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Abstract

A method is implemented wherein numerical approximations to the ground
and first few excited states of a quantum mechanical N -body 1D harmonic
oscillator are found through variational methods, representing the states as a
linear combination of normalized pseudo-states which are themselves linear
combinations of non-orthogonal Slater determinants. These states are then
used as a low energy basis for configuration interaction. An expression is
derived for an analytical matrix derivative of the energy functional, in order
to improve the speed of the variation.

The speed and accuracy using the analytical derivative is compared to
that of the numerical derivative, and a number of different gradient descent
methods are tried and compared.
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Notation

Notation Definition Description

δi,j =

{
1 i = j

0 i 6= j
Kronecker delta

δ(x−y)

∫
X3y

dxδ(x−y)f(x) = f(y) Dirac delta

bxc = max{m ∈ Z|m ≤ x} Floor function

XA = XeA
qA

Merged index

X? = XE
Q Last entry, subject to variation

X• =
(
X1 X2 · · · XI

)
Slice

X<I =
(
X1 X2 · · · XI−1

)
Partial slice∑

q

⇔
Q∑
q=1

Sum over all determinants

∑
e

⇔
E∑
e=0

Sum over all pseudo-states

0, 1 Zero-matrix, identity-matrix

J(i) (J(i))k = δi,k Single element vector

J(i,j) (J(i,j))kl = δi,kδj,l Single element matrix

{Â, B̂} = ÂB̂ + B̂Â Anti-commutator
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1 Introduction

The quantum mechanical N body problem, describing the wave functions
of N interacting particles, is a famously complex and important problem
in quantum mechanics. It is important for many fields in physics, includ-
ing nuclear, atomic and solid state physics. Even worse than its classical
counterpart, the quantum mechanical N body problem cannot be solved
analytically in general for N ≤ 2, which means that all larger systems need
to be approximated and solved numerically. Efficient approximations are in
high demand, and many different methods have been proposed.

One important method is known as Hartree-Fock, where the best 1-Slater
determinant description is found by minimizing the energy, which gives a
decent approximation for low interaction strengths. This method can be
improved in several different ways, known as post-Hartree-Fock methods.
One such method is Configuration Interaction, where a basis is formed by
the Hartree-Fock solution together with a set of its excitations and the
resulting Hamiltonian matrix is diagonalized. Full CI, where all Slater
determinants are used as a basis, solves the N body problem exactly, but
requires diagonalization of a very large matrix, so larger systems become
time intensive. Truncating the basis can improve the speed considerably, but
needs to be done intelligently – which determinants can be left out without
sacrificing too much accuracy?

In this thesis a method is implemented to find Slater determinants as-
sociated with low energies, forming a manageably sized basis which can
accurately describe the ground and first few excited states of an N -body
system. The starting point for the investigation is the Variation After Mean
field Projection In Realistic model spaces (VAMPIR), and its developments
Fed, Excited and Fed Excited VAMPIR discussed in [6]. These methods
were described over 30 years ago, but are becoming increasingly feasible
using modern computer clusters, largely due to the fact that they can be
parallelized. They entail finding the Hartree-Fock-solution through gradient
descent, and then increasing the accuracy (Fed VAMPIR), the excitation
level (Excited VAMPIR) or both (Fed Excited VAMPIR) by adding more
Slater determinants.

2 Theory

In this section, the problem to be solved is introduced in greater detail, as
well as the structure of the solution and the methods of gradient descent and
differentiation to be compared.
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2.1 Model

2.1.1 Potential landscape

This thesis treats N interacting fermions in a 1D quantum harmonic oscillator
(HO) potential, V (x) = (ωx)2. The harmonic oscillator closely mimics, among
other things, the coulomb potential felt by electrons in presence of a positively
charged nucleus, and the extension to 3D for atomic physics is almost trivial.

For atomic and nuclear physics, most important particles are fermionic,
which is why they are treated here. A similar investigation could be conducted
for bosons, replacing the Slater determinants with Slater permanents.

The model uses a Hamiltonian Ĥ = T̂ + V̂. The one-body operator T̂ is
the well known single-particle HO Hamiltonian

T̂ =
p̂2

2mp
+
mpω

2x̂2

2

with eigenfunctions

〈x|φm̃〉 = φm̃(x) =
1√

2m̃m̃!

(mpω

π~

)1
4
e−

x2

2 Hm̃(
√
mpω

π~ x) ,

using the Hermite polynomials Hm̃(x) = (−1)m̃ex
2 ∂m̃

∂xm̃

(
e−x

2
)
. The eigenval-

ues are
λm̃ = ~ω

(
m̃+

1

2

)
.

In this work, the lowest 5 basis states are used, with spin degeneracy, so
that the basis states will be labeled m ∈ {1..M},M = 10 corresponding to
harmonic number m̃i =

⌊
mi−1

2

⌋
and spin Si = 1

2(−1)mi .
V̂ is a two-body operator, and is defined in spatial representation as

〈m1,m2|V̂|m3,m4〉 =

=

∫ ∞
−∞

∫ ∞
−∞

dx′dxφm̃1
(x)φm̃2

(x′)V (x,x′)φm̃3
(x)φm̃4

(x′)δS1,S3δS2,S4 =

=
[
V (x,x′) = sδ(x−x′)

]
= δS1,S3δS2,S4s

∫ ∞
−∞

dxφm̃1
(x)φm̃2

(x)φm̃3
(x)φm̃4

(x) .

Here, s is a interaction strength parameter, which can be negative for at-
tractive interaction or positive for repulsive interaction. This delta interaction
is used to model interactions between particles at close quarters.

A combined Hamiltonian tensor Hm1m2m3m4
can be constructed as

Hm1m2m3m4
= δm̃1,m̃3

δm̃2,m̃4

~ω
(
m̃1 + 1

2

)
N − 1

+

+ δS1,S3δS2,S4s

∫ ∞
−∞

dxφm̃1
(x)φm̃2

(x)φm̃3
(x)φm̃4

(x)

using the reformulation of T̂ as a two-particle operator derived in [5].
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2.1.2 States

In Hartree-Fock, the ground state |Ψ0〉, labelled with an upper index 0 to
signify ground state, is approximated with a Slater determinant |ΨHF 〉 = |ϕ0

1〉,

|ϕ0
1〉 =

N∏
n=1

(
M∑
m=1

Dm,na
†
m

)
|−〉 .

Here, a†m is the creation operator to put a particle in state m in the vacuum
|−〉. D is a semi-orthogonal (M ×N) matrix of coefficients, which are chosen
through variation. D characterizes |ϕ〉 completely, and many properties
of the state can be expressed as matrix operations on D, as described in
section 2.1.3.

In [5], an expansion was discussed, where the ground state approximation
was improved by adding more determinants |ϕ0

q〉:

|ψ0〉 =

Q∑
q

f0q |ϕ0
q〉 .

In order to maintain normality, this solution requires a vector f0• =(
f01 f02 · · · f0Q

)
of intra-state coefficients. Each time a new determinant

is to be added, the previous f vector is scaled down by some factor
√
ℵ. In this

thesis an arbitrarily chosen ℵ of 0.9 is used. If |ϕ〉 were orthogonal, this would
correspond to keeping 90 % of the old approximation, and the next coefficient
would be easily found through Pythagoras: f0Q =

√
1− ℵ. Since the Slater

determinants are non-orthogonal, the last f depends on the determinant
overlaps O0 0

qAqB
= 〈ϕ0

qA
|ϕ0
qB
〉 and the previous f0<Q =

(
f01 f02 · · · f0Q−1

)
:

f0Q = −f0T<QO0 0
<QQ +

√
f0T<Q

(
O0 0
<QQO0 0

Q<Q −O0 0
<Q<Q

)
f0<Q + 1 .

This expression is derived in appendix A.1. ℵ is still in a sense a measure of
how much is conserved, just not as straight-forward as in the orthogonal case.

As a next step, excited states are found through Gram-Schmidt orthogo-
nalization. A pseudo state |ψ1〉 (“pseudo” because it is turned into a state
by orthogonalization) is found in the same way as |ψ0〉, while continuously
updating the inter-state coefficients c10, c11 so that |Ψ1〉 = c10 |ψ0〉+ c11 |ψ1〉 is
orthogonal to |Ψ0〉 = |ψ0〉. More generally,

|ΨE〉 =

E∑
e

cEe |ψe〉
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with a triangular matrix of coefficients

c =


c00 c10 · · · cE0

c11
...

. . . cEe
0 cEE


which is completely determined by the pseudo-state overlap GeAeB

= 〈ψeA |ψeB 〉
as derived in appendix A.2:

cE<E = −G<EcEE

cEE =
(
−GTG•E

)−1
2

with a column vector

G =

 (
G<E<E

)−1
G<EE

−1

 .

There is an (E − 1×E − 1) matrix inversion involved in each update of the c
matrix, which grows exponentially in time complexity. Luckily, one can reuse
the previously determined (G<E−1<E−1)

−1, in the Bordering method, only
taking into account the added E − 1 elements of G. The new inverse is given
from e.g. [3] as(

A ~B
~BT d

)−1
=

(
A−1 + 1

αA ~B ~BTA − 1
αA ~B

− 1
α
~BTA 1

α

)

with α = d− ~BTA ~B.
In both f and c, a choice of phase is available for each of the coefficients

as they are solutions to quadratic equations. The positive sign will be
consistently chosen throughout this thesis, as in much of the literature, as it
seems to have very little effect on the convergence of the search algorithm, or
on the found states.

2.1.3 Properties of the Slater determinants

Some important properties of the Slater determinants can be expressed in
terms of matrix operations on their defining coefficient matrices D, as follows:
Because of the anti-commutation properties of the creation operator â†m,
which enforce the Pauli principle,

{â†m1
, âm2} = δm1,m2

{â†m1
, â†m1

} = 0

{âm1 , âm1} = 0
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it can be shown, as is done in [8], that the determinant overlap

OAB = 〈ϕA|ϕB〉 = det
(
DT
BDA

)
,

that the density matrix is

ρA B
m1m2

=
〈ϕB|â†m2 âm1 |ϕA〉
〈ϕB|ϕA〉

= DA

(
DT
BDA

)−1
DT
B ,

and finally that the energy overlap

HAB = 〈ϕA|Ĥ|ϕB〉 = OAB

∑
m1,m2,
m3,m4

ρA B
m1m2

ρA B
m3m4

(
Hm1m3m4m2

−Hm1m3m2m4

)
.

2.2 Gradient descent

The variational principle gives that an operator’s eigenvectors are minimum
coordinates to its expectation value,

∂
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

= 0 ,

and those minima can be found by stepping the D matrix in the opposite
direction of the energy gradient, using a gradient descent method as described
below.

Gradient descent is the multi-dimensional equivalent of attempting to
find the lowest point in a landscape by walking downhill along the steepest
possible path. The method is often used in artificial neural networks, and
several methods have been developed in order to do it quickly and efficiently.
The naïve idea, “walk along the steepest path until the slope is 0” has a
number of problems:

• One could be far from a minimum, and if the descent rate is constant,
it can take a long time to get there.

• If finding the slope is computationally expensive, as is the case in this
method, it would be beneficial to set a course and maintain it, rather
than re-evaluate the gradient at each step.

• This method is prone to getting stuck in local minima – with a small
hurdle in the way of true minima. While there is no way to guarantee
that a global minimum was reached without a complete analytical
description of the landscape, there are methods that are much more
resilient to local minima.

A number of gradient descent methods were tried, and the most interesting
ones were Proportional descent, Rprop and Stiefel descent.
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True curve
Starting point

Constant step GD
Found minimum
RPROP GD

After first turn
After second turn
Found minimum

Figure 1: Demonstration of problems with naïve gradient descent (in 1 dimension).

2.2.1 Proportional descent

In [5] a simple descent method was used where the steps were proportional
to the gradient, and the course was held until the energy started rising. This
was repeated until the energy was updated a small enough amount. This
proportional descent is suitable for a certain type of landscape, where points
far from the minimum have steep gradients, and the gradient converges simply
towards the minimum. For other landscapes, it can end up spending long
time leaving low-gradient but high-energy points, and it is fairly sensitive to
local minima.

2.2.2 Rprop

In Rprop (Resilient propagation), the step length for each matrix element is
decided by whether or not the sign of the gradient’s corresponding element
changes, but not by the magnitude of the gradient. That way, after a given
number of steps each element is likely to be at a value where its corresponding
gradient sign keeps flipping, meaning a minimum. D is changed by an update
matrix U , the elements of which are scaled by experimentally determined η+

or η− in each step, depending on whether the sign of the gradient flipped
that step:

ηkm,n =

η
+ = 1.4 ∂E

∂Dk−1
m,n
· ∂E
∂Dkm,n

> 0

η− = 0.5 ∂E
∂Dk−1

m,n
· ∂E
∂Dkm,n

< 0

Uk+1
m,n = − sgn

(
∂E

∂Dk
m,n

)
ηkm,nU

k
m,n

Dk+1
m,n = Dk

m,n + Uk+1
m,n
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2.2.3 Stiefel descent

In Rprop and other common descent methods, D needs to be orthogonalized
occasionally, to maintain its semi-orthogonality. Since one element of each of
the N columns is needed to normalize the column, and one extra element
per column to the left is needed for orthogonality, 1

2N(N + 1) degrees of
freedom are removed. In effect the determinants are not really M ×N = 40-
dimensional, but rather N × (M − 1

2(N + 1)) = 30, and any descent along
those 10 extra dimensions is wasted work.

There is, however, a way to do gradient descent while inherently maintain-
ing that semi-orthogonality. It involves projecting the gradient on a tangent
space to the Stiefel manifold, and forming a single parameter search curve
along the manifold. Since every point on the curve is a semi-orthogonal
matrix, any D chosen from it will be too, and does not need to be orthogo-
nalized. This descent method is described in [1]. In theory, this could save
O(N2) in computation, and the more particles are being considered, the larger
the savings.

The general idea is to form a search path

Y (τ) =
(

1 +
τ

2
A
)−1 (

1− τ

2
A
)
D?

where
A = ∇D?EDT

? −D? (∇D?E)T

which can be shown to be a curve on the manifold in the opposite direction
of ∇D?E . τ ∈ R is adjusted by some common descent method, just as if it
were a 1D gradient descent.

The most time consuming part of this method is the inversion of aM×M -
matrix, but according to the Sherman-Morrison-Woodbury theorem there is
a way to simplify this type of inversion to an inversion of an 2N × 2N -matrix,
which is a large discount if the number of particles N is sufficiently smaller
than the number of basis harmonics M

2 .

2.3 Gradients

Initially, the gradient of the energy functional was found numerically, as

(∇D?E)m,n ≈
E(D?+εJ(m,n))− E(D?−εJ(m,n))

2ε

for some small ε, with the single-element matrix J(m,n).
Calculating this gradient for each of 40 elements means 80 calculations

of the energy, which itself is quite an expensive operation. Using matrix
calculus, however, an analytical derivative can be found, which is more similar
to the energy functional itself in complexity. The expression below is derived
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in appendix B.

∂E
∂D?

= 2cEE

(∑
qA,eA

WA

)
∂f?
∂D?

+ cEEf?
∑
qA,eA

DA

(
2WA1M +

+cEeAfAOA?

( ∑
m1,m2

ρA ?
m1m2

H••m1m2

)(
1M − ρ?A

))
with

WA = cEeAfA

(
HA? − EOA?

∑
qB ,eB

Gi
eAeB

fB
∑
qC ,eC

cEeCfCHCB

)
,

∂f?
∂D?

=


1

O??

(
fET<Q

(
2OE E

<QQf? −OE E
<Q<Qf

E
<Q

)
+ 1
)
D? ∓ f?

∑
q f

E
q OEE

q QDEq√
1

O??

(
fET<Q

(
OE E
<QQOEE

Q<Q

O??
−OE E

<Q<Q

)
fE<Q + 1

)


and
DA =

(
DT
AD?

)−1
DT
A .

This derivative is in numerator layout, so for gradient descent was used

∇D?E =
(
∂E
∂D?

)T
.

A similar expression was derived in [7], but for a slightly different model,
and only for the ground state.

2.4 Configuration Interaction

In configuration interaction, the Schrödinger equation is solved by numerical
diagonalization of the Hamiltonian matrix in a given basis of Slater deter-
minants. Full CI uses a basis of determinants that spans the full space of
many-body states, meaning diagonalization of, at best, a

(
M
N

)
×
(
M
N

)
matrix.

This gives an exact solution of the SE, but matrix diagonalization is time
intensive, and the matrix grows combinatorially with the model space.

For most applications, however, only the first few excited states matter.
Finding Slater determinants that span a low-energy subspace of the full
many-body state space is desirable, as it leads to quicker diagonalization
without loss of accuracy in the important eigenvalues. For truncated CI using
the basis of determinants found using the method described in this thesis,
the generalized eigenvalue problem

HΦ = ΛOΦ

is solved. The found Φ is a matrix of eigenvectors, and Λ is a diagonal matrix
of eigenvalues. These eigenvalues are approximations of the solutions to the
SE.
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Figure 2: Ground and E = 15 first excited levels of N = 4 particles in a harmonic oscillator, using
Q = 10 determinants per state.

3 Results

3.1 Gradients

As expected, the analytical calculations of the gradient took a fraction of the
time required for numerical derivation. A code performance profile shows an
improvement of about 20 times. Because the gradient accounts for 99 % of a
typical run time for Rprop with numerical gradient, this means huge savings.

To validate the analytical gradient, a random set of determinants were
generated and the numerical and analytical gradients at that random point
were compared. Statistical analysis of the difference between the individual
elements, as well as ocular inspection of the gradients (fig. 3), confirm the
formula.

3.2 Descent methods

Out of the tried descent methods Rprop turned out to be the fastest by far,
followed by Stiefel and lastly proportional descent. A majority of the run
time for Stiefel descent is unsurprisingly spent doing matrix inversion. With
larger model spaces, the result might be different, but for few (N ≈ 2 . . 5)
particles and this number of basis states (M = 10) Rprop has the speed
advantage. Comparing runs of the descent methods of roughly equal time,
Rprop has time to add more determinants, and the accuracy and reliability
is therefore increased.

3.3 Accuracy

As in [5], accuracy in the ground state could be assessed through comparison
with the exact CI solution. The excited states were mainly judged by intuitive
physical reasoning (below) and by the “smoothness” of their curves. Figures 4
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m

n

Numerical derivative

m

n

Analytical derivative

−0.04 −0.02 0 0.02 0.04 0.06 0.08
∂E

∂Dm,n

Figure 3: Example of the similarity between analytical and numerical derivative.

and 5 show the calculated energies as a function of interaction strength for
four particles in a harmonic oscillator potential. There is a clearly visible
improvement in accuracy going from Q = 1 to 7 determinants per state.

Three different types of errors can be distinguished in these two plots:

• Inaccuracy, due to inherent limitations in the model. The difference
between the ground state and the full CI solution which is seen for large
interaction strengths in fig. 4 is an example of this. A superposition
of Slater determinants cannot solve the N body problem exactly, but
this error can be reduced down to a limit by increasing the number of
determinants.

• State order swapping, where two states have switched place. Here, a
local minimum has been found instead of the global minimum, but it is
still a physical state, and in the space of states orthogonal to this local
minimum and all previous the real global minimum is easy enough to
find for the next iteration. These problems can easily be solved by a
simple sorting operation, and will disappear entirely in a subsequent
CI calculation.

• State mixing, Here, the same error has been made as in the order
swapping case, but some determinants correspond to one physical state
and some to the other, causing the energy lines to appear to meet
halfway. This problem arises when the states are near each other in the
search space, and is in fact made worse by adding more determinants.
A possible solution is occasional gradient descent on f , making sure
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Figure 4: Q = 1 determinant/state.
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Figure 5: Q = 7 determinants/state.
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Figure 6: N = 2 interacting particles.

that the contribution from the higher state is given a zero amplitude.

This method is limited by the fact that errors are accentuated for each
excitation: The ground state is almost-physical, the first excited state is the
lowest energy state that is orthogonal to the ground state, meaning that it is
(possibly) a worse approximation than the ground state was. Each successive
excitation includes and compounds the error from each previous.

3.4 Number of particles

The default testing case in this thesis uses N = 4 particles, but this can
be altered (and would ideally be expanded into the nuclear physics range).
Figure 6 shows the energy for 2 particles, fig. 7 for 3, and fig. 8 for 5. The states
in these three figures have been approximated with Q = 10 determinants per
layer. As will be discussed in section 3.7, these results match the expectations
well.

3.5 Time complexity

By timing the program, some analysis could be made of the time complexity
of the method. No exact description of asymptotic behavior is possible from
this small range of model spaces, but as is shown in fig. 9, the timing of
individual runs shows an exponential behavior for increases in number of
particles N and number of determinants Q, while an increase in number of
excited states E scales the time quadratically.

3.6 Configuration interaction

While a bit outside the scope of this thesis, fig. 10 demonstrates the im-
provement in doing CI with the found basis. Here, E = 4 states represented
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Figure 7: N = 3.
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Figure 8: N = 5.
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Figure 11: Schematic image of tangents to the energy curves.

by Q = 5 determinants each are calculated and shown in the upper plot.
The plot below it shows the eigenvalues of the corresponding Hamiltonian
matrix. Of course, as Q× (E + 1) = 25 determinants are used, that is also
the number of eigenvalues. However, since determinants that describe the
first E + 1 states were intentionally chosen, the higher eigenvalues (in gray)
are not meaningful.

As expected the ground state (in dark red) is notably closer to the exact
full CI solution in the lower picture than in the higher, and the excited states
are smoother.

3.7 Physical interpretation of results

This subsection contains a physical interpretation of these results, as a
description of a few fermions trapped in a harmonic oscillator potential.
These results are not groundbreaking, but serve as a proof of concept.

Figure 11 shows a possible intuitive interpretation of the calculated
energies for 4 particles. The red lines correspond to modes where the particles
lie in two pairs, while the blue are ones with one pair and two independent
particles and green are ones without pairs. Therefore, the slope dE

ds of the
red lines is about twice that of the blue, and 0 for the green. These straight
lines are the tangents at s = 0. In the simulations and in physical reality, the
states are free to combine in less straight-forward ways, giving a higher slope
for large attractive potential, and a lower slope for large repulsive potential.

The Hellman-Feynman theorem, proven e.g. in [2] provides a motivation
for this picture:

∂E
∂s

=
∂

∂s
〈Ψ(s)|T̂ + sV̂|Ψ(s)〉 =

[
Hellman-Feynman

]
=

= 〈Ψ| ∂
∂s

(
T̂ + sV̂

)
|Ψ〉 = 〈V̂〉
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where V̂ = V̂
s has an expectation value ∝ the number of particle pairs in the

state |Ψ〉. The changes in the number of pairs is what causes the bending of
the energy curves.

Using the diagonal values of the density matrix and reasoning on the
slopes of the energy curve (using e.g. fig. 12), one can figure out an intuitive
description of which harmonics the particles actually occupy, and how. These
descriptions are displayed in table 1. In a sense, the construction of the
table is the opposite process of configuration interaction theory, where basis
determinants are chosen by considering the excitations of singles and pairs,
followed by diagonalization. Many of the configurations are degenerate,
meaning that there is more than one configuration that leads to the same
energy. In table 1, linewise degenerate states (which have the same or similar
energy for all s) are grouped by rules. At values of s where energy lines cross,
the energies are extra degenerate. Notably, at s = 0 many such pointwise
degeneracies appear.

When the number of particles is increased, the single-particle energy
sum (E(s=0)) goes up proportionally. Odd numbers of particles give rise to
degenerate ground states, having a choice of spin for the odd particle. With
even N , the ground state (for low enough s) has pairs of particles in the first
N
2 harmonics, and there is only one such configuration.

22



−2

0

2

4

6

8

10

0

1

2

0 3 6 9 12 15

E

s

O
cc
up

an
cy

E

2.8
8
3.8

9
4.2

6
4.2

6
4.2

6
4.9

2
4.9

8
5.2

2
5.2

6
5.2

7
5.2

7
5.3

4
5.3

4
5.3

5
5.9

6
5.9

7
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4 Discussion

4.1 Conclusion

The described iterative post-Hartree-Fock method can reliably calculate ap-
proximations to the ground and first few excited states of an N body quantum
mechanical 1D harmonic oscillator, and the found Slater determinants form
a basis for a low-energy space for configuration interaction. The time com-
plexity appears to grow exponentially with model size, which potentially
makes it faster and more feasible for large systems than full CI which grows
factorially. Just how large systems are feasible is hard to say without large
scale benchmarking.

4.2 Extensions

In order to use this method for nuclear or atomic physics, it needs to be
implemented with a more realistic model, like a 3D harmonic oscillator. This
adaptation is in principle just a matter of extending the Hamiltonian tensor.

The model space needs to be expanded into much higher N , which will
require optimizations. A couple of possibilities arise: Instead of taking the
positive sign for every choice of c and f , a phase could be recorded for each
such choice, allowing the descent to choose whichever sign gives the lower
energy. This could possibly help shorten the time to convergence. Another
impactful change would be to use more intelligently chosen initial D matrices
instead of just randomizing. For instance, determinants within a state would
be expected to be similar, so using the previously found D, with some noise,
as a starting point to find the next one could be advantageous. A well
implemented propagation method on the f vectors could save some time
by reducing the number of determinants required for accuracy. With some
extensive benchmarking, it might be possible to find an optimal ℵ, or some
other method of re-scaling the determinants.

One possible way of increasing the speed and stability of this method
is to view the choice of inter-state coefficients c not as a Gram-Schmidt
orthogonalization, but as a Cholesky decomposition, where

G = LLT

and c = L−T, which should be a quick inversion to perform because of the
triangular structure of L.

In order to prove the feasibility of this method, it would need to be
compared, in accuracy and time, with some implementation of full CI on the
same system.
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Table 1: The first states at s = −1 for N = 4 particles. As s changes, so will the ordering and
the energy. The configurations will also be decreasingly pure as |s| increases, the table displays
the idealized s = 0 representation. For some states, the density matrix diagonals and slopes are
not enough information to figure out an intuitive occupancy description or one with few enough
components to fit.

E Occupancy 〈T̂ 〉 Number of pairs E/~ω

0 4 2 2.88

1 1
2 +1

2 5 2 3.89

2 5 1

3 5 1 4.26

4 1
2 +1

2 5 1

5 1
2 +1

2 6 2

6 1
3 +1

3 +1
3 6 2 4.92

...

8 0 8
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A Coefficients

A.1 Method for intra-state coefficients

The latest intra-state coefficient f? is chosen to make sure that the pseudo-
state |ψE〉 is normalized. Because the Slater determinants are not orthogonal,
f? will depend on the previously chosen fE<Q and the determinant overlaps
〈ϕA|ϕB〉 = OAB:

〈ψE |ψE〉 = 1

=
∑
qA,qB

fEqA f
E
qB

OE E
qAqB

= f?
∑
qB

fEqB OE E
qAqB

+

Q−1∑
qA

fEqA

∑
qB

fEqB OE E
qAqB

= (f?)
2O?? + 2f?

Q−1∑
q

fEq OEE
q Q +

Q−1∑
qA,qB

fEqA f
E
qB

OE E
qAqB

=⇒ (f?)
2 + Pf? +Q = 0 where

P =
2

O??

Q−1∑
q

fEq OEE
q Q, Q =

1

O??

(
Q−1∑
qA,qB

(
fEqA f

E
qB

OE E
qAqB

)
− 1

)

=⇒ f? = −P
2
±

√(
P
2

)2

−Q = − 1

O??

Q−1∑
q

fEq OEE
q Q

±

√√√√ 1

(O??)
2

Q−1∑
qA,qB

fEqA f
E
qB

OE E
qAQ

OE E
qBQ
− 1

O??

(
Q−1∑
qA,qB

(
fEqA f

E
qB

OE E
qAqB

)
− 1

)
.

(A1)
The positive sign is chosen.

Assuming normality within the Slater determinants, OAA = 1,

f? = −fET<QOE E
<QQ +

√
fET<Q

(
OE E
<QQOEE

Q<Q −OE E
<Q<Q

)
fE<Q + 1 . (A2)

A.2 Method for inter-state coefficients

The inter-state coefficients cE• must be chosen so as to make |Ψ〉 orthogonal:

〈Ψe|ΨE〉 = δe,E .

Keeping in mind that c is upper-triangular, so cEe = 0 if e > E:

〈Ψe|ΨE〉 {e<E} = 0 =
(
ceT<E 0

)( G<E<E G<EE

GE<E GEE

)
cE• =

= ceT<E
(
G<E<Ec

E
<E + G<EEc

E
E

)
.
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Since this equation must hold at e = 0, with c00 6= 0, c0>0 = 0, the first element
of the parenthesis must be 0. By induction,(

G<E<Ec
E
<E + G<EEc

E
E

)
= 0

cE<E = −Gi
<E<EG<EEc

E
E = −G<EcEE .

This can be replaced into

1 = 〈ΨE |ΨE〉 = cET<EG<E<Ec
E
<E + 2cET<EG<EEc

E
E + (cEE)2GEE =

=

GT<E
=1︷ ︸︸ ︷

G<E<EGi
<E<E G<EE − 2GT<EG<EE + GEE

 (cEE)2

=⇒ cEE = ±
(
GEE − GT<EG<EE

)−1
2

= ±
(
−GTG•E

)−1
2
.

Again, the positive sign is chosen.
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B Analytic derivatives of the energy functional

The latest D-matrix DE
Q is shortened D?, and states pertaining to it will be labelled with E

Q or ?, whereas arbitrary states will
be labelled eA

qA
and eB

qB
or A and B.

This section uses differential identities and methods from [4]. Now,

∂E = ∂ 〈ΨE |Ĥ|ΨE〉 = ∂
∑
qA,qB ,
eA,eB

cEeAc
E
eB
fAfB 〈ϕA|Ĥ|ϕB〉 .

This becomes

∂E =
∑
qA,qB ,
eA,eB

cEeAc
E
eB

HAB (fA∂(fB) + fB∂(fA)) + fAfBHAB

(
cEeA∂(cEeB ) + cEeB∂(cEeA)

)
+ cEeAc

E
eB
fAfB∂(HAB) .

These differentials can all be reduced to an expression like ∂E = tr(X∂D?) =⇒ ∂E
∂D?

= X as such:

∂OAB = ∂ 〈ϕeAqA |ϕ
eB
qB
〉 = ∂ det

(
DT
BDA

)
= OAB tr

((
DT
BDA

)−1
DT
B∂DA +

(
DT
ADB

)−1
DT
A∂DB

)
∂OAB

∂D?
= OAB

(
δA,?(D

T
BD?)

−1DT
B + δB,?(D

T
AD?)

−1DT
A

)
=

= OAB (δA,?DB + δB,?DA)

where DA = (DT
AD?)

−1DT
A will prove to be a common enough construction as to warrant a shorthand.
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The derivative of f? by necessity uses the longer version of the expression, eq. (A1), because the assumption required for
the shorter version eq. (A2), that the determinants are normalized, does not hold for arbitrary variation on the elements of D?.
In short, if ∂OAA

∂D?
was 0 the shorter expression could be used, but it isn’t.

∂fA
∂D?

= δA,?

−1

2
+

P

4
√

(P2 )2 −Q

 ∂P
∂D?

− 1

2
√

(P2 )2 −Q

∂Q
∂D?

 =

= δA,?


1

O??

(
fET<Q

(
2OE E

<QQf? −OE E
<Q<Qf

E
<Q

)
+ 1
)
D? − f?

∑
q f

E
q OEE

q QDEq√
1

O??

(
fET<Q

(
OE E
<QQOEE

Q<Q

O??
−OE E

<Q<Q

)
fE<Q + 1

)


∂GeAeB
= ∂ 〈ψeA |ψeB 〉 =

Q∑
qA,qB

(fAfB∂(OAB) + OAB (fA∂(fB) + fB∂(fA))) =

=

Q∑
qA,qB

(fAfBOAB tr ((DB∂DA +DA∂DB)) + OAB (fA∂(fB) + fB∂(fA)))

∂GeAeB

∂D?
= δeA,E

∑
qB

fBOB?

(
f?DB +

∂f?
∂D?

)
+ δeB ,E

∑
qA

fAOA?

(
f?DA +

∂f?
∂D?

)
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∂cEE = ∂

(
GEE − 〈ψE |

(
E−1∑
eA,eB

|ψeA〉 (Gi)eAeB 〈ψ
eB |

)
|ψE〉

)−1
2

=

= −1

2

(
GEE −

E−1∑
eA,eB

GEeA
(Gi)eAeBGeBE

)−3
2

·

(
∂GEE −

E−1∑
eA,eB

(Gi)eAeB
(
∂(GEeA

)GeBE
+ GEeA

∂(GeBE
)
))

∂cEE
∂D?

= (cEE)3

(
(−1) ·

∑
qA

fEqA OE E
qAQ

(
f?DEqA +

∂f?
∂D?

)
+

+
E−1∑
eA

E−1∑
eB

(Gi)eAeBGeBE

∑
qA

fAOA?

(
f?DA +

∂f?
∂D?

))
=

= (cEE)3
∑
qA,eA

GeAfAOA?

(
f?DA +

∂f?
∂D?

)

∂cEe {e 6= E} = ∂

(
−
E−1∑
eA

(Gi)eeAGeAE
cEE

)
= −

E−1∑
eA

(Gi)eeA
(
GeAE

∂cEE + cEE∂GeAE

)
∂

∂D?
cEe {e 6= E} =

(
− Ge

∂cEE
∂D?

)
− cEE

E−1∑
eA

(Gi)eeA
∂GeAE

∂D?
= −cEE

∑
eA

((
(cEE)2GeGeA + Gi

eeA

)∑
qA

fAOA?

(
f?DA +

∂f?
∂D?

))
because Gi

E• = 0, and using the definition of cEe ,

∂cEe
∂D?
{∀e} = −cEE

∑
eA

((
cEe c

E
eA

+ Gi
eeA

)∑
qA

fAOA?

(
f?DA +

∂f?
∂D?

))
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∂ρAB = ∂
(
DA(DT

BDA)−1DT
B

)
=

= ∂(DA)(DT
BDA)−1DT

B +DA(DT
BDA)−1∂DT

B −DA(DT
BDA)−1

(
∂(DT

B)DA +DT
B∂(DA)

)
(DT

BDA)−1DT
B

∂ρA B
m1m2

= ∂
(
JT(m1)

ρABJ(m2)

)
=

= tr
(
J(m2,m1)∂ρ

AB
)

= tr
(

(DT
BDA)−1DT

BJ(m2,m1)(1− ρ
AB)∂DA + (DT

ADB)−1DT
AJ(m1,m2)(1− ρ

BA)∂DB

)
∂ρA B

m1m2

∂D?
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(
1M − ρ?B

)
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1M − ρ?A

)
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∑
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∂HAB

∂D?
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Finally

∂E
∂D?

=
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E
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