely another approach to processing the QP data would have been
needed to get a really good result.

Training
One big difference with the QP network was that we decided against using cross-validation
as a means to compare different models. A single pass through the entire input dataset took
roughly seven hours for the final model which means that it took over a week per network
model to train for just a few epochs. If we wanted to perform cross-validation on top of
the training we would have been looking at months before we had any decent results to
compare. The decreased training time came at the cost of reliability however, but we did
not have much choice in this case.

Due to the long training durations we never reached the point where overfitting would
have started to become a problem. In principle you could say that every round of train-
ing we did for the QP network was made using early stopping but without following the
procedure we outlined in Section 3.4.3.
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Table 3.11: The network specification for the final version of the
QP CNN. The activation functions were set to leaky ReLU for the
convolution layers and to the logistic sigmoid for the output layer.

Node Details

Input 80x45 per sample
Convolution 8 filters, 1x1 kernel size
Convolution 8 filters, 3x3 kernel size
Maxpooling 2x2 pool size
Convolution 16 filters, 1x1 kernel size
Convolution 32 filters, 3x3 kernel size
Convolution 32 filters, 3x3 kernel size
Output 900 per sample

Parameters 50 704 432 weights
FLOPS 101 405 082

3.5 On-device - network on a camera
With the networks constructed our final task was to port them to run directly on the cam-
eras. This involved the following steps:

1. Export the network models

2. Convert to C code

3. Write wrapper program

The first step saves a copy of the models without all the metadata that TensorFlow uses
during training. The procedure is regarded as "freezing" the models in TensorFlow and
can easily be done by invoking a built-in function. Once the models were exported they
could be converted to C code using a tool Axis provided us with. The generated code only
contained the networks themselves which meant that we needed to write a wrapper that
could initialize the model and pass input to it. It turned out that Axis’ tool did not have
support for the leaky ReLU activation function so we had to replace it with the ordinary
ReLU before exporting. This also unfortunately meant that we had to retrain the models
since the new activation function behaves differently.

We decided to only apply this procedure to the 1D bitrate CNN because it was the
model that was best suited for the task. We could not use the bitrate RNN since the tool
lacked support for RNNs. The 2D bitrate CNN required preprocessing of its input which
would have forced us to find or create an implementation of the spectrogram generation that
could be deployed to the camera together with the network. Even if we could have found
a library for this it would have needed to be exactly equivalent to Scipy and LibROSA to
work correctly. Finally, the QP CNN simply was not good enough to be worth the effort,
given how it was both large, slow and performed poorly.

In the end we managed to convert the 1D bitrate CNN to C code and write the wrap-
per for it, however we could not actually run it on the cameras due to firmware bugs that
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stopped us from uploading any networks to them. The issues will be resolved in the future
but they were not fixed in time for the publication of this report. This situation was unfor-
tunate since we wanted to evaluate the performance impact of our models and we could
not do that properly without running them. We did try to keep the models small during the
network construction but we cannot know for sure if they were small enough. However, by
looking at the amount of float operations our networks used (see Tables 3.7 through 3.11)
we can see that all of them are well below the limit of 9.6 giga-FLOPS per second that the
embedded GPU can handle.
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Chapter 4
Evaluation

Previously we discussed how we compared and evaluated our different network models
(see Section 3.4.4). In this section we first present the final results of these evaluations
followed by a discussion.

4.1 Results
The performance of our bitrate networks is displayed in Figures 4.1 through 4.3, each rep-
resenting a separate error measure computed on every scene. One standard deviation has
been highlighted around the mean errors, signifying how stable they are. For each scene
we used a diverse set of 15 manually annotated videos with varying weather conditions,
vehicle densities and times of day. By only testing on "common" scenarios (excluding
snow and fog) the performance improves by up to five percentage points compared to
these results.

There are many ways to quantize performance. We have looked at the total error, the
absolute error and the weighted absolute error, following the example of McGowen and
Sanderson [29]. Each graph shows the results using a different error measure. They were
calculated as follows:

total error =
∑

(Ci − Ti)∑
Ti

(4.1)

absolute error =
∑ |Ci−Ti |

Ti

N
(4.2)

weighted absolute error =
∑
|Ci − Ti |∑

Ti
(4.3)

where Ci is the number of cars counted in the ith video, Ti is the true number of cars, N is
the number of videos and

∑
is a sum over all videos. In general the total error is the most

lenient of the three as positive and negative mismatches negate each other. The absolute
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Figure 4.1: The total error for the various bitrate networks. The
bars show one standard deviation around the mean error.

error combines positive and negative misses, creating a larger error, and the weighted
absolute error takes into account the total number of cars, reducing the impact of large
errors in videos with few cars. This becomes evident if we consider an example: with just
two videos, one with 10 cars and one with 100 cars, counting one car too many would
result in an absolute error of either 1

20 or 1
200 , depending on if we counted 11 cars in the

first video or 101 in the second. The weighted absolute error would give an error of 1
110 in

both cases.

As for the QP network, its performance is summarized in Table 4.1. Because we did
not use cross-validation we instead opted to take an average of the last five epochs’ results
for each model to get a more stable measure of their performance. The variance between
individual videos was very high for the QP network, with the best videos having a surpris-
ingly small error of near zero while others reached over 500 percent in all scenes.
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Figure 4.2: The absolute error for the various bitrate networks.
The bars show one standard deviation around the mean error.

Figure 4.3: The weighted absolute error for the various bitrate
networks. The bars show one standard deviation around the mean
error.
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Table 4.1: The error of the QP network for the different scenes
taken from the last five epochs.

Dataset Total mean Abs. mean Weighted mean

Road scene 375.70 413.07 386.87
Garage 1 47.36 240.17 245.00
Garage 2 64.74 82.10 78.42

4.2 Discussion
The following subsections will focus on analyzing our results, evaluating our process and
listing future work. We also make comparisons to a few similar methods and note how
their techniques could be used to improve our results.

4.2.1 Interpreting the results
Apart from the mean values the Figures 4.1 through 4.3 also contain a single standard
deviation as horizontal bars. Since the deviations are computed over the errors the different
cross validation folds achieved on the test set they give us a measure of how well the
different models generalized from the training data. When the bars are small it means
that all the network folds performs equally well despite having trained on slightly different
training data. When they are large the network folds vary a lot in performance which might
indicate that the model is poorly suited for the task.

Generally we can see that the bars are smaller for the road scene compared to the
garage scenes which is a sign of overfitting. This suspicion is further substantiated by the
fact that the garage scenes have worse absolute and weighted absolute errors for the 1D
and 2D CNN models. The overfitting probably stems from the fact that the models were
developed mainly using the road scene, mainly because we had too few recordings from
the other scenes at the time. Perhaps the models are too simple to handle all the complex
noise that exists in the garage, like people walking in and out.

Looking at the mean values in figures we see that the 2D CNNs have low total errors in
all three scenes but in the absolute error graph it looks a lot worse, especially for the second
garage scene. This means the network makes many errors but they negate one another so
that the total error remains small. In contrast, the 1D CNNs have similar absolute errors
but larger total errors, meaning that they tend to overshoot (in the case of the garage scenes)
or undershoot (the road scene) the true vehicle count.

Looking at the graphs we can see that the RNN networks tend to have the same per-
formance across all scenes, regardless of error measure. This means that they are flexible
enough to handle all our different scenarios with similar results. Even though the variabil-
ity among the RNN networks is small they are all ending up with vehicle counts that are
too low. Obviously the models have ended up being non-optimal which could be due to
several reasons.

One reason could be that the bitrate curve tends to be noisy. When the signal suddenly
peaks it could both be due to noise but also due to vehicles in the image. The difference
is easy to spot when you study the entire sequence but the RNN is only exposed to one
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frame at a time. Furthermore, the LSTM memories in the network will likely accumulate
errors as the time goes by, causing further drift from the true count the longer the sequence
is. In contrast the CNN networks are memoryless and only need to count the features it
sees in the image. They also process the entire sequence at once which helps them avoid
classifying temporary peaks as noise. This probably helps them achieve better results.

Another reason for its poor performance could be that the loss function is too penaliz-
ing. The loss is computed by taking the mean squared error at each time step between the
network output and the true vehicle count. The problemwith this is that the true function is
a discontinuous step function. The vehicle count is only increased when the tracker detects
a vehicle, which might be delayed compared to when it really appeared. The RNN is un-
able to increase its output in discrete steps since the output is a continuous function which
will cause it to be penalized during the transition. This problem is probably worsened by
the inexact annotations that YOLO and the tracker generates, causing heavy penalization
even when the RNN behaves correctly.

Since the total errors of the RNNs are all less than zero in the figure we can draw the
conclusion that the network detects too few vehicles compared to what the videos contain.
The issues wementioned could act as a kind of regularization that makes the network more
"careful" in its prediction, thus causing this result. However, in order to be really sure what
is wrong with the model we would need to make a deeper analysis. One simple way of
doing this could be to plot the network output over time together with the expected output
to see what the correlation looks like.

The QP network is in a league of its own: it performs very poorly and often overshoots
the target by several hundred percent. Considering that you can easily locate vehicles by
looking at the QP-values manually a neural network should be able to perform the same
task with decent performance. That this is not the case we think is a result of the network
design being unsuited for the task. Because the output is in relatively large discreet steps it
becomes harder for the tracker to find movement than if the output had been continuous or
scaled up to individual pixels in resolution. Changing the shape of the output layer to have
the same aspect ratio as the input (rather than a square) could potentially also improve
the results. Finally, it is worth considering changing the output entirely: if the network
currently splits a vehicle into several clustered outputs it is possible that the accuracywould
improve if the network were asked to output bounding boxes, more in vein with howYOLO
works, rather than just the center of the found vehicle.

In general the truncated 2D CNN appears to be the top performing network, having
very little error on all three scenes, but if the absolute error is prioritized it is instead the
truncated 1DCNN that performs the best. Given that these networks are intended to run for
longer periods of time (enough to train/fine-tune the network and then start counting) the
absolute error is less interesting than if we were to consider shorter time spans. Should the
camera be mounted for long the total error will likely be negligible, although the accuracy
would be less reliable if a subset of the data is requested, such as the load during peak
hours.

Averaging at 89% accuracy on the road scene and 95% and 98% on the garage scenes,
our truncated 2D CNN is certainly not bad but it fails to reach the level of accuracy of
more traditional methods. Pneumatic road tubes, for instance, have an accuracy of 99%
(although that number is likely averaged over a larger time frame [29]). Using recent
machine learning techniques on video others have reached a level of 97% accuracy [6],
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outperforming our network on the road scene but being closer to our results in the garage.

4.2.2 Scenes and generalization
As described earlier, our networks were originally based and evaluated on the road scene.
It would not be very surprising then if they generally performed better on that scene than
on the garages. This also seems to be the case, especially when comparing it with the first
garage scene, which is the more complex of the two. We also noted that YOLO performed
worse in the garage, giving us less accurate training data which, combined with larger
noise from people entering and exiting the garage, could account for these scenes being
harder for the networks.

Another major factor is the difference in vehicle density. No 15-minute video in the
garage had more than ten cars entering or leaving (more than half of the videos were
actually empty of cars). This means that missing or counting just one extra vehicle has a
larger effect on the error, which could explain why they have such large absolute errors and
why the standard deviations are so large. By pruning away video segments with no events
in them the accuracy may be improved but care must be taken not to skew the input too
far. The pruning could be done by discarding all videos where YOLO finds no vehicles. It
could be taken even further by pruning away individual video segments where the count
was unchanged.

The biggest difference between the scenes is how the tracker, and to an extent YOLO,
has been modified to fit that specific scene. Unlike when training the networks this part
was done manually and as such does not scale well to systems with many cameras or with
dissimilar traffic situations. In order to generalize the system and make it fully automated
this must be solved and there are several ways to to that. One way would be to find a good
balance where YOLO and the tracker performs decently well in most scenarios. Another
is to have a few default configurations and choose one that fits the current scene upon
installation. The last option is to replace the tracker with something more general and
powerful. This might be useful if the scenes are more complex as well, such as corners or
intersections where the direction of travel changes.

A different approach entirely would be to limit the camera placement. In all three
scenarios the camera is placed in such a way that a lot of noise and unwanted features
are included in the videos. In the road scene we masked out the parking areas but left
several roads next to the main one. While the one furthest away rarely disturbed the scene
as vehicles on it were too small to be counted most of the time the nearest one was a
larger issue, both for the automatic andmanual annotation, and it created difficult scenarios
where some cars were half-occluded by the edge of the image. By placing the camera in an
optimal position, for example pointing down directly over the road, and fine-tuning YOLO
on this angle, the accuracy could potentially be significantly improved while noise would
be reduced to a minimum. This could also limit the disturbances caused by harsh weather
conditions, such a heavy snowfall or rain on the camera, andmake sabotage harder. Finally,
a top-down view would avoid the problem with vehicles occluding each other which could
cause issues for both the tracker and the networks.

Setting the tracker aside we believe the network models should generalize fairly well,
especially the bitrate RNN since it has a small difference in performance between scenes.
We could then record from different locations and once enough training material has been
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gathered all that is needed is to train the model and upload it to the camera. While the
scene may be different from our testing scenes, the network model should be able to adapt
as its task is still the same and the training was done for the new location. It is, of course,
possible that the networks do not generalize as well as we believe, making our results
less significant. Because we have only examined video from two unique locations (the
second garage scene is very similar to the first) we cannot know if other scenes, such as
intersections or roads with heavy pedestrian traffic, would perform differently. However,
because of how different these two locations are we are fairly confident that new scenes
would share similarities with at least one of them and perform similarly.

4.2.3 Adapting to variations in data
According to Medina et al. [30], adverse weather conditions can severely damage the ac-
curacy of video based systems, with snow in particular causing up to 90% false positives
in their tests. This was something we also noted on when evaluating YOLO but it did not
seem to affect our own networks’ performance to any large degree. While it usually var-
ied some between videos, these variations were seemingly random: one video with rain
could perform poorly while the other performed really well, then for the next network it
was the other way around. There is one large exception to this observation however: the
networks generally performed worse during foggy weather and in the evenings, with the
worst case being 80% missed vehicles in a fog test. We believe the reason for this is that
the bitrate is drastically lower in these scenarios which makes cars stand out much less
from the background noise, especially when the input normalization is applied. It should
be relatively easy to see if this is indeed the case. By applying a defogging algorithm to
the image before compression the image should become sharper which in turn raises the
bitrate and, if we are correct in our assumption, improves the result.

Varying training conditions
When we trained our networks we were fortunate enough to get a wide variety of record-
ings, covering most possible weather combinations. This allowed us to create a robust
training dataset, better than what would likely be used for a real camera. This, then, leads
to the question of how important a varied dataset is.

To get an idea of its importance we can alter which videos are included in the training
set and then redo the training. In Table 4.2 we have listed a few scenarios and the results
from training the basic version of 1D CNN on them. Because of the time-span of this
project we have a limited number of videos with clear, sunny weather and rain so we have
focused on day/night, clear versus snowy weather and a large versus small dataset.

There are a few interesting things to take from these results. First, a note on the datasets
themselves: they are somewhat smaller than the actual training sets (about 300-500 videos)
with the minimal sets being exceptional as they have exactly nine overcast videos each. We
see that the results are similar to those of the original training set. Apart from the minimal
set, training only on overcast videos yields the largest difference from the baseline, possibly
because this is the "base level" weather condition, but it is questionable whether or not the
difference is significant, especially given the small difference in absolute error. We see
that training on a very small dataset has severe detrimental effects on the performance. In
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Table 4.2: Error of the base 1D CNN given different training
datasets.

Dataset Total mean Std. Abs. mean Std. W. mean Std.

CNN1D base -18.70 1.36 21.22 1.24 23.08 1.18
Road, day only -17.95 2.44 20.54 0.92 22.54 1.07
Road, overcast -14.42 2.16 21.12 1.29 22.16 1.02
Road, snow -17.39 1.99 24.05 1.33 23.63 1.2

Road, minimal 621.36 100.7 795.74 124.92 639.18 101.75
Garage, minimal 137.48 25.46 156.01 29.65 139.73 23.61

this case the network models had a very hard time to adapt: while the road scene network
had an error of below 50% (which is still very large) on most of our test videos, the error
on our two snow videos were over 3800%, drastically raising the mean error. The garage
network did not have a single large error but was simply worse across the board, likely
because the scene has less variation between videos.

While these experiments are too small in scope for us to draw any solid conclusions,
they suggest that the exact composition of the training set is less important than we had
originally thought, given that there are enough samples in it. This in turn means that the
dataset we picked for training was likely a good choice and should not skew our results too
far in any direction.

The outlier QP test
Curiously, the QP network actually performed much better in snowy weather than in any
other scenario among our manual test data, achieving an error generally between five to
ten times lower than the other scenes (and reaching only 1.4% in the best case). Given
how snowfall affects the QP-values, as seen in Figure 4.4, we thought snow would have
a severe negative effect on the results, not the other way around. It is hard to say if this
is a coincidence or not without more test data. We did annotate additional snow videos
previously not used for training but those videos, with medium snowfall, had an error
on par with or just slightly lower than the other test videos. This could be reasonable as
comparing the images in Figure 4.4 we see that the video with medium snowfall looks
like a mix between the other two and does not have quite as extreme features as the heavy
snowfall video.

One idea as to why the network suddenly improves is that the vehicles are filled in
with a solid color during heavy snowfall because there is more movement in the scene.
The reasoning behind this idea is the assumption that solid areas are easier to locate and
recognize for the network than areas where parts of the vehicles are discarded, as seen
during clear weather. Another reason might be that the contrast is too great during clear
weather and the brighter background works to normalize the input. It might also be a
result of the QP-values generally being smaller during heavy snowfall, which might push
them over a threshold limit inside the network. If either of the latter two were the case it
would mean our assumption that normalization was unnecessary was wrong but they also
indicate that medium snowfall should affect the accuracy more than it does. Lastly, it is
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Figure 4.4: QP-values during clear weather, medium snowfall and
heavy snowfall. The left and middle images have two cars each
while among the brightest areas in the right image there are three
cars hidden.

also possible that the network just fails to find as many vehicles as it usually does. The QP
network has a tendency to drastically overshoot the true count so if the snow causes it to
miss the majority of vehicles (that are not necessarily real) that it would normally find the
final result could end up being more realistic, although it is hard to imagine it having such
good results if it was just missing vehicles at random.

To fully understand what sets the heavy snowfall video apart we would need to further
examine similar videos. Another alternative would be to examine the network’s output
closely and compare it to YOLO’s. This would be easier with a decent visualization tool.
It is possible that the QP network could perform much better if the input was modified
slightly, or the better performance is merely a coincidence.

4.2.4 Improving our system
After training our networks and generating the results we reviewed the system we had
constructed to try to find things to improve. In the end we recognized a number of changes
that could be made to potentially make the system more robust.

The first change relates to the data collection. We have stated several times that our
dataset included corrupt videos that we could not use for training, either because a lot of
frames were missing or because QP vales could not be extracted. In order to deal with this
we had to try to filter them out when we were setting up the training pipeline. Another
solution could have been to add a filtering pass directly after the recording step. Doing so
would have spared us a lot of work later, not only could we have removed our filtering from
the network pipeline but we would also have saved all the time we spent annotating broken
videos. As it turned out, even some of the videos we annotated manually were broken.
Potentially our networks could have performed better as well since they would have had
cleaner data to train on.

Secondly, a major part of our pipeline was the YOLO network and the tracker. Calcu-
lating YOLO and the tracker’s mean error the same way we did for the bitrate networks
reveals that it had a total error of roughly 2% and an absolute error of just below 5% on
the road scene. It should be possible to take this into account when calculating the net-
work’s loss to improve its performance but since these numbers are unlikely to be consis-
tent across different scenes that might be unrealistic. To increase their accuracy we could
have replaced YOLO with its newest version, YOLOv3 [38], which was released halfway
through the thesis project, or we could have replaced our tracker with a more powerful
existing model. Since every error introduced this early in the pipeline will accumulate
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Figure 4.5: QP-values during heavy snowfall after applying gaus-
sian smoothing (left) and both gaussian and temporal smoothing
(right). It is completely impossible to discern any vehicles.

through the rest of the system we may have seen a large improvement in our final results.
Another way of improving YOLO could have been to fine-tune it on a dataset of our

own. Like we have mentioned previously. YOLO had problems identifying vehicles in
the garage scenes due to the camera angles. If we had constructed a dataset containing
images of vehicles taken from many directions before fine-tuning we could have increased
the accuracy, particularly for the garage scenes. However, this would have taken a lot of
time.

Thirdly, there were several decisions during the network construction that could have
been explored more or done differently. All networks used video segments of either 30
seconds or 15 minutes in length. These numbers were more or less arbitrarily chosen and
it is possible that other settings could have yielded better results. We also normalized the
input over a single sample when using the second normalization approach, but we could
have chosen to normalize over two or more samples instead. Both of these decisions were
made by educated guesswork since we did not have time to test all combinations.

The design of the networks themselves could also have been more thorough. We put
a lot of effort on implementing all the preprocessing algorithms to tune the results at the
cost of experimenting with network structures. To keep the scope of the thesis limited we
did not have time to delve deeply on the designs, there probably exists better ones.

Fourthly, there are some small details in the network pipelines for the different models
that we probably should have done differently. To begin with, the spectrogram generation
for the 2D CNN used a lot of parameters that we had to assign and these were also set using
educated guesswork. There was simply too much work involved in trying out different
settings and running the entire network pipeline to evaluate the results. However, we did
some tests to see how much impact the size of the spectrograms had on the performance
before deciding which to use.

To improve the QP network we could both have used normalization, like we have said
previously, and applied some more preprocessing. In Section 3.2.3 we showed Figure 3.8
where we had applied temporal and gaussian smoothing to the QP values. One idea is to
use the same type of filters when training the network instead of just feeding it the raw data,
this would make the vehicles more solid which might help the QP network. The drawback
would be that the data from the snow videos would end up as a solid blob of color, making
them completely useless. Figure 4.5 shows the effect of the smoothing on the video with
heavy snowfall (from Figure 4.4).

To improve the RNN network there are several things we could have done differently.
First off, we might improve the results by suppressing the noise using some sort of input
averaging. When the input is smoothed it is easier for the networkmodel to infer knowledge
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Figure 4.6: The true vehicle count versus time (left) and the
smoothed equivalent (right). The dashed lines represent different
vehicle counts.

from the slope of the curve. We could also preprocess the true vehicle count to make the
loss function less penalizing, for instance by using a smooth step function instead of the
current step function, see Figure 4.6 for an illustration. With the smoother curve we get
rid of the discrete behavior, which the RNN cannot match, and also allow for some leeway
in when the vehicles are detected, which will make inaccuracies in the annotations less
penalizing.

Lastly, we could expand our set of manually annotated test data. Ideally we would have
liked to have multiple videos for each weather condition to get a deeper insight into how
our models handle them. A larger test set would also make our measures of the average
accuracies better overall. One way of generating a lot of annotations could be to outsource
it to someone else, however as soon as we hand the videos over we would breach of the
privacy of those whowere recorded and it would be harder to maintain control over quality.

4.2.5 Sources of error
There are several factors that potentially could jeopardize the validity of our results and
our analysis, they are summarized in the following list:

• Overfitting in the tracker

• Lack of network visualization

• Lack of sufficient testing data

• Lack of confidence intervals

The first problem is related to how the tracker was fine-tuned. We realized that the
same dataset was used both to validate the tracker improvements and to estimate the gen-
eralization performance of the networks. This could cause overfitting and make our results
too optimistic, giving biased estimates of the true performance. The issue would be more
significant for the road scene since the tracker was built using its test set as the benchmark.
It also applies to the garage scenes, as the tracker was tweaked for those scenes, but to a
lesser extent as fewer modifications were made. Since we became aware of this problem
quite late during the thesis project we did not have time to create entirely new test sets,
however many new videos had already been added to the existing ones since the fine-tuning
was done. We came to the conclusion that if there is an optimistic bias in our results it is
likely quite small, in particular since the test sets have been extended with new videos.
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The second problem lies in our lack of visualization of the networks, or more specifi-
cally of their behavior. Much of our discussion is based in educated guesses and assump-
tions from the observations we have made, however we could still be wrong on several
counts, most notably regarding the reasons behind the performance of the models. A way
to provide some more evidence for the analysis could have been to visualize the network
behaviors. While this could be done quite easily for the QP CNN and bitrate RNN net-
works it would have been much harder for the 1D and 2D CNN networks. The former two
have outputs that can be displayed as bounding boxes or a time series while the latter two
just provide a single number each, making them a lot harder to visualize. We could have
ventured deeper into visualization but we decided against it to limit the scope of the thesis
project.

The third problem regards our limited amount of manually annotated test data. Like
we have said earlier we would ideally have liked to have multiple videos for every weather
condition to make comparisons more accurate. The smaller the test sets are the likelier it
is that the results are due to their peculiarities rather than due to the true generalization
performance. We have tried to make this problem less likely by continuously adding new
videos to the test sets but it might still have an effect on our results.

The final problem is related to how we present our results. While we do present both
the means and standard deviations (see Figure 4.1 through 4.3) it would have been much
more interesting to present them in the form of confidence intervals. Then we could have
applied basic statistical analysis to conclude if the performance of our various models was
statistically significantly different. The reasons why we decided not to use confidence
intervals were several but there were two main problems.

Firstly, in order to compute confidence intervals you usually collect data from several
independently and identically distributed random variables. In our case the random vari-
ables were the different cross-validation folds which are heavily dependent in both their
training data and test inputs. Moreover we could not be certain that they truly are identi-
cally distributed, after all they are the result of different training runs.

Secondly, since we were trying to construct the confidence intervals for our different
error measures we ran into the problem of truncated distributions. Both the absolute and
the weighted absolute errors have a lower bound at zero percent and this must be taken
into account to not get incorrect confidence intervals.

During our research we only came across one good way of computing the confidence
intervals that avoids these problems. By using a technique called bootstrapping [49] we can
generate new datasets from our training data by randomly selecting samples (with replace-
ment). These new datasets would become more independent than our cross-validation
folds due to the stochastic nature of bootstrapping. When we have generated a lot of new
datasets, say 100 for instance, we can apply statistical theory to all of these models to
finally arrive at confidence intervals.

However, generating 100 network variants per model would be prohibitively expensive,
we neither had the time nor the resources to do that. Since we found no other way around
this issue we decided not to use confidence intervals.

When we searched for related work we have realized that there are few papers around
that use confidence intervals or similar statistically sound methods. It could be an indica-
tion that doing so is a hard problem that takes a lot of effort to solve.
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4.2.6 Automating and decentralizing

In order to make it possible to deploy our models to any camera, regardless of where it is
positioned, we would need to make our system general. There are two approaches to do
this, the first is to make a single model and deploy it everywhere while the second is to
train the model for every single camera. The second approach should generally be the best
since it makes the model tailored to its scene. In order to make it work every camera must
have a training phase where data is first collected and then used to fine-tune the model. A
drawback is that the training data cannot be recorded in advance so it might take a long
time to deploy the model after the camera has been installed.

When recording the training data it will be hard to get a sufficient distribution of
weather conditions, day and night as well as varying traffic intensities. This might be
the biggest issue when deploying the model to different cameras. In our case we had to
record for quite a while before we could start training the networks due to the lack of vari-
ety in the scenes. In a real scenario it would mean that the camera has to be mounted and
recording for some time: hours, days or months, depending on how varied the scene is and
how frequent the vehicles are. Looking at our scenes we see that the garage would take
weeks to get the same amount of vehicles as the road scene does in a day. On the other
hand the road scene changes a lot more as the weather and time of day varies, resulting
in many different scenarios. If there is not sufficient data to cover all these scenarios the
network models may not perform well at all. There is also a risk that the distribution of the
data becomes skewed, causing overfitting to certain conditions. A smart algorithm would
be needed to create a varied dataset from a distorted one.

To make the system viable when you have a large number of cameras it needs to be
automated. This makes it a lot harder to tweak the settings of each network model to their
scenes. For instance, our road scene had many uninteresting areas with a lot of action
which we wanted to hide and the garage scenes had vehicles driving past outside the gates
which caused problems. Our approach to handling this were to either mask out the areas
completely or to ignore YOLO’s detections outside some area of interest. Both of these
solutions were applied manually which works well for a few cameras but becomes prob-
lematic for large systems. Instead the training procedure should ideally be able to detect
a region of interest on its own, possibly by sampling which parts of the scene contains
the largest or most frequent changes. In the worst case it could be left as a manual setup
step but in that case it must be very easy to do. Because YOLO’s detection rate seems to
worsen if there is a very large number of vehicles in the scene some masking might be
required in order to get good results.

In order to train the network it could be connected to a centralized unit for the duration
of the training period. During that time it would send the video to this unit for annotation
and training, something that is too heavy for the camera to perform itself. When this
is done, the central unit sends the trained weights to the network which can then work
autonomously. That way the time while it has to send potentially sensitive data over the
Internet is minimized.
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4.2.7 Related work
There exist a plethora of vehicle counting networks, many of which have an accuracy
in the 90%-100% range. Earlier we compared our results to those of Biswas et al. [6]. In
their paper they used twomethods for counting vehicles in video, a background subtraction
method (BSM) and anOverFeat framework, and tested their systems on various conditions,
much likewe did. While the BSM struggled, theOverFeat framework performed verywell.
They implemented it using a CNN for feature extraction and logistic regression for training.
Rather than tracking vehicles throughout the scene they defined regions of interest (ROI)
where, if a vehicle was detected, the count would be increased.

The use of ROI for detecting vehicles is something that could improve our networks as
well. By defining areas where only a single vehicle can appear at a time there is no need
for an advanced tracker system which could greatly improve the accuracy of both our QP
network and the training data for all our networks.

A similar approach was made by Liu et al. [25] who used a variant of BSM where they
had separate algorithms for different scenarios, such as daytime, nighttime or very dense
traffic, to increase the overall robustness of the system. With this approach they achieved an
accuracy of around 99% in various conditions at a speed of 67.33ms on average. While this
is far from real-time they argue that only every third of the frames needed to be analyzed,
allowing the network to take more time processing each frame. However, this speed was
achieved when running the network on a personal computer, not a camera, and as such it
is very unlikely that it could compare to our networks: a modern high-end graphics card
has roughly a thousand times more computing power than our cameras[45].

We have suggested using an alternative to our tracker. One such alternative is SORT [5]
or DeepSORT [51], the latter being an extension of SORT which uses a CNN for re-
identification. While both of these networks were built to detect people this can changed
by training them on vehicles instead, though it requires a suitable training dataset. (which
was our primary reason for not using them). It would also be possible to use the system
devised by Liu et al. above to annotate our training data, removing both YOLO and tracker
entirely while keeping the speed and size benefits of our networks.

4.2.8 Future work
We have already discussed a wide range of future work in the previous sections; both
changes to our existing pipeline such as replacing YOLO or the tracker, fine-tuning more
or doing a wider search of the parameter space (Section 4.2.4); model visualization (Sec-
tion 4.2.5) and new features such as using ROI (Section 4.2.7). In this section we discuss
some additional future work that did not fit in the earlier sections.

We have focused on using the bitrate and the QP-values as the basis for training our
models, however, there is a variety of other metadata that could have been used instead.
Previously we have mentioned SNR and motion vectors as two other options but there are
countless others that both stems from H.264 and the Axis Zipstream system. While QP
and bitrate are relatively easy to extract from videos and have an intuitive interpretation
we cannot be sure that they result in the highest performance possible. Motion vectors
in particular contain information that might be very useful for the QP network. When a
vehicle passes through a scene the motion vectors will be heavily affected by its movement.
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They would not only make it possible to determine where a vehicle is but also in which
direction it travels. This could be very helpful to a network model since it can be used to
rule out movement that goes along the wrong direction (such as a mass of people crossing
the road).

Another important change that should be researched is how well our models work with
multiclass problems. To limit the scope in our thesis we counted every type of vehicle as
a single class. The next step is to split the vehicle count into a spectrum of vehicles. We
expect the performance to worsen for multiple classes since it is a much harder problem
but it would be very interesting to research. When looking at multiple classes it would
also be possible to abandon vehicle counting altogether and start counting something else
instead, such as people or animals. Our algorithms would more or less function in the
same way for other types of classes.

Finally, we also think that using unsupervised learning would be an interesting ap-
proach to counting vehicles. Unsupervised learning is when you perform machine learn-
ing without any labels (annotations in our case). In contrast we have performed supervised
learning throughout our thesis since we had annotations for all our training data. The idea
is to let the machine learning algorithm do clustering instead of regression and classifica-
tion. For instance, we could just feed in the bitrate graphs and the algorithm would split
it into pieces and group together those that are similar to each others. If you let it run
on the entire dataset you would end up with a set of clusters, each representing a type of
phenomena. Ideally you would get one cluster for cars, one for trucks, etcetera... When
running it live you could use the same clusters to identify vehicles in the metadata and
count them. An added advantage to unsupervised learning is that it can also be used to
detect anomalies. If it encounters some data that is very far from all existing clusters it
could be flagged so that camera operators could take a look at them manually.
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Chapter 5
Conclusions

We have presented a new method of analyzing video data that is both fast and lightweight.
We conclude that it is possible to accurately detect and count vehicles by looking at video
metadata using simple neural network models. While the accuracy is lower than for other
network models, the massive gain in performance is worth the trade off for smaller systems
that are unable to run the larger networks. We have seen that bitrate works especially well
as a metric and note the potential of using QP-values as well, although the latter needs
more research to evaluate its feasibility. The potential for future works is high as there are
several kinds of metadata we have yet to try, with motion vectors being a prime candidate.
There is also the possibility to expand upon the bitrate and QP networks to account for
multiple vehicle classes, or to use unsupervised learning for anomaly detection in bitrate.
Finally, our method has great potential to improve through various optimizations, such as
using better annotation tools or by tweaking the learning process.
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Appendix A
A complete list of annotated videos

Table A.1: All manually annotated videos used for testing. All
videos were 15 minutes long but frame rate varies with location.

Location description vehicle count

Road (30fps) Sunny day 109
Road Sunny day, snow covered ground 99
Road Sunny day, dense traffic 203
Road Clear evening 177
Road Thick fog 179
Road Clear night 68
Road Rainy day 79
Road Rainy day, alternate 100
Road Snowy day 139
Road Overcast day 112
Road Overcast day, snow covered ground 185
Road Overcast day, dense traffic 204
Road Overcast day, dense traffic 2 208
Road Thick fog evening 93
Road Snowy day 2 93
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A. A complete list of annotated videos

Table A.2: All manually annotated videos. All videos were 15
minutes long but frame rate varies with location.

Location description vehicle count

Garage (25fps) Morning 4
Garage Night 5
Garage Sunny day 5
Garage Evening 4
Garage Late evening 4
Garage Night 2 4
Garage Night 3 4
Garage Day 2 4
Garage Day 3 3
Garage Snowy day 2
Garage Snowy evening 4
Garage Night 4 1
Garage Night 5 0
Garage Rainy night 2
Garage Day 4 3

Table A.3: All manually annotated videos. All videos were 15
minutes long but frame rate varies with location.

Location description vehicle count

Garage 2 (25fps) Snowy day 4
Garage 2 Late evening 2
Garage 2 Night 1
Garage 2 Day 2
Garage 2 Misty day 4
Garage 2 Evening 1
Garage 2 Day 2 0
Garage 2 Night 2 5
Garage 2 Sunny day 4
Garage 2 Mixed day 1
Garage 2 Day 3 1
Garage 2 Day 4 9
Garage 2 Night 3 2
Garage 2 Snowy evening 3
Garage 2 Sunny day 2 3
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Appendix B
Source code for spectrograms

The following code was used to generate the spectrograms. The first chunk consists of
various settings that must to be defined in order to generate the spectrograms, while the
last chunk creates the spectrograms.

# Define sample frequency (frame rate of our recordings)
sample_frequency = FRAME_RATE

# Define spectrum window size (how many input points are used at a time)
window_size = 128

# Define spectrum window type
window = signal.get_window('hann', window_size)

# Define how much the window computations overlap
overlap_fraction = 0.5

# Define FFT size
fft_length = 1024

# Set output units to be V^2 where V is the input units
scaling = 'spectrum'

# Set desired amount of mel bins
mel_bins = 128

# Create spectrogram
f, t, spectrogram = signal.spectrogram(

x=np.array(input),
fs=sample_frequency,
window=window,
noverlap=overlap_percent * window_size,
nfft=fft_length,
scaling=scaling)
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B. Source code for spectrograms

# Create mel spectrogram
mel_spectrogram = librosa.feature.melspectrogram(

S=np.abs(spectrogram),
n_fft=fft_length,
hop_length=window_size * (1 - overlap_percent),
n_mels=mel_bins)

# Compute output in dB scale
output = librosa.power_to_db(mel_spectrogram, ref=np.mean)
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Appendix C
Table of results

Table C.1: Mean and standard deviations for total, average and
weighted average error, listed for all bitrate networks on the road
scene.

Dataset Total mean Std. Abs. mean Std. Weighted mean Std.

CNN1D base -18.70 1.36 21.22 1.24 23.08 1.18
CNN1D truncated -16.87 1.06 18.65 1.64 20.42 1.49
CNN1D w. overlap -9.90 2.84 17.86 0.63 18.65 0.42
CNN1D both -10.28 3.27 18.21 1.79 18.36 2.16
CNN2D base -8.32 4.58 14.12 1.62 14.50 2.63
CNN2D truncated -10.63 6.71 16.07 2.40 16.71 2.89
RNN base -20.05 4.13 21.74 2.27 24.06 3.17
RNN truncated -22.27 4.76 22.23 2.74 25.12 2.98
RNN w. overlap -38.79 3.9 34.17 3.5 38.88 3.81
RNN both -23.37 5.83 23.55 2.92 26.13 3.22
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C. Table of results

Table C.2: Mean and standard deviations for total, average and
weighted average error, listed for all bitrate networks on the first
garage scene.

Dataset Total mean Std. Abs. mean Std. Weighted mean Std.

CNN1D base 19.40 12.14 49.62 9.91 46.06 8.57
CNN1D truncated 7.25 10.04 34.96 7.39 31.77 5.55
CNN1D w. overlap 27.35 13.77 53.82 8.64 54.37 5.61
CNN1D both 37.05 11.43 55.05 12.91 54.11 13.44
CNN2D base -9.07 8.70 32.89 7.25 31.77 5.59
CNN2D truncated -4.64 5.07 30.88 6.43 29.46 5.62
RNN base -22.14 8.63 34.19 2.86 35.91 3.02
RNN truncated -25.07 10.56 34.85 4.93 37.53 5.15
RNN w. overlap -32.87 6.30 37.72 4.21 40.01 2.77
RNN both -31.23 3.39 38.41 3.20 40.13 3.44

Table C.3: Mean and standard deviations for total, average and
weighted average error, listed for all bitrate networks on the second
garage scene.

Dataset Total mean Std. Abs. mean Std. Weighted mean Std.

CNN1D base 6.52 5.80 35.86 5.96 31.57 4.01
CNN1D truncated 6.31 13.43 43.62 6.66 33.55 2.70
CNN1D w. overlap 8.03 4.23 36.72 1.54 33.43 1.85
CNN1D both 1.28 4.38 45.40 1.89 36.32 0.49
CNN2D base -10.99 19.50 55.50 10.67 51.05 5.83
CNN2D truncated -2.03 9.21 63.61 11.90 55.04 10.54
RNN base -15.31 4.82 20.02 1.80 27.57 2.23
RNN truncated -19.12 6.05 23.09 5.56 29.63 3.99
RNN w. overlap -16.86 5.07 23.02 3.60 28.92 2.77
RNN both -21.99 5.46 23.05 3.07 30.34 2.60
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Appendix D
Work distribution

The work done during the course of this project has been evenly split. Of this paper, Sebas-
tian has written the background chapter, the sections on fine-tuning YOLO, our network
designs and the training of said networks. Mattias has written the introduction, the Ap-
proach chapter (excluding the above mentioned parts) as well as the results section. Both
authors wrote the discussion together.

Sebastian created the bitrate networks, our extraction and visualization tools for bitrate
and QP-values, wrote our recording script and fine-tuned yolo while Mattias set up and
integrated YOLO into our pipeline, created the tracker and its evaluation tools, made the
QP network and the compilation/visualization of our results.
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Vi räknar bilar - utan att titta!

POPULÄRVETENSKAPLIG SAMMANFATTNING Mattias Gustafsson, Sebastian Hjelm

Att hitta och följa fordon i video kräver mycket datorkraft vilket är svårt att få plats
med i små, integrerade system, så som vägkameror. Genom att istället mäta storleken
på förändringarna i videons bilder kan vi avgöra när bilar passerar till en mycket lägre
beräkningskostnad.

En modern övervakningskamera kan spela in HD-
video med 30 bilder per sekund. Det betyder att
det varje sekund finns 100 miljoner nya bildpunk-
ter som måste tolkas av kameran för att avgöra
om där finns några bilar. Även om man bara tit-
tar på en bråkdel av punkterna så har en dator
mycket svårare att förstå vad den ser än vad en
människa har vilket gör sökprogram både stora
och långsamma.

Vi har löst detta genom att titta på videons
metadata, information om själva videon, istället
för dess innehåll. Eftersom metadatan är miljoner
gånger mindre än bilden så går det extremt snabbt
att få ut ett resultat. I figuren till höger ser vi en
graf över hur mycket videons bilder förändras över
tid. När scenen innehåller rörelse ger det mycket
förändringar och vi får en kulle i grafen. Med hjälp
av maskininlärning tränade vi en dator på att kän-
na igen mönster i förändringen och kunde med en
träffsäkerhet på över 95% avgöra hur många bi-
lar som passerat. Resultaten påverkades inte av
att andra saker, som cyklar och människor, också
fanns med.

Det finns ytterligare en fördel med vår metod:
den anonymiserar videon. Eftersom vi inte behö-
ver titta på videons innehåll undviker vi att käns-
lig information läcker ut. Detta gör det lättare att
använda kameror för datainsamling utan att det

Figur: Bilderna förändras mer när fordon passerar
framför kameran. Vi kan enkelt se när nya bilar
dyker upp men utan en dator är det svårt att veta
att spikarna innehåller en, två, respektive tre bilar.

kränker folks integritet.
I framtiden kan tekniken utökas för att klassifi-

cera och räkna olika fordonstyper. Den kan också
användas för att hitta speciella händelser i videor
genom att leta efter avvikande mönster i graferna.
Det skulle till exempel göra det möjligt för kame-
ran att varna om en bil kör för fort eller om djur
har tagit sig ut på vägen. Slutligen så skulle vår
teknik kunna användas för att övervaka andra sce-
ner än vägar, exempelvis för att räkna människor
som rör sig i ett varuhus.
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