
Lund University

NUMK01

Bachelor’s project in Numerical Analysis

On the Fourier Collocation Method

Author:
Henrik Lindell

Supervisor:
Philipp Birken

Abstract

This BSc thesis focuses on trying to find approximate solutions to partial differential
equations using the Fourier collocation method. This method uses Fourier basis func-
tions to approximate the solution to a partial differential equation with periodic bound-
ary conditions. Using Fourier basis functions, one does not need to use large matrices,
which makes all computations relatively fast. Another benefit is that for smooth enough
initial functions, the error converges very fast. We review some theory of Fourier basis
functions, some theory of circulant matrices, and the theory underlying the implemen-
tation of the Fourier collocation method. We also describe how one can improve the
error of the solution by making some extra calculations before applying the Fourier col-
location method, and describe three methods of time stepping. In this BSc thesis, the
advection-diffusion equation is used for testing the method, as it can be explicitly solved.
We finally present some numerical results. These results confirm in large parts what the
theory predicts. However, for some initial functions, the error does not converge as one
would expect.

Populärvetenskaplig sammanfattning

Partiella differentialekvationer är ekvationer som beskriver hur tillst̊and förändrar sig.
Dessa uppst̊ar naturligt när man modellerar omvärlden, fr̊an hur molekyler sprider sig
i celler till hur galaxer roterar. Att lösa dessa ekvationer är ofta näst intill omöjligt,
och man behöver därför approximera lösningar med hjälp av datorer. Det här arbetet
fokuserar p̊a en speciell metod för att approximera lösningar, Fourier kollokationsmeto-
den. Denna metoden använder sig av periodiska funktioner (funktioner som upprepar
sig med jämna mellanrum). Om man använder dessa funktioner blir alla beräkningar
förh̊allandevis snabba, vilket är önskvärt. I detta arbete beskriver vi den matema-
tiska teorin som underligger metoden. Vi beskriver sedan metoden och hur man kan
förbättra approximationerna. Till sist presenterar vi resultatet fr̊an diverse numeriska
experiment. Dessa bekräftar till stor del vad den underliggande teorin förutsp̊ar, men
ett var förv̊anansvärt.

Acknowledgment

I would like to thank my supervisor Philipp Birken for the time he spent and for helping
me with this project.

1

List of notation

xj 2πj/N

ek eikx

LN
{
f : f =

∑N
k=−N ek

}
(f, g)

∫ 2π

0
f(x)g?(x)dx

(f, g)N
2π
N

∑N−1
k=0 f(xk)g?(xk)

||f || (f, f)

||f ||N (f, f)N

δi,j

{
1, i = j

0, i 6= j

δj,k±pN

{
1, if j = k + pN of j = −pN for some p ∈ {0, 1, 2, ...}
0, else

R[0, 2π]
{
g :
∫ 2π

0
g(x)dx <∞

}
∑M
|k|=n ak

∑−n
k=−M ak +

∑M
k=n ak

f̂k
∫ 2π

0
f(x)e−ikxdx

PNf
∑N/2
k=−N/2 f̂ke

ikx

τ
∑∞
|k|=N/2+1 ek

fP (x)

{
f(x− 2nπ), x ∈ [2nπ, 2(n+ 1)π), n ∈ Z
f(x), x ∈ [0, 2π)

f̄(t) (f(x0, t), ..., f(xN−1, t))
T

eA
∑∞
k=0A

k/k!

ck

{
1, |k| < N/2

2, |k| = N/2

f̃k
1

2π (f, ek)N

hj(x) 1
N

∑N/2
k=−N/2

1
ck
eik(x−xj)

INf
∑N−1
j=0 f(xj)hj

Di,j h′j(xi)

2

Table of contents

1 Introduction 4
1.1 Summary . 4
1.2 Motivation and Limitations . 4

2 Fourier Polynomials 6
2.1 Fourier Series Solutions of Partial Differential Equations 6
2.2 Fourier Basis Functions . 7
2.3 Fourier Truncation . 8
2.4 Discrete Inner Product . 10

3 Circulant matrices 13
3.1 Definition and Eigenvalues . 13
3.2 Eigenvalue Decomposition . 14

4 Fourier Interpolation 17
4.1 Discrete Fourier Coefficients . 17
4.2 Error of Fourier Interpolation . 20
4.3 Derivative of Interpolant . 20

5 Lagrange Form of Fourier Interpolant 22
5.1 Rewriting the Lagrange Functions . 22
5.2 Lagrange Derivative Matrix . 24
5.3 Symmetry of Discretization . 25

6 The Fourier Collocation Method 27
6.1 An Exact Solution . 27
6.2 Describing the method . 27
6.3 Removing Aliasing Errors . 31

7 Time stepping 34
7.1 Williamson’s Method . 34
7.2 Trapezoidal Rule . 35
7.3 Continuous Evolution . 36

8 Other Initial Functions 38

9 Summary and Further Topics 46

A Python Code 48
A.1 Functions Used in the Simulation Methods 48
A.2 Initial Functions and Time Stepping Methods 51
A.3 Simulation methods . 53

1 Introduction

1.1 Summary

This thesis is based on describing and testing the Fourier collocation method. We start
in chapter 2 by showing how one in theory can use Fourier series to solve PDE’s. We then
review some theory of Fourier series, Fourier polynomials and Fourier basis functions.
Next, in chapter 3 we present some theory of circulant matrices, which will be used in the
method to advance the solution forward in time. In chapter 4 we then describe Fourier
interpolation, and show how the interpolant can be calculated easily using Lagrange
functions. In chapter 5 we present some results about the derivative of the Lagrange
functions, and how the derivative evaluated at specific points can be calculated using
a matrix-vector product, and show that the matrix is circulant and skew-symmetric.
Chapter 6 is the main chapter, in which we describe the Fourier collocation method in
detail, along with how one implements it to solve the advection-diffusion equation. We
also show how one can reduce the error by replacing the initial function with a Fourier
truncation. We also show some numerical results. In chapter 7 we describe three time
stepping methods. We finally in chapter 8 show some numerical results using various
time stepping methods, initial functions and time step sizes.

1.2 Motivation and Limitations

This thesis concerns the approximate solution of partial differential equations (PDE’s).
These arise naturally in all kinds of applications, from engineering to particle physics.
One basic model PDE is the (scalar) advection-diffusion equation{

ϕt(x, t) + ϕx(x, t) = νϕxx(x, t), x ∈ [0, L], t ≥ 0

ϕ(x, 0) = ϕ0(x)
,

where ν > 0 is called the diffusion constant, t represents time and x represents position
in along a line. This equation is commonly used to test the accuracy of numerical
solution methods. The reason for this is that if one chooses a suitable initial function
ϕ0, the solution can be found analytically. One can then find the exact error of the
numerical method. If one prescribes the boundary-value conditions

ϕ(0, t) = ϕ(L, t),

then it is natural to prescribe that the solution should be periodic in the spatial dimen-
sion x with period L, i.e. ϕ(x, t) = ϕ(x+ L, t). Some functions that have this property
are the trigonometric functions, e.g. sin(2πnx/L), cos(2πnx/L) where n is an integer.
If one chooses to only work with these functions, then one can use the rich theory of
Fourier series to create methods that use this fact to their advantage.

One method, the one we focus on in this thesis, is the Fourier collocation method.
When one wants to solve a PDE one first has to discretize the equation in space. This
leads to the approximation of the PDE by a system of ordinary differential equations
(ODE’s), of the form

ūt = A(t)ū,

where A(t) is a square matrix and ū(t) is a column vector. In order to approximate the
solution of a PDE with high accuracy, most numerical methods require large matrices.
If one for example wants to approximately solve a PDE in three spatial variables, with
100 interior points in each spatial dimension, the resulting matrix is 106 × 106.

To calculate the solution of a linear system of equations

Ax = b

4

where A is a n × n matrix typically requires ∼ n3 operations. Therefore, approximat-
ing the solution at moderate accuracy, e.g. 100 interior points in each of three spatial
dimensions, becomes unfeasible. There are two common ways of lowering the computa-
tional effort. Most methods that use large matrices are constructed so that the matrices
are sparse, i.e. the overwhelming amount of elements are 0, which one can use to ones
advantage. The Fourier collocation method instead uses small matrices that are full, i.e.
there are not many vanishing elements. Since the matrices are small, solving the system
takes very little computational effort.

The drawbacks of the Fourier collocation method, however, is that its accuracy is
heavily dependent on the smoothness of the initial function. The eigenvalues of the
discretized system also grow quickly with increasing matrix size. Therefore, one needs
to use time stepping methods with suitable regions of absolute stability, e.g. implicit
methods. One nice property of the Fourier collocation method concerns the smoothness
of the solution. While e.g. finite difference methods and finite element methods typically
give solutions that are piecewise affine, the Fourier collocation method gives solutions
which are infinitely smooth. The accuracy of the approximation is also of exponential
order, i.e. if one uses grid points with distance h, the error of the approximation is
∼ e−c/h. This can be compared to most methods whose approximations are order p,
i.e. the error of the approximation is ∼ hp for some integer p. Since e−c/h grows faster
than hp for any fixed p, this is sometimes called infinite order.

Large parts of this thesis have been constructed by studying the book of Kopriva [2].
His works can be found especially in chapters 2, 4, 6, some parts of chapters 5, and the
description of Williamson’s Runge-Kutta method in section 7.2. Large parts of chapter
3 come from the notes by Geller et al. [4].

5

2 Fourier Polynomials

In this chapter we describe some theory of Fourier series. We present some results
regarding the smoothness of the initial functions. We then show that truncating the
Fourier series is the best approximation in a specific norm. We then describe a discrete
version of an inner product that will be used in later chapters to describe the Fourier
collocation method. The theory presented in this chapter is mainly based on [2].

2.1 Fourier Series Solutions of Partial Differential Equations

One useful tool when solving PDE’s are Fourier series. As an example, consider the heat
equation with periodic boundary conditions

ϕt(x, t) = ϕxx(x, t), 0 < x < 2π

ϕ(x, 0) = f(x), 0 ≤ x ≤ 2π

ϕ(0, t) = ϕ(2π, t), t ≥ 0

. (1)

We make an ansatz by separation of variables

ϕ(x, t) =

∞∑
k=−∞

ϕ̂k(t)eikx. (2)

If we assume ϕ is continuous and piecewise C1, we can differentiate term-wise [1]

∂2

∂x2
ϕ(x, t) =

∞∑
k=−∞

ϕ̂k(t)
d2

dx2
eikx =

∞∑
k=−∞

−k2ϕ̂k(t)eikx,

∂

∂t
ϕ(x, t) =

∞∑
k=−∞

dϕ̂k(t)

dt
eikx.

By setting ∂ϕ(x,t)
∂t − ∂2ϕ(x,t)

∂x2 = 0, we get

∞∑
k=−∞

(
dϕ̂k
dt

+ k2ϕ̂k

)
eikx = 0.

The set of functions
{
eikx

}∞
k=−∞ are linearly independent (we will show this in the

next chapter), which means that each summand must vanish, leading to the system of
equations

dϕ̂k
dt

+ k2ϕ̂k = 0, ∀k ∈ Z.

Using the initial condition ϕ(x, 0) = f(x) we get the system of ordinary differential
equations {

dϕ̂k
dt + k2ϕ̂k = 0, ∀k ∈ Z
ϕ̂k(0) = gk

, (3)

for some {gk}∞k=−∞. The solutions to (3) are ϕ̂k(t) = gke
−k2t. Plugging this into (2) we

get the general solution

ϕ(x, t) =

∞∑
k=−∞

gke
ikx−k2t.

6

Using the initial condition ϕ(x, 0) = f(x) we get the condition

f(x) =

∞∑
k=−∞

gke
ikx.

We will show later that this determines {gk}∞k=−∞ as gk = f̂k, where

f̂k =
1

2π

∫ 2π

0

f(x)e−ikxdx

are the Fourier coefficients of f . Finally, we get the solution

ϕ(x, t) =

∞∑
k=−∞

f̂ke
ikx−k2t. (4)

2.2 Fourier Basis Functions

As we wish to implement the solution methods numerically, Fourier series are not suit-
able, as we require infinite amount of information to represent the series. Instead, we
limit ourselves to a linear combination of a finite number of Fourier basis functions,
which are functions of the form ek(x) = eikx = cos(kx) + i sin(kx), k ∈ Z. We note that

eikx =
(
eix
)k

. For an even natural number N we define a Fourier polynomial of degree
≤ N/2 as a function satisfying

p(x) =

N/2∑
k=−N/2

ake
ikx

with ak ∈ C, k = −N/2,−N/2+1, ..., N/2−1, N/2. We approximate the initial function
ϕ(x, 0) = f(x) by a Fourier polynomial of degree ≤ N/2

f(x) ≈ SN (x) =

N/2∑
n=−N/2

ŝnen =

N/2∑
n=−N/2

ŝne
inx. (5)

The different ways of approximating f by a Fourier polynomial of degree ≤ N/2 cor-
responds to different choices of ŝn. We denote the linear space of Fourier polynomials
with degree ≤ N by LN .

Definition 1. A set of functions {φn}Nn=0 are orthogonal on an interval [a, b] if

(φn, φm) =

∫ b

a

φn(x)φ?m(x)dx = Cnδn,m, (6)

for some Cn ∈ C where φ?m is the complex conjugate of φm and δn,m is the Kronecker
delta which is 1 if n = m and 0 otherwise.

The inner product (·, ·) induces a norm the L2 norm on [0, 2π]

||φn||2 = (φn, φn) =

∫ b

a

|φn(x)|2dx = Cn.

When we refer to the norm of a function, it is always this norm we are referring to,
unless stated otherwise. Since the Fourier basis functions {en}∞n=−∞ are all periodic
with period 2π, we get the following theorem:

7

Theorem 2. The Fourier basis functions are orthogonal on [0, 2π].

Proof. Straight forward calculation gives

(en, em) =

∫ 2π

0

einxe−imxdx =

∫ 2π

0

ei(n−m)x = 2πδn,m.

Since the basis functions are orthogonal we can determine ŝm by orthogonal projection
onto the space spanned by em,

(SN , em) =

 N/2∑
n=−N/2

ŝnen, em

 =

N/2∑
n=−N/2

ŝn(en, em) = 2πŝm.

The coefficients in (5) are then given by

ŝm =
1

2π
(SN , em), |m| ≤ N/2.

We denote the space of Riemann integrable functions on [0, 2π] by

R[0, 2π] =

{
g :

∫ 2π

0

g(x)dx <∞
}

If f ∈ R[0, 2π] then the representation

f(x) =

∞∑
n=−∞

f̂ne
inx (7)

is unique [5]. The coefficients are then given by f̂n = 1
2π (f, en), and

1

2π

∫ 2π

0

|SN (t)− f(t)|dt→ 0, as N →∞

i.e., the series converges in L1 norm. If f is continuous and piecewise C1, we get [1]

f ′(x) =

∞∑
n=−∞

inf̂ne
inx.

We will henceforth assume that f satisfies these conditions.

2.3 Fourier Truncation

In this thesis we will discuss two ways of choosing the polynomial coefficients ŝn, the
first one being Fourier truncation. We define the truncation operator PN by

(PNf)(x) =

N/2∑
k=−N/2

f̂ke
ikx = f(x)−

∞∑
|k|=N/2+1

f̂ke
ikx = f(x)− τ(x).

The method of Fourier truncation is then defined as replacing the initial function f by
PNf for some fixed N , and approximately solving the system of ODE’s (in some way

8

which we will not specify right now). From the definition of the truncation operator we
get the truncation error

τ(x) =

∞∑
|k|=N/2+1

f̂ke
ikx.

By the orthogonality of the Fourier basis functions,PNτ = 0 and (PNf, τ) = (τ, PNf) =
0. We note that PN is a projector from R[0, 2π] to LN/2, since P 2

Nf = PN (f − τ) =

PNf − PNτ = PNf . We also note that (τ, en) = 0, |n| ≤ N
2 . The following calculations

show that truncation and differentiation commute

(PNf)′(x) =
d

dx

N/2∑
k=−N/2

f̂ke
ikx =

N/2∑
k=−N/2

d

dx
f̂ke

ikx =

N/2∑
k=−N/2

ikf̂ke
ikx = (PNf

′)(x).

(8)
The norm of the truncation error is given by

||τ ||2 = ||f − PNf ||2 =

∫ 2π

0

 ∞∑
|k|=N/2+1

f̂ke
ikx

 ∞∑
|k|=N/2+1

f̂?k e
−ikx

 dx =

=

∞∑
|k|=N/2+1

∞∑
|l|=N/2+1

f̂kf̂
?
l

∫ 2π

0

eikxe−ilx = 2π

∞∑
|k|=N/2+1

|f̂k|2,

where we use the notation

N∑
|k|=n

ak =

−n∑
k=−N

ak +

N∑
k=n

ak. (9)

The size of the truncation error is heavily dependent on how fast the Fourier coefficient
decay. This is related to the smoothness of the periodic extension fP of the function f ,
which we define as

fP (x) =

{
f(x− 2nπ), x ∈ [2nπ, 2(n+ 1)π), n ∈ Z
f(x), x ∈ [0, 2π)

Assume that the Fourier coefficients f̂k decay as 1
kp for some p > 1. One can show that

the following holds [2]

∞∑
|k|=N/2+1

1

k2p
<

∫ ∞
N/2

2dz

z2p
=

2

2p− 1

1

(N/2)2p−1
.

We then get for the norm of the truncation error,

||τ || < C

(N/2)p−1/2
= C

(
N

2

)1/2−p

. (10)

This is called polynomial order accuracy. As examples of this, consider the function

p(x) = x(2π − x). (11)

We calculate the Fourier coefficients of p(x). Since we are only interested in how the
coefficients decay with increasing |k|, we can assume that k 6= 0 and then get∫ 2π

0

(2πx−x2)eikxdx =

[
−i
k

(2πx− x2)eikx
]2π

0

+
2πi

k

∫ 2π

0

eikx− 2i

k

∫ 2π

0

xeikxdx =
−4π

k2
,

9

so the coefficients decay as 1
k2 . We note that pP is continuous and piecewise C1. By

noting that ∫ 2π

0

xneikxdx =
(2π)ni

k
− i

k

∫ 2π

0

nxn−1eikxdx, (12)

we can find the Fourier coefficients of polynomials recursively. Some functions, however,
have coefficients that converge faster than 1

kp for any p. If the coefficients decay as e−ak

for some a > 0, since we have

∞∑
|k|=N/2+1

|e−ak|2 < 2

∫ ∞
N/2

e−2azdz =
1

a
e−2a(N/2)

we then get
||τ || < Ce−aN/2.

This is called infinite order accuracy, or spectral accuracy. The function

b(x) =
3

5− 4 cos(x)
(13)

is infinitely smooth with Fourier coefficients b̂k = 2−|k| [2], and PNb is spectrally accu-
rate. We end this section by proving a theorem.

Theorem 3. PNf is the best approximation from f to LN/2 in the L2 norm on [0, 2π],
i.e.

||f − PNf || = min
g∈LN/2

||g − f ||.

Note that this is what it means for a projector to be orthogonal, since || · || is induced by
an inner product.

Proof. Consider a general approximation SN =
∑N/2
k=−N/2 ŝnen. The norm of the ap-

proximation error is given by

||f−SN ||2 = ||
N/2∑

k=−N/2

(f̂k−ŝk)ek+
∞∑

|n|=N/2+1

f̂nen||2 = 2π

 N/2∑
k=−N/2

|f̂k − ŝk|2 +

∞∑
|n|=N/2+1

|f̂n|2
 ,

which is minimized by setting ŝk = f̂k for |k| ≤ N/2.

2.4 Discrete Inner Product

For many functions, we cannot integrate them analytically. We therefore seek a quadra-
ture rule

QF [f] =

N∑
j=0

f(xj)wj ≈
∫ b

a

f(x)dx

for some set {xj}Nj=0 known as the nodes, and some set {wj}Nj=0 called the weights.
We want functions that are orthogonal with respect to the continuous inner product to
remain orthogonal with respect to the quadrature rule for as many functions as possible.
Therefore we seek nodes and weights such that

N∑
j=0

einxjeimxjwj = 2πδn,m

10

for as large range of n and m as possible. We make the transformation k = n −m, so
that the problem becomes finding nodes and weights so that

N∑
j=0

eikxjwj = 2πδk,0

holds for as many k as possible. For convenience we now introduce the notation δk,±pN
as

δk,±pN =

{
1, if k = pN or k = −pN for some p ∈ {0, 1, 2, ...}
0, otherwise

, k ∈ Z.

Theorem 4. For N ∈ Z+ and k ∈ Z we have

N−1∑
j=0

eik(
2πj
N) = Nδk,±pN .

where δk±pN is defined as above.

Proof. It is true for k being any multiple of N , since then eik(
2πj
N) = 1. Then the left

hand side is
∑N−1
j=0 1 = N , and the right hand side is N (by the previously introduced

notation). If k is not a multiple of N , then by calling ξ = e2πik/N we get (since the sum
is a geometric sum)

N−1∑
j=0

eik(
2πj
N) =

N−1∑
j=0

ξj =
1− ξN

1− ξ
=

1− e2πik

1− e2πik/N
= 0.

The theorem above suggests that we use the nodes xj = 2πj
N henceforth. xj will refer

to these nodes. Since eix0 = eixN = 1, we ignore the term j = N , and normalize to get
wj = 2π

N . Then, by theorem 4 we have

2π

N

N−1∑
j=0

eikxj = 2πδk,±pN .

In particular, this exactly matches the integral when p = 0

2π

N

N−1∑
j=0

eikxj = 2πδk,0 =

∫ 2π

0

eikxdx, |k| = 0, 1, ..., N − 1.

We define the Fourier quadrature rule by

QF [f] =
2π

N

N−1∑
j=0

f(xj), xj = 2πj
N .

This is just the composite trapezoidal rule when f is periodic. Since k = n−m we get

2π

N

N−1∑
j=0

einxje−imxj =

∫ 2π

0

einxe−imxdx, |n−m| = 0, 1, ..., N − 1.

We next define the discrete inner product.

11

Definition 5. For N ∈ Z+, we define the discrete inner product as

(u, v)N =
2π

N

N−1∑
j=0

u(xj)v
?(xj), xj =

2πj

N
. (14)

Then the following holds

(en, em)N = (en, em) = 2πδn,m, |n−m| = 0, 1, ..., N − 1

||en||2N = 2π.

The Fourier quadrature rule integrates the Fourier basis functions ek exactly for |k| =
0, 1, ..., N − 1. There is a difference between the continuous inner product (6) and the
discrete inner product (14) however, since

(en, em) 6= 0 ⇐⇒ n = m

while

(en, em)N 6= 0 ⇐⇒ n−m = pN or n−m = −pN for some p ∈ {0, 1, 2, ...}.

This phenomenon is connected to aliasing errors, which we will discuss in later chapters.
We note that (u, v)N reminds us of the Euclidean inner product for real vectors

(ū, v̄)2 = ūT v̄ =

N∑
k=1

ukvk.

We therefore define to a function f the column vector f̄ by

f̄(t) =

f(x0, t)
f(x1, t)

.

.

.
f(xN−1, t)

 .

From this we can rewrite the discrete inner product, assuming u and v are both real-
valued functions,

(u, v)N =
2π

N
(ū, v̄)2 =

2π

N
ūT v̄.

12

3 Circulant matrices

Many of the matrices used in the implementation of the methods here are circulant
matrices. We show below that all circulant matrices have the same eigenvectors, and all
circulant matrices can be decomposed into U?ΨU , where U is unitary and Ψ is diagonal.
We also show that products, sums and inverses of circulant matrices are circulant. The
majority of the theory is based on [4].

3.1 Definition and Eigenvalues

We start by defining what a circulant matrix is and proving a theorem about the eigen-
values and eigenvectors of a circulant matrix.

Definition 6. A circulant matrix circ{a0, a2, ..., an−1} is a matrix A ∈ Cn×n of the
form

A =

a0 a1 a2 a3 ... an−2 an−1

an−1 a0 a1 a2 ... an−3 an−2

an−2 an−1 a0 a1 ... an−4 an−3

.

.

.
a1 a2 a3 a4 ... an−1 a0

.

Theorem 7. Let A = circ{a0, ..., an−1}. Then A has the eigenvalues

λl =

n−1∑
j=0

e2πijl/naj

with corresponding eigenvectors

ūl =

1
e2πil/n

e4πil/n

.

.

.
e2(n−1)πil/n

for l = 0, 1, ..., n− 1.

Proof. Note that A is the matrix
a0 a1 ... an−1

an−1 a0 ... an−2

. . .

. . .

. . .
a1 a2 ... a0

 ,

so the k’th row of A is Ak = (an−k+1, an−k+2, ..., an−1, a0, a1, ..., an−k), and the k’th
element of ūl is ūlk = e2π(k−1)il/n. By noting that e2πinl/n = (e2πi)−l = 1, we calculate
the k’th element of Aūl to be

(Aūl)k = an−k+1 + e2πil/nan−k+2 + ...+ e2πi(k−2)l/nan−1 + e2πi(k−1)l/nan =

13

n−1∑
s=n−k+1

e−2πi(n−k+1)l/ne2πisl/nas +

n−k∑
j=0

e2πi(k−1)l/ne2πijl/naj =

e2πi(k−1)l/n

 n−1∑
s=n−k+1

e−2πin/ne2πisl/nas +

n−k∑
j=0

e2πijl/naj

 =

e2πi(k−1)l/n

 n−1∑
s=n−k+1

e2πisl/nas +

n−k∑
j=0

e2πijl/naj

 = e2πi(k−1)l/n
n−1∑
j=0

e2πijl/naj = ūl,kλl.

Since this holds for k = 1, ..., n, we get Aūl = λlūl. The matrix with rows ū1, ..., ūn is
a Vandermonde matrix, so the determinant is nonzero [6] and the n vectors ū1, ..., ūn
are therefore linearly independent, and form a basis for Cn. The λl described above are
therefore the n eigenvalues.

3.2 Eigenvalue Decomposition

If we have two N × N circulant matrices, theorem 7 applies to each of them. Then
the matrices have the same eigenvectors. Since all linearly independent eigenvectors are
determined by theorem 7. This gives rise to the following theorem.

Theorem 8. Any N×N circulant matrix C can be decomposed into C = U?ΨU , where
U?j,k = e2πijk/N/

√
N , j, k = 0, 1, ..., N − 1 is a unitary matrix and Ψ is diagonal.

Proof. We first note that the eigenvectors ūl = (1, e2πil/n, e4πil/n, ..., e2(n−1)πil/n)T . This
shows that the normalized eigenvectors ȳl = 1√

N
(1, e2πil/N , ..., e2πil(N−1)/N)T are or-

thonormal. Then the k’th column of U? is ȳl. Now, let Ψ be the diagonal matrix with
element Ψl,l = λl. Let C be a circulant matrix. Then we have

CU? = U?Ψ.

Since the columns of U? are orthonormal, U is unitary. Therefore

C = U?ΨU.

The theorem above also shows that a matrix A = U?ΨU , with U given in theorem 8
and Ψ a diagonal matrix, is circulant. To explain this we note that the formula of the
eigenvalues in theorem 7 gives

λ0

.

.

.
λN−1

 =
√
NU?

a0

.

.

.
aN−1

 ⇐⇒

a0

.

.

.
aN−1

 =
1√
N

λ0

.

.

.
λN−1

 .

Given a square matrix U?ΨU , where Ψ is a diagonal matrix with entries Ψl,l = λl,
the equation above gives us entries a0, ..., aN−1 such that C = circa0, ..., aN−1 is a
circulant matrix with the eigenvalues λ0, ..., λN−1. Then C = U?ΨU . Therefore, U?ΨU
is a circulant matrix. From this we get some properties of circulant matrices in the
following theorem.

Theorem 9. Let A and B be circulant matrices. Then A+B, AB = BA and A−1 are
all circulant.

14

Proof. The statements are easily shown by writing A = U?ΨAU and B = U?ΨBU . We
then get

A+B = U?ΨAU + U?ΨBU = U?(ΨA + ΨB)U,

AB = U?ΨAUU
?ΨBU = U?ΨAΨBU.

We note that ΨA+ΨB and ΨAΨB are diagonal. Therefore, A+B and AB are circulant.
Since diagonal matrices commute, we get ΨAΨB = ΨBΨA, so AB = BA. We make the
ansatz

A−1 = U?Ψ−1
A U.

This is the inverse of A, since

AU?Ψ−1
A U = U?ΨAUU

?Ψ−1
A U = U?ΨAΨ−1

A U = U?U = I.

Note that the theorem above states that the set of circulant N × N matrices is a
commutative ring. The eigenvalues of a circulant matrix C can be found by

Ψ = UU?ΨUU? = UCU?.

Assume that we want to solve the system of ordinary differential equations

ūt = Aū

where A is a N × N circulant matrix. We approximate the solution on the time steps
tn with un = u(tn) using the explicit Euler method

un+1 = un + ∆tAun = (I + ∆tA)un.

Applying this iteratively, we get

un = (I + ∆tA)nu0

Let us now say that we want to calculate the solution for t = N∆t, giving the approxi-
mation ū(t) ≈ (I + ∆tA)Nu0. Taking the limit as N →∞ while keeping t constant we
get

ū(t) = lim
N→∞

(I +
t

N
)Nu0 = etAu0,

where the matrix exponential is defined as

eA =

∞∑
k=0

1

k!
Ak

Calculating the matrix exponential for a general square matrix M is hard. One needs
to find matrices V and Λ such that

M = V ΛV −1.

Then

etM =

∞∑
k=0

1

k!
tkMk =

∞∑
k=0

1

k!
tk(V ΛV −1)k =

∞∑
k=0

1

k!
tkV ΛkV −1 = V

(∞∑
k=0

1

k!
tkΛk

)
V −1 =

15

V etΛV −1.

If M is diagonalizable, one can take the columns of V to be the normalized eigenvectors
of M and take Λ to be a diagonal matrix whose diagonal entries are the eigenvalues of
M . If M is not diagonalizable, finding V and Λ is even more difficult, involving finding
the generalized eigenvectors of M . However, since our matrix A is circulant, we know
that

A = U?ΨAU,

with U already known and the entries of ΨA being easily calculated using theorem 7.
We then get

etA = U?etΨAU.

The fact that we can easily calculate etA for any t if A is circulant will mean that we can
solve the system of ODE’s arising from the spatial discretization of the PDE exactly,
meaning that there will be no error due to time stepping (if we choose to use this method
of solving the system of ODE’s).

16

4 Fourier Interpolation

In this chapter we describe the interpolation of a periodic function using Fourier basis
functions, which is the second way of choosing polynomial coefficients (the first way
being through Fourier truncation). We show how the interpolation can be calculated
using the discrete inner product, and how this gives rise to aliasing errors. We finally
show that unlike Fourier truncation, interpolation and differentiation do not commute.
The theory is based on [2].

4.1 Discrete Fourier Coefficients

We define the Fourier interpolant INf of a real-valued function f as the Fourier poly-
nomial of degree ≤ N/2 satisfying the interpolation condition

INf(xj) = f(xj), j = 0, 1, ..., N − 1.

[2] proposes using the discrete Fourier coefficients

f̃k =
1

N

N−1∑
j=0

f(xj)e
−ikxj =

1

2π
(f, ek)N , |k| ≤ N/2. (15)

We first define the Lagrange function and then prove a lemma. Some readers might
recognize this as the inverse discrete Fourier transform (DFT).

Definition 10. The Lagrange functions are the set of functions {hj} defined by

hj(x) =
1

N

N/2∑
k=−N/2

1

ck
eik(x−xj), j = 0, 1, ..., N − 1,

where

ck =

{
1, |k| < N/2

2, |k| = N/2

Lemma 11. For the Lagrange functions hj evaluated at the nodes xn, the following
holds

hj(xn) =
1

N

N/2∑
k=−N/2

1

ck
e2πi(n−j)k/N = δj,n.

Proof. We note that

e2πi(n−j)(N2)/N = eiπ(n−j) = (−1)n−j ,

e2πi(n−j)(−N
2)/N = e−iπ(n−j) = (−1)n−j .

We can then identify the k = N
2 with the k = −N

2 term, and since

1

cN
2

=
1

c−N
2

=
1

2

we get (by making the transformation l = k +N/2)

1

N

N/2∑
k=−N/2

1

ck
e2πi(n−j)k/N =

1

N

N/2−1∑
k=−N/2

e2πi(n−j)k/N =
1

N

N−1∑
l=0

e2πi(n−j)(l−N/2)/N =

17

=
1

N

N−1∑
l=0

e2πi(n−j)l/Ne−iπ(n−j) =
(−1)n−j

N

N−1∑
l=0

e2πi(n−j)l/N = (−1)n−jδn−j,±pN =

= (−1)n−jδn,j = δn,j

where the third to last equality comes from theorem 4, and the second to last equality
comes from the fact that |n− j| ≤ N − 1.

We can now prove a theorem about how to explicitly calculate INf .

Theorem 12.

INf =

N−1∑
j=0

f(xj)hj ,

and INf is the only Fourier polynomial of degree ≤ N/2 that satisfy the interpolation
condition INf(xj) = f(xj), j = 0, 1, ..., N − 1.

Proof. We note that since each hj is a Fourier polynomial of degree ≤ N/2, the sum
stated above is also a Fourier polynomial of degree ≤ N/2. Using lemma 11 we calculate
the sum at the nodes

INf(xn) =

N−1∑
j=0

f(xj)hj(xn) =

N−1∑
j=0

f(xj)δj,n = f(xn), (16)

so the sum satisfies the interpolation condition. For uniqueness of the Fourier inter-
polant, we write a Fourier polynomial of degree ≤ N/2 in the form

SN =

N/2∑
k=−N/2

ake
ikx

with

SN (xj) =

N/2∑
k=−N/2

ake
ikxj = f(xj).

We note that since SN satisfies the interpolation condition, then
e−i(N/2)x0 e−i(N/2−1)x0 ... ei(N/2)x0

e−i(N/2)x1 e−i(N/2−1)x1 ... ei(N/2)x1

. . .

. . .

. . .
e−i(N/2)xN−1 ei(N/2−1)xN−1 ... ei(N/2)xN−1

a−N/2
a−N/2+1

.

.

.
aN/2

 =

f(x0)
f(x1)
.
.
.

f(xN−1

 .

Note that the matrix is a multiple of U? with the rows permuted. Since det(U?) 6= 0, the
determinant of the matrix is also non-zero, so the system has a unique solution for each
right-hand side. Therefore, the Fourier polynomial of degree ≤ N/2 satisfying the inter-
polation condition is unique. Therefore, since the sum above satisfies the interpolation
condition, it is the Fourier interpolant.

We can also write INf in the same form as PNf by writing

INf(x) =

N−1∑
j=0

hj(x)f(xj) =

N−1∑
j=0

 1

N

N/2∑
k=−N/2

1

ck
eik(x−xj)

 f(xj) =

18

N/2∑
k=−N/2

 1

N

N−1∑
j=0

f(xj)e
−ikxj

 eikxj

ck
=

N/2∑
k=−N/2

f̃k
ck
eikx

where
f̃k = (f, ek)N

are called the discrete Fourier coefficients.
We note that IN is also a projector, but not an orthogonal one. The discrete Fourier

coefficients are N -periodic since

f̃k±N =
1

N

N−1∑
j=0

f(xj)e
−i(k±N)xj =

1

N

N−1∑
j=0

f(xj)e
−ikxje∓iN2πj/N =

=
1

N

N−1∑
j=0

f(xj)e
−ikxje∓2πij =

1

N

N−1∑
j=0

f(xj)e
−ikxj = f̃k.

In particular, f̃−N/2 = f̃N/2. Also, when f is real-valued, f̃N/2 is also real, since

f̃N/2 =
1

N

N−1∑
j=0

f(xj)e
−iN2 xj =

1

N

N−1∑
j=0

f(xj)e
i−πj =

1

N

N−1∑
j=0

f(xj)(−1)j .

By definition, (INf) = f at the nodes, leading to

(INf, ek)N = (f, ek)N .

We end this section with a theorem about the discrete inner product

Theorem 13. Suppose u and v are two Fourier interpolants, possibly of different func-
tions, of degrees ≤ N . Then (u, v)N = (u, v)

Proof. We write the interpolants in their modal form

u =

N/2∑
k=−N/2

ãk
ck
ek, v =

N/2∑
l=−N/2

b̃l
cl
el.

We have that

u(xj) =

N/2∑
k=−N/2

ãk
ck
eikxj =

N/2−1∑
k=−N/2

ãk
ck
eikxj +

ãN/2

cN/2
ei
N
2 xj =

N/2−1∑
k=−N/2

ãk
ck
eikxj +

ã−N/2

c−N/2
e−i

N
2 xj =

N/2−1∑
k=−N/2

ãke
ikxj .

where the last equality holds since cn = 1 for |k| < N/2 and c−N/2 = 2. The corre-
sponding equality holds for v. Therefore

(u, v)N =

N/2−1∑
k=−N/2

N/2−1∑
l=−N/2

ãk b̃l(ek, el)N =

N/2−1∑
k=−N/2

N/2−1∑
l=−N/2

ãk b̃l(ek, el) = (u, v).

19

4.2 Error of Fourier Interpolation

Since the Fourier truncation PNf is the best approximation from f to LN/2 in the L2

norm on [0, 2π], the norm of the interpolation error must be at least ||τ ||. We find the
error in each coefficient by

f̃k =
1

N

N−1∑
j=0

f(xj)e
−ikxj =

1

N

N−1∑
j=0

(∞∑
m=−∞

f̂me
imxj

)
e−ikxj =

∞∑
m=−∞

f̂m

 1

N

N−1∑
j=0

ei(m−k)xj

 =

∞∑
m=−∞

f̂m

 1

N

N−1∑
j=0

δm−k,±pN

 =

∞∑
p=−∞

f̂k+pN = f̂k +

∞∑
|p|=1

f̂k+pN . (17)

One can show that ||PNf − f || ≤ ||INf − f || ≤ 2||PNf − f ||, see [3]. The difference

f̃k − f̂k =
∑∞
|p|6=0 f̂k+pN is called the aliasing error. Note however, that the aliasing

error depends on how fast the Fourier coefficients decay.

4.3 Derivative of Interpolant

We approximate the derivative of the function by differentiating the interpolant

f ′(x) ≈ (INf)′(x) =

N/2∑
k=−N/2

ikf̃k
ck

eikx (18)

or, equivalently, differentiating the Langrange form

(INf)′(x) =

N−1∑
j=0

f(xj)h
′
j(x). (19)

We have shown that truncation and differentiating commute, in (8). We will now show
that interpolation and differentiation do not commute. We define the remainder operator
RN such that

INf = PNf +RNf

so that

RNf =

N/2∑
k=−N/2

∞∑
|p|=1

f̂k+pN

ck
eikx − 1

2

(
f̂N/2e

iNx/2 + f̂−N/2e
−iNx/2

)
.

We have that

(INf)′ = (PNf)′ + (RNf)′ = PNf
′ + (RNf)′

while

INf
′ = PNf

′ +RNf
′.

(RNf)′ 6= RNf
′, since

(RNf)′ =

N/2∑
k=−N/2

∞∑
|p|=1

ikf̂k+pN

ck
eikx − 1

2

(
iN

2
f̂N/2e

iNx/2 − iN

2
f̂−N/2e

−iNx/2
)

20

and

RNf
′ = RN

 N/2∑
k=−N/2

i(k + pN)f̂k
ck

eikx

 =

N/2∑
k=−N/2

∞∑
|p|=1

i(k + pN)f̂k+pN

ck
eikx − 1

2

(
iN

2
f̂N/2e

iNx/2 − iN

2
f̂−N/2e

−iNx/2
)
,

so the coefficients are not equal.

21

5 Lagrange Form of Fourier Interpolant

In the previous chapter we saw that one can write the interpolant in Lagrange form.
By doing this, in this chapter we show that we can write the values of the function
and its derivative at the nodes in closed form. This allows us to write the derivative
of a periodic function at the nodes as a matrix-vector product. This will be how the
method is implemented numerically. We finally show that the matrix in this matrix-
vector product is skew-symmetric. The statements of theorems 14, 15 and 16 are from
[2], although the proofs are derived by the author.

5.1 Rewriting the Lagrange Functions

We have shown that one can write the Fourier interpolant in Lagrange form

INf(x) =
∑N−1
j=0 f(xj)hj(x) (20)

hj(x) = 1
N

∑N/2
k=−N/2

1
ck
eik(x−xj) (21)

ck =

{
1, |k| ≤ N/2− 1

2, |k| = N/2
. (22)

We will now prove two theorems regarding writing the Lagrange functions (21) and their
derivatives in closed form.

Theorem 14. The Lagrange functions can be written in the closed form

hj(x) =

{
1
N sin

(
N
2 (x− xj)

)
cot
(

1
2 (x− xj)

)
, x 6= xj = 2πj

N

1, x = xj

Proof. We define ξ = 1
2 (x− xj). Multiplying (21) by N , we get

Nhj(ξ) =

N/2∑
k=−N/2

1

ck
e2ikξ =

N∑
n=0

1

cn−N/2
e2iξ(n−N/2) = e−iNξ

N∑
n=0

1

cn−N/2
e2inξ =

e−iNξ

(
1

2
+

1

2
e2iNξ +

N−1∑
n=1

(
e2iξ

)n)
.

Since
∑N−1
n=1

(
e2iξ

)n
is a geometric sum, we get

N−1∑
n=1

(
e2iξ

)n
= −1 +

N−1∑
n=0

(
e2iξ

)n
=

1− e2iNξ

1− e2iξ
− 1.

Then

e−iNξ
(

1

2
+

1

2
e2iNξ +

1− e2iNξ

1− e2iξ
− 1

)
= e−iNξ

(
1

2

(
e2iNξ − 1

)
+

1− e2iNξ

1− e2iξ

)
=

e−iNξ
(
e2iNξ − 1

)(1

2
− 1

1− e2iξ

)
=
(
eiNξ − e−iNξ

) 1− e2iξ − 2

2(1− e2iξ)
=

eiNξ − e−iNξ

2

e2iξ + 1

e2iξ − 1
=
eiNξ − e−iNξ

2

eiξ + e−iξ

eiξ − eiξ
=
eiNξ − e−iNξ

2i

2i

eiξ − e−iξ
eiξ + e−iξ

2
.

Using Euler’s formulas

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
,

22

we get

eiNξ − e−iNξ

2i

2i

eiξ − e−iξ
eiξ + e−iξ

2
= sin(Nξ)

1

sin(ξ)
cos(ξ) = sin(Nξ) cot(ξ) =

= sin

(
N

2
(x− xj)

)
cot

(
1

2
(x− xj)

)
,

where cot(x) = cos(x)/ sin(x).

Theorem 15. The derivative of the Lagrange functions evaluated at the nodes is given
by

h′j(xn) =

{
1
2 (−1)n+j cot

(
(n−j)π
N

)
, n 6= j

0, n = j
.

Proof. Again defining ξ = 1
2 (x− xj), we get

hj(ξ) =
1

N
sin(Nξ) cot(ξ)⇒ h′j(ξ) = cos(Nξ) cot(ξ)− 1

N

sin(Nξ)

sin2(ξ)
⇐⇒

⇐⇒ h′j(x) =
1

2

(
cos

(
N

2
(x− xj)

)
cot

(
1

2
(x− xj)

)
− 1

N

sin
(
N
2 (x− xj)

)
sin2

(
1
2 (x− xj)

)) .
Taking the limit as x→ xn = 2πn

N we get

lim
x→ 2πn

N

h′j(x) = lim
t→1

1

2

(
cos(π(tn− j)) cot

(π
N

(tn− j)
)
− 1

N

sin(π(tn− j))
sin2

(
π
N (tn− j)

)) =

lim
t→1

1

2

(
cos(π(tn− j)) cos

(
π
N (tn− j)

)
sin
(
π
N (tn− j)

) − 1

N

sin(π(tn− j))
sin2

(
π
N (tn− j)

)) =

lim
t→1

1

2

cos(π(tn− j)) 1
2 sin

(
2π
N (tn− j)

)
− 1

N sin(π(tn− j))
sin2

(
π
N (tn− j)

) .

If n 6= j, since 0 < |n− j| < N we get

h′j(xn) =
1

2

cos(π(n− j)) 1
2 sin

(
2π
N (n− j)

)
− 1

N sin(π(n− j))
sin2

(
π
N (n− j)

) =

1

2

(−1)n−j sin
(
π
N (n− j)

)
cos
(
π
N (n− j)

)
sin2

(
π
N (n− j)

) =
1

2
(−1)n+j cot

(π
N

(n− j)
)
.

If n = j then

lim
t→1

1

2

cos(π(tn− j)) 1
2 sin

(
2π
N (tn− j)

)
− 1

N sin(π(tn− j))
sin2

(
π
N (tn− j)

) =

lim
r→0

1

2

cos(πr) 1
2 sin

(
2π
N r
)
− 1

N sin(πr)

sin2
(
π
N r
) = lim

r→0

1
2 sin

(
2π
N

)
− 1

N sin(πr)

1− cos
(

2π
N r
) =

lim
r→0

π
N cos

(
2π
N r
)
− π

N cos(πr)
2π
N sin

(
2π
N r
) = lim

r→0

− 2π2

N2 sin
(

2πr
N

)
+ π2

N sin(πr)
4π2

N cos
(

2π
N r
) = 0,

where we used L’Hopital’s rule for the 3’rd to last and 2’nd to last equalities.

23

5.2 Lagrange Derivative Matrix

To see how an approximate solution written in Lagrange form ϕ(x, t) =
∑N−1
j=0 ϕ(xj , t)hj(x)

to (1) evolves over time, we only need to know how the node values ϕ(xj , t) evolve over
time. We note that using (19) we can approximate the space derivative of f evaluated
at the nodes by

f̄ ′(t) ≈ Df̄(t),

where we define the Lagrange derivative matrix as Di,j = h′j(xi), i.e.

D =

h′0(x0) h′1(x0) ... h′N−1(x0)
h′0(x1) h′1(x1) ... h′N−1(x1)
. . .
. . .
. . .

h′0(xN−1) h′1(xN−1) ... h′N−1(xN−1)

 . (23)

Theorem 16. The Lagrange derivative matrix D has eigenvalues λk = ik, k = −N2 +

1, ..., N2 − 1.

Proof. D has elements Di,j = h′j(xi). We first note that h′j(xj) = 0, so all diagonal
elements vanish. We secondly note that, if j 6= i

Di+1,j+1 = h′j+1(xi+1) = (−1)i+j+2 1

2
cot

(
((j + 1)− (i+ 1))π

N

)
=

(−1)i+j
1

2
cot

(
(j − i)π
N

)
= Di,j .

We thirdly note that since cot(π − x) = cot(x) that h′0(x2) = h′N−1(x1) etc. These
three facts show that D is the circulant matrix circ{h′0(x0), ..., h′N−1(x0)}. Since D ∈
CN×N and e2πi/N is a primitive N ’th root of unity, we get from theorem 7 that D has
eigenvalues

λl =

N−1∑
j=0

e2πijl/Nh′j(x0) =

N−1∑
j=0

eilxjh′j(x0), l = 0, 1, ..., N − 1.

Identifying equations (18) and (19) we get that for 2π-periodic functions

N−1∑
j=0

f(xj)h
′
j(x) =

N/2∑
k=−N/2

ikf̃k
ck

eikx. (24)

The functions {el}n−1
l=0 are 2π-periodic and their discrete Fourier coefficients are

ẽlk =

{
1, k = l

0, k 6= l
.

Using equation (24) with f = el at the point x0 = 0, we get

N−1∑
j=0

eilxjh′j(x0) =

N/2∑
k=−N/2

ikẽlk
ck

=
il

ck
, l = 0, 1, ..., N/2− 1.

24

If l = N/2, the ẽlN/2 = ẽl−N/2 = 1, so

N−1∑
j=0

eilxjh′j(x0) =
iN/2

2
+
−iN/2

2
= 0.

If l = N/2 + 1, ..., N − 1, then ẽll = ẽll−N , so

N−1∑
j=0

eilxjh′j(x0) =
i(l −N)

cl−N
= i(l −N).

Altogether, these three cases show that D has eigenvalues

λk = ik, k = −N/2 + 1, ..., N/2− 1.

5.3 Symmetry of Discretization

When discretizing a differential operator it is of interest whether the discretization re-
tains certain properties of the operator. An inner product space (X, (·, ·)) is a linear
space X together with a function (·, ·) : X×X → C (called an inner product) satisfying

(x, y) = (y, x)? (conjugate symmetry)

(ax+ by, z) = a(x, z) + b(y, z), a, b ∈ C (linearity in first argument)

(x, x) ≥ 0, (x, x) = 0 ⇐⇒ x = 0 (positive-definiteness).

From the conjugate symmetry and the linearity in the first argument we also get

(x, ay) = a?(x, y), (sesquilinearity).

Definition 17. Let an operator A be defined on an inner product space (X, (·, ·)). A
is said to be self-adjoint if

(u,Av) = (Au, v), ∀u, v ∈ X,

and anti-self-adjoint if

(u,Av) = −(Au, v), ∀u, v ∈ X.

Theorem 18. Self-adjoint operators have only real eigenvalues and anti-self-adjoint
operators haver only purely imaginary eigenvalues.

Proof. First, assume A is self-adjoint, and u is an eigenvector with eigenvalue λ. Then

λ||u||2 = (λu, u) = (Au, u) = (u,Au) = (u, λu) = λ?||u||2,

by the sesquilinearity of inner products, so λ = λ?, i.e. λ is real. Next, assume that A
is anti-self-adjoint. Then

λ||u||2 = (λu, u) = (Au, u) = −(u,Au) = −(u, λu) = −λ?||u||2,

so λ = −λ?, i.e. λ is purely imaginary.

Theorem 19. The differential operators ∂
∂x and ∂2

∂x2 defined on the inner product space
(C[0, 2π], (·, ·)) of continuous 2π-periodic functions along with the Fourier inner product
are anti-self-adjoint and self-adjoint, respectively.

25

Proof. Integrating by parts we get(
u,
∂v

∂x

)
=

∫ 2π

0

u(x)
∂v?(x)

∂x
dx = [u(x)v?(x)]

2π
0 −

∫ 2π

0

∂u(x)

∂x
v?(x)dx = −

(
∂u

∂x
, v

)
,

and (
u,
∂2v

∂x2

)
=

∫ 2π

0

u(x)
∂2v?(x)

∂x2
dx =

[
u(x)

∂v?(x)

∂x

]2π

0

−
∫ 2π

0

∂u(x)

∂x

∂v?(x)

∂x
dx =

= −
[
∂u(x)

∂x
v?(x)

]2π

0

+

∫ 2π

0

∂2u(x)

∂x2
v?(x)dx =

(
∂2u

∂x2
, v

)
.

The equivalent to an operator being self-adjoint or anti-self-adjoint for matrices is
the matrix being symmetric or skew-symmetric. The following theorem shows that the
matrices D and D2 are skew-symmetric and symmetric, respectively.

Theorem 20. The matrix D defined by (23) is skew symmetric, i.e. DT = −D, and
D2 is symmetric, i.e. (D2)T = D2.

Proof. We compare the entries Di,j and Dj,i. If j = i, then Di,j = 0 = −Di,j . If j 6= i,
then since the cot function is anti-symmetric

Dj,i =
1

2
(−1)i+j cot

(
(j − i)π
N

)
= −1

2
(−1)j+i cot

(
(i− j)π
N

)
= −Di,j .

Therefore, DT = −D. Since for any matrix A, (Ak)T = (AT)k, we have

(D2)T = (DT)2 = (−D)2 = D2.

D and D2 will be used in the Fourier collocation method as discretizations of ∂
∂x and

∂2

∂x2 . That they retain the equivalent properties is therefore desirable. Note that we
already knew that D has only purely imaginary eigenvalues by theorem 16.

26

6 The Fourier Collocation Method

In this chapter we first solve the advection-diffusion equation analytically. We then
describe the Fourier collocation method and show some numerical results. We describe
how to remove aliasing errors. The description of the method is based on [2], except for
the details on how to remove the aliasing errors.

6.1 An Exact Solution

We will now find an exact solution to the advection-diffusion equation
ϕt(x, t) + ϕx(x, t) = νϕxx(x, t), 0 < x < 2π

ϕ(x, 0) = ϕ0(x), 0 ≤ x ≤ 2π

ϕ(0, t) = ϕ(2π, t)

, t > 0, (25)

where we set the initial function to the familiar function

ϕ0(x) = b(x) =
3

5− 4 cos(x)
.

As we have already mentioned, this function has the Fourier coefficients [2]

f̂k = 2−|k|,

so

ϕ0(x) =

∞∑
k=−∞

2−|k|eikx.

We make the anzats

ϕ(x, t) =

∞∑
k=−∞

gk(t)2−|k|eikx

and get the system of ordinary differential equations

∞∑
k=−∞

dgk
dt

2−|k|eikx =

∞∑
k=−∞

−(νk2 + ik)gk(t)2−|k|eikx ⇐⇒ dgk
dt

(t) = −(νk2 + ik)gk(t) ⇐⇒

gk(t) = Cke
−(νk2+ik)t.

The initial conditions give gk(0) = 1, so the exact solution is

ϕ(x, t) =

∞∑
k=−∞

2−|k|eik(x−t)−νk2t.

This solution can now be used to test the accuracy of the numerical methods.

6.2 Describing the method

We are now ready to describe the Fourier collocation method. As a reminder, we want
to find an approximate solution to the PDE

ϕt(x, t) + ϕx(x, t) = νϕxx(x, t), 0 < x < 2π

ϕ(x, 0) = ϕ0(x), 0 ≤ x ≤ 2π

ϕ(0, t) = ϕ(2π, t)

, t > 0.

27

We wish to approximate the solution by a function φ defined on x ∈ [0, 2π] and on the
temporal grid points tn = n∆t, where we have chosen the time step ∆t > 0. We use the
notation φk = φ(tk). We first choose an even number N ≥ 2. To find an approximation
we first create the vector φ̄0 = (ϕ0(x0), ϕ0(x1), ..., ϕ0(xN−1))T (note the bar over the
φ), where xj = 2πj

N , j = 0, ..., N − 1. We then define the function φ0 for all x ∈ [0, 2π]
by

φ0(x) =

N−1∑
j=0

φ̄0,jhj(x).

We now wish to approximate the time derivative at each node. We have from the PDE
that

ϕt(xj , 0) = νϕxx(xj , 0)− ϕx(xj , 0).

We approximate the spatial derivative by differentiating the interpolant, written in La-
grange form

ϕx(xn, 0) ≈ d

dx

N−1∑
j=0

φ̄0(xj)hj(x)

∣∣∣∣
x=xn

=

N−1∑
j=0

φ̄0(xj)h
′
j(x)

∣∣∣∣
x=xn

=

N−1∑
j=0

Dn,jφ0(xj),

where from theorem 15 we have that

Dn,j = h′j(xn) =

{
1
2 (−1)n+j cot

(
(n−j)π
N

)
, n 6= j

0, n = j
.

We create the matrix D by first calculating all off-diagonal values. To calculate the
diagonal elements, we use the fact that the derivative of the function f(x) = 1 is

identically zero and each node value is identically 1, so we should get
∑N−1
j=0 Dn,j =

0. We therefore set Dn,n = −
∑N−1
j=0, j 6=nDn,j . Due to round-off errors, the diagonal

elements will not be exactly zero. As mentioned by [2], this method of calculating the
diagonal elements makes the overall approximation of the derivative less susceptible to
round-off errors. We can calculate the approximation of the spatial derivatives at all
nodes simultaneously by setting

(φx(x0, 0), φx(x1, 0), ..., φx(xN−1, 0))T ≈ D(φ(x0, 0), φ(x1, 0), ..., φ(xN−1, 0))T = Dφ̄0,

and likewise approximate the second spatial derivative at the nodes by

(φxx(x0, 0), φxx(x1), 0), ..., φxx(xN−1, 0))T ≈ D(φx(x0, 0), φx(x1, 0), ..., φx(xN−1, 0))T = D2φ̄0.

By now viewing the equations describing the time derivative of each node value as
a system of ODE’s (and using the approximation of the spatial derivatives described
above) we get the system of ODE’s

d

dt
φ̄0 = −D(φ̄0 − νDφ̄0).

We then use some time stepping method, three different ones being described in the
next chapter, to define the approximation φ̄1 = (φ(x0,∆t), φ(x1,∆t), ..., φ(xN−1)∆t))T .
We then continue like this, for as long as we like. Using e.g. the explicit Euler method,
we get a recursive relation

φ̄k+1 = φ̄k −∆tD(φ̄k − νDφ̄k).

Note that we do not need to generate D in every step, only one time, as the same
matrix is being used each time. Note also that the next chapter does not mention the

28

explicit Euler method as a potential time stepping method. This is because not only
is the method only order 1, but the region of stability is not suitable for the system of
ODE’s above. Once the vector φ̄k has been generated, we can define the approximation
φ(x, k∆t) for any x ∈ [0, 2π]. We do this by writing φ in Lagrange form

φ(x, k∆t) =

N−1∑
j=0

φ̄k,jhj(x),

where φ̄k,j is the j’th element of φ̄k, starting at 0. Note that for each time tk, function
φk satisfies the advection-diffusion equation at the nodes xj . A collocation method is
a method which satisfies the differential equation at some specified points. This is the
origin of ”collocation” in the name ”Fourier collocation method”. Note however that

this assumes that (D2φk)n = ∂2

∂x2φ(xk, tk). Since interpolation and differentiation do
not commute, this is not entirely true, but an approximation. Therefore, the word ”col-
location” promises slightly more than is true.

The figures below show the some results from using the Fourier collocation method.
Figure 1 shows the numerical solution for ν = 1/5. Figure 2 shows the numerical
solution for different times along with the reference solution (with Fourier modes up to
k = 1000. For details on the time stepping used, see chapter 7. The initial function was
ϕ0(x) = b(x), where b(x) is the function in (13). These figures show that the method is
qualitatively accurate, as not only does the initial function relax, but it also traverses
in the positive x-direction, properties we expect of the solution. Figure 3 shows the
relative error of the numerical solution for different non-positive values of ν. As one can
see, the method performs very well for different values, and the relative error is largely
equal to the initial error, which arises from the interpolation of the initial function. The
discrete norm is spectrally accurate to the continuous norm, since they only differ for
modes |k| > N/2.

29

Figure 1. Solution of advection-diffusion equation with ν =
1/5 with initial function b(x) in (13). The number of modes
used was N = 16, the time stepping was performed using
Williamson’s Runge-Kutta method and the time step was
∆t = 1.25× 10−3.

Figure 2. Approximated solution (circles) and exact so-
lution (lines) for different times, with ∆t = 1.25 × 10−3,
ν = 1/5. Williamson’s method was used for time-stepping
and the exact solution was calculated using Fourier modes up
to k = 1000.

30

Figure 3. Relative error of solution as a function of time with different diffusion coef-
ficients ν. The number of modes was N = 16, the time stepping was performed using
the trapezoidal rule and the time step was ∆t = 1.25 × 10−3. The discrete norm was
measured using M = 100 points.

6.3 Removing Aliasing Errors

The Fourier collocation method starts by interpolating the initial conditions, and ad-
vances forward in time as though the initial function was replaced by its interpolant.
The downside of doing this is that the interpolant INϕ0 is not the best approximation
from ϕ0 to LN/2 in the L2 norm on [0, 2π]. The best approximation in this norm is the
Fourier truncation PNϕ0. Using the interpolant as initial function introduces what’s
called aliasing errors, as seen in (17). Suppose we instead use PNϕ0 as initial condition.

Remember that PNϕ0 =
∑N/2
k=−N/2 ϕ̂0kek, where ϕ̂0k are the Fourier coefficients

ϕ̂0k =
1

2π
(ϕ0, ek) =

1

2π

∫ 2π

0

ϕ0(x)eikxdx.

The resulting initial function does not satisfy the initial condition at the nodes, leading
to an initial error at the nodes. However, since the Fourier coefficients f̂k decay as
e−νk

2

, the coefficients of higher frequencies decay quickly, leading to fast convergence.
The interpolant pools the higher frequency coefficients together with the lower frequency
ones. This leads to the higher frequency coefficients decaying much slower than they are
supposed to. Therefore, while using the Fourier coefficients leads to an initial error at
the nodes, the error becomes much less than for the discrete coefficients, as time goes
by.

As an example, let’s use the case when ϕ(x, 0) = cos(2x) + 1
10 cos(6x), and N = 8.

We write the initial function as its Fourier series

ϕ(x, 0) = cos(2x) +
1

10
cos(6x) =

1

2
e2ix +

1

2
e−2ix +

1

20
e6ix +

1

20
e−6ix,

so the non-zero Fourier coefficients are f̂−6 = f̂6 = 1
20 , f̂−2 = f̂2 = 1

2 . Let’s also,
for convenience, disregard the advection term. The exact solution (as can be seen by
equation (4)) is

ϕ(x, t) = e−4νt cos(2x) +
1

10
e−36νt cos(6x).

31

Let’s first use the discrete coefficients, the ”intuitive choice”. Note that IN can only
use terms up to |k| = 4 for N = 8. Since f̃k, used to define INf by theorem 12, is
calculated using (15), we get

f̃k = (f, ek)N =

(
1

2
e2 +

1

2
e−2 +

1

20
e6 +

1

20
e−6, ek

)
N

=(
1

2
e2, ek

)
N

+

(
1

2
e−2, ek

)
N

+

(
1

20
e6, ek

)
N

+

(
1

20
e−6, ek

)
N

=

1

2
δk,2±8p +

1

2
δk,−2±8p +

1

20
δk,6±8p

1

20
δk,−6±8p, k = −4, ..., 4,

where δk,j±8p =

{
1, if k = j + 8p or k = j − 8p for some p ∈ {0, 1, 2, ..., }
0, else

. Therefore,

we get f̃−2 = f̃2 = 11
20 . The Fourier collocation method now treats the differential equa-

tion as though the initial function was φI(x, 0) = 11
20e

2ix + 11
20e
−2ix = 11

10 cos(2x). The
exact solution with this initial function would then be

φI(x, t) =
11

10
e−4νt cos(2x)

which again can be seen from (4). The squared norm of the error as a function of time
is then

||(φI − ϕ)(t)||2 =

∫ 2π

0

∣∣∣∣ 1

10
e−4νt cos(2x) +

1

10
e−26νt cos(6x)

∣∣∣∣2 dx =
π

100
e−8νt +

π

100
e−72νt.

Let’s now instead use the Fourier coefficients f̂k. Since again the higher coefficients
cannot be resolved, this gives the approximate solution

φP (x, t) = e−4νt cos(2x).

Now the squared norm of the error is

||(φP − ϕ)(·, t)||2 =

∫ 2π

0

∣∣∣∣ 1

10
e−36νt cos(6x)

∣∣∣∣2 dx =
π

100
e−72νt.

Not only is the error smaller for the truncation than for the interpolation, but the error
also decays much faster. The one downside is that one has to first calculate the Fourier
coefficients. Figure 4 and 5 show the error of the solution at t = 3 for different values
of N . In figure 4 ν = 1/5, and one can clearly see that the de-aliased solution has a
much lower error. In figure 5 ν = 0, and the error of the two initial functions is almost
equal. This is explained by the fact that the smaller error of the de-aliased solution is
based on the Fourier coefficients decaying fast. This is achieved when ν > 0, since the
coefficients are dampened by a factor of e−k

2νt.
The problem with using de-aliased initial conditions is that one has to calculate the

Fourier coefficients ϕ̂0. Doing this exactly requires evaluating an integral, which might
not even be possible to evaluate analytically.Instead we calculate the discrete coefficients
with a large number N = Nbig, e.g. Nbig = 10N . The Fourier coefficients then almost
match the calculated discrete ones, since the aliasing error

f̃k − f̂k =

∞∑
|p|=1

f̂pNbig

becomes extremely small if the Fourier coefficients decay quickly, say with spectral speed.
Since PN and IN are both projectors onto LN/2, IN (PNf)) = PNf . Therefore, when

32

the Fourier collocation method interpolates the initial condition, if the initial function
has been replaced by its Fourier truncation, then the coefficients will remain f̃k = f̂k.
Hence, nothing else is needed to remove aliasing errors but to replace the initial function
by its Fourier truncation.

Figure 4 and 5. Error at time t = 3 for aliased (interpolation) and de-aliased (truncation)
initial conditions as a function of N . The parameters were ∆t = 1.25× 10−3, ν = 1/5.
Williamson’s method was used for time-stepping and the exact solution was calculated
using Fourier modes up to k = 1000. Figure 4 (top) uses ν = 1/5 and figure 5 (bottom)
uses ν = 0.

33

7 Time stepping

In this section we describe two time-stepping schemes with different pros and cons.
We first describe Williamson’s Runge-Kutta method, which is an explicit third order
method. We then present the trapezoidal rule, which is an A-stable, implicit, second
order method. Since the method involves inverting a specific matrix, we show that this
is possible. We also show how one can use the structure of the matrices to integrate
continuously in time. We use the example of wanting to solve the ODE{

ut = f(t, u), t > 0

u(0) = g

and discretizing the ODE on the time steps u(tn) ≈ un. The description of Williamson’s
Runge-Kutta method is from [2]. Everything in section 7.2 except the description of the
trapezoidal rule and everything in section 7.3 is derived by the author.

7.1 Williamson’s Method

Williamson’s Runge-Kutta method is a third order explicit method [2]. It has the
Butcher tableau

0
1/3 1/3
3/4 −3/16 15/16

1/6 3/10 8/15

The calculation can be done more storage efficiently by the following algorithm

u← un

g ← f(u, tn)

u← u+ ∆t
3 g

g ← − 5
9g + f(tn + ∆t

3 , u)

u← u+ 15∆t
16 g

g ← − 153
128g + f(tn + 3∆t

4 , u)

un+1 ← u+ 8∆t
15 g.

Note that for the Fourier collocation semi-discretization of the advection-diffusion equa-
tion, f(t, u) = −D(I − νD)u. The stability region can be seen in figure 6 below. Since
the method is not A-stable, i.e. the stability region does not contain the left half-plane
C−. This puts stability-restrictions on the time step ∆t.

34

Figure 6. Stability region of Williamson’s Runge-Kutta method. Figure is taken from
figure 4.1 of [2].

7.2 Trapezoidal Rule

The trapezoidal rule is a second order implicit method. It uses the approximation

f(tn, u(tn)) ≈ 1

2

(
f(tn, u

n) + f(tn+1, u
n+1
)
,

leading to the time stepping scheme

un+1 = un +
∆t

2

(
f(tn, u

n) + f(tn+1, u
n+1)

)
.

For the Fourier collocation semi-discretization of the advection-diffusion equation, again
f(t, u) = −D(I − νD)u. Therefore, the equation can be re-written as(

I +
∆t

2
D(I − νD)

)
un+1 =

(
I − ∆t

2
D(I − νD)

)
un.

Since the eigenvalues of −D(I − νD) are −(ik + νk2), k = −N/2 + 1, ..., N/2 − 1 (see
section 5.2), the left-hand matrix does not have any zero eigenvalue, and can therefore
be inverted. The system of equations can easily be solved as below, using the fact that(
I + ∆t

2 D(I − νD)
)

is circulant

w =
(
I − ∆t

2 D(I − νD)
)
un

Ψ = U
(
I + ∆t

2 D(I − νD)
)
U?

un+1 = U?Ψ−1Uw,

since Ψ is a diagonal matrix, and its diagonal elements are the inverses of the diagonal
entries of Ψ. The stability region of the trapezoidal rule is exactly the left half-plane
C−, so there is no stability restriction on the time step. To be specific, we take a time

35

step using the trapezoidal rule in the following way:
Generate the matrix U? with entries U?kj = e2πikj/N/

√
N . Store this matrix and use it

for every time step. Then, for each time step, do the following:

1. Set A = −D(I − νD)

2. w = (I + ∆t
2 A)un

3. Ψ = U?(I − ∆t
2 A)U

4. w = Uw

5. for k = 1, 2, ..., N do:
wk = wk/Ψkk

6. un+1 = U?w.

Note that for the advection-diffusion equation, the matrix A can also be stored and
reused, as well as Ψ. For other PDE’s however, A might change for the different time
steps, and so then will Ψ.

7.3 Continuous Evolution

We note that the advection-diffusion equation is a linear PDE, and that the spatially
discretized approximation

ūt = −D(I − νD)ū

is a system of linear ordinary differential equation. We also note that since D and I are
both circulant matrices, the matrix −D(I − νD) is also circulant. Therefore, as seen in
chapter 3, the system of ODE’s is easily solvable exactly, and is given by the equation

ū(t) = U?etΨUū0

Uj,k = 1√
N
e−2πijk/N

Ψ = U(−D(I − νD))U?.

Note again that Ψ is diagonal, and eΨ is the exponential of the entries. One major
inconvenience with this time-stepping is that it only works for circulant linear systems
of ODE’s, and so only of periodic linear PDE’s. The major benefit of the method is
that not only does it get rid of time stepping errors completely, but one can also quickly
compute the solution for any time t, not only the time steps tn.

Figure 7 shows the error of the numerical solution for different time steps ∆t, using
the trapezoidal rule and Williamson’s method. One can see that the trapezoidal rule
is order 2 and Williamson’s method is order 3. This is true up to a minimum error.
Figure 8 shows the error of the numerical solution for the three different time stepping
methods, with aliased and de-aliased initial conditions. The three methods have the
same slope, the difference being the minimum error. We can see that the minimum
error of Williamson’s method is ∼ 10−9 while the trapezoidal rule has a minimum error
∼ 10−6. The ratio of exponents seem to be approximately 3/2, which reminds one of the
time stepping orders of the methods. The minimum error of the continuous evolution is
∼ 10−13 and is fluctuating noticeably. The size of the error along with the fluctuations
suggests that this error comes from round-off errors. We can also see that de-aliasing the

36

initial condition increases the speed of convergence, not the minimum error, although
the increased speed heavily depends on the diffusion constant ν.

Figure 7. Error of solution at tmax = 10 for the advection-diffusion equation with
ν = 1/5 using N = 48. The time stepping was performed using the trapezoidal rule and
Williamson’s method. The error was calculated at M = 100 points, and the reference
solution was calculated with N = 500, so modes up to k = 250. The initial function was
b(x) in (13), and the initial error was calculated using this function (i.e. exactly).

Figure 8. Relative error at time t = 3 for aliased (interpolation) and de-aliased (trunca-
tion) initial conditions, using Williamson’s method, the trapezoidal rule and continuous
time-stepping, as a function of N . The parameters were ∆t = 1.25×10−3, ν = 1/5. The
reference solution was calculated using Fourier modes up to k = 1000, and the initial
function was b(x) in (13).

37

8 Other Initial Functions

In the previous chapters we have focused on the function b(x) = 3/(5− 4 cos(x)). This
is because its periodic extension is infinitely smooth, i.e. bP ∈ C∞(R), and we know

its Fourier coefficients b̂k = 2−|k|. One might then ask if the phenomena we have
found generalize to other initial functions? We consider five additional functions whose
periodic extensions are of varying smoothness. The functions, along with their Fourier
coefficients are

p(x) = x(2π − x), p̂k =

{
2π2

3 , k = 0

− 2
k2 , k 6= 0

c(x) = x(x− π)(x− 2π), ĉk =

{
0, k = 0

sign(k) 6i
k3 , k 6= 0

q(x) = x2(x− 2π)2, q̂k =

{
8π
15 , k = 0

− 24
k4 , k 6= 0

f(x) = x2(x− π)(x− 2π)2 − 4π2

3
x(x− π)(x− 2π), f̂k =

{
0, k = 0

−sign(k) 120i
k5 , k 6= 0

s(x) =

∞∑
|k|=1

2i · sign(k)10−|k|eikx, ŝk =

{
0, k = 0

2i · sign(k)10−|k|, k 6= 0
.

The periodic extensions are of following smoothness

pP ∈ C(R)

cP ∈ C1(R)

qP ∈ C2(R)

fP ∈ C3(R)

sP ∈ C∞(R).

The impact of the smoothness of the periodic extensions can be seen in the accuracy
of the Fourier collocation method and the order of the time stepping methods. Figures
9-12 show the numerical solutions of the advection-diffusion equation with the different
initial functions. This is to show what the numerical solutions look like, and does not
give any direct insight into the accuracy of the methods. It is however worth to note
that in figure 9, the numerical solution starts with a cusp, i.e. a point where the deriva-
tive switches sign discontinuously. The solutions is then smoothened out, as the method
cannot represent cusps in the interior points (0, 2π). Note that at a cusp, the second
order space derivative, and therefore also the time derivative, is infinite.

38

Figures 9-13. Numerical solution of advection-diffusion equation with ν = 1/5. The
number of modes used was N = 16, the time stepping was performed using Williamson’s
Runge-Kutta method and the time step was ∆t = 1.25×10−3. The error was calculated
at M = 100 points. Figure 9 (top left) uses initial function p(x), figure 10 (top right) uses
initial function c(x), figure 11 (middle left) uses initial function q(x), figure 12 (middle
right) uses initial function s(x) and figure 13 (bottom) uses initial function f(x).

Figures 14-19 show the relative error of the numerical solution for different number of
nodes N . Each figure shows the error for the four different initial functions, using some
time stepping method. The left figures use interpolated initial functions and the right
figures use truncated initial functions. In all figures we can see that the error decreases
with increasing N faster for the smoother functions. This comes from the fact that the
Fourier coefficients decay faster for smoother functions. Note that there is a smallest
possible error, where the data flattens out.

From figures 14-17 we note (by looking at the data for c(x), q(x), f(x) and s(x))
that using truncated initial functions does not lower this minimal error, but the error
reach this level for lower values of N . Comparing figures 14, and 17 with figures 15

39

and 17 we see that using the third order Williamson’s Runge-Kutta method reduces the
minimal error compared with using the second order trapezoidal rule, at least for the
functions c(x), q(x), f(x) and s(x). By comparing figures 16 and 18 with figures 17
and 19 shows that using continuous evolution instead of Williamson’s method removes
the barrier altogether, it seems. Note however that this does not apply to p(x). This
probably has to do with the periodic extension pP being only continuous and piecewise
C1, so the initial function has a discontinuity in its first spatial derivative. Note also
that the error decreases with increasing N at approximately the same rate for c(x) and
q(x), although they have different minimal errors. Why this is is unknown to the author.

40

Interpolated Truncated

Figures 14-19. Error of solution at tmax = 3 for the advection-diffusion equation with
ν = 1/5 and ∆t = 1.25 · 10−3 using different values of N . Each figure displays the error
for the five different initial functions p(x), c(x), q(x), f(x) and s(x). Figures 14 and
15 (he top two figures) used trapezoidal rule for time stepping, figures 16 and 17 (the
middle two figures) used Williamson’s Runge-Kutta method and figures 18 and 19 (the
bottom two figures) used continuous evolution. The left figures used interpolated initial
functions and the right figures used truncated initial functions. The error was calculated
at M = 100 points, and the reference solutions were calculated with N = 2000, so modes
up to k = 1000.

Figures 20-21 show the error of the solution for different time steps ∆t, with time
stepping performed using Williamson’s Runge-Kutta and the trapezoidal rule. It is
known that Williamson’s Runge-Kutta method is order 3 and the trapezoidal rule is
order 2. Therefore, since the axes are log-log, the slopes should be 3 and 2, respectively.
We see that this holds for all figures up to a minimal error (except for figure 23 where the

41

minial error has not yet been reached). This minimal error is smaller for the smoother
functions. In figure 20, where the initial function is p(x), this error is reached so quickly
that it is hard to even see if it is ever order 2 for this initial function. If we compare figure
22 and 24, the only difference is the number of nodes N . We can see that for N = 16
(figure 24), the minimal error is much larger than for N = 48 (figure 22). Comparing
figures 24 and 25, the only difference is that figure 24 uses interpolated initial functions
and figure 25 uses truncated initial functions. We can see that the minimal error is much
smaller for the truncated initial functions than for the interpolated initial functions.

42

Figures 20-25. Error of solution at tmax = 10 for the advection-diffusion equation with
ν = 1/100 using a fixed value of N and different times steps ∆t. In each figure the
error is calculated using Williamson’s Runge-Kutta and the trapezoidal rule. The error
is calculated at M = 100 points and the reference solution is calculated using N = 500,
so modes up to k = 250. All figures except the bottom right use interpolated initial
functions. Figures 20-23 (the top four) use N = 48 with initial functions p(x) (top left),
c(x) (top right), q(x) (middle left) and s(x) (middle right). Figure 23 (bottom left)
uses initial function q(x) and N = 16. Figure 24 (bottom right) uses truncated initial
function q(x) and N = 16.

43

Figures 14-25 show the interplay between the two sources of error. There is the dis-
cretization error, coming from the fact that we are approximating the solution at time
t with a finite series expansion in terms of Fourier basis functions. The second error is
the time stepping error, coming from approximating the solution to the ODE arising
from the semi-discretization of the PDE. Both errors set a level for the minimal error
possible. This means that reducing the time step or increasing N only lowers the error
up to a point, determined by the other variable. Note however than since the continuous
evolution method supposedly solves the ODE exactly, there shouldn’t be any time step-
ping error. Therefore, one would expect that the solutions shouldn’t have any minimal
error, except for the one arising from round-off errors. By studying figure 19, we see
that this seems to be true.

Finally, figures 26-29 show errors from isolated parts of the method. Figure 26 shows
how the relative interpolation error for different initial functions, decreases with N .
Figure 27 shows on the other hand shows the relative truncation error. Both these
show that the relative error decreases as N−n, for some n. In fact, the convergence
rate for the function whose Fourier coefficients decay as 1/kp is approximately N−p,
as predicted by equation (10). Figure 28 shows the error as a function of time step
∆t. The difference between figure 27 and figures 20-25 however, is that the reference
solution is figures 20-25 was the calculated reference solution of the PDE. In figure 27
the reference solution is the solution of the ODE that arises from the discretization. In
this way we have completely removed the discretization error, and the minimal error
present in figures 20-25 does not exist in figure 27. This shows that the trapezoidal rule
is in fact order 2, and Williamson’s Runge-Kutta method is in fact order 3. Finally, for
figure 29 the continuous evolution method was applied to 50 random N × N circulant
matrices for various N . The average relative error is plotted. Even though the average
relative error grows with increasing N , the error is in the order 10−13, which is very
small. This shows that the continuous evolution method works as intended.

44

Figures 26-29. Figure 26 (top left) and figure 27 (top right) shows the relative error
of the initial Fourier interpolant and Fourier truncation, respectively, for different N .
Figure 28 (bottom left) shows the error of the solution of the advection-diffusion equa-
tion at tmax = 3, where time stepping was performed using the trapezoidal rule and
Williamspn’s Runge-Kutta. The number of nodes used was N = 16, and the reference
solution was the solution to the system of ODE’s arising from the discretization, calcu-
lated using Williamson’s Runge-Kutta with ∆t = 10−5. Figure 29 (bottom right) shows
the average relative error of the solution to xt = Ax, for random circulant matrices A,
using continuous evolution. For each N , 50 solutions were calculated at tmax = 3, and
the average relative error was plotted.

45

9 Summary and Further Topics

In this thesis we have reviewed some theory of Fourier series and Fourier polynomials,
and how Fourier series can theoretically be used to solve PDE’s with periodic boundary
conditions. We have presented and compared two ways of approximating a function
by a finite sum of Fourier basis functions, Fourier interpolation and Fourier truncation.
We have also described how one can approximate the spatial derivative of a Fourier
interpolant, and how the approximation evaluated at the nodes can be described as a
matrix-vector product. We showed that the matrix in this product was circulant, and we
showed that all circulant matrices have an easily computable diagonalization. We also
showed that the matrix was skew-symmetric, and that the matrix used to approximate
the second order spatial derivative was symmetric.

We described the Fourier collocation method in detail, and described how one imple-
ments it for solving the advection-diffusion equation with periodic boundary conditions,
up to a choice of time stepping method for evolving in time. We described what aliasing
errors are, how they arise and how one can remove them by first replacing the initial
function with a Fourier truncation.

We showed that using the fact that all matrices involved in the semi-discretization
of the PDE are circulant, this allowed us to advance the system in time without time
stepping error. This however, only works since the advection-diffusion equation is lin-
ear, does not explicitly depend on time and we imposed periodic boundary conditions.
We also described two other time stepping methods, namely Williamson’s Runge-Kutta
method and the trapezoidal rule. Since the trapezoidal rule involves inverting matrices,
we proved that this is possible and showed how one can do it using the diagonalization.
Finally, we presented some numerical results using various initial functions, diffusion
constants, time step sizes and time stepping methods.

The numerical results allowed us to make some conclusions about the Fourier colloca-
tion method. The error of the solution decreases both with increasing number of nodes
N and with decreasing time step size ∆t, although increasing N or decreasing ∆t only
lowers the error down to a minimal error. If one wishes to lower the error further, one
has to decrease ∆t or increase N , respectively. One can also use a higher order time
stepping method. The accuracy of the method is dependent on the speed of decay of
the Fourier coefficients, and therefore the smoothness of the initial function. However,
while the Fourier coefficients of c(x) decay as 1/k3 and the Fourier coefficients of q(x)
decay as 1/k4, the error of both decrease equally fast when increasing N , which is trou-
bling, as functions whose Fourier coefficients decay faster should be approximated more
accurately using a fixed value of N . The method is designed for PDE’s with periodic
boundary conditions, so setting the initial function to p(x) = x(2π− x), whose periodic
extension is not C1 made the results above regarding how the error decreases not hold
entirely.

We demonstrated that the method works well for different diffusion constants ν, even
for ν = 0, when the equation reduces down to the advection equation, as can be seen in
figure 3. It has also been demonstrated that unless ν = 0, removing the initial aliasing
error of the initial function leads to a great improvement in accuracy.

There are many possibilities for further studies of the subject area. It would be nice
to have quantitative error estimates for the temporal and spatial discretizations, so that
one could optimize the use of resources. I.e. one does not want to use more nodes
or smaller step sizes than necessary, as this increases the computational effort without

46

reducing the error. The advection-diffusion equation can also be extended to use a non-
constant diffusion constant ν(x), which is common in real life applications. It is also
useful to extend the method to multiple space dimensions, as most applications are in
at least 2D. Finally, the Fourier collocation method is designed for periodic boundary
conditions. If one uses another basis of functions, e.g. Chebyshev polynomials, one can
solve PDE’s without periodic boundary conditions. Although one should point out that
a lot of the results underlying the Fourier collocation method hold specifically for the
Fourier basis functions, so one would need to design the method differently.

If the reader would like to read up on the subject of the Fourier collocation method,
it is worth pointing out that the method heavily uses the discrete Fourier transform
(DFT). A lot of the theory and description of the method could have been formulated in
terms of the DFT, although the author made the choice not to do so. E.g., the discrete
coefficients f̂k defined in chapter 5 are defined using the inverse DFT.

47

A Python Code

A.1 Functions Used in the Simulation Methods

def nodes(N):

""" Calculates the Fourier nodes xj = 2pi/N*j, j = 0, ..., N-1"""

return np.array(np.linspace(0,2*np.pi,N+1)[:N])

def DFT(fj):

""" Calculates the Discrete Fourier Transform based on the node values"""

N = len(fj)

Fk = []

K = [k for k in range(-int(N/2), int(N/2))]

for k in K:

s = 0 + 0j

for n in range(N):

#s = s + fj[n]*(np.cos(-2*np.pi*n*k/N) + 1j*np.sin(-2*np.pi*n*k/N))

s = s + fj[n]*np.e**(-2j*np.pi*n*k/N)

Fk.append(s/N)

return Fk

def modesToNodes(Fk):

""" Calculates the node values based on the discrete Fourier coefficients"""

N = len(Fk)

fj = [0+0j]*len(Fk)

for j in range(N):

s = 0 + 0j

for k in range(N):

s = s + Fk[k]*np.e**(2j*np.pi*j*(k-N/2)/N)

fj[j] = s

return fj

def discreteTruncate(Fk,N):

""" Takes the Fourier coefficients Fk[k] and returns then if -N/2 <= k <=

N/2-1"""

Nbig = len(Fk)

for k in range(Nbig):

#if abs(k-int(Nbig/2)) >= N/3+1:

if abs(k-int(Nbig/2)) >= int(N/2):

Fk[k] = 0

#print(int(np.ceil(N/3)))

return Fk[int(Nbig/2) - int(N/2):int(Nbig/2) + int(N/2)]

def deAliasedStart(N, Nbig, f0):

""" Calculates the de-aliased initial condition, by truncating Nbig Fourier

coefficients down to N."""

Xj = nodes(Nbig)

fj = f0(Xj)

Fk = DFT(fj)

Fk = discreteTruncate(Fk,N)

fj_dealiased = modesToNodes(Fk)

return fj_dealiased

def FourierDerivativeMatrix(N):

""" Computes the Fourier interpolation derivative matrix basen on number of

48

nodes N, even positive number"""

D = np.zeros((N,N))

for i in range(N):

for j in range(N):

if i!=j:

D[i,j] = 0.5*(-1)**(i+j)/np.tan((i-j)*np.pi/N)

D[i,i] -= D[i,j]

return D

def UMatrix(N):

""" Calculates the unitary matrix U in the eigenvalue decomposition of a

circulant matrix """

U = np.zeros((N,N), dtype = complex)

for i in range(N):

for k in range(N):

U[i,k] = np.e**(2j*np.pi*i*k/N)/np.sqrt(N)

return np.matrix(U)

def MatrixExp(A):

""" Calculates the matrix exponential of a diagonal matrix """

N = np.shape(A)[0]

E = np.zeros((N,N), dtype = complex)

for i in range(N):

E[i,i] = np.e**(A[i,i])

return np.matrix(E)

def discreteNorm(u):

""" Computes the discrete norm of a vector, specrally accurate"""

N = len(u)

s = 0

for i in range(N):

s = s + 1/N*abs(u[i])**2

return np.sqrt(2*np.pi*s)

def almostEqual(a,b):

""" Used in the"""

epsilon = 1.e-14

if a == 0 or b == 0:

if abs(a-b) <= 2*epsilon:

return True

else:

return False

else:

if abs(a-b) <= epsilon*abs(a) and abs(a-b) <= epsilon*abs(b):

return True

else:

return False

def interpolantFromNodes(x, fj):

""" Computes the Fourier interpolant based on the node values"""

N = len(fj)

xj = nodes(N)

for j in range(N):

if almostEqual(x,xj[j]):

49

return fj[j]

if almostEqual(x,2*np.pi):

return fj[0]

s = 0

for k in range(N):

t = (x-xj[k])/2

s = s+fj[k]*np.sin(N*t)/(np.tan(t)*N)

return s

50

A.2 Initial Functions and Time Stepping Methods

""" The functions ending in _T calculate the solution of the

advection-diffusion equation with the corresponding initial function, at

the time t = T, spatial point x and diffusion constant d. The solution is

calculated using Fourier coefficients up to N/2."""

def b(x):

return 3/(5-4*np.cos(x))

def b_T(N,d,x,T):

s = 1

for k in range(1,int(N/2)):

s = s + np.e**(-d*k**2*T)*np.cos(k*(x-T))*2**(-(k-1))

return s

def p(x):

return x*(2*np.pi - x)

def p_T(N,d,x,T):

s = 2/3*np.pi**2 + 0j

for k in range(1,int(N/2)+1):

s = s - np.e**(-d*k**2*T)*np.cos(k*(x-T))*4/(k**2)

return s

def c(x):

return x*(x-np.pi)*(x-2*np.pi)

def c_T(N,d,x,T):

s = 0+0j

for k in range(1,int(N/2)+1):

s = s + np.e**(-d*k**2*T)*np.sin(k*(x-T))*12/(k**3)

return s

def q(x):

return x**2*(x-2*np.pi)**2

def q_T(N,d,x,T):

s = 16/5*np.pi**4-8*np.pi**4+16/3*np.pi**4 + 0j

for k in range(1,int(N/2)+1):

s = s - np.e**(-d*k**2*T)*np.cos(k*(x-T))*48/(k**4)

return s

def f(x):

return x**2*(x-2*np.pi)**2*(x-np.pi) -4/3*np.pi**2*x*(x-np.pi)*(x-2*np.pi)

def f_T(N,d,x,T):

s = 0

for k in range(1,int(N/2)+1):

s = s - np.e**(-d*k**2*T)*np.sin(k*(x-T))*240/(k**5)

return s

def s(x):

s = 0 + 0j

for k in range(1,501):

51

s = s - np.sin(k*x)*10**(-k)

return s

def s_T(N,d,x,T):

s = 0+0j

for k in range(1,int(N/2)+1):

s = s - np.e**(-d*k**2*T)*np.sin(k*(x-T))*10**(-k)

return s

""" Different time stepping methods """

def trapezoidstep(uold, A, dt, U):

""" Trapezoidal rule """

n = max(np.shape(uold))

uold = np.array(uold).reshape((n,1))

I = np.eye(n, dtype = complex)

w = (I+dt/2*A)@uold

Psi = U@(I-dt/2*A)@U.H

w = U@w

for k in range(n):

w[k,0] /= Psi[k,k]

unew = U.H@w

return np.array([unew[k,0] for k in range(n)])

def RKWstep(uold,A,dt, U):

""" Williamson’s Runge-Kutta method """

u = uold

G = A@uold

u = u + dt*G/3

G = -5/9*G + A@u

u = u + 15/16*G*dt

G = -153/128*G + A@u

unew = u + 8/15*dt*G

return unew

52

A.3 Simulation methods

def spectralAdvectionDiffusion_int(d,f0,tmax,dt,N, iterator):

""" Approximately solves the advection-diffusion equation using the

Fourier collocation method and aliased initial conditions"""

xj = nodes(N)

D = FourierDerivativeMatrix(N)

M = int(tmax/dt)+1

Solution = np.zeros((M,N), dtype = complex)

Solution[0] = f0(xj)

I = np.eye(N, dtype = complex)

U = UMatrix(N)

A = -D@(I-d*D)

for i in range(1,M):

Solution[i] = iterator(Solution[i-1], A, dt, U)

return Solution

def spectralAdvectionDiffusion_dealiased(d,f0,tmax,dt,N, iterator):

""" Approximately solves the advection-diffusion equation using the

Fourier collocation method and de-aliased initial conditions"""

D = FourierDerivativeMatrix(N)

M = int(tmax/dt)+1

Solution = np.zeros((M,N))

Solution[0] = deAliasedStart(N, 10*N, f0)

I = np.eye(N, dtype = complex)

U = UMatrix(N)

A = -D@(I-d*D)

for i in range(1,M):

Solution[i] = iterator(Solution[i-1], A, dt, U)

return Solution

def sADError(d,tmax,dt,nstart,Nstep,nmax,Nbig,iterator,start,true, rel = False):

""" Calculates the error as a function of N, with aliased initial

condition."""

errorvector = np.zeros(nmax+1)

Nvector = [nstart + Nstep*k for k in range(nmax+1)]

X = nodes(100)

for k in range(nmax+1):

N = Nvector[k]

xj = nodes(N)

D = FourierDerivativeMatrix(N)

M = int(tmax/dt)+1

fj = start(xj)

I = np.eye(N, dtype = complex)

U = UMatrix(N)

A = -D@(I-d*D)

53

for i in range(1,M):

fj = iterator(fj, A, dt,U)

solution_continuous = np.array([interpolantFromNodes(x, fj) for x in X])

truesol = np.array([true(Nbig,d,x,tmax) for x in X])

difference = solution_continuous - truesol

if rel:

errorvector[k] = discreteNorm(difference)/discreteNorm(truesol)

else:

errorvector[k] = discreteNorm(difference)

return Nvector, list(errorvector)

def sADError_dealiased(d,tmax,dt,nstart,Nstep,nmax,Nbig,iterator,start,true,

rel = False):

""" Calculates the error as a function of N, with de-aliased initial

condition."""

errorvector = np.zeros(nmax+1)

Nvector = [nstart + Nstep*k for k in range(nmax+1)]

X = nodes(100)

for k in range(nmax+1):

N = Nvector[k]

D = FourierDerivativeMatrix(N)

M = int(tmax/dt)+1

fj = deAliasedStart(N, 10*N, start)

I = np.eye(N, dtype = complex)

U = UMatrix(N)

A = -D@(I-d*D)

for i in range(1,M):

fj = iterator(fj, A, dt, U)

solution_continuous = np.array([interpolantFromNodes(x, fj) for x in X])

truesol = np.array([true(Nbig,d,x,tmax) for x in X])

difference = solution_continuous - truesol

if rel:

errorvector[k] = discreteNorm(difference)/discreteNorm(truesol)

else:

errorvector[k] = discreteNorm(difference)

return Nvector, list(errorvector)

def sADError_cont(d,tmax,nstart,Nstep,nmax,Nbig,start,true,rel = False):

""" Calculates the error as a function of N, with aliased initial

condition and continuous evolution """

errorvector = np.zeros(nmax+1)

Nvector = [nstart + Nstep*k for k in range(nmax+1)]

X = nodes(2000)

Normvector = []

for k in range(nmax+1):

N = Nvector[k]

xj = nodes(N)

D = FourierDerivativeMatrix(N)

I = np.eye(N)

fj = np.transpose(np.matrix(start(xj)))

A = -D@(I-d*D)

U = UMatrix(N)

Psi = U@A@U.H

54

E = MatrixExp(tmax*Psi)

fj = U@fj

fj = E@fj

fj = U.H@fj

fj = np.transpose(fj)

fj = np.resize(fj, N)

solution_continuous = np.array([interpolantFromNodes(x, fj) for x in X])

Normvector.append(discreteNorm(solution_continuous))

truesol = np.array([true(Nbig,d,x,tmax) for x in X])

difference = np.transpose(solution_continuous - truesol)

if rel:

errorvector[k] = discreteNorm(difference)/discreteNorm(truesol)

else:

errorvector[k] = discreteNorm(difference)

return Nvector, list(errorvector)

def sADError_cont_dealiased(d,tmax,nstart,Nstep,nmax,Nbig,start,true,rel =

False):

""" Calculates the error as a function of N, with de-aliased initial

condition and continuous evolution """

errorvector = np.zeros(nmax+1)

Nvector = [nstart + Nstep*k for k in range(nmax+1)]

X = nodes(100)

Normvector = []

for k in range(nmax+1):

N = Nvector[k]

D = FourierDerivativeMatrix(N)

I = np.eye(N)

fj = np.transpose(np.matrix(deAliasedStart(N, 10*N, start)))

A = -D@(I-d*D)

U = UMatrix(N)

Psi = U@A@U.H

E = MatrixExp(tmax*Psi)

fj = U@fj

fj = E@fj

fj = U.H@fj

fj = np.transpose(fj)

fj = np.resize(fj, N)

solution_continuous = np.array([interpolantFromNodes(x, fj) for x in X])

Normvector.append(discreteNorm(solution_continuous))

truesol = np.array([true(Nbig,d,x,tmax) for x in X])

difference = np.transpose(solution_continuous - truesol)

if rel:

errorvector[k] = discreteNorm(difference)/discreteNorm(truesol)

else:

errorvector[k] = discreteNorm(difference)

return Nvector, list(errorvector)

55

References

[1] A. Holst, Fourier Analysis, Lund University Faculty of Science, Centre for Mathe-
matical Sciences, Lund, 2014.

[2] D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equation,
Algorithms for Scientists and Engineers, Springer, 2009

[3] C. Canuto, M. Y. Hussaisi, A. Quarteroni, T. Zang, Spectral Methods: Fundamen-
tals in Single Domains, Springer, Berlin, 2006

[4] http://www.math.stonybrook.edu/ sorin/eprints/circulant.pdf, last visited 2018-
03-13.

[5] E. Stein, R. Shakararchi, Fourier Analysis, An Introduction Princeton University
Press, Princeton and Oxford, 2003

[6] A. Iserles, A First Course in the Numerical Analysis of Differential Equations,
Second Edition Cambridge University Press, Cambridge, 2009

56

	Introduction
	Summary
	Motivation and Limitations

	Fourier Polynomials
	Fourier Series Solutions of Partial Differential Equations
	Fourier Basis Functions
	Fourier Truncation
	Discrete Inner Product

	Circulant matrices
	Definition and Eigenvalues
	Eigenvalue Decomposition

	Fourier Interpolation
	Discrete Fourier Coefficients
	Error of Fourier Interpolation
	Derivative of Interpolant

	Lagrange Form of Fourier Interpolant
	Rewriting the Lagrange Functions
	Lagrange Derivative Matrix
	Symmetry of Discretization

	The Fourier Collocation Method
	An Exact Solution
	Describing the method
	Removing Aliasing Errors

	Time stepping
	Williamson's Method
	Trapezoidal Rule
	Continuous Evolution

	Other Initial Functions
	Summary and Further Topics
	Python Code
	Functions Used in the Simulation Methods
	Initial Functions and Time Stepping Methods
	Simulation methods

