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1 Introduction

Tin whiskers have long caused issues to electronic components and made the subject of many articles.
According to NASA the oldest reports concerning whiskers date back to the 1940’s [3] with failures ranging
from commercial satellites [8] to military equipment [6]. The whiskers are single-crystals growing from, for
example electronic components. Despite the long history of tin whiskers the actual cause of their growth
is still unknown. One of the reasons tin whiskers have gathered renewed attention during recent years is
that formerly lead (Pb) was used in tin solders. Nowadays though, use of Pb is being restricted due to its
toxicity, and for reasons unknown Pb seems to impair the growth of whiskers. Thus the issues caused by
tin whiskers are more likely to occur with the new lead free solders [3]. The hypothesis held by the author
is that the whiskers’ growth is stress-driven by stresses originating from the formation of an inter metallic
compound (IMC), Cu6Sn5, which forms due to a minimisation of the Gibbs free energy when mixing
copper (Cu) and tin (Sn). Thus it is believed that the IMC will grow due to diffusion as the Cu, and
Sn layers are in contact, with following transformation strains due to the volume change originating from
the formation of the IMC. Another reason for the whisker growth might be that the thermal expansion
coefficients are mismatched between the Sn and Cu causing stresses in the material [24], [25].

The need of incorporating crystal plasticity in the simulations is justified by the β-Sn crystal structure
which is of body centred tetragonal type showing high anisotropy for elastic properties (c.f [13],[25]). This
affects reliability of Sn based solder joints [5] as they may crack or deform. Moreover as the cause of the tin
whisker growth is thought to be the stress building up it is paramount to accurately describe the growth
process. Thus both of the IMC, and also of the corresponding stresses due to its growth, on a micro scale
must be considered. This is done by employing multi phase fields as in [26], [1], and [18], to simulate
the different grains and metals of a small system similar to [10]. The simulated system resembles a 2D
profile of a solder with a Cu layer at the bottom and Sn on top. The IMC is then modelled to nucleate
during an initial phase to mimic the fabrication of the solder. The aim with this work is to evaluate the
effectiveness of simulating the tin whiskers growing: not from an imagined initial state where the IMC
already has formed, but from a point where no IMC is originally present. With a successful simulation
the IMC would be seen as it grows and during its formation, and one would be able to study the stress
fields caused by it.

The chosen crystal plasticity model is a creep model, and thus plasticity is always present, even though
it may be minuscule. The variables chosen to model the plasticity are the slips of the crystal planes and
an increasing resistance to these slips. Dislocations due to slips are modelled through dislocation pile ups
giving rise to a plastic potential within the crystal.

Moreover the crystal plasticity is presented for finite deformations whereas the phase field formulations
and thus also the governing equations are presented in a small strain setting.

Lastly the simulations were performed in MOOSE [20] which is a FEM open source, multiphysics,
software developed by Idaho National Laboratories. It is built upon C++ with libMesh and PETSc
integrated to solve the differential equations at hand.

1.1 Notation

Throughout this thesis the following notation will be employed regarding tensor algebra and mathematics:
Let ēi denote the base vector, and let: ā =

∑
i aiēi, denote a first order tensor, ¯̄A =

∑
i,j Aij ēiēj , a second

order tensor, and ¯̄A =
∑

i,j,k,lAijklēiēj ēkēl a fourth order tensor respectively.

ā · b̄ =
∑
i

aibi ā⊗ b̄ =
∑
i,j

aibj ēiēj

¯̄A : ¯̄B =
∑
i,j

AijBij
¯̄A · ¯̄B =

∑
k,i,j

AikBkj ēiēj

¯̄A · b̄ =
∑
i,j

Aijbj ēi
¯̄A : ¯̄B =

∑
i,j,k,l

AijklBklēiēj .

Moreover ˙(�) will denote full time differentiation of the argument, and note that there is no sum over
common indices in this work unless stated.
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2 Crystal Plasticity Model

2.1 Introduction to Crystallographic Notation

With the aim of clarifying the following text some rudimentary notation is needed. When dealing with
crystals the conventional unit cell is an effective tool to distinguish between various types of crystals. This
cell is chosen as the minimal entity still retaining the symmetry of the underlying crystal lattice. The axes
in the unit cell will be denoted ā, b̄, and c̄. Let angles between two axes m̄ and n̄ be denoted [m̄, n̄]. Thus
the angles between the different axes are denoted [ā, b̄] = γ, [b̄, c̄] = α, and [c̄, ā] = β spanning between
the crystallographic axes (c.f. with the BCT unit cell of β-Sn in fig. (1)). The magnitude of each axis,
|ā| = a etc., is called the lattice constants. To describe any direction within the cell the crystallographic
coordinate system is used (c.f fig. (1)) and to denote the direction within a crystal lattice in a more
compact format a bracket notation, [uvw], is frequently used

m̄ = uā+ vb̄+ wc̄⇔ m̄ = [uvw], (1)

where the convention is to scale m̄ sufficiently so that u, v, and w are integer numbers. Should one have
need of describing a negative direction it is denoted with an overhead bracket

m̄ = −ā+ 2b̄+ c̄⇔ m̄ = [1̄21]. (2)

Furthermore the periodicity of the crystal often allows for an ever more compact format of the directions

〈101〉 ⇔ [101], [1̄01], [101̄], [1̄01̄], [011], [01̄1] . . . , (3)

where the 〈�〉 notation is representing all possible sign and order permutations of the integers within
the brackets which are equivalent after a symmetry operation (rotation about a lattice point, inversion,or
mirroring about a axis) [23].

To denote crystal planes a notation similar to the one used for directions is employed called Miller
indices. To obtain these in the case of a body centered tetragonal (BCT) crystal one may first construct
a lattice plane by taking two vectors spanning a plane defined by three non-colinear Bravais sites [23]

q̄ = m̄ · ¯̄A and p̄ = n̄ · ¯̄A; Let ¯̄A = [ā, b̄, c̄]; m̄, n̄ ∈ R3. (4)

The normal to this plane can be formed by taking the cross product of these vectors, and by remembering
that the cross product of parallel vectors is the zero vector and that a right hand system is employed, the
normal may be written

N̄ = q̄ × p̄ = l1b̄× c̄+ l2c̄× ā+ l3ā× b̄. (5)

Omitting the full derivation as it is out of scope in this work one may define a reciprocal lattice as in [23]
for reciprocal lattice vectors [āR, b̄R, c̄R].

¯̄AR · ¯̄A = 2πĪ; ¯̄AR = [āR, b̄R, c̄R],

āR =
2π

VC
(b̄× c̄); b̄R =

2π

VC
(c̄× ā); c̄R =

2π

VC
(ā× b̄). (6)

In eq. (6), ¯̄I is denoting the unit tensor of order two, and recognizing that the volume of the unit cell is

VC = ā · (b̄× c̄) = b̄ · (c̄× ā) = c̄ · (ā× b̄). (7)

Using eq. (7) in combination with eq. (6) to rewrite eq. (5) into

N̄ =
VC
2π

(
l1ā

R + l2b̄
R + l3c̄

R
)

= h · āR + k · b̄R + l · c̄R. (8)

The indices h, k, and l are chosen to be integers minimising the length of the vector N̄ . To utilize
the symmetry of the crystal a notation using {�} may also be used to denote a family of planes being
equivalent after symmetry operations:

{110} = (110), (1̄10), (11̄0), (1̄1̄0) . . . , (9)
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where the overhead bar once again denotes a negative integer. With the basic notation in place a slip
system is defined by a slip plane (hkl) and a slip direction [uvw] as

(hkl)[uvw]. (10)

Practically what one may do to interpret Miller indices denoting plane normals is to multiply the corre-
sponding lattice vector with the reciprocal of the Miller index to obtain the corresponding intersection
with that axis. Then one may rewrite the equation of the plane on its general form, αx+βy+γz+ ε = 0,
using the three intersections as defining points of the plane. Then the Miller indices of the plane is given
by the smallest set of the integers α, β, γ.

Figure 1: The BCT unit cell for β-Sn with marked lattice vectors. a = b =5.8315 Å, c =3.1814 Å [14].

Furthermore it is used with the same argument as in [14] that the notation 〈hkl) and 〈uvw] recognises
the tetragonal symmetry of the BCT crystal and means that the first two indices may permutate and
swap sign thus recovering all the slip systems of the family using compact notation. (c.f tab. (6))

Moreover when referring to a crystal, i.e. a region in a material with homogeneous orientation of its
unit crystals, and thus having a uniform crystal lattice, the word grain may be used interchangeably. That
is a piece of tin may consist of several grains, i.e. crystals.

2.2 Crystal Plasticity Theory

The model of the crystal plasticity is a phenomenological model relying on slips on crystal planes and an
evolving resistance to these slips. The plastic dissipation is thought to arise from crystal plane friction
resulting in heat losses. Moreover there are no grain boundaries in the model but of course crystal planes
cannot slide forever and thus a dislocation pile up is modelled to give rise to an energy accumulation
within the crystal. That is crystal planes eventually trapped at grain boundaries are incorporated into
the model as a build up of plastic energy. To begin: let the deformation gradient be defined by

¯̄F =
∂x̄

∂X̄
, (11)

where x̄ are the coordinates of a point lying within the crystal post deformation and X̄ is the same
material point in the undeformed configuration. Now let the deformation gradient be split into two parts

¯̄F = ¯̄Fe · ¯̄Fp. (12)

In eq. (12) ¯̄Fe denotes the elastic deformation gradient and ¯̄Fp the plastic deformation gradient. The
plastic deformation only considers slips in the crystal lattice which do not impose any change in angles
between the crystal lattice planes. One could view it as a transformation into an intermediate configuration
on which the elastic deformation gradient acts taking the domain to the final deformed state as in fig.
(2). Now let the rate of change of the plastic deformation gradient be defined as in [17]

˙̄̄
Fp = ¯̄Lp · ¯̄Fp =

(
N∑
α

γ̇α ¯̄Sα0

)
· ¯̄Fp =

(
N∑
α

γ̇αm̄α
0 ⊗ n̄α0

)
· ¯̄Fp. (13)
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Figure 2: The different configurations corresponding to the factorization of the deformation gradient, with a slip system
marked to see the shearing of the crystal slip planes due to elastic deformation.

Where in eq. (13) α denotes a slip system of a total of N slip systems, and where the Schmidt tensor ¯̄Sα0
is formed by a dyadic product between the slip direction m̄α

0 , and the slip plane normal n̄α0 taken in the
intermediate configuration Ω̃. In this configuration the slip planes and slip directions will be unchanged
from the referential configuration, Ω0, (and in the laboratory basis ¯̄e0) based on the assumption that the
slips do not create imperfections in the perfect crystal lattice.

Moreover γ̇α denotes the flow rule of the of the crystal planes’ plastic slips’ which are, in line with [2],
given by

γ̇α = γ̇0

∣∣∣∣ταsα
∣∣∣∣1/m · sgn(τα); no sum on α, (14)

where in eq. (14) γ̇0 and m are an initial slip rate and a material constant controlling the material strain
rate sensitivity [26]. Both are in this work taken to be equal for all slip systems. τα is the resolved shear
stress on slip system α, which is calculated by

τα = ¯̄M : ¯̄Sα0 = m̄α
0 · ¯̄M · n̄α0 ; ¯̄M = ¯̄Ce · ¯̄Se = ¯̄Ce · det( ¯̄Fe)

¯̄F−1
e · ¯̄σ · ¯̄F−Te . (15)

In eq. (15) ¯̄Ce is the right Cauchy-Green deformation tensor and ¯̄Se is the second Piola-Kirchhoff stress
tensor both taken in the intermediate configuration. ¯̄M is the Mandel stress tensor, and finally the Cauchy
stress tensor is denoted ¯̄σ. The slip resistance, sα, is taken to evolve according to

ṡα =
N∑
β

hαβ|γ̇β|, (16)

where, the hardening matrix, hαβ in (16) is taken to be as in [26]

hαβ = qαβh0

∣∣∣∣∣1− sβ

τβsat

∣∣∣∣∣
c

· sgn(1− sβ

τβsat
); qαβ =

{
1.4, if (n̄α0 ∦ n̄β0 ),

1, if (n̄α0 ‖ n̄
β
0 ).

(17)

In (17) h0, τ
β
sat, and c are material parameters which are constant. τβsat is the saturated slip resistance

of slip system β. qαβ is the latent hardening matrix where qαα (no sum) corresponds to co-planar hardening
and qαβ corresponds to latent hardening [26]. Moreover it is thought that co-planar slips contribute less
to the hardening i.e that qαβ will have off diagonal coefficients as its largest values [21]. This also indicates
the fact that all slips will affect the slip resistance for all the slip systems in a crystal and no such thing
as a critical resolved shear stress is applicable as plasticity is initiated for all τα 6= 0 [2] as this is a creep
model.

It has been indicated in other works that certain slip systems in tin are more facile than others
especially for slip systems with a slip direction aligned with the c̄ axis [14]. In contrast, as the model
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present in this work does not rely on a critical resolved shear stress to initiate plasticity the ease at which
a slip system is activated is not relevant. Rather one should expect greater plasticity for grains oriented
in such a way that the projection of the shear stress onto the Schmidt tensor is large. As any slip system
being subject to shear will in turn induce plasticity to all slip systems through the cross hardening of the
crystal. Moreover tin is stiffest along the c̄ axis and most compliant in the ā− b̄ plane and there is a strong
temperature dependence of these traits, which affect the degree of anisotropy between the directions [14].

Furthermore in [12] it is noted that for a hardening model similar to the one employed in this work:
sα0 , i.e. the initial values of the slip resistances of each slip system affect the point at which the uni-axial
stress-strain curves of the material goes into a non-linear regime. ταsat affects the upper limit of the slip
resistance and h0 is noticed to affect the initial hardening of the material. Lastly c will affect the shape
between sα0 and ταsat of the stress-strain curve.

2.3 Plasticity Measure

A measure of how the plasticity is developing is taken to be the ∆γpi of the matrix consisting of all the
slips for each slip system for a material point. Let ∆γpi be defined as the matrix

∆γpi = ∆t ·



γ̇1
i

γ̇2
i
...
γ̇αi
...
γ̇Ni


; ∆t := an increment in time. (18)

Then ||∆γpi ||2 =

√√√√( N∑
k=1

∆tγ̇ki ·∆tγ̇ki

)
= ∆t ·

√√√√( N∑
k=1

γ̇ki · γ̇ki

)
. (19)

In eq. (18) γ̇αi , is the slip rate in phase i for slip system α = {1, 2, . . . , N}. The slip rate multiplied with
∆t will result in a slip increment which if sampled as a field over the domain will show which areas are
being plasticised in the current step. Accumulating this variable will provide a measurement of the total
plasticity over the domain over the given time period and this measurement will be defined as

γtoti =

t∑
t0

(||∆γpi ||2) . (20)

With this choice γtoti will thus contain an overview of the plastic history of the material.

3 Multi Phase Field Model

To be able to describe the multiple grains present in the simulation, this work employs the method used by
[10], in which a phase field having a diffusive interface is assigned to every crystal. Thus the poly-crystal
of the simulation is described by phase field variables dependent on the spatial coordinates r̄ and the time
t.

φ = [φa(t, r̄), φb(t, r̄), . . . , φn(t, r̄)]T , (21)

In (21) a phase field variable φa is assigned to every grain for all grains 1, 2 . . . , b, . . . , n for n grains.
Where two phases intersect the phase field variables of the two grains will vary smoothly 0 < φi < 1. The
distance over which this occurs is referred to as the diffuse interface region.
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Figure 3: To the left a diffuse interface is shown, varying smoothly between 0 and 1 over the diffuse region width.To the
right for comparison is a sharp interface formulation.

Over the entire domain the phase field variables, φ, are interpolated so as to decide the proper weight
of the phases. The formulation used by [18] for the interpolation functions deciding this weighting will be
used in this work

hi(φ) =
φ2
i∑n
j φ

2
j

. (22)

and hi will hereby represent the various phases present in the domain and they will have the property
of summing up to 1 at every point of the domain. This trait is not necessarily true for the phase field
variables.

Following the choice of [10] in describing the diffusion: conserved field variables are introduced repre-
senting the molar fraction in each grain.

x = (xa(t, r̄), xb(t, r̄), . . . , xn(t, r̄)) (23)

The global molar concentration field depends on the molar fractions in each grain through the relation
seen in (24)

c =
n∑
a=1

ha
xa
Vm

(24)

which shows how the interpolation functions build up the macroscopic concentration by summation of
the concentrations present in each phase. In (24), Vm, denotes a constant molar volume, and ha is the
interpolation function formulated in (22).

3.1 Balance Equations

Following [1] by recognising that for any subdomain, D, belonging to a body V together with any admissible
virtual displacements ū∗ and any virtual phases φ∗ three virtual power densities are assumed to be
admitted at any point within V for phases i = 1, 2, . . . , n. Namely, virtual power originating from external
generalized forces (e), contact (c) and from internal generalized forces (i) denoted as

p(e)(φ∗, ū∗); p(c)(φ∗, ū∗) and p(i)(φ∗, ū∗); φ∗ = [φ∗1, φ
∗
2, . . . , φ

∗
n]T . (25)

A set of generalised stresses {−π, ξ̄, ¯̄σ} are introduced power conjugate to the set {φ∗, ∇̄φ∗,∇ū∗}, letting
the star denote virtual quantities. Let ξ̄ denote the vector micro stress and −π is the scalar micro stress
whereas ¯̄σ is the Cauchy stress tensor. The virtual power density originating from external generalised
forces becomes

p(e)(φ∗, ū∗) =
∑
i

(γiφ
∗
i ) + b̄ · ū∗. (26)

Where b̄ is denoting body forces and γi are denoting external micro forces. The virtual power density
which stem from the internal generalised forces is written

p(i)(φ∗, ū∗) =
∑
i

(
πiφ
∗
i + ξ̄i · ∇̄φ∗i − ¯̄σi : ∇ū∗

)
. (27)
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Lastly the virtual power density caused by contact reads

p(c)(φ∗, ū∗) =
∑
i

(ϑiφ
∗
i ) + t̄ · ū∗, (28)

where ϑi is the density of surface micro tractions in each phase and where t̄ is the traction: both of which
act on ∂V.

Now, not considering any inertial micro forces, according to the principle of virtual power that in V,
for any admissible φ∗i and ū∗, the virtual power of the domain must be balanced:∫

V

(
p(e)(φ∗, ū∗) + p(i)(φ∗, ū∗)

)
dV +

∫
∂V
p(c)(φ∗, ū∗)dS = (29)

=

∫
V

(
b̄ · ū∗ +

∑
i

(
γiφ
∗
i + πiφ

∗
i + ξ̄i · ∇φ∗i − ¯̄σi : ∇ū∗

))
dV+

+

∫
∂V

(
t̄ · ū∗ +

∑
i

(ϑiφ
∗
i )

)
dS = 0 (30)

Using the following identities applicable to each phase i∫
V
ξ̄i · ∇φ∗i =

∫
V

(
∇ · (ξ̄iφ∗i )− (∇ · ξ̄i)φ∗i

)
dV = −

∫
V

(∇ · ξ̄i)φ∗i dV +

∫
∂V
ξ̄iφ
∗
i · n̄dS;∫

V
¯̄σi : ∇ū∗ =

∫
V

(∇ · (¯̄σi · ū∗)− (∇ · ¯̄σi) · ū∗) dV =

= −
∫
V

(∇ · ¯̄σi) · ū∗dV +

∫
∂V

((¯̄σi · n̄) · ū∗)dS

It follows that eq. 30 may be rewritten into∫
V

(
b̄ · ū∗ +

∑
i

(
(πi + γi +∇ · ξ̄i)φ∗i + (∇ · ¯̄σi) · ū∗

))
dV+

∫
∂V

(
t̄ · ū∗ +

∑
i

(
(ϑi − ξ̄i · n̄)φ∗i − (¯̄σi · n̄) · ū∗)

))
dS = 0. (31)

From eq. (31) it is deduced, from the choice that φ∗i and ū∗ may vary independently, both integrands
must equal zero termwise: producing the following balance equations and boundary conditions

in V :

{∑
i

(
∇̄ · ξ̄i + πi + γi

)
= 0,∑

i

(
∇̄ · ¯̄σi

)
+ b̄ = 0̄;

on ∂V :

{∑
i

(
ϑi − ξ̄i · n̄

)
= 0,∑

i(−¯̄σi · n̄) + t̄ = 0̄.
(32)

3.2 Considering Thermodynamics

Now dropping the (·)∗ and assuming that an admissible set of order variables φ, and displacements ū, are
present: the variation of the internal energy U can be described with the help of the principle of virtual
work

U(φ, ū, t) =

∫
V
p(e)(φ, ū)dV +

∫
∂V
p(c)(φ, ū)dS

= −
∫
V

(p(i)(φ, ū)dV. (33)

The variation of the internal energy can be formulated, and analogous to [1] the variation is stated
assuming no acceleration effects and with absence of thermal effects.

U̇ =

∫
V
ėdV = −

∫
V
p(i)(φ̇, ˙̄u)dV. (34)
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Where in eq. (34) ė is the variation of the internal energy, and by taking advantage of (27) may be
expressed as

ė =
∑
i

(
−πiφ̇i + ξ̄i · ∇φ̇i + ¯̄σi : ˙̄̄ε

)
(35)

in which ¯̄ε is the strain which, in accordance with the Voigt-Taylor assumption [11] may be split into

¯̄ε = ¯̄ε
(e)
i + ¯̄ε

(p)
i + ¯̄ε

(0)
i . (36)

In eq. (36) ¯̄ε
(e)
i denotes the elastic strain, ¯̄ε

(p)
i the plastic strain, and ¯̄ε

(0)
i denotes the transformation strain

in phase i. Practically this states that the total strain in any incremental volume will be the same in
all phases. Especially this concerns interfaces where the different phases overlap. This also implies that
different stress states, and thus different states of plasticity are allowed among the phases within the same
incremental volume. Note that the strain is assumed to be small and thus linear in displacements.

Assuming an irreversible process the second law of thermodynamics states that the diffusion induced
rate of the entropy flux may never exceed the variation of entropy. Thus for a temperature T , entropy s,
chemical potential µ and a diffusion flux J̄ it must hold that

T ṡ−∇ · (µJ̄) ≥ 0. (37)

With the use of the continuity equation (mass balance)

ċ = −∇ · J̄ , (38)

and introducing a free energy density,

ḟ(φ,∇φ, c, ¯̄ε
(e)
i ,κi) = ė− T ṡ; ∇φ = [∇φ1,∇φ2, . . . ,∇φn]T ; κi = [κ1

i , κ
2
i , . . . , κ

N
i ]T , (39)

its time variation can be rewritten using the product rule

ḟ =
∂f

∂c
ċ+

∑
i

(
∂f

∂φi
φ̇i +

∂f

∂∇φi
· ∇φ̇i +

∂f

∂ ¯̄ε
(e)
i

: ˙̄̄ε
(e)
i +

(
∂f

∂κi

)T
κ̇i

)
. (40)

In eq. (40), καi ; α = 1, 2, . . . , N , are internal variables related to plasticity of each phase.
With the use of eq. (38) and (40), eq. (37) is rewritten into the Clausius-Duhem inequality

ė− ḟ −∇ · (µJ̄) ≥ 0, (41)

and insertion of eqs. (35) and (40) provides∑
i

[
−
(
πi +

∂f

∂φi

)
φ̇i +

(
ξ̄i −

∂f

∂∇φi

)
· ∇φ̇i

]

+
∑
i

[(
¯̄σi −

∂f

∂ ¯̄ε
(e)
i

)
: ˙̄̄ε

(e)
i + ¯̄σi : ˙̄̄ε

(p)
i + ¯̄σi : ˙̄̄ε

(0)
i −

(
∂f

∂κi

)T
κ̇i

]
−∇µ · J̄ +

(
µ− ∂f

∂c

)
ċ ≥ 0. (42)

Following [10], state laws are obtained for the chemical potential, the Cauchy stress, and the internal
micro stress by demanding eq. (41) to hold for any variation of {ċ, ˙̄̄ε

(e)
i ,∇φ̇i}

µ =
∂f

∂c
, ¯̄σi =

∂f

∂ ¯̄ε
(e)
i

, ξ̄i =
∂f

∂∇φi
. (43)

Next introducing dissipative micro stresses πdisi and hardening functions Kα
i are introduced as

πdisi = πi +
∂f

∂φi
, Kα

i =
∂f

∂καi
, (44)
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and by inserting the state laws of eq. (43) into eq. (41) and defining the matrix, Ki = [K1
i ,K

2
i , . . . ,K

N
i ]T ,

the dissipation inequality is obtained

D = −
∑
i

(
πdisi φ̇i + ¯̄σi : ˙̄̄ε

(p)
i −K

T
i κ̇i

)
−∇µ · J̄ ≥ 0. (45)

Moving on: three dissipative processes can be identified in eq. (45) where the first term is related to the
phase field dissipation. The second and third term originates from plastic deformation and the fourth and
last term relates to flux of atoms.

In analogy with [10] the dissipative terms in eq. (45) are assumed to stem from a convex dissipation
potential, Ω(π(dis),φ, c,∇µ, ¯̄σi,Ki), in such a way that the following holds

φ̇i =
∂Ω

∂π
(dis)
i

, (46)

J̄ = − ∂Ω

∂∇µ
, (47)

κ̇αi = −λ̇i
∂Ω

∂Kα
i

, λ̇i ≥ 0 (48)

˙̄̄ε
(p)
i = λ̇i

∂Ω

∂ ¯̄σi
, λ̇i ≥ 0. (49)

Thus the evolution of the phase fields i = 1, . . . , n is given by eq. (46). In eq. (47) the flux is provided.
Lastly λi in eq. (48) and (49) is a plastic multiplier associated with plastic deformation for phase i and
the equations enable computation of the internal variables associated with each phase’s plasticity.

3.3 Defining the Free Energy Functional and the Dissipation Potential

As mentioned in [19] the free energy functional is required to describe the driving force of the phase
field variables. Here the elastoplastic behaviour of the material is presented as well as the the previously
mentioned dissipation potential. Following [10] first the free energy, F , is defined by integration of the
free energy density within the domain V

F =

∫
V
f(φ,∇φ, c, ¯̄ε

(e)
i ,κi)dV, (50)

and subsequently identifying three terms: the chemical, fch, the mechanical, fu and the interfacial, fint,
energy forming the free energy density

f(φ,∇φ, c, ¯̄ε
(e)
i ,κi) = fch(φ, c) + fint(φ,∇φ) + fu(φ, c, ¯̄ε

(e)
i ,κi) (51)

3.3.1 The Interfacial Free Energy

Proceeding as in [18] and [10] the interfacial free energy is taken as

fint = aint1 f0(φ) +
aint2

2

∑
i

(∇φi)2, (52)

where f0 is taken to be a fourth order Landau polynomial

f0(φ) =
∑
i

(
φ4
i

4
− φ2

i

2

)
+
∑
i

∑
j 6=i

(
aint3

2
φ2
iφ

2
j

)
+

1

4
. (53)

In eq:s (52) and (53) the parameters ainti , i = 1, 2, 3, are dependent upon the surface energy σint and the
diffuse interface region width δ

aint1 =
6σint

δ
; aint2 =

3σintδ

4
; aint3 =

3

2
(54)

Moreover in [10] the choice of the function f0 is motivated by the locations of minimas of the polynomials.
These are located in the interior of each phase where the function will be zero and thus only the boundaries
contribute to the energy stored by interfaces.
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3.3.2 The Chemical Free Energy

In analogy with [18] the chemical free energy is expressed as

fch =
∑
i

hi
Gi(xi)

Vm
(55)

where hi are the interpolation functions seen in eq. (22), Gi is the molar Gibbs energy for the phase i,
and Vm is the molar volume. Similar as in [9], Gi is approximated with the parabola

Gi =
aG1:i

2
(xi − x̂i)2 + aG2:i(xi − x̂i) + aG3:i, (56)

with the parameters

aG1:i =
d2Ĝi
dx2

i

∣∣∣∣
xi=x̂i

; aG2:i =
dĜi
dxi

∣∣∣∣
xi=x̂i

; aG3:i = Ĝi

∣∣∣∣
xi=x̂i

. (57)

The parameters in eq. (57) are functions of the composition dependent Gibbs energy, Ĝi. In eq. (56) and
eq. (57), x̂i denotes the equilibrium molar fraction of phase i.

3.3.3 The Mechanical Free Energy

Following [10] by splitting fu into an elastic part, f (e) and a plastic part, f (p)

fu(φ, c, ¯̄ε
(e)
i ,κi) = f (e)(φ, c, ¯̄ε

(e)
i ) + f (p)(φ, c,κi), (58)

Once again the Voigt-Taylor assumption [11] is used to homogenize the strain at phase intersections in
conjuction with an assumption of hyper elasticity of phase i, i.e.

f (e) =
∑
i

hif
(e)
i =

1

2

∑
i

hi

(
(¯̄ε− (¯̄ε

(p)
i + ¯̄ε

(0)
i )) : ¯̄Di : (¯̄ε− (¯̄ε

(p)
i + ¯̄ε

(0)
i ))

)
, (59)

where the relation seen in eq. (36) have been used to replace ¯̄ε
(e)
i and where ¯̄Di is a fourth order constitutive

tensor corresponding to the material present in phase i.
The plastic free energy is modelled as in [17], with the addition of the interpolation of the phases

f (p) =
∑
i

hif
(p)
i =

∑
i

hi

Qi
2

∑
α

∑
β

qαβi sαi s
β
i

 (60)

where Qi are material parameters. Moreover qαβ , can be seen in eq. (17) and controls the hardening
between slip systems that are coplanar and the cross hardening of slip systems.

3.3.4 The Dissipation Potential

Returning to the previously mentioned dissipation potential (eq:s (46)-(49)) splitting it into three terms

Ω(πdis,φ, c,∇µ, ¯̄Mi,
¯̄Lpi ,Ki,κi) = Ωch(∇µ) + Ωφ(πdis) + Ωu(φ, c, ¯̄Mi,

¯̄Lpi ,Ki,κi). (61)

Where as in [1] the chemical dissipation, Ωch is taken to be

Ωch(∇µ) =
1

2
M(φ)(∇µ)2. (62)

In eq. (62) M(φ) is the mobility modelled as

M(φ) =
∑
i

hi
Vm

 Di

d2Gi
dx2

i

+
∑
j 6=i

hjMgb

 (63)
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where, Di is the diffusion coefficient of phase i, and in analogy with [10],

Mgb = 3
Dgb

hiaG1:i + hjaG1:j

δgb
δ
, (64)

is the grain boundary mobility between grain i and j presuming that all grain boundaries share the same
diffusion coefficient Dgb and grain boundary width δgb.

The dissipation related to the phase fields, Ωφ is taken as

Ωφ(πdis) =
1

2
L(φ)

∑
i

(πdisi )2 =
1

2
L(φ)

∑
i

(
πi +

∂f

∂φi

)2

(65)

for the kinetic coefficient, L(φ) taken from [18] as

L(φ) =

∑
i

∑
j 6=i Lijφ

2
iφ

2
j∑

i

∑
j 6=i φ

2
iφ

2
j

. (66)

In eq. (66) Lij is chosen, as in [10], to be

Lij =
2mVm

3α(x̂i − x̂j)2

Mi +Mj

2
, (67)

for the mobilities Mk = Dk

aG1:k
.

Dissipation originating from the crystal plasticity, Ωu, has in this work not been properly investigated.
The reason for this is that a definition of hardening functions and internal variables was found too late
to be properly derived. The model used in MOOSE uses the slip resistance as hardening variables thus
looking at other works for inspiration: a natural format of the mechanical dissipation is found in [17],
which, with the addition of the phase field interpolation,

∑
i hi, would result in

Ωu(φ, c, ¯̄Mi,
¯̄Lpi ,Ki,κi) =

∑
i

hi

[
¯̄Mi : ¯̄Lpi −

∑
α

(
∂f

(p)
i

∂sαi

)
ṡαi

]
, (68)

for some set of internal variables κi and some hardening functions Ki.

4 Governing Equations of the Simulation

With the use of eq. (42) and eq. (43) the state laws for the micro stress, chemical potential and the
Cauchy stress becomes

µ = µ̂; ¯̄σ =
∑
i

¯̄σi =
∑
i

hi

[
¯̄Di : (¯̄ε− ¯̄ε

(p)
i − ¯̄ε

(0)
i )
]

; ξ̄i = aint2 ∇φi (69)

In eq. (69) the chemical potential is the result of a diffusive constraint originating in the requirement that
all phases are in equilibrium (c.f [10] and [19])

µi =
∂Gi
∂xi

=
∂Gj
∂xj

= µ̂ (70)

Phase field parameters φi, which are non conserved variables, will evolve according to eq. (46) which
is calculated by the use of eq. (65) resulting in

φ̇i = L(φ)(πi +
∂f

∂φi
). (71)

12



Combining: the balance law of the micro forces while assuming that the external micro forces, γi = 0,
eq. (32), and using the expression for the free energy density eq. (39), as well as adding an expression
introducing nucleation of IMC into the model the following expression is obtained

φ̇i = L(φ)

[
∇̄ · aint2 ∇̄φi − aint1

φ3
i − φi + 2φi

∑
j 6=i

aint3 φ2
j


− 2φi∑

k φ
2
k

(1− hi)(f (e)
i + f

(p)
i )−

∑
j 6=i

hj(f
(e)
i + f

(p)
i )


− 2φi∑

k φ
2
k

(1− hi)
(Gi
Vm
− xi
Vm

µ̂
)
−
∑
j 6=i

hj
(Gj
Vm
− xj
Vm

µ̂
)]+ ζ(t, r̄) (72)

In eq. (72) the nucleation term, ζ(t, r̄), is modelled in line with [22],

ζ(t, r̄) =


ρ
√

2kBTL
λd∆t

,

for 0 < t < 1 and (hCu · hSn1 > 0.09 or hCu · hSn2 > 0.09); 〈ρi〉 = 0, and 〈ρiρj〉 = δij

0 else

.

(73)
The nucleation term, eq. (73), involves the temperature, T , modelled as constant as the temperature
variation is small for t < 1. Moreover ρ is a random number drawn from a distribution with the properties
shown in the equation (〈·〉 denoting expected mean), kB is the Boltzmann constant, λ denotes the grid
spacing and d denotes the number of spacial dimensions of the simulation, ∆t is the time step length and
lastly L is the mobility of the η phase.

Evolution of the concentration field will be in accordance with eq. (38) where the flux, J̄ , is replaced
with the value obtained from eq. (47), providing

ċ = ∇̄ · (M∇̄µ̂). (74)

MOOSE implements the problem using the residual expression belonging to each governing equation.
Moreover introducing a more compact format of volume and surface integrals, let(

ψ1, ψ2

)
⇔
∫
V
ψ1ψ2dV, (75)

and 〈
ψ1, ψ2

〉
⇔
∫
∂V
ψ1ψ2dS. (76)

The residual expressions are found by multiplying eq. (72) and (74) by a weight function, ψ, together
with integration over the domain and with the use of the divergence theorem.

Rφ
i =

(
∂φi
∂t

, ψ

)
+

(
L
∂f

∂φi
, ψ

)
+

(
∂fint
∂∇̄φi

, ∇̄Lψ
)

+

(
L
∂fint
∂∇̄φi

, ∇̄ψ
)

+

(
ζ, ψ

)
−
〈
L
∂fint
∂∇̄φi

· n̄, ψ
〉

= 0,

(77)

and
Rc =

(
∂c

∂t

)
+

(
M∇̄µ̂ · n̄, ψ

)
−
〈
M∇̄µ̂ · n̄, ψ

〉
= 0. (78)

In both eq. (77) and (78) let n̄ be the outward normal of ∂V .
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Figure 4: The domain used in the simulation showing the two tin grains on top of the copper and the interface where the
intermetallic compound will nucleate.

5 Numerical Trials

Let the phases be denoted with the following subindices i = {1, 2, 3, 4} = {Cu, η, Sn1, Sn2}, where η
denotes the IMC and where the number after Sn denotes which grain of tin that the phase corresponds to
(for clarification see fig. (4)). In MOOSE a generated mesh with 8-noded hexahedron elements was used
with a side length ∆x = ∆y = ∆z = 16nm for a total domain size of 80× 114× 1 = nxel × n

y
el × n

z
el where

nel denotes the number of elements in a dimension. The diffuse interface region width was taken to be
5∆x.

Dirichlet boundary conditions were set to restrict displacement of the bottom boundary at the top
and bottom of the domain.

Symmetric boundary conditions were set for the x-direction and z-direction.
Lastly Neumann boundary conditions were prescribed for the top and bottom of the domain so as to

prohibit any flux over these boundaries of the domain.
The η is marked to the interface between the copper and tin where the nucleation is set to take place.

All simulations were initially set so that a layer of Cu filled the bottom of the domain onto which two
Sn grains were set. The two grains of the sides, i.e. phase i = Sn2, having been rotated using the
Bunge-Euler angles φ = 90◦, ψ = 90◦, θ = 0◦, where the angles denotes rotation about the Z,X ′, Z ′′ axis
respectively. The governing equations were solved using a Preconditioned Jacobian Free Newton-Krylow
(PJFNK in MOOSE) solver were the preconditioning is performed by PETSC. The time integration was
performed using the L2StableDirk implemented in MOOSE together with an adaptive time step initially
set to 2E-2 s.

5.1 Model Parameters

5.1.1 Material Elastic and Plastic Parameters

The copper phase of the simulation as well as the IMC was modelled to be isotropically elastic with the
constants seen in tab. (1).
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Table 1: The elastic constants of the Cu and IMC phase

Cu η Ref.

Young’s modulus [GPa] 150 112.3 [7]

Poisson’s ratio 0.35 0.31 [7]

Moreover the IMC is modelled to have a smaller volume than its constituents, and thus transforma-
tional strains are associated with the formation of IMC. The precise figure of this transformational strain
is not clear but in this work

¯̄ε(0) = −0.003 · ¯̄I, (79)

will be used which is in line with [10] where it is argued that strains of higher magnitude will cause stresses
which are deemed nonphysical as they are larger than the yield stress of the Cu6Sn5 which would then
have to be modelled to be incorporating plasticity. The elastic constants used for tin is shown in tab.
(2).

Table 2: The values used for the elastic stiffness tensor of the Tin. Values are taken from [5].

¯̄D [GPa]

D11 D12 D13 D22 D23 D33 D44 D55 D66

72.3 59.4 35.8 72.3 35.8 88.4 22.0 22.0 24.0

The parameter values used for the hardening of the crystal were the parameters seen in tab. (3) and
(4).

Table 3: The parameters used for the crystal plasticity hardening taken from [14]. Note that crystal plane normals are given
in Miller indices.

slip system family τsat [MPa]
1 〈100)〈001] 11
2 〈110)〈001] 9
3 〈100)〈010] 11
4 〈110)〈11̄1] 9
5 〈110)〈11̄0] 10
6 〈100)〈011] 10
7 〈001)〈010] 10
8 〈001)〈110] 16
9 〈011)〈01̄1] 9
10 〈211)〈01̄1] 13

Table 4: Values used for the evolution laws of the slip resistance, the plastic slips, and the plastic energy f (p). (eq. (16),
(14), and (60))

.

Parameter values Ref.

c 2 [14]
m 1/6 [4]
h0 20 [MPa] [4]
γ̇0 1E-3 [s−1] [26]
Q 1 -

Note that Qi = Q in eq. (60) was used for both the Sn1 and Sn2 phase and that the parameters were
used for all slip systems of the tin.
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5.1.2 Temperature Dependent Parameters and Nucleation

To simulate a cooling phase of the simulation domain temperature dependent parameters (tab. (5)) were
interpolated using

gtemp(t) =
1− tanh(

t− 11

3
)

2
(80)

such that for a temperature dependent parameter fT−dep. the value was calculated as

fT−dep.(t) = f
(25◦C)
T−dep. − (f

(25◦C)
T−dep. − f

(220◦C)
T−dep. )gtemp(t) (81)

For the nucleation λ = 16nm, T = 493K (approximated to be constant) and L = 2.7 m3sJ−1.

Table 5: Constants used in the simulations where aGi have been obtained by curve fitting of parabolic functions. The starred
quantities has not been taken from the stated reference.

220◦C 25◦C

Cu η Sn Cu η Sn Ref.

aG1 [Jm−3] 1.7756E+10 2.4555E+11 2.3033E+10 6.2204E+09 2.4555E+10 2.5819E+11 [10]

aG2 [Jm−3] -2.6351E+09 2.3251E+07 2.1422E+08 -1.2981E+09 -4.2905E+08 4.4002E+08 [10]

aG3 [Jm−3] -1.1441E+09 -1.7646E+09 -1.6460E+09 -7.8834E+08 -1.1778E+09 -9.3708E+08 [10]

x̂ 0.02000 0.43510 1* 0.10569 0.41753 1* [10]

x̂eq 0.02000 0.43510 0.99941* 0.10569 0.41753 0.99941 [10]

D[m2s−1] 1.0000E-20 3.1000E-14 1.0000E-13 2.8770E-36 6.5750E-19 2.4520E-17 [15],[16]

σint[Jm−2] 0.5 0.5 0.5 0.5 0.5 0.5 [18]

δgb 5.0000E-10 5.0000E-10 5.0000E-10 5.0000E-10 5.0000E-10 5.0000E-10 -

Moreover the kinetic coefficient related to the phase field dissipation eq. (66) is taken to be 2.7 m3sJ−1

constant.

6 Result and Discussion - Read remark

Author’s remark

Post performing all simulations it was noted that the slip systems file used was erronious. The slip plane
normals seen in tab. (6) was not put in right. The slip plane normals should be put in using the miller
indices as they are already giving the plane normals.

All images are taken at approximate times as the timestep was set to be adaptive. In figs. (5) to (24)
going left to right: The first figure shows the accumulated slips (c.f eq. (20)) in both tin grains. The
second figure shows the value of the interpolation function of the η phase, i.e. the amount of IMC, and
boundaries of the tin grains and the copper are shown in black. The rightmost figure shows the von Mises
stress given in MPa field in the tin grains. Below each figure the Bunge-Euler angles used to rotate the
middle tin grains are shown as well as the approximate time of the snapshot. The rotation angles of the
outer tin grains is left out as they all have the same alignment throughout all simulations.

In fig. (25) the accumulated slips (γtotSn2) is shown for all the simulations taken approximately 5 s into
the simulation.
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6.1 Simulation where Sn1 is rotated using φ = 90◦, ψ = 30◦, θ = 0◦

Figure 5: φ = 90◦, ψ = 30◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von Mises
stress in both tin grains (right). The snapshot is taken at approximately 0.5 s into the simulation.

Figure 6: φ = 90◦, ψ = 30◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von Mises
stress in both tin grains (right). The snapshot is taken at approximately 1 s into the simulation.
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Figure 7: φ = 90◦, ψ = 30◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von Mises
stress in both tin grains (right). The snapshot is taken at approximately 5 s into the simulation.

Figure 8: φ = 90◦, ψ = 30◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von Mises
stress in both tin grains (right). The snapshot is taken at approximately 10 s into the simulation.
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Figure 9: φ = 90◦, ψ = 30◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von Mises
stress in both tin grains (right). The snapshot is taken at approximately 20 s into the simulation.

6.2 Simulation where Sn1 is rotated using φ = 90◦, ψ = 30◦, θ = 345◦

Figure 10: φ = 90◦, ψ = 30◦, θ = 345◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 0.5 s into the simulation. Now both the ā,
and b̄ axis of the middle grain is out of the x̄z̄-plane.
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Figure 11: φ = 90◦, ψ = 30◦, θ = 345◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 1 s into the simulation. Now both the ā, and
b̄ axis of the middle grain is out of the x̄z̄-plane.

Figure 12: φ = 90◦, ψ = 30◦, θ = 345◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 5 s into the simulation. Now both the ā, and
b̄ axis of the middle grain is out of the x̄z̄-plane.
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Figure 13: φ = 90◦, ψ = 30◦, θ = 345◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 10 s into the simulation. Now both the ā,
and b̄ axis of the middle grain is out of the x̄z̄-plane.

Figure 14: φ = 90◦, ψ = 30◦, θ = 345◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 20 s into the simulation. Now both the ā,
and b̄ axis of the middle grain is out of the x̄z̄-plane.
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6.3 Simulation where Sn1 is rotated using φ = 90◦, ψ = 30◦, θ = 315◦

Figure 15: φ = 90◦, ψ = 30◦, θ = 315◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 0.5 s into the simulation. Now both the ā,
and b̄ axis of the middle grain is out of the x̄z̄-plane.

Figure 16: φ = 90◦, ψ = 30◦, θ = 315◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 1 s into the simulation. Now both the ā, and
b̄ axis of the middle grain is out of the x̄z̄-plane.
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Figure 17: φ = 90◦, ψ = 30◦, θ = 315◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 5 s into the simulation. Now both the ā, and
b̄ axis of the middle grain is out of the x̄z̄-plane.

Figure 18: φ = 90◦, ψ = 30◦, θ = 315◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 10 s into the simulation. Now both the ā,
and b̄ axis of the middle grain is out of the x̄z̄-plane.
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Figure 19: φ = 90◦, ψ = 30◦, θ = 315◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 20 s into the simulation. Now both the ā,
and b̄ axis of the middle grain is out of the x̄z̄-plane.

6.4 Simulation where Sn1 is rotated using φ = 90◦, ψ = 75◦, θ = 0◦

Figure 20: φ = 90◦, ψ = 75◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 0.5 s into the simulation.
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Figure 21: φ = 90◦, ψ = 75◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 1 s into the simulation.

Figure 22: φ = 90◦, ψ = 75◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 5 s into the simulation.
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Figure 23: φ = 90◦, ψ = 75◦, θ = 0◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von
Mises stress in both tin grains (right). The snapshot is taken at approximately 10 s into the simulation.

Figure 24: φ = 90◦, ψ = 75◦, θ =◦. The figure shows the accumulated palstic slips (left). The IMC (middle), and von Mises
stress in both tin grains (right). The snapshot is taken at approximately 20 s into the simulation.
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6.5 Accumulated Plastic Slips of the Middle Tin Grain

(a) φ = 90◦, ψ = 30◦, θ = 0◦ (b) φ = 90◦, ψ = 30◦, θ = 345◦

(c) φ = 90◦, ψ = 30◦, θ = 315◦ (d) φ = 90◦, ψ = 75◦, θ = 0◦

Figure 25: Comparison of the accumulated slips (γtot
Sn2) that has developed in the middle tin grain. All snapshots are taken

at approximately 5 s. The respective Bunge-Euler angles of each simulation is shown below each figure.
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6.6 Discussion

Looking at the growth of the IMC, which is denoted as the variable, h1 in the middle figure of the
simulation results, it seems to favour the triple junctions between the middle and side grains of the tin
and the copper as a place to nucleate. This can be seen in the beginning of all simulations (the middle
figure in figs. (5), (6), (10), (11), (15), (16), and (20), (21)). Since the nucleation in all simulations is
the same it is not strange that they all have IMC starting to form at the same place, however it is not
evident why this takes place in the triple junction. There is no clear cause to this: it might be that the
IMC naturally grows easier in these areas as an effect of the material properties. Another possible, though
unlikely, cause is that the Boolean expression governing the nucleation gives rise to a more probable region
where both expressions are true. Nevertheless it is not deemed as a flaw in the simulation as the nature
of the IMC nucleation is unclear and the focus of this work is to look at stresses arising from the IMC
forming. Wherever it forms.

Continuing to look at the formation of the IMC it does not seem to have a preferred diffusion path. It
forms fairly uniform across the interface both towards the tin and towards the copper. As seen at the final
snapshots (figs. (9),(24),(14), and (19)) the small areas at the triple junctions disappears into the bulk of
the IMC. The compound forms its own layer between the copper and tin having nigh on horizontal borders
to the other metals. This is to be expected as the concentration field is driven by the divergence of the
mobility and the gradient of the chemical potential. As the whole area above the IMC consists of tin, the
concentration should evolve similarly across the entire interface as no dependence on crystal orientation
is present neither for the mobility’s (eq. (63)), nor for the chemical potentials µ̂. The diffusion in itself
should be driven by the opportunity for the copper and tin to reach a lower potential if they instead form
the IMC [10]. The phase fields should follow the concentration field as they depend on the molar fractions
of each phase, which in turn are interpolated to form the concentration field. The interface between the
copper and the IMC will develop analogously.

Moving on to the areas where plasticity is largest for the tin: it is natural that elements close to where
the IMC grows the most should experience the largest von Mises stresses and thus also obtain larger slips
since the resolved shear stress is expected to be larger in these areas. Of course the alignment of the crystal
comes in to play as only deviatoric stresses are projected onto the Schmidt tensor and thus for alignments
where the crystal experience more hydro-static stress the resolved shear stress will not necessarily have
to be larger in areas of high stress compared to areas experiencing moderate stress. Note that the shown
accumulated slips are for both of the tin grains and that areas having experienced slips will save these
throughout the simulation. Consequently, areas of tin which later become fully occupied by IMC also
shows plastic slips but the magnitude of the slips do not change when the tin phase is no longer present in
the area. This should explain why no visible plasticity is developed along the tin-IMC interface: As the
IMC grows it overtakes the areas which would otherwise have had time to develop plastic slips of visible
magnitude.

Furthermore this also explains the shape of the plasticized areas which are leaning outwards from the
grain boundaries. This is most likely due to the expansion of the IMC semi spheres that initially forms
at the triple junctions. During the intermediate stage of the simulation (< 10s) they expand, and thus
the IMC will overtake areas where plasticity has developed effectively locking their value for the rest of
the simulation. As the semi spherical areas expand so will the zones where plasticity develops as the area
where transformational strains are present expands with the IMC and it it this that creates the leaning
shape of the plasticized areas.

Analyzing the von Mises stress one may note that it is largest close to the tin-IMC interface, which
is natural as noted before. The transformational strain associated with the formation of the IMC should
cause high stress in its surrounding area. Looking a the different snapshots through time it is also
reasonable that the areas of intense stress concentrations are getting smaller as the diffusion of the phases
slows down due to the decreasing temperature over time. Thus the transformational strains should become
more localized to the boundaries between the copper and the IMC, and between the IMC and the tin
respectively as the IMC grows at a slower speed (c.f fig. (22) vs. fig. (24)). In some of the figures (take
fig. (13) for example) the stress seems to have a maximum right at the interface boundary, and then
shows decreasing stress below it. This is due to the interpolation functions of the two tin phases (c.f.
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eq. (22)) As the interpolations functions decrease rapidly when moving further into the IMC so does the
stress contribution from the tin phases. Thus it should be noted that the stresses, which here seems to
be low in the area where the tin grains and the IMC overlap, are only stress contributions from the tin.
According to the Voigt-Taylor assumption the macroscopic stress state in these regions must be obtained
through

∑
i hi ¯̄σi but since only stresses in the tin is of interest here, to analyse the plasticity in the tin

grains, one should focus on the stress field on, and above, the interface.
Looking at the results from varying the c̄ axis of the middle grain in the x̄z̄-plane (figs. (5)-(9), and

(20)-(24)) one can clearly see that when the middle grain is almost aligned with the side grains, ψ = 75◦,
(figs. (20)-(24)) the stress fields as well as the plastic history develops close to symmetrically in both
grains. Comparing these results with those where the c̄ axis of the middle grain is almost perpendicular,
ψ = 30◦, to the outer grains’ c̄ axis (figs. (5)-(9)) one should note that plasticity in the middle grain is
minuscule compared to the outer grains. It must be taken into account that the scale of the slips between
the simulations is slightly modified when analyzing the figures. This is to resolve areas where plasticity is
engaged.

Moving on to the two simulations where the c̄ axis remains in the plane, but where the ā and b̄
axes of the middle grain is rotated out of the x̄z̄-plane. The differences can be seen by looking at
stress concentrations which are slightly different for the middle grain having the Bunge-Euler angles
φ = 90◦, ψ = 30◦, θ = 315◦ (c.f. fig. (16)) compared to the simulation where the middle grain has the
angles φ = 90◦, ψ = 30◦, θ = 0◦ (c.f. fig. (6)). Another slight difference between the simulations is the
magnitude of the accumulated slips. Where the former have slightly larger accumulated slips for a small
set of elements (fig. (9) vs. fig. (19)).

Placing the two simulations where the ā and b̄ axes of the middle grain is rotated out of the x̄z̄-plane
against one another a slight difference is seen if looking at the stress field in fig. (11) vs. fig. (16). Where
in fig. (11) the area of high stress (>10 MPa) is larger than for fig. (16) which also is the most likely
cause to why the surrounding material has developed slightly more plasticity.

Redirecting the focus to the grain boundaries no visible plasticity develops there, (fig. (20)-(24)). This
is strange as with the model makes no constraint on plasticity to develop on the boundaries and the von
Mises stress on the boundaries of the tin grains is large. The model do account for the finite deformation
of the crystal by dislocation pile-ups that are modelled to give rise to plastic potential energy, but there is
nothing hindering slips from occurring on the boundaries of the crystals. It might be that there are slips
occurring but the interpolation functions of the two grains reduce their magnitude to the point where
they are no longer visible.

Looking at the figures showing the accumulated slips γtotSn2 (eq. (20)) of the simulations 5 s in there are
some interesting features. Comparing figs. (25a), (25b) and (25c) one may note that as long as the ā axis
is aligned with the laboratory ȳ axis whilst the b̄ and c̄ axis lie in the x̄z̄-plane the plasticity developed in
the crystal is very slight. It is visible as streaks of light blue running inwards symmetrically towards the
centre of the domain.

Redirecting ones attention to fig. (25b) and (25c) one may note that the streaks of blue are more
concentrated than for fig. (25a). Especially for fig. (25c) the c̄ axis reside in the x̄z̄-plane whilst the
crystal has its [110]-direction aligned with the ȳ-axis of the laboratory basis. This seems to favour
plasticity developing in the crystal as well as displaying a more asymmetric pattern of the streaks of
plasticised material. This shows clear signs of the model capturing the dependence of how the slip
systems are affecting the plasticity developing within the crystal as one could otherwise have expected a
similar patterns as in fig. (25a).

Finally looking at fig. (25d) it has by far the most plasticized material. The underlying mechanism
to this is complex. Especially considering the three dimensional stress state imposed by the formation of
the IMC. A possible explanation in this specific case could be that the alignment of the tin crystal where
its c̄-axis is directed towards the initial bubble of IMC forming (c.f. fig. (21)) should cause the highest
normal stresses as this direction is stiffest in tin (see tab. (2)). This should cause high stresses in the
grain which in turn may be favourably projected onto the slip systems of the crystal producing greater
amount of plasticized material than for other, less stiff, directions.
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7 Future Work

First and foremost the crystal plasticity model should be derived in a way known to be thermodynamically
admissible and thereafter implemented in MOOSE. The methods currently implemented in MOOSE are
usable but for one familiar with C++ these methods should be easy to optimize and to implement in
a more general manner as many of the parameters and/or slip system configurations are hard coded in
the classes. The tangent used to calculate the stress of the tin (modelled using crystal plasticity finite
elements) seems to be poorly implemented as it slows down convergence. Thus there is a possibility
of an improvement. Documenting these steps should also be a great asset for coming users as many
of the classes implemented in MOOSE lacks documentation. Thus moderate knowledge in C++ is a
necessary requirement for using the crystal plasticity and the phase field modules implemented as the
only documentation is the code.

The parameter values used for the hardening of the crystals in the simulations were from other authors
(see refs. in tab. (4)) but initially a script was constructed so as to curve fit parameters to existing
experimental data for stress strain curves of tin along different crystal directions. This is described in the
appendix as it was never used partly due to the narrow solution space originating in the stiffness of the
equations and partly due to the wide variety of parameters needed to be fitted: From 1 parameter per
slip system to 4 or 5 yields very complex minimisation problems containing 32 to 100 parameters to try
to find a minimum for. Though this should be elaborated to be automated in a greater degree than was
done in this work, and once that is done it should provide a powerful tool for obtaining initial material
parameters for numerical models.

Moving on to areas of improvement it must be noted that the plastic potential stated in this work
has the parameter value Q set to equal 1. This is totally arbitrary but stems from the fact that no
experimental data to which the used model have been fitted to is known to the author. One could go
in line with [17] and connect this parameter to dislocation densities within the crystals and thus enrich
the used model further. Another way to approach the value of the parameter is to in line with [26] fit
the parameter to known experimental data. The last option though is quite vague. Partly because they
use a slightly different potential but also since they arrive at the conclusion that the parameter in itself
should be dependent of crystal slips. This would cause their potential to gain yet another factor which
is dependent on the internal variables chosen and thus it should also affect the derivation of the same,
making their choice somewhat paradoxical and bold as it may disturb the thermodynamical condition set
in eq. (45). Luckily the plastic potential in this work has a very low impact as it is quadratic in the slip
rates of each phase which in turn are of very low magnitude ( 1E − 8), and thus this flaw is neglected.

Furthermore the modelling of the dissipation in this work is obscure as the choice of internal variables
and hardening functions are unknown for the model. Instead the result of the choice of these parameters
is known: being the flow rule of the slips and the slip resistances, which practically is what is need to
be known to implement the model, although the choice made may be in conflict with the dissipation
inequality.

Lastly one must note that the temperature dependence of of the elastic parameters was not taken
into consideration for the materials in the simulation. Tin for instance, has properties which do change
substantially with temperature [14]. Additionally the expression of the state laws (eq. (43)) are derived
for an isothermal case and should thus be modified for the model to be more accurate.

Moreover longer simulations should be performed where the plastic history could be saved to better
be able to analyse the impact of the IMC growing over the expanded time span as real time periods of
tin whiskers growing is on the scale of months or years [3].

Lastly an expression of the free energy functional considering a non-isothermal case is brought up in
[19] and should be considered to be implemented in future simulations.

8 Conclusions

Due to time limitations combined with the long simulation times simulation of the IMC growth over a
longer simulated time span was not achieved. Instead a glimpse of a possible scenario of the IMC forming
during manufacture is shown and the stresses this causes in the surrounding material.
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Moreover the crystal plasticity model used in this work does capture anisotropic behaviour in tin
and the crystal plasticity slip system dependence. It also shows that a multi phase field simulation with
incorporated crystal plasticity is possible to execute using the MOOSE software.
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A Appendix

A.1 Slip systems used for the β-tin grains.

Table 6: All the 32 used slip systems of BCT β-Sn. (c.f [14]). The star denotes that the vector is given in reciprocals (Miller
indices).

Family of slip systems slip system nbr. n̄∗0 m̄0

〈100)〈001] 1 (1 0 0) [0 0 1]

2 (0 1 0) [0 0 1]

〈110)〈001] 3 (1 1 0) [0 0 1]

4 (1 1̄ 0) [0 0 1]

〈100)〈010] 5 (1 0 0) [0 1 0]

6 (0 1 0) [1 0 0]

〈110)〈11̄1] 7 (1 1 0) [1 1̄ 1]

8 (1 1 0) [1̄ 1 1]

9 (1 1̄ 0) [1 1 1]

10 (1 1̄ 0) [1̄ 1̄ 1]

〈110)〈11̄0] 11 (1 1 0) [1 1̄ 0]

12 (1 1̄ 0) [1 1 0]

〈100)〈011] 13 (0 1 0) [1 0 1]

14 (0 1 0) [1 0 1̄]

15 (1 0 0) [0 1 1]

16 (1 0 0) [0 1 1̄]

〈001)〈010] 17 (0 0 1) [1 0 0]

18 (0 0 1) [0 1 0]

〈001)〈110] 19 (0 0 1) [1 1 0]

20 (0 0 1) [1 1̄ 0]

〈011)〈01̄1] 21 (1 0 1) [1 0 1̄]

22 (1 0 1̄) [1 0 1]

23 (0 1 1) [0 1 1̄]

24 (0 1 1̄) [0 1 1]

〈211)〈01̄1] 25 (1 2 1) [1̄ 0 1]

26 (1 2̄ 1) [1̄ 0 1]

27 (1̄ 2 1) [1 0 1]

28 (1̄ 2̄ 1) [1 0 1]

29 (2 1 1) [0 1̄ 1]

30 (2̄ 1 1) [0 1̄ 1]

31 (2̄ 1̄ 1) [0 1 1]

32 (2 1̄ 1) [0 1 1]
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A.2 Solving for the Hardening Parameters by Solving a System of PDE’s

By insertion of eq. (14) and (17) into eq. (16) a system of differential equations of the slip resistance
variables is obtained:

ṡα(s1, . . . , sα, . . . , sN ) =
N∑
β

qαβh0

∣∣∣∣∣1− sβ

τβsat

∣∣∣∣∣
c

· sgn(1− sβ

τβsat
) · γ̇0

∣∣∣∣τβsβ
∣∣∣∣1/m (82)

m

ṡα(s1, . . . , sα, . . . , sN ) =
N∑
β

qαβh0

∣∣∣∣∣1− sβ

τβsat

∣∣∣∣∣
c

· sgn(1− sβ

τβsat
) · γ̇0

∣∣∣∣∣m̄β
0 · ¯̄M · n̄β0
sβ

∣∣∣∣∣
1/m

(83)

Exchanging τα in eq. (82) for the full expression in eq. (15) using the Mandel stress provides the final
format as seen in eq. (83).

Insertion of eq. (14) and eq. (15) into eq. (13) results in

˙̄̄
Fp =

 N∑
α

γ̇0

∣∣∣∣∣m̄α
0 · ¯̄M · n̄α0
sα

∣∣∣∣∣
1/m

· sgn
(
m̄α

0 · ¯̄M · n̄α0
)

¯̄Sα0

 · ¯̄Fp (84)

Enabling the components in ˙̄̄
Fp to be written on the form of a system of differential equations:

˙̄̄
Fp = ¯̄Lp · ¯̄Fp;

¯̄Lp =

(
N∑
α

γ̇0

∣∣∣τα
sα

∣∣∣1/m · sgn (τα) ¯̄Sα0

)
(85)

⇓

Ḟ p11

Ḟ p12

Ḟ p13

Ḟ p21
...
Ḟ p33


=



f1(sα, ¯̄Fp,
¯̄Lp)

f2(sα, ¯̄Fp,
¯̄Lp)

f3(sα, ¯̄Fp,
¯̄Lp)

f4(sα, ¯̄Fp,
¯̄Lp)

...
f9(sα, ¯̄Fp,

¯̄Lp)


; α = 1, 2, 3, . . . N (86)

Thus if ¯̄F is given as well as initial conditions for the plastic slip resistances sα, one may integrate ¯̄Fp
yielding ¯̄Fe and curve fit to experimental data to obtain the material parameters m, γ̇0, c, τ

α
sat, and h0.

B Calculation of Derivatives

∂φi
∂t

= −L(φ)
δF

δφi
+ ζ(r̄, t) = −L(φ)

[
∂F

∂φi
− ∇̄ · ∂F

∂∇φi

]
+ ζ(r̄, t)

= −L(φ)

[
∂fch
∂φi

+
∂fint
∂φi

+
∂fu
∂φi
− ∇̄ · ∂fint

∂∇φi

]
+ ζ(r̄, t) (87)

Preliminaries:

∂hi
∂φj

=
∂

∂φj

(
φ2
i∑
k φ

2
k

)
=

2φi∑
k φ

2
k

∂φi
∂φj

+
φ2
i · (−1) · 2φj
(
∑

k φ
2
k)

2
=


−2φj∑

k φ
2
k
(hi), if i 6= j

−2φj∑
k φ

2
k
(hj − 1), if i = j.

(88)

Thus ∑
i

(
∂hi
∂φj

)
=
−2φj∑
k φ

2
k

(hj − 1) +
∑
i 6=j

(hi)

 (89)
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B.1 fch

∂fch
∂φi

=
∑
j

(
∂hj
∂φi

fj + hj
∂fj
∂φi

)
; fj = Gj(xj)/Vm

=
∑
j

(
∂hj
∂φi

fj + hj
∂fj
∂Gj

Gj
∂xj

∂xj
∂hj

∂hj
∂φi

)
(90)

Using
∂fi
∂Gi

Gi
∂xi

= µi, (91)

and

∂c

∂φi
= 0 =

1

Vm

∑
j

[
∂hj
∂φi

xj + hj
∂xj
∂hj

∂hj
∂φi

]

=
1

Vm

∑
j

[
∂hj
∂φi

(
xj + hj

∂xj
∂hj

)]
(92)

⇓

0 = xj + hj
∂xj
∂hj
⇔ −xj = hj

∂xj
∂hj

. (93)

Enables eq. (90) to be written on the format

∂fch
∂φi

=
∑
j

∂hj
∂φi

(fj − µjxj) (94)

B.2 fint

∂fint
∂φi

= aint1

∂

∂φi

∑
k

(
φ4
k

4
−
φ2
k

2

)
+
∑
l

∑
l 6=k

(
aint3

2
φ2
kφ

2
l

)
+

1

4


= aint1

φ3
i − φi + 2aint3 φi

∑
j 6=i

φ2
j

 (95)

∇̄ · ∂fint
∂∇φi

= ∇̄ · ∂

∂∇φi

aint2

2

∑
j

(∇φj)2

 = ∇̄ · aint2 ∇φi (96)

B.3 fu

∂fu
∂φi

=
∂

∂φi

(
f (e) + f (p)

)
=

∂

∂φi

∑
j

hj

(
f

(e)
j + f

(p)
j

) =
∑
j

∂hj
∂φi

(
f

(e)
j + f

(p)
j

)
(97)
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