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Abstract 
 
An Extreme Value Approach To Pricing Credit Risk will outline the possibility to investigate a 

company’s price of risk over different time periods given a pre-defined risk level. With help of credit 

default swap (CDS) prices and extreme value theory the credit risk can be estimated for different return 

levels. This is incorporated by investigating monthly CDS data from Deutsche Bank AG EUR CDS 5Y 

between the time periods of August 2001 to April 2018 and applying the data to extreme value theory. 

 

Keywords: Credit Risk, Credit Default Swap, Credit Valuation Adjustment, Extreme Value Theory, 

Generalized Extreme Value Distribution, Gumbel Distribution, Generalized Pareto Distribution, Block 

Maxima, Peak-over-Threshold, Probable Maximum Loss 
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Outline 
In the first part, the background behind the subject will be outlined followed by a short introduction how 

counterparty risk is priced and applied on the over-the-counter (OTC) market. Thereafter a summary of 

the CDS-derivative is defined.  

 

In the second part, general statistical and extreme value theory with methods applicable with the theory 

are explained followed by statistical interpretations which are necessary in order to make those 

assumptions. By applicate the data to the family of generalized extreme value distributions, three 

different methods will be evaluated to find the most accurate fit and how to find an appropriate 

approximation of pricing credit risk for a range of years. The methods outlined are; Block Maxima, 

Peaks-over-Threshold and Probable Maximum Loss. 

 

The theory will investigate monthly historical CDS data from Deutsche Bank AG EUR CDS 5Y between 

the time periods of August 2001 to April 2018. The ambition is to investigate what methods, based on 

CDS prices considered extreme, are most appropriate describing how credit risk should be priced for 

different time periods given pre-defined risk level in the future. Finally, conclusions of the results are 

presented.  
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1.    Introduction 
 
Credit Valuation Adjustment 
 
Credit valuation adjustment, CVA, is the valuation of counterparty risk and is a valuation adjustment 

used in the financial market for pricing in counterparty risk to financial derivatives. CVA can be 

regarded as the discounted value of a derivative that the holder is charged given the probability of 

counterparty default. Conclusively, CVA is considered to be a market risk of the trading book of the 

bank. During the financial crisis, only one-third of losses due to counterparty risk were related to actual 

default. Remaining losses were market-to-market related and have raised the awareness of holding 

sufficient counterparty risk capital. Consequently, the Basel III framework incorporates further 

parameters to CVA to sufficiently capitalise the counterparty risk. 

 

In order to price counterparty risk and hence estimate the CVA capital charge, the market price for the 

derivative needs to be approximated. When examine over-the-counter, OTC, derivatives, which is not 

traded on a publicly open market such as a stock exchange, the most sufficient way to do so is by 

incorporating the price of credit default swaps, CDSs. It is a derivative used for hedging purposes against 

counterparty risk against the reference entity. CDS-spreads are therefore an important parameter into 

models when pricing CVA.   

 

The Basel Committee on Banking Supervision states; “Whenever the CDS spread of the counterparty 

is available, this must be used. Whenever such a CDS spread is not available, the bank must use a proxy 

spread that is appropriate based on the rating, industry and region of the counterparty.” [4] 
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Credit Default Swap 
 
Credit default swaps, CDS, were introduced to the market in mid-1990s and have become an efficient 

hedging instrument. The instrument involves an exchange between a protection buyer and a protection 

seller with a reference entity as underlying instrument. The reference entity could be a corporate or a 

sovereign. The protection buyer pays a continuous premium to the protection seller during the tenor of 

the contact or until the reference entity faces a credit event or becomes insolvent.  If the reference entity 

faces a such an event, the protection buyer can settle the CDS contract and the protection seller is obliged 

to cover the loss associated with the event to the protection buyer. The loss is approximated as the 

difference between the face value of the underlying instrument and the sum that can be recovered. The 

type of settlement is determined when entering the contract and can be of physical nature or cash-settled.  

 

When pricing the CDS-premium and consequently estimation of the expected loss, the probability of 

default, PD, and the recovery rate, RR, are incorporated. The exact relationship can be seen in the 

following equation: 

 

𝐶𝐷𝑆	𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 𝑃𝐷 ∗ 1 − 𝑅𝑅 . 

 

The CDS-premium is quoted in basis points, 0.01%, on an annual basis. However, the premium is often 

paid quarterly. [8] 
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2.  General Statistical Theory 
 
Stationary Stochastic Process  
An independent and identically distributed (i.i.d.) random process constitutes of a series of independent 

and identically distributed random variables 𝑋3, 𝑋5, … . However, real-life processes rarely express this 

kind of behaviour since a variable often tend to depend on the outcome of the previous variable. Not 

least do many real-life processes express cyclical and behavioural patterns. 

 

For a weakly stationary, or covariance stationary, stochastic process two main characteristics holds; 

Firstly, the mean value function of the process is constant and do not change with time.  

 

𝑚 𝑡 = 𝐸 𝑋(𝑡) = 𝑚 

 

 Secondly, the covariance function only depends on the time-lag between two random variables.  

 

𝑟 𝑠, 𝑡 = 𝑟 𝑡 − 𝑠 = 𝑟(t) 

where t= t – s. 

 

Consequently, the variance function equals 

 

𝑣 𝑡, 𝑡 = 𝑟 𝑡 − 𝑡 = 𝑟(0) 

 

hence independent of t. [5] 

 

Financial data tend to be of non-stationary nature due to dependency between the variables t, t+1, t+2,... 

but can sometimes be transformed into a weakly stationary process by e.g. detrending.  

 

 

Autocorrelation Function: ACF 
The auto-correlation function measures a process dependency with respect to different periods 

in time. By assuming 𝑋> and 𝑋? are stochastic variables for a process X where t and s are 

different time-points, the auto-correlation function, R, is defined accordingly; 

 

𝑅 𝑠, 𝑡 = 	
𝐸 𝑋> − 	𝜇> 𝐸 𝑋? − 	𝜇?

𝜎>𝜎?
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where 𝜇>, 𝜇? and 𝜎>, 𝜎? is the mean and standard deviation for the stochastic variables, respectively. 

 

If R is well defined, the auto-correlation function ranges between −1,1  where -1 is completely negative 

correlation and 1 perfect correlation. If we assume that the process is normal then the random variables 

are independent if and only if the auto-correlation function takes the value of 0 which implies that the 

process is non-correlated between different time-lags. Accordingly, a functions dependency can be 

depictured graphically in auto-correlation graph with time on the x-axis and the correlation value on the 

y-axis. Hence the time-lag where the random variables of the process behave independently can easily 

be illustrated.  

 

 

Maximum Likelihood 
 
Maximum likelihood is an estimation method to find the unknown parameter θC for a distribution family 

F.  The idea is find the model with the highest likelihood, i.e. the model with highest probability given 

the population data. The likelihood function is hence the probability function, f, for the sample data with 

respect to θ, 𝐿 𝜃 = 	 𝑓(𝑥H; 𝜃)J
HK3 . For simplification, applying the logarithm to the likelihood function 

is widely used and derives the log-likelihood function 𝑙 𝜃 = log 𝐿 𝜃 = 	 log 𝑓(𝑥H; 𝜃)J
HK3 . Since the 

logarithm is a monotonic function, the maximum value of the log-likelihood function is identical to the 

maximum of the likelihood function. [1] 

 

The benefit of the maximum likelihood estimation is that the MLE of a parameter can be substituted 

into a function hence gives the MLE of that function, e.g. the maximum likelihood estimation of h = 

𝑔(𝜃) equals h = 𝑔(𝜃). 

 
 
 
Delta Method 
 
The delta method is applied when estimating confidence intervals for functions which has multiple 

parameters and where the maximum likelihood estimates are assumed to be normally distributed. By 

taking the asymptotic normality of the MLE, the delta method proves the relation can be derived to a 

function of MLE with continuous derivative with respect to the parameters. Hence, if the parameter 𝜃 

is a d-dimensional parameter and h = 𝑔(𝜃) is a scalar function, then the maximum likelihood function 

of h can be assumed to be normally distributed with a variance derived from the delta method. The 
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approximate variance is also known as the Gaussian approximation. Further, it can be proved that below 

relation holds. 

 

𝑛(h − h) → 𝑁 0, 𝑉𝑎𝑟(h)) 

 

According to the delta method, the variance of a scalar function h is derived by matrix multiplication 

with respect to the gradient of the h and the covariance matrix of the MLE of 𝜃. [1] 

 

𝑉𝑎𝑟(h) = 𝑣hVsW	𝑣h 

 
 
 
Deviance Function 
 
The deviance function, 𝐷 𝜃 = 	2 𝑙 θC 	− 	𝑙(θ) , estimates the accuracy of the maximum likelihood 

estimator by assuming models with high likelihood have small deviances with respect to θ. Given a 

threshold, 𝑐, a confidence region 𝐶 can be defined as the probability that the deviance is within the 

specified region. Accordingly, this is defined by  

 

𝐶 = 	 	q ∶ 𝐷 𝜃 	£	𝑐	 	 

 

where 𝑐 is determined such the probability that 𝐶 contains the true parameter value θC by a pre-defined 

probability (1 − 	𝛼). The deviance function follows an asymptotically chi-square distribution. [1] 

 
 
 
Profile Likelihood 
 
When normality assumption no longer applies, which often is the case when examine return levels of 

higher magnitudes, the profile likelihood can be an alternative to the maximum likelihood estimation. 

Assuming the parameter 𝜃 is a d-dimensional parameter vector, the profile log-likelihood for 𝜃H is 

written as: 

 

𝑙\ 𝜃H = max 	𝑙 𝜃H, 𝜃`H  

 

where 𝑙 𝜃H, 𝜃`H  is the log-likelihood for the parameter 𝜃 and 𝜃`H includes all parts of 𝜃 excluding 𝜃H. 

In turn the profile log-likelihood, 𝑙\ 𝜃H , is for every value of  𝜃H the maximisation of the log-likelihood 
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with respect to all parameters 𝜃. To derive confidence levels the deviance function is applied to the 

profile log-likelihood which in turn follows a chi-square distribution. [1] 

 

 

Likelihood Ratio Test 
The log-profile likelihood is useful for comparisons and selections of models. Let 𝑀C	be a model with 

fewer parameters compared to 𝑀3. Assume 𝑙C is the log-likelihood function of 𝑀C and 𝑙3is the log-

likelihood function of 𝑀3 and then apply to the deviance function 𝐷, 

 

𝐷 = 2 𝑙3 𝑀3 −	 𝑙C 𝑀C  

 

Then the model 𝑀C can be rejected in favour of 𝑀3 at a significance level a if and only if  

𝐷 > 	 𝑐c, where 𝑐c is the 1 − 𝛼  quantile of the chi-square distribution. [1] 

 

 

Model Valuation: Goodness of Fit, Diagnostic Plots 

 
Once a model has been assigned to describe a population of data it is of importance to validate how well 

the model fits and describes the data. In absence of alternative methods, the simplest way to test the 

accuracy is to compare the model with the populated data in which the model was derived.  

 

 

Empirical Distribution Function 
 

Definition  
 
Given an ordered sample of independent observations 𝑥(3)	 ≤ 	 𝑥 5 ≤	. . . ≤ 𝑥(J)	from a population with 

distribution function F, the empirical distribution function is defined by  𝐹(𝑥) = 	 H	
Jf3

  for 𝑥(H)	 ≤ 	𝑥	 ≤

𝑥(Hf3)	. [1] 

 

By plotting the estimated distribution function, 𝐹, against the empirical distribution function, 𝐹,  two 

different goodness-of-fit tests can be visualised graphically to test the significance of the model; the 

probability plot and the quantile plot. If the data outlines in the unit diagonal, then the 𝐹 can be accepted 

to be a valid model for the populated data. Likewise, if linearity is weak 𝐹 should be rejected as an 

appropriate model. [1] 
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Probability Plot 
 
Definition  

Given an ordered sample of independent observations 𝑥(3)	 ≤ 	 𝑥 5 ≤	. . . ≤ 𝑥(J)	from a population with 

estimated distribution function 𝐹, a probability plot consists of the points 

 

 	 𝐹 𝑥 H , H
Jf3

: 𝑖 = 1, … , 𝑛	 . [1] 

 
 
 
Quantile Plot 
 
Definition 

Given an ordered sample of independent observations 𝑥(3)	 ≤ 	 𝑥 5 ≤	. . . ≤ 𝑥(J)	from a population with 

estimated distribution function 𝐹, a quantile plot consists of the points  

 

𝐹`3 H
Jf3

, 𝑥 H : 𝑖 = 1, … , 𝑛 . [1] 

 

 

As seen in the definitions above, the both models contain the same information just applied in different 

ways. The quantile plot takes the assumption that the quantiles of 𝑥 H  and 𝐹`3 H
Jf3

 make up the 

approximation of the H
Jf3

 quantile of the underlying distribution F. The probability plot has the drawback 

that it reaches 1 for large values of 𝑥 H . This the is the headwind of the model since large values of 𝑥 H  

is what is of interest as far as extreme value theory is concerned.  
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3.  Extreme Value Theory 
 
Extreme value modeling examines the stochastic behaviour of extreme events. Let’s define 𝑀J =

max 𝑋3, … , 𝑋J  where 𝑋3, … , 𝑋J are independent random variables with a distribution function F in 

common. Therefore, 𝑀J is the maximum stochastic variable defined for any sequence of random 

variables.  The distribution function of 𝑀J can be derived according to 

 

Pr 	 𝑀J ≤ 𝑥 = Pr 𝑋3 ≤ 𝑥, … , 𝑋J ≤ 𝑥 = 	Pr 𝑋3 ≤ 𝑥) ∗ … ∗ Pr 𝑋J ≤ 𝑥 = 	𝐹J(𝑥). 

 

However, the result here is not very helpful since the distribution function F is usually unknown. To 

find an alternative solution, the distribution function is approximated by incorporating the normalising 

constants in line with the central limit theorem and letting 𝑛 → ∞, which gives   

 

𝑀J
∗ = kl`	ml

nl
, 𝑎J	>	0  and 𝑏J	 . 

 

As 𝑛 → ∞, the 𝑎Jand 𝑏J parameters stabilise the location and scale of 𝑀J resulting in a non-degenerate 

hence limiting the distribution of 𝑀J
∗ . It can be shown that the limit distribution, non-degenerate of 𝑀J

∗ , 

if it exists, must belong to one of the three possible extreme value distributions; Gumbel, Fréchet or 

Weibull, no matter what the underlying distribution of F is for the population. The distributions are 

defined as the family I, II and III, according to the theorem below. [1] 

 
 

Extremal Types Theorem 
 

If there exist sequences of constants 𝑎J	>	0  and 𝑏J	  such that 

𝑃𝑟
(kl`	ml)

nl
≤ 𝑧 	→ 𝐺 𝑧 	𝑎𝑠 𝑛 → ∞, where G is a non-degenerate distribution function, then G 

belongs to one of the following families: 

 

I: G(z) = exp – 𝑒𝑥𝑝 −(s`m
n
) ,			− ∞ < 𝑧 < ∞; 

 

II: G(z) =
0			,				𝑧	£	𝑏

	𝑒𝑥𝑝 −(s`m
n
)`c ,			𝑧	>	𝑏 
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III: G(z) = 𝑒𝑥𝑝 − −(s`m
n
)c ,			𝑧	<		𝑏	

	1,									𝑧	³		𝑏
 

 

For parameters 𝑎 > 0, 𝑏	𝑎𝑛𝑑, 𝑖𝑛	𝑡ℎ𝑒	𝑐𝑎𝑠𝑒	𝑜𝑓	𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠	𝐼𝐼	𝑎𝑛𝑑	𝐼𝐼𝐼, 𝛼 > 0. [1] 

 

What differentiate the 3 families from each other is the behaviour of the tail of the distribution function 

F and hence it gives rise to different behaviour in terms of extreme values. The upper endpoint of the 

Weibull distribution is finite, meanwhile Gumbel and Fréchet upper endpoints go towards infinity. [1] 

 

 
Generalized Extreme Value Distribution: GEV 
 
The three families can be substituted into a single distribution, the Generalized Extreme Value 

distribution, GEV.  

G(z) = 𝑒𝑥𝑝 − 1 + 	𝜉(s`{
|
)
`3/~

	, 

 

−∞ < µ < ∞, s	 > 0, −∞ < 𝜉	 < ∞; 

 

defined for  𝑧:	1 + 𝜉 s`{
|

> 0 	.  

 

The parameters µ, s, 𝜉 define the location, scale and shape of the distribution, respectively. The shape 

parameter, 𝜉,  affects the shape of the tail. Hence its value in the GEV distribution corresponds to one 

of 3 families of distribution: 𝜉 > 0 corresponds to the Fréchet distribution, 𝜉 < 0 to the Weibull and 𝜉 = 

0, defined as the limit in which 𝜉	 → 0, is the Gumbel distribution. [1] 

 

G(z) = 𝑒𝑥𝑝 −𝑒𝑥𝑝 −(s`{
|
) 	,                 −∞ < z < ∞. 

 
 
By combining the three families into one distribution enables the underlying data to determine the tail 

behaviour and hence be assigned to the most appropriate family. [1] 
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Figure 1. The tail behaviour with respect to the different families; Weibull, Gumbel and Fréchet [3] 
 
 

The extremal types theorem in combination with the findings above let the maximum values hold the 

max-stable property which can only be satisfied if and only if the underlying random variable is a GEV 

distribution. The max-stable property implies that the maximum and underlying random variables are 

of the same type meaning that one is the location and scale transformation of the other. This property is 

vital when examine extreme values and applying the different approaches, Block Maxima, Peaks-over-

Threshold and Probable Maximum Loss, which are the models this thesis will examine.  

 
 
 
Block Maxima 
The result above leads on to the estimation and modeling of maximum values by introducing the Block 

Maxima approach. The sample are assumed to be independent observations and grouped into blocks. 

The size of each block is determined to correspond to a monthly or annual size and hence the maxima 

from each block, the block maxima, 𝑀3,… ,𝑀�, is modelled. Since the extremes are of interest, 

investigating the quantiles of the data, 𝐺 𝑧\ = 	1 − 𝑝, will be of great importance, where 1/p is the 

return period.  

 

The return level, 𝑧\, namely the quantile of the GEV distribution, is interpreted as the level which the 

annual maximas are exceeded with probability p for a given year.  
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Specifically, we have 

 

 

𝑧\ = 
							𝜇 − 	|

~
	 1 − 	 log 1 − 𝑝 `~ ,			𝜉 ≠ 0

	𝜇 − 	𝜎	𝑙𝑜𝑔 − log 1 − 𝑝 ,			𝜉 = 0.		
 

 

 

Choosing the right block size might be a headwind. Extreme by its definition is a rare event happening, 

hence the size should be large and generate few maxima from the sampled data. However, a too large 

block size hence few maxima will lead to a larger variance. Conversely, a too small block size violates 

the asymptotic assumption of the extremal types theorem, but gives more data to minimize the variance 

error. To summarise, the block size determines a trade-off between bias and variance. [1] 

 

 

Likelihood Function 
 

By assuming the block maxima are independent variables and are assigned to the GEV distribution, the 

likelihood function for the GEV parameters are defined as below. [1] 

 

 

𝐿 µ, 𝜎, 𝜉 =
1
𝜎

�

HK3

1 + 𝜉(
𝑧H − 𝜇
𝜎

)
`3`3~ 𝑒𝑥𝑝 − 1 + 𝜉(

𝑧H − 𝜇
𝜎

)
`3~ 	 , 𝜉¹	0 

 

 
Log-Likelihood Function 
 

By taking the logarithm of the likelihood function of the GEV parameters the log-likelihood function is 

derived.  

 

𝑙 µ, 𝜎, 𝜉 = 𝑚 log 𝜎 − (1 +
1
𝜉
) 𝑙𝑜𝑔 1 + 𝜉(

𝑧H − 𝜇
𝜎

) − 	 1 + 𝜉(
𝑧H − 𝜇
𝜎

)
`3~ , 𝜉¹	0	

�

HK3

�

HK3

 

given that	1 + 𝜉(s�`{
|
) > 0, 𝑖 = 1, … ,𝑚 

 

When the shape parameter equals zero,	𝜉 = 0, the Gumbel limit is used for defining the GEV 

distribution. Hence below equation are derived under such scenario.  
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𝑙 µ, 𝜎 = −𝑚 log 𝜎 − (
𝑧H − 𝜇
𝜎

) − 	 𝑒𝑥𝑝 (
𝑧H − 𝜇
𝜎

) , 𝜉 = 0	
�

HK3

�

HK3

 

 

 

The estimated parameters’ (µ, 𝜎, 𝜉) distribution is asymptotically multivariate normal with mean 

𝜇, 𝜎, 𝜉  and variance-covariance matrix which is the inverse of the information matrix derived from 

maximum likelihood estimate (MLE), assuming 𝜉 > −0.5. [1] 

	
	
The advantage with the Block Maxima approach is that it satisfies the assumption of independence. 

Meanwhile, the disadvantage is that it may include data points which should not be considered extreme 

due to lack of any extreme value in a given block. Additionally, the method might miss an extreme value 

because another more extreme already occurred within the same block. By incorporating the Peak-over-

Threshold model the issues described can be made redundant. The Peak-over-Threshold model is 

therefore considered to be an alternative and more suitable model if the whole dataset is available (as 

opposed to having only extreme value data).    

	
	

Peak over Threshold: POT 
The Peak-over-Threshold, POT, approach only considers the extreme events over a predefined threshold 

u. The number of exceedances above the threshold, N, is considered to follow a Poisson process and the 

sizes of the arbitrary exceedances, 𝑋H	– 𝑢, are independent from N and Generalized Pareto distributed. 

The advantage of the POT-model is that the parameters are stable as of an increasing threshold and more 

extreme exceedances have the same shape parameters as less extreme ones. This implies that parameters 

from higher levels can be derived from parameters from lower levels, and most importantly the shape 

parameter, 𝜉, is the same for the GP-family as of for the GEV family. See below precise mathematical 

formulations of these properties. 

 

Generalized Pareto Distribution: GPD 
Let u define a threshold in which exceedances, 𝑋H,	above that threshold is considered extreme.  By 

applying conditional probability, given that the parent distribution F is known, the distribution of the 

exceedances can be derived. However, in most cases the parent distribution F is unknown hence the 

GEV distribution is assigned to the exceedances. Accordingly, following theorem is defined. 
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Theorem 
 

Let  𝑋3, 𝑋5, … be a sequence of independent random variables with common distribution 

function F, and let 𝑀J = max 𝑋3, … , 𝑋J . Denote an arbitrary term in the 𝑋H sequence by X, and 

suppose that F satisfies Theorem 3.1.1, so that for large n, 

 

𝑃𝑟 𝑀J 	≤ 𝑧 ≈ 𝐺 𝑧 , 

where 

𝐺 𝑧 = 𝑒𝑥𝑝 − 1 + 	𝜉(
𝑧 − 𝜇
𝜎

)
`3/~

 

 

for some µ, s	 > 0 and 𝜉. Then, for large enough u, the distribution function of (X-u), conditional on 

 X > u, is approximately 

 

𝐻 𝑦 = 1 −	(1 + 𝜉
𝜇
𝜎
)`3/~  

 

defined on 𝑦: 𝑦 > 0	𝑎𝑛𝑑	(	1 + 𝜉 {
|
) > 0 	, where 𝜎 = 	𝜎 + 𝜉(𝑢 − 𝜇). [1] 

 

 

 

If 𝜉 < 0 the exceedances have an upper limit of 𝜇 − |
~
 . Otherwise, if 𝜉	³	0, there do not exist an upper 

limit. [1] 

 

The importance of this theorem is that if the Block Maxima can be approximated by the G(z) function 

above, then the exceedances over the predefined threshold u can be approximated to the function H(y), 

namely the Generalized Pareto Family, GP-family. The advantage of this conclusion is that the shape 

parameter, 𝜉, which plays an important part of the behaviour of the distribution and extreme data, is the 

same for the GP-family as of for the GEV family.  

The case 𝜉 = 0, interpreted as 𝜉	 → 0, in which H(y) is equivalent to an exponential distribution with 

parameter 3
|

 , is defined accordingly: [1] 

 

 

𝐻 𝑦 = 1 − 𝑒𝑥𝑝 −
𝑦
𝜎
, 𝑦 > 0 
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Modeling Threshold Exceedances 
 

In line with the Block Maxima, choosing the right size of the threshold is a trade-off between the bias 

of the model versus the variance of the extreme data. The benchmark is generally to choose a threshold 

low as possible given that the limit theorem approximates from enough data points. Below follow two 

methods regarding how to choose an appropriate threshold. The first method, the mean residual life plot, 

derives from the conditional mean of GPD and is applied before model approximation. The second 

method applies a spectrum of thresholds where the shape parameter, 𝜉, is assumed to be constant above 

𝑢C and approximations of the scale parameter, 𝜎�, are linear in 𝑢. [1] 

 

Mean Residual Life Plot 
 
The mean residual life plot derives from the mean of the GPD. Let´s assume that GPD is sufficient 

describing the exceedances 𝑢C originated from the stochastic series 𝑋3, … , 𝑋J.	Further assume that the 

𝜉 < 1. Then the mean of the GPD is: 

 

𝐸(𝑋 − 𝑢C	|	𝑋 > 𝑢C) = 	
𝜎��
1 − 𝜉

	 

 

If GPD is sufficient explaining the exceedances over the threshold 𝑢C, then implicitly GPD is sufficient 

explaining exceedances with a larger threshold	𝑢, such that 𝑢 > 𝑢C. Let 𝜎� = 	𝜎�� + 	𝜉 𝑢 − 	µ . 

 

𝐸 𝑋 − 𝑢	 𝑋 > 𝑢) = 	
	𝜎�
1 − 𝜉

=
𝜎�� + 𝜉𝑢
1 − 𝜉

	 

 

Hence, as seen in the equation above, the conditional mean is a linear function with regards to	𝑢. The 

result above implicates by taking the empirical sample mean of the threshold exceedances, a certain 

locus of points can be used when graphically determining the threshold. If the GPD is sufficient 

explaining the exceedances, then the mean residual plot should be linear in 𝑢 above the threshold.  

 

𝑢,
1
𝑛�

𝑥 H − 𝑢
J�

HK3

: 𝑢 < 𝑥�n�  

 

 The 𝑥 3 ,…,𝑥 J� 	is the 𝑛� observations that violets 𝑢 and 𝑥�n� is the maximum of the 𝑋H	. 
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Confidence intervals are included in the plot to measure the uncertainty in the estimates of the theoretical 

sample means which follow approximately a normal distribution. By examining the mean residual life 

plot, the threshold 𝑢 is to be chosen so that there is a linear line up to the chosen threshold before it 

decays sharply. [1] 

 
 
 
Parameter Stability Plot: Model Based Approach 
 
An alternative method to the mean residual life plot is to model multiple thresholds where the estimated 

parameters are approximately constant and then pick the smallest threshold	𝑢 in which linearity is 

constant to higher values and within the confidence levels. 

 

As in the previous method, if GPD is sufficient describing the exceedances over the threshold	𝑢C, then 

GPD is sufficient describing the exceedances over 𝑢 > 	𝑢C or 𝑢 +	𝑢C. The shape parameter is constant 

regardless of the chosen threshold meanwhile the scale parameter changes as the threshold changes; 

𝜎� = 	𝜎�� + 	𝜉 𝑢 −	𝑢C . By reparametrize the scale parameter and letting it be constant as the threshold 

changes this issue is encountered: 

𝜎∗ = 𝜎� − 	𝜉𝑢. 

 

Confidence intervals for the estimated 𝜉 are derived from the variance-covariance matrix and the delta 

method. [1] 

 

 
Parameter Estimation with Maximum Likelihood Method  
 
After the threshold has been determined, parameter estimation is obtained by applying the maximum 

likelihood method. Let k be the number of exceedances over the threshold 𝑢 in which is defined as 

𝑥3, … , 𝑥� then the below log-likelihood functions are defined: [1] 

 

𝑙 𝜎, 𝜉 = 	−	𝑘 log 𝜎 − 1 +
1
𝜉

log 1 + 𝜉	
𝑥H
𝜎

,
�

HK3

	𝜉¹	0 

 

given that (1 + 𝜉	 ��
|
) > 0, 𝑖 = 1, … , 𝑘 
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𝑙 𝜎 = 	−	𝑘 log 𝜎 −
1
s

𝑥H	,
�

HK3

	𝜉=	0 

 

Return Level 
 
The behaviour of the quantiles is of most interest as far as extreme value modeling is concerned, not just 

the derived parameters. By assuming the GPD, the shape and the scale parameters are sufficient 

explaining the threshold exceedances, the return level, 𝑥�, can be derived. As with the Block Maxima 

approach, the return level, 𝑥�, is the level in which on average is exceeded once every m observation. 

The return level, 𝑥� can be derived accordingly:  

 

𝑃𝑟	(𝑋 > 𝑥	|	𝑋 > 𝑢) = 	 1 + 	𝜉(
𝑥 − 𝑢
𝜎

)
`3/~

 

 

Given x > u, 

𝑃𝑟	(𝑋 > 𝑥	|	𝑋 > 𝑢) = ��	(���	∩	���)
��	(���)

 = ��	(���	)
��	(���)

 

 

Let 𝜁� = 𝑃𝑟	(𝑋 > 𝑢) 

𝑃𝑟	(𝑋 > 𝑥) = 		 𝜁� 1 + 	𝜉(
𝑥 − 𝑢
𝜎

)
`3/~

 

 

The m-observation return level 𝒙𝒎	is then, 

 

𝑥� = 𝑢 +	
𝜎
𝜉
(𝑚𝜁�)~ − 1 , 𝜉¹	0 

 

 

𝑥� = 𝑢 + 	s	log	(𝑚𝜁�), 														𝜉=	0 

 

Plotting the m-observation return level 𝑥� on a logarithmic scale against m, the shape parameter is 

evaluated in the same way as with the GEV model. Linearity satisfies 𝜉=	0, convexity 𝜉 < 0 and 

concavity 𝜉 > 0. [1] 
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Return Level Plot 
 
Expressing data in terms of quantiles gives a simply way to graphically estimate the tail behaviour and 

assign the data to the right family. Let’s define 𝑦\ = 	−𝑙𝑜𝑔	(1 − 𝑝) in the equation expressing the return 

level, 𝑧\. By plotting 𝑦\ against the return level, 𝑧\,  the return level plot is derived and graphically 

depictures different shape parameters. The plot is linear when  𝜉 = 0, convex when 𝜉	 < 0 and concave 

when 𝜉	 > 0. The dashed lines in the plot are the confidence intervals which are increasing at larger 

return levels implying more uncertainty and risk are incorporated at higher return levels. [1] 

 

 

Restriction for Return Levels 
 
Examining small values of 𝑝 hence investigating long return periods is of interest as far as extreme 

modeling is concerned. Further, if 𝜉 < 0, investigation of the upper end-point of the distribution is also 

of interest since the upper-end point then can then be estimated as the “infinite observation period” 

which is the return period 𝑧\when 𝑝 = 0. Below follows the maximum likelihood of the upper end-

point when 𝜉 < 0. 

 

𝑧C = 	 𝜇 − 	
𝜎
𝜉

 

 

If 𝜉 	≥ 0 the upper end-point goes to infinity.  

 

The delta method gives: 

 

𝑉𝑎𝑟 𝑧C ≈ ∇𝑧CV𝑉∇𝑧C, 

 

where 

∇𝑧CV =
𝜕𝑧C
𝜕µ

,
𝜕𝑧C
𝜕𝜎

,
𝜕𝑧C
𝜕𝜉

= 1, −𝜉`3, 𝜎𝜉`5	  

 

 

𝑉 = 𝑉𝑎𝑟(µ, 𝜎, 𝜉) 

 

 

under the assumption of the estimated parameters (𝜇, 𝜎, 𝜉). [1] 
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Model Comparison 

 
The advantage with the Peak-over-Threshold model compared to the Block Maxima approach is that 

the POT analyses more of the available data if the threshold is set sufficiently. It is vital not to reject any 

data considered extreme since sufficient data points are necessary to apply the model. Too few data 

points will not give as good approximation of the underlying distribution and moreover lead to a too 

narrow confidence interval for the return level. POT can therefore be regarded to be a better approach.  

The disadvantage of the POT model is that exceedances tend to cluster above high thresholds.  

 
 
Dependency and Declustering 
 
The models described so far assume the extreme values are independent which might not be the case in 

reality. If the underlying observations are dependent, the extreme events tend to cluster and not fulfil 

the properties of a stochastic process where statistical properties are unchanged with time. As far as 

independence of extreme values is concerned, the Block Maxima approach fulfils the independent 

property better than the POT-model. Hence when applying the POT-model, the extreme values above 

the threshold need to be tested for independency and clustering. If exceedances are dependent and 

clustered, declustering methods need to be applied. Only thereafter, the cluster maxima can be 

considered independent over a predefined threshold level. This is applied by empirically define clusters 

considered extreme, extract the maximum observation from each cluster and fit the maxima to a GPD. 

This reasoning is mathematically valid since a stationary process of independent variables with the same 

marginal distribution as another stationary process will have a limit distribution associated with the other 

stationary process’ limit distribution.  

 

𝐺 𝑧 ≈ 𝐺W(𝑧) 

 

The difference between the two distributions are an extremal index, q, defined as 0 < q £ 1. The extremal 

index takes the value of 1 for independent series. The above relation is an important assumption, 

consequently, if 𝐺 𝑧  belongs to a GEV distribution, 𝐺W(𝑧) will similarly do. Likewise, if 𝐺 𝑧  belongs 

to a Gumbel distribution, 𝐺W(𝑧) will also do. Interestingly, the shape parameter, 𝜉, is the same for the 

two distributions meanwhile the location and scale parameters will have following relations. [1] 

 

𝜇∗ = 	𝜇 − 	
𝜎
𝜉
1 − 𝜃`~ 		𝑎𝑛𝑑		𝜎∗ = 𝜎𝜃~, 𝜉 ≠ 0 

𝜇∗ = 	𝜇 + s	𝑙𝑜𝑔q			𝑎𝑛𝑑		𝜎∗ = 𝜎, 𝜉	=	0 
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Declustering Approach 
 
The declustering approach is made in the following steps. Firstly, clusters considered extreme are 

empirically defined. Secondly, the maximum observation in every cluster is established. Thirdly, the 

maximum observation within each cluster is assumed to be independent and belong to the Generalized 

Pareto distribution. Finally, the maxima in each cluster is fitted to the GPD.   

 

Declustering is applied by defining a threshold, u, and let the exceedances above the threshold be 

populated to the same cluster. When a predefined number of observations are below the threshold the 

cluster is considered to have ended and a new cluster is defined. Consequently, a cluster is considered 

to be open until a predetermined amount of observations, r, no longer exceeds the threshold u. Let’s call 

r “the minimum gap between clusters”. Defining a new cluster is a trade-off between how many 

observations to be below the threshold and at what level is appropriate to set the threshold. Hence, as 

with the POT-model, choosing the right value of r is a trade-off between independency versus loss of 

valuable data, a trade of between bias and variance. If r is chosen too small the independency between 

the clusters are violated. However, a too large r will make the variance large and clusters, which could 

be considered independent, are not fully used and loss of valuable data is a fact. The best practise is to 

check the sensitivity of the data for different values of r in order to find the most suitable value.  

 

The declustering approach is not straightforward when taking both u and r into account since the scale 

parameter, 𝜎, will change in line with threshold meanwhile the shape parameter, 𝜉, is stable regards to 

u and r respectively. Therefore, an alternative approach is to check the model significance by applying 

the return level plot. Moreover, a higher u and r make the standard errors less significant and need to be 

considered when comparing different return levels.  

 

Since the intensity of when clusters occur is of importance, the m-observation return level is defined as: 

 

 

𝑥� = 𝑢 +	
𝜎
𝜉
(𝑚𝜁�𝜃)~ − 1  

 

 

The scale parameter, σ, and shape parameter,	𝜉, above are the parameters of the threshold exceedances 

and distributed according to the Generalized Pareto distribution. The extremal index, 𝜃, is defined as 

the ratio of number of clusters above the threshold u, 	𝑛�, with respect to number of exceedances of the 

threshold u, 𝑛�. Further, 𝜁�, is the probability of an exceedance of u. 
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𝜃 = 	
𝑛�
𝑛�

 

 

𝜁� = 	
𝑛�
𝑛

 

 

Hence 𝜁�𝜃	~	
J�
J

 . [1] 
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Probable Maximum Loss: PML 
In order to predict future probable worse events, the Probable Maximum Loss, PML, is a statistical 

approach which has been developed and allows for considering risk levels with respect to a range of 

different time horizons. Implicitly return levels will differ depending on risk preferences, r, and time 

periods, T. Hence plotting the upper quantile versus time will depict the PML function. 

 

Let 𝑀V be the maximum observation over a given threshold u and under time period T. Then there are 

two possible outcomes under the time period T; either 𝑀V ≤ 𝑢 or there exist at least one observation 

which violates the threshold, hence 𝑀V = (𝑢 + 𝑡ℎ𝑒	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒). 

 

If the Poisson process does not have any points in the time period 0, 𝑇 , following relation 𝑀V ≤ 𝑢 + 𝑣 

applies and below equation from the POT-model is derived: 

 

𝑃 𝑀V ≤ 𝑢 + 𝑣 = 𝑒𝑥𝑝 −𝜆𝑇(1 + 𝜉
𝑣
𝜎
)f
`3/𝜉	 = 𝑒𝑥𝑝 −(1 + 𝜉

𝑣 − ( 𝜆𝑇 𝜉 − 1) 𝜎𝜉
𝜎 𝜆𝑇 𝜉 )f

`3/𝜉	  

 

The lambda, 𝜆, is defined as the ratio of number of clusters, 𝑛�, with respect to number of years of 

observation, 𝑛��n�?, 	𝜆 = 	
J�

J ¡¢£¤
. 

 

Since the 𝑝>¥- quantile is of interest the probability density function of 𝑀V ≤ 𝑢 + 𝑣 equals	1 − 𝑝. 

 

𝑃 𝑀V ≤ 𝑢 + 𝑣 = 1 − 𝑝 

 

The return level with respect to the risk level p and the time-period T is derived by solving for v. Hence 

𝑥V,\	is the quantile for the PML with respect to risk level p and time period T and is solved by inserting 

the parameters derived from the POT-model. Consequently, the PML return level is defined as:  

 
 

𝑥V,\ = 𝑢 +	
𝜎
𝜉

(𝜆𝑇)𝜉

(−log	(1 − 𝑝))𝜉
− 1  

 

The PML return level,	𝑥V,\	, derived above is an simple and intuitive method to estimate a given worst 

loss with regards to chosen risk level and time horizon. [6] 
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4. Analysis 
 
Following analysis is based on monthly CDS data from Deutsche Bank AG EUR CDS 5Y between the 

time periods of August 2001 to April 2018. In order to handle the data and make statistical assumptions, 

MATLAB R2017b and RStudio is used in line with the package in2Extreme [2][3][7].  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Scatter plot of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread. CDS price in EUR 
versus monthly data from August 2001 to April 2018 
 

By investigating the CDS price distributions in Figure 2, one can assume dependency and non-stationarity 

between the CDS prices on a monthly basis, where one lag is equivalent to the CDS price of one month. 

To prove the assumption of dependency mathematically, the autocorrelation function is applied to the 

time series, from August 2001 to April 2018 and can be seen in Figure 3 below. 

 

 
 

 

 

Figure 3.  Auto-correlation function of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread. Monthly data 
from August 2001 to April 2018 
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By further investigation of the autocorrelation function, even a time lag higher than 20 months is 

significant and correlation of monthly CDS prices more than 20 months is confirmed. Assumption of 

independence and non-stationarity are vital as far as mathematical models and extreme value models 

are concerned and need to be interpreted in order to make sufficient conclusions of the provided 

outcomes. However, financial data rarely demonstrates those characteristics due to the dependency 

between the variables t, t+1, t+2,... and dividing up the time series might be necessary to achieve weakly 

stationarity in the data series. As proven in Figure 3, independency between the monthly CDS prices is 

rejected and the time series need to be divided up accordingly to solve the issue of non-stationarity 

between the data points.  

 

Figure 4 and 5. Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread. Monthly data pre- and during/post 
the financial crisis 
 
 

In Figure 4 and 5, the CDS prices pre- and post the financial crisis is virtually depictured and below in 

Figure 6 and 7 its autocorrelation functions are presented. 

 

 
Figure 6.  Auto-correlation function of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread before the 
Financial crisis (August 2001 to June 2007) 
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Figure 7.  Auto-correlation function of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread during and 
after the Financial crisis (July 2007 – April 2018) 
 

Interestingly, the autocorrelation functions indicate that the dependency in the CDS prices are more 

significant before the financial crisis relative to during and after the crisis. Analysis of the 

autocorrelation functions for both before, during and after the crisis, indicate that CDS prices can be 

assumed to be independent after 9 months. What is noteworthy, the autocorrelation for the CDS prices 

decays more sharply during and after the crisis, even to become negative correlated after a time lag of 

11 months, compared to before the crisis.  

 

Independency and non-stationarity of the CDS prices are the first and far most important assumption to 

be established and can now be assumed to be valid for time lags of 9 months. The CDS data during and 

post the financial crisis is what is of most interest as far as this thesis is concerned. Hence only the post 

data will be considered going forward. 
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Block Maxima 
Block Maxima in tandem with GEV distribution is the first approach to describe the behaviour of the 

underlying data. Hence the GEV distribution can be seen as the modeled density function in Figure 8. 

The linearity in the probability and quantile plots below indicates that the GEV distribution could be 

considered an appropriate fit to the underlying CDS price data for shorter return periods.  

 

Generalized Extreme Value Distribution: GEV 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. GEV Distribution 
Probability Plot, Quantile Plot, Density and Return Level Plot of Deutsche Bank AG EUR CDS Curve 5Y - 
Mid Spread during and after the Financial crisis (July 2007 – April 2018) 
 
 

Parameter Estimates 

In order to find suitable parameter estimates of the location, scale and shape parameters, the maximum 

likelihood, the normal approximation, the delta method and the profile likelihood are all applied. The 

normal approximation is calculated with 95% confidence interval where 𝜇 is the estimate of the location, 

scale and shape parameter, 𝑧c = 1.96 and Var is derived from the estimated parameter covariance 

matrix. The confidence interval apply as the equation below. 

 

𝐶𝐼	 = 	𝜇	 ± 	𝑧c 𝑉𝑎𝑟 

Maximum Likelihood 
 
Table 1. Parameter estimates with Maximum Likelihood 

 Location Scale  Shape  
Parameter Estimates 92.1144 33.2539 0.0575 
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Standard Error Estimates 3.2817 2.4188 0.0650 
 
Table 2. Estimated parameter covariance matrix with Maximum Likelihood 

 Location Scale Shape 
Location 10.7697 3.4043 -0.0697 
Scale 3.4043 5.8508 -0.0293 
Shape -0.0697 -0.0293 0.0042 

 
 
Table 3. Estimated Hessian Matrix with Maximum Likelihood 

Hessian Matrix Location Scale Shape 
Location 0.1233 -0.0638 1.5885 
Scale -0.0638 0.2101 0.4049 
Shape 1.5885 0.4049 265.3682 

 
 
Normal Approximation 
 
Table 4. Parameter estimates with Normal Approximation  

 95% Lower Bound Mean 95% Upper Bound 
Location 85.6822 92.1144 98.5466 
Scale 28.5130 33.2539 37.9948 
Shape -0.0695 0.0575 0.1845 

 
 
 
Delta Method 
 
Table 5. Parameter estimates with Delta Method 

 95% Lower Bound Mean 95% Upper Bound 
Location 85.6823 92.1144 98.5464 
Scale 28.5131 33.2539 37.9947 
Shape -0.0699 0.0575 0.1850 

 
 
 
 
Profile Likelihood of Shape Parameter 
 
Table 6. 95 % Confidence intervals for shape parameter based on Profile Likelihood 

 95% Lower Bound Mean 95% Upper Bound 
Shape -0.0644 0.0580 0.1842 

 

 

The token of the shape parameter is what is of greatest importance as far as the behaviour of the tail of 

the distribution is concerned. In all four cases, the lower bound of the confidence interval gives a 

negative value of the shape parameter, which implies finite upper bound of the underlying distribution. 
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Remarkably, the confidence interval between the normal approximation, delta and profile likelihood do 

not differ from each other in a wider perspective. 

 
 
Return Levels 
 

To find an accurate approximation of the price of risk for a range of years, namely indicative return 

levels for a range of years, below return levels are estimated with respect to the delta method and the 

profile likelihood respectively in line with the above estimated parameters. Return levels are interpreted 

as the CDS price in EUR for a range of years.  

 
Delta Method 
Table 7: Estimated return levels based on Delta Method 

Return Levels 95% Lower Bound Mean 95% Upper Bound 
2 Years 97.16 104.43 111.70 
5 Years 132.90 144.21 155.52 
8 Years 148.55 163.10 177.66 
10 Years 155.51 172.01 188.51 
15 Years 167.48 188.23 208.99 
20 Years 175.46 199.83 224.20 
30 Years 186.04 216.36 246.69 

 
Profile Likelihood 
Table 8: Estimated return levels based on Profile Likelihood 

Return Levels 95% Lower Bound Mean 95% Upper Bound 
2 Years 97.47 104.43 111.96 
5 Years 133.96 144.21 156.94 
8 Years 150.32 163.10 180.50 
10 Years 157.92 172.01 192.24 
15 Years 171.14 188.23 214.79 
20 Years 180.21 199.83 231.62 
30 Years 192.73 216.36 256.97 

 
 

The mean value of the return levels with respect to the delta and the profile likelihood do not differ as 

much, meanwhile a wider difference is noticed in the confidence intervals between the two approaches. 

This should be expected since normal distribution assumption may not apply and therefore the profile 

likelihood gives a better estimation of the mean and confidence intervals of the different return levels. 

Profile likelihood plots for respective return levels are graphically depictured in Figure 9 and the return 

level plot for different return levels in Figure 10.  
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Figure 9. GEV Distribution. Profile Likelihood Plots for return levels 2-years, 5-years, 8-years, 10-years, 
15-years, 20-years, 25-years and 30-years of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread during 
and after the Financial crisis (July 2007 – April 2018) 
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Figure 10.  GEV Distribution. Return Level Plot of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread 
during and after the Financial crisis (July 2007 – April 2018) 
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Gumbel Distribution 
 

When examining the shape parameter’s mean value and confidence interval it might take the value of 

zero. Not least since the lower bound of the confidence interval gives rise to a negative value of the 

shape parameter. Applying the Gumbel distribution with a shape parameter equal to zero is therefore 

also considered when applying the Block Maxima and is depictured as the modeled density function in 

Figure 11. The moderate linearity in the probability and quantile plot supports this hypothesis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  Gumbel Distribution 
Probability Plot, Quantile Plot, Density and Return Level Plot of Deutsche Bank AG EUR CDS Curve 5Y - 
Mid Spread during and after the Financial crisis (July 2007 – April 2018) 
 
 
 
Parameter Estimates 
 

As with the GEV distribution, parameter estimates are performed with respect to maximum likelihood, 

normal approximation and the delta method when applying the Gumbel distribution. As before, the 

normal approximation is done with a 95% confidence interval where µ is the estimate of the location 

and scale parameter, zª = 1.96 and Var is derived from the estimated parameter covariance matrix. 

 

CI	 = 	µ	 ± 	zª Var 
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Maximum Likelihood 
 
Table 9. Parameter estimates with Maximum Likelihood 

 Location Scale  
Parameter Estimates 93.1489 33.9252 

Standard Error Estimates 3.1361 2.3758 
 
Table 10. Estimated parameter covariance matrix with Maximum Likelihood 

 Location Scale 
Location 9.8353 2.2715 
Scale 2.2714 5.6443 

 
Table 11. Estimated Hessian Matrix with Maximum Likelihood 

 Location Scale 
Location 0.1121 -0.0451 
Scale -0.0451 0.1953 

 
 
Normal Approximation 
 
Table 12. Parameter estimates with Normal Approximation  

 95% Lower Bound Mean 95% Upper Bound 
Location 85.6822 92.1144 98.5466 
Scale 28.5130 33.2539 37.9948 

 
 
Delta Method 
 
Table 13. Parameter estimates with Delta Method 

 95% Lower Bound Mean 95% Upper Bound 
Location 85.6823 92.1144 98.5464 
Scale 28.5131 33.2539 37.9947 

 
The maximum likelihood method for the location and scale parameter give different values for the 

Gumbel distribution compared to the GEV distribution. Meanwhile the normal approximation and the 

delta method give the same estimates of the parameters and confidence intervals. The return level plot 

for a range of return periods is depictured in Figure 12. 
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Figure 12. Gumbel Distribution. Return Level Plot of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread 
during and after the Financial crisis (July 2007 – April 2018) 
 
 
 
Likelihood Ratio Test 
 

The likelihood ratio test is performed to find out which distribution, the GEV or the Gumbel, is of most 

relevance and describes the CDS price data most accurately. The test is set up with the Gumbel 

distribution as the null hypothesis and the GEV distribution as the alternative hypothesis. The likelihood 

ratio test rejects the alternative hypothesis since the p-value is above the significance level of 0.05. 

Conclusively, the distribution of the CDS price under and after the financial crisis behave as a Gumbel 

distribution with a shape parameter equal to zero. 

 
𝐻C:		𝛾 = 0 
𝐻3:		𝛾 ≠ 0 

 
 
Table 14. Likelihood Ratio Test with Gumbel Distribution as null hypothesis and GEV Distribution as 
alternative hypothesis 

  
Likelihood Ratio 0.8081 
Chi-Square Critical Value 3.8415 
Alpha 0.05 
Degrees of Freedom 1 
P-value 0.3687 
Alternative Hypothesis is Greater 
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Peak-over-Threshold Method 
The Peak-over-Threshold method gives another interpretation of describing the underlying data 

compared to the Block Maxima approach. Firstly, an appropriate threshold is set up with help of the 

mean residual life plot and the model based approach. Then the observations over the threshold is fitted 

to a Generalized Pareto distribution.  

 
 
Mean Residual Life Plot 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13.  Mean Residual Life Plot of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread during and 
after the Financial crisis (July 2007 – April 2018) 
 

Appropriate Threshold: 130 
 
Model Based Approach  
 

 
Figure 14. Model Based Approach of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread during and after 
the Financial crisis (July 2007 – April 2018) 
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Appropriate Threshold: 130 

 

In both cases, when applying the mean residual plot and the model based approach a threshold value of 

130 is considered to be appropriate due to the linearity in the models. Hence the parameter estimations 

are constructed from that perspective accordingly.  

 

Generalized Pareto Distribution: GPD 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.  GP Distribution 
Probability Plot, Quantile Plot, Density and Return Level Plot of Deutsche Bank AG EUR CDS Curve 5Y - 
Mid Spread during and after the Financial crisis (July 2007 – April 2018) 
 

The exceedances, which is the observations above a threshold value of 130, is fitted to a GP distribution 

and depictured as the modeled density function in Figure 15. The relative linearity in the probability 

plot is an indication that the exceedances can be fitted to a GP distribution. However, this can be 

questionable when investigating the quantile plot since the linearity is not as substantial there. Hence 

the POT model could seem ambiguous for higher return levels.  

 
 
Parameter Estimates 
 

Parameter estimates of the exceedances with respect to GP distribution is done with maximum 

likelihood, normal approximation and profile likelihood. As before, normal approximation is done with 

95% confidence interval based on asymptotic normal distribution of the maximum likelihood estimates. 

𝜇 is the estimate of the scale and shape parameters, 𝑧c = 1.96 and 𝑉𝑎𝑟 is derived from the estimated 

parameter covariance matrix.  
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Maximum Likelihood 
 
Table 15. Parameter estimates with Maximum Likelihood and threshold value of 130 

 Scale  Shape  
Parameter Estimates 71.2500 -0.4911 
Standard Error Estimates 14.4758 0.1382 

 
 
Table 16. Estimated parameter covariance matrix with Maximum Likelihood and threshold value of 130 

 Scale Shape 
Scale 209.5479 -1.8804 
Shape -1.8804 0.0191 

 
 
Table 17. Estimated Hessian Matrix with Maximum Likelihood and threshold value of 130 

 Scale Shape 
Scale 0.0410 4.0400 
Shape 4.0400 450.0500 

 
 
Normal Approximation 
 
Table 18. Parameter estimates with Normal Approximation and threshold value of 130 

Normal Approximation 95% Lower Bound Mean 95% Upper Bound 
Scale 42.8775 71.2500 99.6225 
Shape -0.7620 -0.4911 -0.2202 

 
 
Delta Method 
 
Table 19. Parameter estimates with Delta Method and threshold value of 130 

Delta Method 95% Lower Bound Mean 95% Upper Bound 
Scale 42.8780 71.2500 99.6220 
Shape -0.7619 -0.4911 -0.2202 

 
 
 
 
Profile Likelihood and Estimation of Upper Endpoint 
 
Table 20. 95 % Confidence intervals for shape parameter based on Profile Likelihood with threshold value 
of 130 

 95% Lower Bound Mean 95% Upper Bound 
Scale  71.4461 71.2500 107.8543 
Shape -0.4848 -0.491 -0.1643 

 
 

The shape parameter is negative when applying the maximum likelihood, normal approximation, the 

delta method and the profile likelihood. Hence the upper end-point of the return levels, 𝑧C, should exist 
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and is therefore estimated with maximum likelihood. Additionally, confidence intervals are set up 

accordingly by applying normal approximation with 95% confidence interval. 𝑧c = 1.96 and 𝑉𝑎𝑟 is 

derived from the delta method where V is the variance-covariance matrix of the estimated parameters. 

The equations are shown below. 

 

𝑧C = −	
𝜎
𝜉

 

 

𝑉𝑎𝑟(𝑧C) ≈ 	∇𝑧CV𝑉∇𝑧C 

 

𝑉 = 𝐶𝑜𝑣(𝜎, 𝜉) 

 

∇𝑧CV =
𝜕𝑧C
𝜕𝜎

,
𝜕𝑧C
𝜕𝜉

= [−𝜉`3, 𝜎𝜉`5]	 

 

𝐶𝐼	 = 	±	𝑧c 𝑉𝑎𝑟(𝑧C) 

 
 
Table 21. Maximum Likelihood estimate of upper endpoint of distribution with threshold value of 130 

 Estimate 
Scale 71.2500 
Shape -0.4910 
Upper End-Point 145.1120 

 
 
Table 22. Covariance estimates of the scale and shape parameter with a threshold value of 130 

 Scale Shape 
Scale 209.5479 -1.8804 
Shape -1.8804 0.0191 

 

 

𝑉𝑎𝑟 𝑧C = 	4,801.2 

 

𝐶𝐼	 = 	±	𝑧c 𝑉𝑎𝑟(𝑧C) = 	±	1.96 4,801.2 = 135.81 

 
Table 23. Parameter estimates with Normal Approximation of the upper endpoint and threshold value of 130 

Normal Approximation 95% Lower Bound Mean 95% Upper Bound 
Upper Endpoint 9.3019 145.1120 280.9221 
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Return Levels 
 
Return levels, namely the approximation of the price of credit risk, are estimated for a range of years by 

applying the POT model based for the delta and the profile likelihood method. The mean of the return 

levels and its confidence intervals are seen in Table 24 and 25. As mention before, return levels are the 

CDS price in EUR for a range of years. 

 

Delta Method 
Table 24: Estimated return levels based on Delta Method with threshold value of 130 

Return Levels 95% Lower Bound Mean 95% Upper Bound 
2 Years 162.42 216.45 270.47 
5 Years 156.15 237.70 319.25 
8 Years 143.60 245.41 347.21 
10 Years 135.20 248.49 361.77 
15 Years 115.51 253.29 391.07 
20 Years 97.72 256.16 414.60 
30 Years 66.53 259.58 452.63 

 
 
Profile Likelihood 
Table 25: Estimated return levels based on Profile Likelihood with threshold value of 130  

Return Levels 95% Lower Bound Mean 95% Upper Bound 
2 Years 210.05 216.45 235.37 
5 Years 229.49 237.70 262.96 
8 Years 236.41 245.41 276.60 
10 Years 239.46 248.49 282.94 
15 Years 244.07 253.29 293.65 
20 Years 246.73 256.16 301.17 
30 Years 249.72 259.58 310.82 

 
 

As with Block Maxima, the confidence intervals for the return levels differ between the delta method 

and the profile likelihood method due to normal distribution assumptions, meanwhile the mean values 

are constant between the two methods. The profile likelihood plots for the different return levels with 

respect to the POT method are depictured in Figure 16. As seen in Figure 16, due to numerical 

difficulties when implementing the two-sided intervals, the profile likelihood plots need to be interpreted 

as one-sided. Further, the return level plot for a range of return periods is seen in Figure 17. 
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Figure 16.  GP Distribution. Profile Likelihood Plots for return levels 2-years, 5-years, 8-years, 10-years, 
15-years, 20-years, 25-years and 30-years of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread during 
and after the Financial crisis (July 2007 – April 2018) 
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Figure 17.  GP Distribution. Return Level Plot of Deutsche Bank AG EUR CDS Curve 5Y - Mid Spread 
during and after the Financial crisis (July 2007 – April 2018) 
 
 
 
Exponential Distribution 
 
It is of interest to investigate the behaviour of the shape parameter when equal to zero, namely 

investigate if the exceedances can be fitted to an exponential distribution. However, by valuating the 

above parameter estimations, it is unlikely that the shape parameter takes a value of zero. To prove this 

is the case, maximum likelihood estimation of the scale parameter and 95% confidence intervals is done 

under this assumption where	𝑧c = 1.96 𝜇 and 𝑉𝑎𝑟 are the mean and variance estimates of the scale 

parameter over the threshold u = 130. 

 
 
Maximum Likelihood of Scale Parameter 
 
Maximum likelihood estimate of the scale parameter, σ, under HC:	γ = 0. 
 
Table 26. Maximum likelihood estimates of the mean and variance of the scale parameter based on the 
exceedances over the threshold u = 130. Estimations are made under the hypothesis that the exceedances 
follow an exponential distribution, 𝐻C:	𝛾 = 0 

 Mean Variance 
Scale 178.2689 1063.7290 

 
 
 
Normal Approximation of Confidence Interval for Scale Parameter 
 

𝐶𝐼(𝜎) = 	s	 ± 	𝑧c 𝑉𝑎𝑟(s) 
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Table 27. Scale parameter estimates with Normal Approximation with threshold value of 130 

Confidence Interval 95% Lower Bound 95% Upper Bound 
Scale 114.3438 242.1940 

 
 
 
Likelihood Ratio Test 
 

Likelihood ratio test is performed with the exponential distribution as null hypothesis and the GP 

distribution as the alternative hypothesis.  

𝐻C:		𝛾 = 0 
𝐻3:		𝛾 ≠ 0 

 

𝑙C is the log-likelihood function maximum for the exponential distribution and 𝑙3 is the log-likelihood 

function for the GP distribution. The likelihood ratio test is then carried out as below. 

 

𝐷 = 2 𝑙3 𝑀3 −	 𝑙C 𝑀C  

 
 
 
Table 28. Likelihood Ratio Test with Exponential Distribution as null hypothesis and GP Distribution as 
alternative hypothesis 

Log-likelihood function under Exponential distribution: 𝒍𝟎 165.8108 
Log-likelihood function under GP distribution: 𝒍𝟏 237.8639 
Chi-Square Critical Value 3.8415 
Alpha 0.05 
Degrees of Freedom 1 
𝑫 = 𝟐 𝒍𝟏 𝑴𝟏 −	𝒍𝟎 𝑴𝟎  144.1062 

 
As seen in Table 28, the likelihood ratio test rejects the null hypothesis since D is above the critical 

value of the chi-square distribution. Hence the CDS prices during and after the financial crisis are not 

distributed as an exponential distribution with shape parameter equal to zero. 

 

To further prove that the null hypothesis should be rejected a quantile plot is done under the assumption 

that the underlying CDS price data follow an exponential distribution. As seen in Figure 18, the linearity 

is week hence a shape parameter equal to zero should be rejected as an appropriate model.  
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Figure 18.  Quantile Plot when 𝐻C:	𝛾 = 0 

 
 
In the above two methods, namely the Block Maxima approach and the POT model, it has been assumed 

that the data follows a sequence of independent random variables. As mentioned, the autocorrelation 

function gave the implication that the CDS prices cannot be assumed to be considered independent until 

a lag of 9 months. The parameter estimates and the return level results of the Block Maxima and the 

POT model therefore lacks this important property, in which the outcomes of those models should be 

questioned. Both models used for this thesis should therefore be seen as suggestions for further analysis 

of this type of data based on much larger samples.  
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Declustering 
In order to incorporate a higher sophistication into the models and observe clusters where the data is 

assumed to be independent, the declustering method is applied. Unlike in the Block Maxima approach 

and the POT model, a return level of 10 years is the only level evaluated going forward for the 

declustering method. 

 
Table 29. Estimated characteristics of the threshold approach which is fitted to Deutsche Bank AG EUR CDS 
Curve 5Y - Mid Spread during and after the Financial crisis (July 2007 – April 2018). Below are estimated 
parameters of the threshold u and minimum gap r. 𝝈 and 𝛏  are the scale and shape estimates of the 
Generalized Pareto distribution. θ is the extremal index,  𝒙𝟏𝟎 is the estimated 10-year return levels and  𝑛� 
are the number of clusters above the threshold u. The standard errors are expressed in parentheses 
 

 u = 80 u = 110 
 r = 2 r = 3 r = 4 r = 2 r = 3 r = 4 

𝒏𝒄 6 4 3 8 5 5 
𝝈 52.8432 

(8.2110) 
52.8432 
(8.2110) 

52.8432 
(8.2110) 

70.9863 
(12.5392) 

70.9863 
(12.5392) 

70.9863 
(12.5392) 

𝛏 -0.1412 
(0.1207) 

-0.1412 
(0.1207) 

-0.1412 
(0.1207) 

-0.4095 
(0.120) 

-0.4095 
(0.120) 

-0.4095 
(0.1197) 

𝒙𝟏𝟎 257.47 
(206.99, 
307.94) 

257.47 
(206.99, 
307.94) 

257.47 
(206.99, 
307.94) 

247.07 
(169.66, 
324.48) 

247.07 
(169.66, 
324.48) 

247.07 
(169.66, 
324.48) 

𝜽 0.06 0.04 0.03 0.16 0.10 0.10 
 
 

 u = 130 u = 140 
 r = 2 r = 3 r = 4 r = 2 r = 3 r = 4 

𝒏𝒄 5 4 4 5 5 5 
𝝈 71.2500 

(14.4758) 
71.2500 

(14.4758) 
71.2500 

(14.4758) 
54.9513 

(12.4259) 
54.9513 

(12.4259) 
54.9513 

(12.4259) 
𝛏 -0.4911 

(0.1382) 
-0.4911 
(0.1382) 

-0.4911 
(0.1382) 

-0.3714 
(0.1583) 

-0.3714 
(0.1583) 

-0.3714  
(0.1583) 

𝒙𝟏𝟎 248.49 
(135.20, 
361.77) 

248.49 
(135.20, 
361.77) 

248.49 
(135.20, 
361.77) 

246.48 
(185.09, 
307.87) 

246.48 
(185.09, 
307.87) 

246.48 
(185.09, 
307.87) 

𝜽 0.15 0.12 0.12 0.15 0.15 0.15 
 
 
When investigating the empirical results above, neither the scale nor the shape parameter change in line 

with the thresholds and with respect to the different minimum gaps. Hence the return level does not 

change between the same thresholds. This is graphically depictured in Figures 23-26. To further 

investigate the different declustering groupings with respect to different thresholds and minimum gaps 

graphs are illustrated in Figures 19-22. Finding the balance between u and r, as mention before, is a 

trade-off between variance and bias. A too low threshold will give a weak GPD approximation of cluster 

maxima meanwhile give a smaller variance in the exceedances, and vice versa. 
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The problem of the scale and the shape parameter not changing is a concern due to the number of 

underlying data points. To make empirically correct assumptions, the threshold and the number of the 

minimum gap shall have an impact of the scale, shape and extremal index, which above results do not 

meet. Noteworthy, the return level can be stable even though different combinations of the threshold 

and the minimum gap index, but that do not seem to be the reason here. 

 

The above findings even more stress the importance of taking non-stationarity into consideration. Due 

to the strong short term dependence in the data, one needs a much longer series of observations to make 

inference on the extremes of the future CDS prices. 

 

Figure 19.  Declustering Groupings with u = 80, r=2, r =3 and r=4 

 
Figure 20.  Declustering Groupings with u = 110, r=2, r =3 and r=4 
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Figure 21.  Declustering Groupings with u = 130, r=2, r =3 and r=4 
 

 
Figure 22. Declustering Groupings with u=140, r=2, r =3 and r=4 
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Return Level Plots 
  
 
 

 
 
Figure 23. Declustering Return Level Plots with u=80, r=2, r =3 and r=4 
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Figure 24. Declustering Return Level Plots with u=110, r=2, r =3 and r=4 
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Figure 25.  Declustering Return Level Plots with u=130, r=2, r =3 and r=4 
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Figure 26.  Declustering Return Level Plots with u=140, r=2, r =3 and r=4 
 
 
 
 
 



An Extreme Value Approach To Pricing Credit Risk 
S. Landin 
 
   

52 

Probable Maximum Loss: PML  
The Probable Maximum Loss, PML, gives an estimate of the return levels with respect to different time 

horizons and levels of risk. It is estimated by a given worst loss with regards to chosen risk level and 

time horizon by calculating the upper quantile, a range of r, versus different time horizons T. 
 
 

𝑥V,\ = 𝑢 +	
𝜎
x

(𝜆𝑇)x

(−log	(1 − 𝑝))x
− 1  

 
 

𝜆 = 	
𝑛�

𝑛��n�?
 

 
 
Parameter Estimates 
 

The Probable Maximum Loss, PML, takes into consideration the parameter estimates from the 

declustering method with  a chosen threshold of 130, a minimum gap, r = 3, and the parameters derived 

from the POT model with respect of number of cluster maxima in different time periods. As mentioned 

before, dependence between the different CDS prices should be handled in this model as well.   

 

Table 30. Lambda, 𝜆, estimate with number of clusters, 𝑛�, and number of years of observation, 𝑛��n�?, 
derived from when u = 130 and r = 3 

Number of clusters, 𝒏𝒄 4 
Number of years of observation, 𝒏𝒚𝒆𝒂𝒓𝒔 10.66 
Lambda estimate, 𝝀 0.3750 

 
Table 31. Scale and shape estimates derived from Peak-over-Threshold (POT) 

Threshold estimate,  u 130 
Scale parameter, σ 71.2500 
Shape parameter, ξ -0.4911 

 
 
Return Level 
 
Table 32: Estimated quantile PML for risk levels 10% and 1% and time horizons of 2 years, 5 years, 10 years 
and 30 years 
Risk, p Next 2 year Next 5 years Next 10 years Next 30 Years 
10% 238.34 251.66 258.42 265.37 
1% 263.50 267.69 269.83 272.02 
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5. Conclusion 
To conclude, this thesis investigates different methods appropriate for describing how credit risk could 

be priced for different time periods by exploiting underlying CDS prices. Interestingly, when 

investigating what distribution is most appropriate describing the underlying CDS data, the Block 

Maxima approach and the POT model give rise to different outcomes.  

 

The Block Maxima approach results in an estimated positive shape parameter for the upper bound hence 

the underlying distribution is assumed to belong to the Fréchet family in that region. However, the lower 

bound gives rise to a negative shape parameter, i.e. the underlying distribution assumes to belong the 

Weibull family. The above contradictory outcome gives an incentive to apply the Gumbel distribution 

with a shape parameter equal to zero. The likelihood ratio test is carried out and rejects the alternative 

model. Conclusively, when applying the Block Maxima approach, the distribution of the CDS price 

under and after the financial crisis is most accurate explained by a Gumbel distribution with a shape 

parameter equal to zero. The POT model, on the other hand, indicates a negative shape parameter for 

the whole confidence interval hence the distribution of the CDS price shall not be fitted to an exponential 

distribution. This conclusion is supported by the likelihood ratio test which rejects the null hypothesis 

(that the underlying data is exponential distributed) and the CDS price shall therefor be fitted to the GP 

distribution when applying the POT model. Conclusively, due to a negative shape parameter, an upper 

end-point of the return level exists when applying the POT model.  

 

The reason for the contradictory outcomes when determining the underlying distribution’s family for 

the models above might be due to the chosen threshold value of 130 for the POT model. Even though 

the threshold value is assumed to be sufficient, the number of exceedances might be too few for making 

correct statistical interpretations. Hence a lower threshold value might give rise to a shape parameter 

equal to zero, i.e. the underlying CDS data belongs to an exponential distribution, for the POT model.  

 

As mentioned before, independency in the underlying data is vital to make accurate statistical 

assumptions hence the declustering method is of high importance. In line with theory, the scale 

parameter is to change meanwhile the shape parameter is to be stable when changing the threshold 

values, u. This is not the case for this thesis. The problem is, as mentioned before, due to the strong short 

term dependence in the data, one needs a much longer series of observations to make inference on the 

extremes of the future CDS prices. What happens is that it is too few cluster maxima in the dataset which 

make it problematic to estimate the scale and shape parameter. As a result, the likelihood function is 

practically flat and returns the start values of the scale and shape parameter as an outcome of 

optimisation. For verifications, different thresholds and minimum gaps is combined to find the 
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equilibrium for accurate estimations.  Interestingly, higher threshold leads to higher return level until a 

threshold value of 130, which seems to be the maximum point of return level value. Thereafter the return 

level decays once again. As in line with the mean residual life plot and the model based approach, a 

threshold value of 130 is an appropriate threshold value, hence that the return level takes on its maximum 

value at that threshold value is expected. Further, as mentioned before, higher u and r contributes to less 

significant standard errors. Since the scale and shape parameter are fitted to GP distribution, as in the 

POT model, it comes as no revelation that the scale and shape parameter estimates are the same in the 

declustering method as for the POT model. Likewise, the 10-year return level is the same. 

 

Not only is the credit risk with respect to different time periods of interest, but also the level of risk that 

is priced in. This thesis incorporates this by applying the Probable Maximum Loss method. As expected, 

a larger risk level and a longer time horizon give a higher uncertainty of credit event hence a higher 

price of the CDS. Likewise, a lower risk level and shorter time horizons, which implicates more 

certainty, results in a lower CDS price. 

 

Conclusively, pricing credit risk by applying statistical extreme value models, which is what this thesis 

has thrived to examine, is an approach with suggestive results. However, the issue lies in the dependency 

in the data hence makes the mathematical models ambiguous and longer series of observations is needed 

to make inference on the extremes of the future CDS prices. This is a problem when pricing credit risk 

since CDS prices are mainly priced on a monthly basis. Favourably, one would need more frequent data 

points in order to make accurate estimations and results. Noteworthy, this do not imply that observations 

further back in time are sufficient in this context since historical data too far back in time might not be 

of relevance of pricing future credit risk. 
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