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Abstract

In this thesis a robot-held platform is developed. The final goal of the platform is
to follow a potential surgeon’s head during operation while cameras mounted on
the platform film the ongoing operation from the perspective of the surgeon. In this
thesis the original concept developed by Emma Andersson and Anna Wikström is
developed further by extending the design to allow placement of sensors and by
implementing the control algorithms necessary for the platform to follow the poten-
tial surgeon’s movements. The implementation uses inverse velocity kinematics, PD
control and mid-ranging control to achieve a proof of concept. The final implemen-
tation is able to follow movements, but some work is still necessary to ensure better
following of orientation and to ensure that the implementation is safe to introduce
to a medical environment.
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1
Introduction

Surgeons today mainly communicate the happenings transpired during a completed
surgery, to other surgeons and surgeons in training, verbally; possibly with some
illustrative help from a whiteboard or blackboard. In order to better document the
happenings during surgery, it would be desirable to record image information. This
is done to some degree with overhead cameras, but the surgeons tend to be in the
way during large parts of the operation.

Conceptually, cameras could be placed on top of a surgeon’s head in order to
remedy this, but the added weight might interfere with the surgeon’s movements,
and cause an undesirable load on the neck. This could be alleviated by placing the
camera on a movable platform around the head held up by some mechanical stand,
but having the surgeon move it manually or having someone else move it would
interfere with the surgery.

In recent years robotics has developed far enough that robots can work in the
same environment as humans on the same tasks or related tasks with little risk of
injury to human or robot. With this in mind a robot arm carrying the proposed
platform might be the solution.

1.1 Previous work

The concept of this robot-held camera platform was developed by Emma Andersson
and Anna Wikström.[Andersson and Wikström, 2017] The concept focuses on the
design of the platform and the placement of the cameras, but has no implementation
of robotics; it only specifies that a robot arm should be used. This thesis seeks to
implement the robotics necessary for a satisfactory integration with surgeons. The
robot used in the thesis is the IRB 14000, also known as YuMi, developed by ABB
Ltd, but any robot arm which can carry a large enough payload can be used.

Controlling the robot requires kinematics, control theory and a way of sending
references to the robot. Robot kinematics and control theory are both preexisting
and the necessary background will be summarised in chapter 2.4 and 2.3 respec-
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Chapter 1. Introduction

tively. Sending references to the robot can be done with the Externally Guided Mo-
tion Research Interface summarised in chapter 2.5.

Detecting the motion of the surgeon requires sensors, which in turn need to
communicate with the controller of the robot. VL6180 time of flight laser sensors
are used; the placement of the sensors required to get the necessary information
is discussed in chapter 2.7, while the protocol used for communication with these
sensors is discussed in chapter 2.6.

1.2 End goal

Implementing the control algorithms, and integrating the necessary supporting in-
frastructure (such as sensors, wiring and computational chips), which results in a
satisfactory tracking of the surgeons movements is the ultimate goal of this thesis.
This is divided into subgoals: setting up communication between the robot, the sen-
sors and a Raspberry Pi which handles calculations and communication; designing a
control algorithm which results in satisfactory tracking of translational movements;
and lastly designing a control algorithm which results in satisfactory tracking of
both translational movements and rotational movements.

1.3 Outline

Chapter 2: This chapter introduces the relevant theory and technical specifications
necessary to implement the control and communication.
Chapter 3: This chapter walks through the different steps carried out during imple-
mentation.
Chapter 4: This chapter presents and discusses the results gained from testing.
Chapter 5: This chapter reviews how far the implementation has succeeded, and
outlines a few possible areas of future work.
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2
Background

This chapter summarises the theory and technical specifications that are necessary
for the implementations presented in chapter 3.

2.1 Matrix Theory

Below a computationally efficient method to solve systems of equations is intro-
duced. This method is then expanded upon so it can be used to solve matrix equa-
tions without the need of the matrix inverse. It is assumed that the reader is familiar
with the concepts of systems of equations, column and row vectors, matrices, the
relations between these and how the basic operations work on these constructs.

LU factorisation
If AAA is an arbitrary quadratic n×n matrix with upper left k× k submatrices AAAk then
matrix theory [Böiers, 2010] tells us that if detAAAk 6= 0 for all k≤ n there is a unique
factorisation AAA = LLLUUU with LLL a lower triangular matrix and UUU an upper triangular
matrix.

LLL =


1 0 · · · 0

l21 1 · · · 0
...

...
. . .

...
ln1 ln2 · · · 1

 , UUU =


d1 u12 · · · u1n
0 d2 · · · u2n
...

...
. . .

...
0 0 · · · dn

 (2.1)

A system of linear equations can be rewritten with the matrices in 2.1 as

AAAxxx = bbb⇔ LLLUUUxxx = bbb⇔

{
LLLyyy = bbb
UUUxxx = yyy

(2.2)

11



Chapter 2. Background

with xxx= [x1 x2 · · · xn]
T , yyy= [y1 y2 · · · yn]

T and bbb= [b1 b2 · · · bn]
T

as column vectors. This system of equations has the solution

y1 = b1

y2 = b2− l21y1

y3 = b3− l31y1− l32y2
...

yn = bn− ln1y1− ln2y2− ln3y3−·· ·− ln(n−1)y(n−1)

xn = yn
dn

x(n−1) =
y(n−1)−u(n−1)nxn

d(n−1)

x(n−2) =
y(n−2)−u(n−2)nxn−u(n−2)(n−1)x(n−1)

d(n−2)
...

x1 =
y1−u1nxn−u1(n−1)x(n−1)−u1(n−2)x(n−2)−···−u12x2

d1

(2.3)

.
Introducing the n×m matrices

XXX =
[
xxx1 xxx2 · · · xxxm

]
, BBB =

[
bbb1 bbb2 · · · bbbm

]
, where xxxiii and bbbiii are column vectors, the matrix equation AAAXXX = BBB can be divided
into m new matrix equations 

AAAxxx1 = bbb1

AAAxxx2 = bbb2
...
AAAxxxm = bbbm

(2.4)

, which all can be rewritten to the form in 2.2 and thus has a solution given by 2.3.
Introducing a permutation matrix P which reorders the rows of matrix A en-

sures that it is always possible to find a factorisation PPPAAA = LLLUUU . A system of linear
equations can now be rewritten similarly to 2.2 as

AAAxxx = bbb⇔ PPPAAAxxx = PPPbbb⇔ LLLUUUxxx = PPPbbb⇔

{
LLLyyy = PPPbbb
UUUxxx = yyy

(2.5)

and the matrix equation PPPAAAXXX = PPPBBB is divided into
PPPAAAxxx1 = PPPbbb1

PPPAAAxxx2 = PPPbbb2
...
PPPAAAxxxm = PPPbbbm

(2.6)
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2.2 Quaternions

which all can be rewritten to the form in 2.5 and thus have the solution given by 2.3,
except the subscripts of the elements in the bbbi vectors are permuted as decided by
PPP.

2.2 Quaternions

A short summary of quaternions is given as these can be used as a convenient rep-
resentation of rotations.

Quaternions are extensions of the complex space defined as

qqq = qr + vvv = qr +qiiii+q j jjj+qikkk

where qr ∈ R with basis {111} and vvv ∈ R3 with basis {iii jjj kkk}. The basis elements
have the following relation: iii2 = jjj2 = kkk2 = iii jjjkkk = −1. A quaternion qqq is called a
unit quaternion if the norm of qqq, ||qqq|| =

√
q2

r +q2
i +q2

j +q2
i , is equal to 1; such a

quaternion belongs to the unit sphere in R4, qqq ∈ S3. Unit quaternions can be used
to represent rotation, and the unit quaternion rotation ppp′ = qqqpppq̄qq is equivalent to the
matrix rotation ppp′ = RRRppp with RRR given by

RRR =

1−2(q2
j +q2

k) 2(qiq j−qkqr) 2(qiqk +q jqr)

2(qiq j +qkqr) 1−2(q2
i +q2

k) 2(q jqk−qiqr)
2(qiqk−q jqr) 2(q jqk +qiqr) 1−2(q2

i +q2
j)

 (2.7)

. Here q̄qq = qr − vvv is the conjugate of the quaternion. The unit quaternion can be
recovered from a rotation matrix as

qr = ±
√

1+R11+R22+R33
2

qi = ± R32−R23
|R32−R23|

√
1+R11−R22−R33

2

q j = ± R13−R31
|R13−R31|

√
1−R11+R22−R33

2

qk = ± R21−R12
|R21−R12|

√
1−R11−R22+R33

2

(2.8)

; note that the representation on quaternion form is not unique as qqq and−qqq represent
the same rotation.

For two quaternions qqq1,qqq2 ∈ S3 the rotation ∆qqq = qqq1q̄qq2 represents the rotation
from qqq2 to qqq1, where the formula for multiplication of two quaternions is given by

qqq1qqq2 = (q1
r + vvv1)(q2

r + vvv2) = (q1
r q2

r − vvv1 · vvv2,q1
r vvv2 +q2

r vvv1 + vvv1× vvv2) (2.9)

. Mapping the rotation in quaternion representation, ∆qqq, to an angle representation,
∆θθθ , is done with

∆θθθ = 2log(∆qqq) (2.10)
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Chapter 2. Background

, where log(qqq) is the natural logarithm of a unit quaternion given by

log(qqq) =


vvv
||vvv|| arccosqr , ||v|| 6= 0[
0 0 0

]T
, ||v||= 0

(2.11)

, note that the real part of this logarithm is always zero and log(qqq) can be interpreted
as part of R3. [Ude et al., 2014]

2.3 Control Theory

How a PD controller is implemented in a discrete real-time system, how quaternions
can be used to construct a PD controller for rotations, what mid-ranging control is
and how to implement a Kalman filter in a discrete real-time system is presented
below. Knowledge of the PD controller and its constituents and knowledge of the
Kalman filter is assumed.

PD Controller
As a controller implemented on a computer necessarily reads new measurements
and sends new signals discretely a PD-controller must be discretised in order to be
implementable. In the following e(t) = yr(t)− y(t) is the error between a reference
for the controlled variable, yr(t), and the controlled variable, y(t); t is continuous
time; and tk is discrete time incremented with h = tk− tk−1.

The proportional part, P, is in continuous time given by

P(t) = Ke(t) (2.12)

with design parameter K. Equation 2.12 is straightforwardly discretised as

P(tk) = Ke(tk) (2.13)

.[Årzén, 2014]
The derivative part, D, is in continuous time given by the solution to

Td

N
dD(t)

dt
+D(t) = KTd

de(t)
dt

(2.14)

where Td and N are design parameters. The derivative of D acts as a low pass filter,
which is added due to the tendency of a pure derivative to amplify measurement
noise. With this low pass filter the gain at high frequencies is limited to N. Equation
2.14 is discretised by approximating the derivatives as backward differences

Td

N
D(tk)−D(tk−1)

h
+D(tk) = KTd

e(tk)− e(tk−1)

h
(2.15)
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2.3 Control Theory

which is rewritten as

D(tk) =
Td

Td +Nh
D(tk−1)+

KTdN
Td +Nh

(
e(tk)− e(tk−1)

)
(2.16)

. [Årzén, 2014]

Control of rotations with quaternions
A typical PD-controller for the angles of an orientation can be written as

θ̈θθ(t) = −K
(
θθθ(t)−θθθ r(t)

)
− K

Td

d
dt

(
θθθ(t)−θθθ r(t)

)
⇔

ωωω(t) = −K∆θθθ(t)− K
Td

d
dt ∆θθθ(t)

(2.17)

, where K and Td are design parameters, θθθ r is the desired orientation and θθθ is the
measured orientation represented with angles. Equation 2.17 can be rewritten with
equation 2.10 into

ω̇ωω(t) =−K log
(
qqq(t)q̄qqr(t)

)
− d

dt
log
(
qqq(t)q̄qqr(t)

)
(2.18)

, where the 2 from 2.10 is incorporated into the design parameter K, qqqr is the desired
orientation and qqq is the measured orientation represented with quaternions.[Ude et
al., 2014]

Mid-ranging control
Mid-ranging control is a control scheme, which can be used in systems where there
are more possible inputs than outputs. The extra degree of freedom can be used to
achieve some other control goal, which in mid-ranging control is to keep some of
the control inputs close to a reference input, which in turn can prevent saturation
of these control inputs. This is done by adding a second control loop to the stan-
dard loop where the control inputs from the standard loop is used as the controlled
variable. The controllers in both loops can be of any type, and the process model
is divided into three parts, two to model the two groups of control signals different
influences on the process and one to model the shared influence. Such a control
structure can be seen in figure 2.1. [Haugwitz et al., 2005]

Kalman filter
Given a system in the state space form

ẋxx = Axxx+Buuu
yyy = Cxxx (2.19)

15



Chapter 2. Background

Figure 2.1 A general mid-ranging control structure. All signals can be multivari-
ate. CCC111 and CCC222 are the controllers and GGG111, GGG222 and GGG333 are different parts of the
process model.

, with A, B and C as matrices and the state x, the measured signal y and the control
signal u as vectors, the Kalman filter is given by

˙̂xxx = Ax̂xx+Buuu+K(yyy− ŷyy)
ŷyy = Cx̂xx

(2.20)

, where x̂ is the state estimate and ŷ is the filtered measurement. If the states can

be measured directly 2.19 and 2.20 can be simplified since C = I ⇔

{
yyy = xxx
ŷyy = x̂xx

.

Furthermore, assuming no correlation between measurements of different states the
matrix K should be chosen as a diagonal matrix where each diagonal entry weights
the effect of the measurements of each state on that state’s estimate. Larger diagonal
entries causes the estimates to converge quicker when an unmodelled disturbance
affects a state, but the estimate will be more sensitive to measurement noise. Con-
versely, smaller diagonal entries make the estimate less noise sensitive, but cause
slower convergence.

In order to implement 2.20 it needs to be discretised. Using forward difference
˙̂xxx can be approximated as

1
h
(x̂xxk+1− x̂xxk) = Ax̂xxk +Buuuk +K(xxxk− x̂xxk) (2.21)

and a new state estimate can be calculated each time a new control signal is com-
puted as

x̂xxk+1 = x̂xxk +h
(
Ax̂xxk +Buuuk +K(xxxk− x̂xxk)

)
(2.22)

.
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2.4 Robotics

2.4 Robotics

An introduction to conventions and kinematics of robotics is given below. Basic
kinematics and the Denavit-Hartenberg Convention are first introduced. Differen-
tiation of results from kinematics leads to velocity kinematics which is presented
after.

Kinematics
In robotics each joint has its own frame with different origins and different axis
directions. The relation between the representation of a point in frame i, pppi, and the
representation of the same point in frame j, ppp j, is given by

pppi = RRRi
j ppp

j +dddi
j (2.23)

, where RRRi
j is a 3× 3 rotation matrix representing the rotation of the axes in co-

ordinate system j in relation to the axes in coordinate system i, and dddi
j is a 3× 1

column vector representing the distance between the origins in coordinate system i.
[Freidovich, 2017]

In order to represent both rotations and translations as matrix multiplications the
homogeneous transformation matrix is introduced:

HHH i
j =

[
RRRi

j dddi
j

000 1

]
(2.24)

and 2.23 can now be written as
PPPi = HHH i

jPPP
j (2.25)

, with PPPi = [pppi 1]T . Introducing AAAi ≡ HHH i−1
i the homogeneous transformation ma-

trix can be written as

HHH i
j =


AAAi+1AAAi+2 · · ·AAA j−1AAA j if i < j
III if i = j(
HHH j

i

)−1 if i > j

(2.26)

.
Following the Denavit-Hartenberg (DH) Convention the joint i of a robot has a

homogeneous transformation matrix defined as

AAAi =


cosθi −sinθi cosαi sinθi sinαi ai cosθi
sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di
0 0 0 1

 (2.27)

, where the DH parameters are: the rotation around~zzzi−1, θi; the displacement along
~zzzi−1, di; the displacement along~xxxi, ai; and the rotation around~xxxi, αi. For a prismatic
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joint all parameters except di are constant, and for a revolute joint all parameters
except θi are constant; the variable parameter is called the joint variable and is
denoted qi. [Freidovich, 2017]

Given the joint variables for all joints any point in frame j can now be converted
to frame i with 2.25. This can be used to solve the forward kinematics problem:
Given the joint variables, what is the representation of a point given in the frame of
the last joint, the end-effector frame, in the base frame?

A common problem is the inverse of this, called inverse kinematics: Given a
point in the base frame, what joint variables places a point in the end-effector frame
at this point? Unlike forward kinematics, where the problem always has a unique so-
lution, inverse kinematics can have several solutions. It can be shown that a unique
solution only exists if the robot has six joints; if the robot has less than six joints a
solution does not always exist, and if the robot has more than six joints the solution
is not always unique. The latter case might be desirable as it allows the same posi-
tion to be reached in different ways, which in turn allows the robot to, for example,
avoid obstructed paths. It is often not possible to find an analytic solution to the
inverse kinematics problem.[Freidovich, 2017]

Velocity Kinematics
Given an n-joint robot the homogeneous transformation matrix between the end-
effector frame and the base frame is given by

HHH0
n
(
qqq(t)

)
=

[
RRR0

n
(
qqq(t)

)
ddd0

n
(
qqq(t)

)
000 1

]
(2.28)

where it is now noted that the Matrix is a function of the joint variables qqq(t) =
[q1(t) q2(t) · · · qn(t)]T which in turn are functions of time when the robot is
moving.

A point which has constant coordinates in the end-effector frame, pppn, but is
moving in the base frame, ppp0(t), has a relation between representations given by
2.23 as

ppp0(t) = RRR0
n
(
qqq(t)

)
pppn +ddd0

n
(
qqq(t)

)
(2.29)

with time derivative

ṗpp0(t) = ωωω
0
n(t)×RRR0

n
(
qqq(t)

)
pppn + vvv0

n(t) (2.30)

, where ωωω0
n(t) is the angular velocity of the end-effector frame in the base frame,

and vvv0
n(t) is the linear velocity of the origin of the end-effector frame in the base

frame. [Freidovich, 2017]
The velocities in 2.30 are given by{

vvv0
n(t) = JJJv

(
qqq(t)

)
q̇qq(t)

ωωω0
n(t) = JJJω

(
qqq(t)

)
q̇qq(t)

(2.31)
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2.4 Robotics

, where

JJJ
(
qqq(t)

)
=

[
JJJv
(
qqq(t)

)
JJJω

(
qqq(t)

)]
is a 6× n matrix called the manipulator Jacobian. With JJJ

(
qqq(t)

)
= [JJJ1 · · · JJJn]

the values of the Jacobian can be extracted from the homogeneous transformation
matrices

HHH0
i−1 =

[
xxx0

i−1 yyy0
i−1 zzz0

i−1 ddd0
i−1

0 0 0 1

]
as

JJJi =



[
zzz0

i−1× (ddd0
n−ddd0

i−1)

zzz0
i−1

]
if joint i is revolute

zzz0
i−1

0
0
0

 if joint i is prismatic

. [Freidovich, 2017]
Introducing

ξξξ (t) =
[

vvv0
n(t)

ωωω0
n(t)

]
equation 2.31 can be written as

ξξξ (t) = JJJ
(
qqq(t)

)
q̇qq(t) (2.32)

. The Jacobian can be inverted when the robot has six joints, n = 6, and the robot
is not at a singularity. The joint velocities, q̇qq∗, which result in some desired end-
effector velocities ξξξ ∗, can then be calculated from 2.32 as

q̇qq∗ = JJJ−1
ξξξ ∗ (2.33)

. When n > 6 all solutions can be found with

q̇qq∗ = JJJ+ξξξ ∗+(III− JJJ+JJJ)bbb (2.34)

where

JJJ+
(
qqq(t)

)
= JJJT (qqq(t))(JJJ

(
qqq(t)

)
JJJT (qqq(t)))−1

is the pseudo inverse of the Jacobian and bbb is a vector, which can be seen as joint
velocities projected onto the null space of the Jacobian by (III− JJJ+JJJ). They can be
considered to belong to the null space as any velocity qqq′(t) given by

qqq′ = (III− JJJ+JJJ)bbb (2.35)
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will not affect the velocities of the end-effector since

ξξξ
′
= JJJqqq′ = JJJ(III− JJJ+JJJ)bbb

= (JJJ− JJJJJJT (JJJJJJT )−1JJJ)bbb (2.36)
= (JJJ− JJJ)bbb = 000

. Note that in the equations above the dependence of t and qqq(t) is not always explic-
itly stated as this would make the equations hard to read. [Freidovich, 2017]

2.5 Externally Guided Motion Research Interface

Externally Guided Motion Research Interface, henceforth called EGMRI, is an ex-
tended version of the Externally Guided Motion module, henceforth called EGM,
released by ABB Ltd. The major difference between the two is that EGMRI allows
more signals to be sent and received.

EGM bypasses the path planning of ABB robots and sends references directly
to the motors in the joints. These references are either joint values: motor torque,
angular velocity or joint angle; or a pose defined in some reference frame. There
are some drawbacks with EGM: the path planning is bypassed so the movements
between two points can not be expected to be linear, and if linear movement is
desirable the interpolation most be done beforehand; if the robot approaches a sin-
gularity the robot will stop execution; and EGM only works on 6-jointed robots.
The latter is due to the limited amount of signals allowed to be sent and received in
EGM and is not a hindrance with EGMRI. [Chapter 9.3 Externally Guided Motion
in Application manual - Controller software IRC5 2016]

2.6 Inter-Integrated Circuit

Inter-Integrated Circuit, henceforth I2C, is a protocol for a bidirectional 2-wire bus.
A wire for serial data, SDA, and a wire for serial clock, SCL, is used to transmit
information between devices. Devices are recognised by unique addresses, so if
more devices with the same address are to be used a switch is needed. Devices can
act as both receivers and transmitters, and a device initiating transmission of data is
called a master and any device addressed by the master is called a slave. More than
one master can use the same bus, but such a system is not considered here. [I2C-bus
specification and user manual 2014]

The logic levels of the bus is determined by the supply voltage, VDD, with a
LOW-threshold of 0.3VDD and a HIGH-threshold of 0.7VDD. The bus is considered
free if both SDA and SCL is HIGH. A transmission is initialised by the master
device by sending a START condition, in which SDA transitions from HIGH to
LOW while SCL is HIGH, and the bus is now busy. [I2C-bus specification and user
manual 2014]
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2.7 Sensor placement

Figure 2.2 The transfer of data over the I2C-bus. Note that SDA only changes
between HIGH and LOW when the clock signal on SCL is low, blue areas, with the
exception of start and stop conditions, yellow areas. Each clock pulse of HIGH on
SCL, green areas, represents a bit.[I2C data transfer]

Data is sent from the transmitter on the SDA wire one byte at the time, with
the most significant bit first. After a successful transfer an Acknowledge signal of
one bit is sent by the receiver by pulling the SDA signal LOW. If SDA is HIGH
during the Acknowledge the transfer was unable to be performed properly. [I2C-bus
specification and user manual 2014]

The value of SDA is only allowed to change when SCL is LOW as SDA must
be stable when SCL is HIGH, and the value of SDA when SCL is HIGH determines
a bit’s value. The first byte sent after a START condition is the seven bit slave
address followed by a READ/WRITE bit representing whether the master or the
slave will transmit data on SDA. If the last bit is zero, WRITE, the master will
be the transmitter and if the bit is one, read, the slave will be the transmitter; note
that the master always generates the clock pulses on the SCL independent of what
device is considered the transmitter. [I2C-bus specification and user manual 2014]

Any number of bytes can now be sent by the transmitter, and when this is de-
termined done by the master the master either generates a new START, in which
another slave can be addressed, or a STOP, by pulling the SDA high when SCL is
HIGH and the bus is now considered free again. A transfer like this is illustrated in
figure 2.6. [I2C-bus specification and user manual 2014]

2.7 Sensor placement

A model of the camera platform developed by Emma Andersson and Anna Wik-
ström, modified to allow placement of sensors, can be seen in figure 2.3. In the
plane of the semicircle of the platform translations are easily measured in two per-
pendicular directions; translations in the direction perpendicular to this plane are
calculated as a∗sinα where a is the sensor measurement of the sensor placed in the
extrusion and α is the angle of the sensor relative to the direction perpendicular to
the semicircle plane.

Rotations are all measured by three pairs of sensors placed in the semicircle
plane. Each pair is placed according to figure 2.4 which allows for an angle to be
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Chapter 2. Background

Figure 2.3 The modelled platform. Sensors are to be placed in the seven recesses,
with two hidden from sight in the image.

calculated from sensor measurements as{
tan(θ) = x

y

x = a−b
⇔ θ = arctan

(a−b
y

)
(2.37)

, where the parameters are defined in the figure.
Each pair is perpendicular to the other pairs and thus each pair results in three

independent angles which fully represent the rotation of the surgeon’s head. Note
that the head is approximated as flat between the sensors in each pair.
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2.7 Sensor placement

Figure 2.4 Illustration of sensor pair setup. The distance between sensors is y, the
measurement from the upper sensor is a, the measurement from the lower is b and
the angle that is to be calculated is θ .
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3
Methods

In order to implement a robotic arm capable of following the movements of a sur-
geon communication between the controller, the robot and the sensors was neces-
sary; the platform needed to be modified to allow sensor placement; and the control
algorithm needed to be implemented and tuned with testing.

Before conducting any setup or implementing any algorithms a full day visit at
the children’s heart centre at Lund university hospital was also conducted in order
to get a bit familiar with the environment the robot is to be implemented in.

3.1 Setting up communication

Communication between the control program, the robot and the sensors is handled
by a Raspberry Pi 3 Model B. The control program executes on the Raspberry and
also contain functions which are used to communicate with the sensors. A bridge
acting as a server also executes on the Raspberry and is used to communicate be-
tween the control program and the robot.

Communication with the robot
The robot is connected to the Raspberry via an ethernet cable, and communication
with the robot is carried out via a bridge between labcomm and EGMRI provided by
the computer science department at LTH. Once the control program and the robot
has connected to the bridge data is sent from the robot to the control program in
the form of joint values, joint velocities and joint torques. The control program uses
these combined with sensor data to calculate references, joint values, joint velocities
and joint torques, which are sent back to the robot. This procedure is repeated at 250
Hz.

Communication with sensors
The vl6180 sensors are connected to the Raspberry, via a multiplexer of model
TCA9548A, with the I2C-bus described in section 2.6. An SCL and an SDA wire is
connected between the Raspberry and the multiplexer, which in turn is connected to
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3.1 Setting up communication

Figure 3.1 A circuit diagram illustrating how the seven sensors are connected. Pin
3 on the Raspberry is the SDA pin and pin 5 is the SCL pin. These are connected to
pin 5 and 7 on the multiplexer, which are the SDA and SCL pins. The multiplexer
switches the SDA-SCL connection to the SDA-SCL pairs 0− 7, counted counter-
clockwise from pins 17 and 19 to pins 8 and 6. Note that the last pair, pins 8 and 6,
are not used. Each pair is connected to a sensor via pin 3, SDA, and pin 4, SCL, on
the sensor. Voltage is supplied via pin 1 and 9 on the Raspberry.

each of the seven sensors, labelled 0− 6, via an SCL and an SDA wire per sensor.
By sending a 1 left shifted 0− 6 steps to the multiplexer it connects an SCL-SDA
pair, labelled with the number of shifted steps, to the SCL-SDA pair connecting the
raspberry and the multiplexer.

As the multiplexer and the sensors have different I2C addresses both can be
detected and communicated with at any time, and changing which sensor to com-
municate with is done by sending a 1 left shifted 0− 6 steps to the multiplexer
as described above. The Raspberry also supplies voltage to the sensors and mul-
tiplexer; a circuit diagram illustrating this and the I2C connections can be seen in
figure 3.1.

The sensors update the range measurements continuously in a thread separate
from the rest of the control program. The program then uses the latest measurements
when calculating control action. Starting a new measurement is done by writing
the command to start the measurement to the register in the sensor governing this,
then polling the register which notifies if the measurement is done, then reading the
measurement from the register in which it is stored and finally clearing the interrupt
caused by starting the measurement by writing to the register governing this, after
which a new measurement is started. The sensors have more registers than the ones
mentioned which allows for changing settings and different functionality, but these
are not touched upon in this thesis.
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Chapter 3. Methods

3.2 Platform design

The original platform designed by Emma Andersson and Anna Wikström had no
space for the sensors necessary, and the original design had to be altered. The mod-
ified design can be seen in figure 2.3, where the height of the semicircle and the
width of the extrusion have been increased from 30mm to 47mm; and eight recesses
have been added, with drill holes and holes for wires, where the sensors and the
multiplexer can be placed. The recesses for the sensors are placed as described in
section 2.7 while the recess for the multiplexer is placed on the back of the extrusion
so wiring between sensors and multiplexer can be placed outside the platform and
not be in the way for a surgeon wearing the platform. The position of the cameras
relative to each other are still the same as in the original design.

3.3 Control design

The EGMRI allows reference torques, reference joint velocities and reference joint
values to be sent to the internal controller and it allows measuring of the current
torques, joint velocities and joint values and distance measuring sensors allowed
measurement of the pose of the head relative to the platform as described in chapter
3.2. As control with torques requires an extensive dynamical model of the robot
and its load, the ability to use reference torques was ignored in the design of the
controller, and the input signals for the internal controller was thus references in
joint velocities, q̇re f , and joint values, qre f , with the resulting output signals the
actual joint velocities, q̇, actual joint values, q, and the pose of the head relative to
the platform, y7.

The goal of the project is to keep this pose at a, in the frame of the platform,
constant reference, which is constructed by measuring the pose of the head when
the program is started; several measurements are done in order to apply a median
filter and get a more accurate reference. In order to determine the reference pose
and the pose of the head in the base frame these poses are turned into homogeneous
transformation matrices and then multiplied from the right with the homogeneous
transformation matrix HHH0

7 given by equations 2.26 and 2.27, the measured current
joint values and the Denavit-Hartenberg parameters in table 3.1. In the base frame
it is now possible to find joint values which make the pose of the head, y0, coincide
with the reference pose, r0; this is however complicated as the relation between head
pose and joint values are nonlinear. Instead it would be desirable if some control
signal could be generated in cartesian space and then converted to joint values.

The relation between the error in pose, e, and how the platform should move
is straight forward. For position the error is simply the difference in position and
the platform should move to diminish this error, which can be done by letting the
error in each axis be the input to a PD controller with acceleration along that axis as
output. For orientation the error can be mapped to quaternion space and the angular
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3.3 Control design

Link di/m ai/m αi/rad
1 0.110 −0.030 −π

2
2 0 0.030 π

2
3 0.2465 0.0405 −π

2
4 0 −0.0405 π

2
5 0.265 0.0135 −π

2
6 0 −0.027 π

2
7 0.032 0 0

Table 3.1 DH-parameters of the IRB 14000 "YuMi" robot. No θi:s are given as all
joints are revolute and all θi:s therefore variable.

Joint min/deg max/deg
1 −168.5 168.5
2 −143.5 43.5
3 −123.5 80.0
4 −290.0 290.0
5 − 88.0 138.0
6 −229.0 229.0
7 −168.5 168.5

Table 3.2 The allowed range for each joint. Note that this table uses the labelling
of joints as preferred by ABB. The physical order of the joints, starting at the base,
is 1, 2, 7, 3, 4, 5 and 6.

acceleration can be computed from a PD controller on the form given by equation
2.18. Acceleration is chosen as the output to get smother movement than if velocity
or position was the output; even smoother movement could be achieved if jerk was
instead the control output, but this is deemed unnecessary. The PD controller is
easily implementable given the discretisation from equations 2.13 and 2.16.

In order to get signals that can be sent to the internal controller the control
signal, u, is integrated to velocity, ξ , which in turn is converted to desired joint
velocities via the inverse velocity kinematics described by equation 2.34 where the
pseudoinverse of the Jacobian, JJJ+, is calculated using the LU-factorisation method
from chapter 2.1.

The joint velocities from the inverse velocity kinematics are integrated to get
the desired joint values and both are sent as references to the internal controller. As
the internal controller shuts down if a joint value reference outside of the allowed
range, given in table 3.2, is sent, the joint values are saturated to be within this range
before being sent.

Converting the control output to joint space at the velocity stage instead of the
other two possible stages is preferable, because converting directly from accelera-
tion would require the derivative of the Jacobian and be a more complicated con-
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Chapter 3. Methods

version; because converting from position requires inverse kinematics which has no
general analytic solution; and because it improves control to have the joint velocities
as an input to the internal controller.

Conversion from cartesian velocity to joint velocities does not have a unique
solution and any joint velocity, b, projected onto the the null space of the Jacobian
as in equation 2.35 does not affect the cartesian velocity. It is thus possible to use
mid-ranging control to compute these joint velocities and project them onto the null
space in order to also control the joint values. A simple way to control the joint
values in this way is to choose a joint which is then given reference value and then
use a simple P controller to attempt to keep the joint value at the reference.

It was discovered during testing that the measurements from the sensors were
too noisy to use directly, and that the integrated control signal was indistinguishable
from the noise in the measured velocity. Both therefore needed to be filtered. With

the cartesian pose, x1, and cartesian velocity, x2, as states xxx =

[
x1
x2

]
the state space

system for the position along each axis and the rotation around each axis can be
modelled as

ẋxx =

[
0 −1
0 0

]
xxx+
[

0
1

]
uuu

yyy = Ixxx

where the −1 is due to the velocity measured being the velocity of the platform and
not the head.

The resulting Kalman filter is given by equation 2.20 as

˙̂xxx =
[

0 −1
0 0

]
x̂xx+
[

0
1

]
uuu+

[
kp 0
0 kv

]
(xxx− x̂xx)

which is discretised with 2.21.
As the measured velocities are the joint velocities and not the cartesian, it is

necessary to apply the Jacobian, JJJ, as in equation 2.32 before sending the velocities
to the Kalman filter and as the estimated velocities from the Kalman filter then
are in the base frame they are rotated to the end frame with a rotation matrix, RRR7

0,
found by taking the transpose of the rotation matrix in HHH0

7, before being used to
calculate the pose estimate. As there is a risk of the pose measurement to result
in outliers a moving median filter was used to reject these. A schematic for the
discussed controller can be found in figure 3.2.

For the sake of pole placement the process in figure 3.2 is modelled as a double
integrator, ignoring the nonlinearities in the Jacobian and the saturation and assum-
ing that the ABB controller is able to follow references perfectly. This results in the
process transfer function

P(s) =
−1
s2 (3.1)
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3.3 Control design

Figure 3.2 A schematic of the control system.

where the minus sign is due to the velocity measured being the velocity of the
platform and not the head.

The transfer function of the of the PD-controller, not considering the low pass
filtering of the derivative, is given by

C(s) = k(1+ sTd) (3.2)

and the closed loop transfer function is given by

G(s) =
PC

1+PC
=
−k(1+ sTd)

s2− skTd− k
(3.3)

. The poles of the system 3.3 are given by

s2− skTd− k = 0
⇔

s =
kTd

2
±
√(kTd

2

)2
+ k

. As the slowest pole, the one closest to zero, determines the speed of the system
it is redundant to have two different poles and we place both poles at the same
location s = −c, where c is a positive real number. These design choices result
in the following equations determining the parameter values given the location of
desired double pole.

√(
kTd
2

)2
+ k = 0

s = kTd
2

s =−c

⇔

{
k =−c2

Td = 2
c
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Chapter 3. Methods

Figure 3.3 The head and platform mounted on the robot.

Note that when controlling orientation k =−2c2 due to the 2 from equation 2.10
incorporated into the control parameter.

3.4 Testing

Testing was carried out in order to determine what parameters in the Kalman fil-
ter gave satisfactory convergence and noise reduction and to determine what pole
placement gave satisfactory control. First measurements with different Kalman pa-
rameters were made while the platform was stationary, in order to test the filtering
of the pose only. Then measurements with different Kalman parameters was made
while the platform was accelerating along and then around each axis, in order to
test the filtering for both the pose and the velocity. Once the Kalman parameters
had been tuned testing of different pole placements was made in order to get sat-
isfactory control. Testing was made using the styrofoam head seen in figure 3.3.
During the testing of pole placement the head was moved by the other arm of the
robot along a predetermined path.
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4
Results and discussion

Below follow the results and discussion obtained while testing. In the Kalman filter
plots the actual measurements are plotted with a solid red line while the estimates
are plotted with a dashed cyan line. The pose is measured in the coordinate frame of
the platform, with θ , ψ and φ as the rotation around the x, y and z axis respectively,
while the velocity is measured in the base frame of the robot, with vk denoting linear
velocity along the k axis while ωk is denoting rotational velocity of rotation k. In
the error plots ek is the error along k or the rotational error of rotation k and emid is
the error in the joint value controlled by mid-ranging.

The pose measurements are prefiltered by a median filter which discards a mea-
surement if it is more than a number of standard deviations away from the median.
The standard deviations used was calculated by making a lot of measurements while
stationary and the result for each type of measurement can be seen in table 4.1.

Measurement Standard deviation
x 7.8675 ·10−4m
y 4.9263 ·10−4m
z 9.8633 ·10−4m
θ 5.8086 ·10−2rad
ψ 1.0418 ·10−1rad
φ 6.14483 ·10−2rad

Table 4.1 The standard deviations of each measurement. Used together with a
moving median filter to determine whether a measurement is an outlier or not.
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4.1 Stationary filtering

During the first tests the head and the platform were kept stationary in order to tune
the Kalman filters for the pose. Keeping the platform stationary here means having
a constant control signal of 0ms−2, but some small movement can still be seen in
some of the results, possibly due to a non-zero velocity estimate.

As a starting point the parameters of the Kalman filters was set to kp = kv = 2,
and the convergence and noise reduction of the pose filters with these default param-
eters can be seen without median filtering in figure 4.1 and with median filtering in
figure 4.2. Note that an outlier, seen in the x-measurement in both figures, influences
the estimate relatively much when no median filter is applied, due to the sensitivity
of linear filters from outliers.

As the movement from the head is not modelled any movement will require
the Kalman filters to reconverge, and it is therefore desirable to have as short a
convergence time as possible without risking oscillatory behaviour caused by noise.
As the measurements in rotation are more noisy, note the different scaling on the
vertical axis in the figures, the parameter was decreased to kp = 1 for orientation
while it was increased to kp = 16 for position. The resulting filtering can be seen
in figure 4.3; note the decreased convergence time for position and the smoother
estimate for orientation.

Figure 4.1 The Kalman filter with kp = kv = 2 for both position and orientation
and no median filtering.
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4.1 Stationary filtering

Figure 4.2 The Kalman filter with kp = kv = 2 for both position and orientation
and with median filtering.

Figure 4.3 The Kalman filter with kp = 16 for position and kp = 1 for orientation.
A median filter is used and kv = 2 for both position and orientation.
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4.2 Filtering in motion

In order to tune the Kalman filters for velocity the platform was accelerated along
and around the different axes of the platform frame while the head was kept station-
ary. In the figures below the pose measurements change even if there is no acceler-
ation in the direction measured; this is explained by the fact that the head measured
on does not extend towards infinity and is not flat.

In the velocity plots in figures 4.5, 4.7, 4.9, 4.11, and 4.13 it is noted that a de-
creased value of kv causes the velocity to reach larger magnitudes, but it also causes
the estimate to overestimate or underestimate the velocity more while an increased
value of kv has the opposite effect. It was at first thought that the overestimation and
underestimation of the velocity caused the overestimation and underestimation of
the pose seen for x in figure 4.5 and somewhat for z in 4.10 as these overestimations
and underestimations were remedied if the parameter kv was increased as in figures
4.6 and 4.10. It was later realised that this is more likely caused by the median filter
being too rigorous, which will be discussed more in the next section. The parameters
were at last tuned to kv = 2 for position and kv = 1 as a smaller parameter resulted
in larger speeds. Lastly it was noted that the measurements were not always able to
measure changes in rotation as can be seen in 4.12. This is explained by the head
being locally spherical and the angle measurements assumption of a flat surface.

Figure 4.4 The filtered pose when accelerating along the x-axis of the platform
with kv = 2 for both position and orientation.
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Figure 4.5 The filtered velocity when accelerating along the x-axis of the platform
with kv = 2 for both position and orientation.

Figure 4.6 The filtered pose when accelerating along the x-axis of the platform
with kv = 6 for position and kv = 2 for orientation.
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Figure 4.7 The filtered velocity when accelerating along the x-axis of the platform
with kv = 6 for position and kv = 2 for orientation.

Figure 4.8 The filtered pose when accelerating along the z-axis of the platform
with kv = 2 for both position and orientation.
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Figure 4.9 The filtered velocity when accelerating along the z-axis of the platform
with kv = 2 for both position and orientation.

Figure 4.10 The filtered pose when accelerating along the z-axis of the platform
with kv = 1 for position and kv = 2 for orientation.
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Figure 4.11 The filtered velocity when accelerating along the z-axis of the plat-
form with kv = 1 for position and kv = 1 for orientation.

Figure 4.12 The filtered pose when accelerating around the z-axis of the platform
with kv = 2 for position and kv = 1 for orientation.
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4.3 Control

Figure 4.13 The filtered velocity when accelerating around the z-axis of the plat-
form with kv = 2 for position and kv = 1 for orientation.

4.3 Control

In order to tune the controllers the head was moved by the robot’s free arm along a
programmed path and how well the platform followed depending on control param-
eters was analysed. In the first tests it was noticed that there was a substantial delay
between the movement of the head and the resulting control action, as can be seen
in figure 4.15, causing spikes in the error, as can be seen in figure 4.14, and slow re-
action. It was determined to be caused by the median filter rejecting measurements
too rigorously when measurements further away than 2 standard deviations was re-
jected and a test without the median filter was carried out. As can be seen in figure
4.16 this removed the delay, but instead caused the estimate to react to outliers too
strongly which resulted in a sometimes jabbing movement of the platform. As no
median filtering caused unwanted movements but a too rigorous filter caused delays
a less rigorous filter which rejected measurements further away than 10 standard
deviations was used. As can be seen in figure 4.17 this resulted in both rejection of
outliers and the removal of delays. With the delays gone tuning of the controllers
was possible. The placement of the poles in −4 for position and −1 for orientation
was found to cause oscillations in both position and orientation. The poles were
therefore moved to −2 for position and −0.5 for orientation which resulted in less
oscillations, but as expected the control acted slower as can be seen by comparing
figures 4.18 and 4.19. It was noticed after these tests that the wrong parameters for
the filtering of velocity had been used. Applying the correct parameters resulted in
faster control which can be seen by comparing figures 4.19 and 4.20, probably due
to the velocities’ dependence on the filter parameters.
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Chapter 4. Results and discussion

Figure 4.14 The error during movement along the path with the poles of the con-
trollers at −4 for position and −1 for orientation and with median filter designating
measurements as outliers if they are more than 2 standard deviations away.

As the performance of the mid-ranging controller is less important than the per-
formance of the other controllers this parameter was simply put as high as it could
without having a detrimental effect on the other controllers. As can be seen in the
error plots the error in the mid-ranging only goes to zero when the rest of the system
is stationary. This is acceptable as it is the value at stationarity that is important for
mid-ranging.
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4.3 Control

Figure 4.15 The pose measurements and the Kalman filtered estimates during
movement along the path with the poles of the controllers at −4 for position and
−1 for orientation and with median filter designating measurements as outliers if
they are more than 2 standard deviations away.

Figure 4.16 The pose measurements and the Kalman filtered estimates during
movement along the path with the poles of the controllers at −4 for position and
−1 for orientation and without median filter.
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Figure 4.17 The pose measurements and the Kalman filtered estimates during
movement along the path with the poles of the controllers at −4 for position and
−1 for orientation and with median filter designating measurements as outliers if
they are more than 10 standard deviations away.

Figure 4.18 The error during movement along the path with the poles of the con-
trollers at −4 for position and −1 for orientation and with median filter designating
measurements as outliers if they are more than 10 standard deviations away.
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Figure 4.19 The error during movement along the path with the poles of the con-
trollers at−2 for position and−0.5 for orientation and with median filter designating
measurements as outliers if they are more than 10 standard deviations away.

Figure 4.20 The error during movement along the path with the poles of the con-
trollers at−2 for position and−0.5 for orientation and with median filter designating
measurements as outliers if they are more than 10 standard deviations away.
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5
Conclusion and future work

What conclusions can be drawn from the results are presented next. After that follow
some final comments on what to do next to improve this camera platform.

5.1 Conclusion

The control algorithm implemented has given an overall satisfactory tracking of a
potential surgeon’s movements, although some work is still necessary before this
platform can be used by a real surgeon. The biggest issue is determining the orien-
tation from the measurements of angles; it is not always possible to distinguish two
different head orientations from the measurements due to local spherical geometry.
This could potentially be solved by: introducing more sensors to get more robust
measurements, although this might not be feasible without an extensive redesign
of the platform; measuring orientation differently, like using information from the
cameras or placing a gyroscope on the head; or by fastening small flat plates on the
head where the measurements are made.

Another issue is regarding safety: while testing it became apparent that the
wiring to the sensors is quite sensitive and a nudge can result in the sensors los-
ing connection requiring a restart of the whole system. The first time this happened
the loss of sensor data caused the platform to slam into the table; nothing was dam-
aged due to the safety mechanism installed on the robot causing it to shut down the
motors when too large external forces act upon them, but such a slam could poten-
tially be disastrous if occurring during operation. This specific issue can not happen
again as the control will now shut down if the sensors lose connection, but testing
might be required to ensure no similar safety issues exist.

Overall, the thesis has completed its goal of a satisfactory tracking of a potential
surgeons movements, and while some issues require further work it is a valid proof
of concept.
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5.2 Future work

As mentioned above the wiring to the sensors is quite sensitive and the implementa-
tion of the platform leaves it exposed. As a loss of connection requiring a restart of
the whole system is undesirable, it is sensible to make some redesign which covers
the wiring and the Raspberry.

In this thesis a simple mid-range controller is implemented, but there is potential
to introduce more complex mid-ranging control. Some possibilities are a controller
that attempts to keep the joint values away from the saturated area or a controller
which attempts to maximise the manipulability of the Jacobian, a measure of how
easy it is to achieve cartesian velocities depending on joint values, which could
avoid singularities and make the overall control better.

No testing with cameras mounted on the platform has been carried out, and it
may be necessary to retune the control to avoid oscillations caused by a larger and
differently spread weight. Developing the necessary image processing algorithms
to get useful data from the cameras is also necessary before deploying the platform.
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