
Artificial Neural Networks for Enhanced
Exoskeleton Grip Movement

Applying electromyography and grip force for natural grip
pattern

Malcolm Horal

Advisors

Prof. Anders Heyden
Department of Mathematics

Institute of Technology, Lund University

PhD. Danish Shaikh
The Maersk Mc-Kinney Moller Institute

Embodied Systems for Robotics and Learning, Syddansk Universitet

Examinator

Asst. Prof. Niels-Christian Overgaard
Department of Mathematics

Institute of Technology, Lund University

Cover: Lund University Logotype. Credit: Lund University

© Malcolm Horal 2018

Lund University, Institute of Technology, Department of Mathematics

Till Kristian Tyrann...

Contents

Figures iii

Abbreviations v

Abstract vii

Sammanfattning ix

1 Introduction 1

2 Background &Theory 3
2.1 Exoskeleton Development . 5
2.2 Hands and Prosthetics . 6
2.3 Electromyography . 8
2.4 Artificial Neural Networks . 11

2.4.1 Fundamental Design . 11
2.4.2 ANN algorithm . 14
2.4.3 Time-steps . 15
2.4.4 Training and optimization . 16
2.4.5 Guidelines in building an ANN 18

3 Method 19
3.1 Approach . 19
3.2 Literature study . 19
3.3 Data collecting & sEMG . 20
3.4 Building ANN . 22

4 Results 25

5 Discussion 29
5.1 ANN evaluation . 29
5.2 Future Prospects . 31

i

ii CONTENTS

5.3 Ethics, risks and sustainability . 31

6 Conclusion 33

Acknowledgements 35

Bibliography 37

I Appendix 41

A Matlab code 43

B Python code 45

Figures

2.1 Lockheed Martin’s HULC exoskeleton. The batteries and some mechan-
ics are worn as a backpack. 3

2.2 Hondas walking assist exoskeletons and their robot Assimo. 5
2.3 Anatomy of the palmar surface of the left hand. 6
2.4 Anatomy of anterior left arm muscles. Deep muscles are shown to the

left and superficial muscles to the right. 7
2.5 Anatomy of posterior left arm muscles. Deep muscles are shown to the

left and superficial muscles to the right. 8
2.6 The same sEMG signal raw (red), rectified (green) and filtered with a

third-order Butterworth lowpass filter (blue). 9
2.7 An analog third-order Butterworth lowpass filter. 10
2.8 ANN schematic. Feedforward ANN with input layer (red), one hidden

activation layer (blue) and output layer (green). 12
2.9 Schematics of a RNN, also known as a Feedback ANN. Input layer (red),

one hidden activation layer (blue) and output layer (green). 13
2.10 One-unit recurrent neural network (RNN). From bottom to top: input

state, hidden state, output state. U, V, W are the weights of the network.
Compressed diagram on the left. 14

2.11 LSTM module in an RNN, containing four interacting layers. 15
2.12 A loss function with two variables minimizing process using gradient de-

scent. 16

3.1 The Myo Armband used to collect sEMG data. 20
3.2 The Neulog Hand Dynamometer logger sensor NUL-237 used to collect

grip force data. 20

4.1 Network results with original settings. Above: Fitting loss on training
and cross-validation set for standard 3 signal input. Below: Results on
training data (green) and test data (red). The blue line represents the
actual force. 26

iii

iv FIGURES

4.2 Network results with force input channel. Above: Fitting loss on training
and cross-validation set. Below: Results on training data (green) and test
data (red). The blue line represents the actual force. 26

4.3 Network results with new grip and EMG data. Above: Fitting loss on
training and cross-validation set. Below: Results on training data (green)
and test data (red). The blue line represents the actual force. 27

4.4 Network results with 5 time-steps instead of 10. Above: Fitting loss on
training and cross-validation set. Below: Results on training data (green)
and test data (red). The blue line represents the actual force. 27

4.5 Network results with simplified ANN model. Above: Fitting loss on
training and cross-validation set. Below: Results on training data (green)
and test data (red). The blue line represents the actual force. 28

4.6 Network results with unfiltered EMG data. Above: Fitting loss on train-
ing and cross-validation set. Below: Results on training data (green) and
test data (red). The blue line represents the actual force. 28

Abbreviations

ANN Artificial Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

EMG Electromyography

sEMG Surface Electromyography

AI Artificial Intelligence

ML Machine Learning

MU Motor Unit

MUAP Motor Unit Activation Potential

RMS Root Mean Square

NLP Natural Language Processing

UEE Upper Extremity Exoskeleton

v

Abstract

The idea to artificially enhance our physical abilities has always fascinated humankind
and over the cause of history it has resulted in countless important innovations such as
wheelchairs and carbon-fiber-reinforced polymer leg prosthetics. By combining electron-
ics and Artificial Intelligence the step towards artificially enhanced limbs has been greatly
reduced. This master’s thesis describes the development of a Machine Learning solution
to control an upper extremity exoskeleton. A Recurrent Neural Network is developed and
trained on Electromyography data from the forearm. Two different networks and two data
sets are tested. The results show that this approach is promising for classification of grip
movements if implemented correctly.

keywords: AI, ML, ANN, RNN, Exoskeleton, Electromyography

vii

Sammanfattning

Människan har genom historien försökt förstärka sin fysiska förmåga vilket har lett till
otaliga innovativa verktyg och proteser. Tack vare elektronik och Artificiell Intelligens har
vägen mot konstgjorda förstärkta kroppsdelar förkortats avsevärt. Denna rapport beskriver
utvecklandet av ett Artificiellt Neuralt Nätverk som kan styra ett exoskelett för yttre ex-
tremitet. Elektromyografi-data från underarmen samlades in och användes för att träna
nätverket för prediktion av greppstyrka. Klassificering av greppen görs framgågnsrikt och
olika dataset och typer av nätverk testas. Resultaten visar att Neurala Nätverk med stor
fördel kan användas för klassifiering av grepp om metoden implementeras korrekt.

nyckelord: AI, ML, ANN, RNN, Exoskelett, Elektromyografi

ix

Chapter 1

Introduction

Long has the idea of replacing or enhancing limbs fascinated humankind. Technological
advancements makes it possible to not only create artificial strength and endurance but also
help people with reduced physical ability. This includes people with neck, arm and hand
injuries, diseases affecting muscles and nervous system, arthritis, rheumatism and senior
citizens. According to Sweden Statisctics 13% of the Swedish population is believed to
suffer from reduced mobility in their arms and hands [5].

This thesis project examines a solution for controlling an exoskeleton with the help
of Electromyography (EMG) data and Artificial Intelligence (AI). A series of surface EMG
(sEMG) recordings done with a Myo Armbandand from the lower arm muscles together
with grip force data collected with a Neulog Hand Dynamometer in a pinch grip were used
to train Artificial Neural Networks (ANNs) created to predict grip force from only sEMG
data. The project constituted of two major parts: Firstly a literature study of EMG tech-
nology and ANNs was conducted. Secondly data was recorded and an Recurrent ANN
was created. The ANNs where of the type Recurrent Neural Network (RNN) and they
where created with Tensorflow and trained on the collected data and then tested. To answer
the following question: Could AI be used as part of a control system to maneuver an outer limb
exoskeleton, and is it a promising approach? Five RNN variants was created and trained.
Those variants where formulated as the following questions: How different would a RNN
predict the force at the next time-step when it’s fed the force at the current time-step? How
well does the network perform on another data set collected from anther person? Can a
model that handles fewer time steps, an therefore needs less computing power, create equal
results? How different does a simpler RNN with fewer layers perform? And finally, how
different are the results when the RNN is run with sEMG signals that are unfiltered?

1

Chapter 2

Background &Theory

Prosthetics have been around for thousands of years [7] but it took until the second half of
the 20th century before the idea of controlling artificial limbs with the myoelectric signals
(the electric impulses that our muscles produce) was published [20]. The development
of exoskeletons have been slower than that of prosthetics but its possibilities have been
widely illustrated within popular culture, comics and game series such as Iron Man and
the MJOLNIR Powered Assault Armor from Halo. Much of todays research are conducted
by companies developing military materiel. For example Sarcos, Ekso Bionics and Lockheed
Martin. The two latter have together created the HULC, a full body exoskeleton that
enables soldiers to carry heavy loads with minimal strain on their bodies, seen in Figure 2.1.

Figure 2.1: Lockheed Martin’s HULC exoskeleton. The batteries and some mechanics
are worn as a backpack.
Source: Lockheed Martin

3

4 CHAPTER 2. BACKGROUND & THEORY

The fields of ML and AI has its roots research of weights and logistic thresholds con-
ducted by Warren McCulloch and Walter Pitts in the 1940’s. Recently the field of ANN has
seen a drastic increase in popularity and progress. A lot of this is through the development
of the so called AlexNet [15] which led the way towards even more powerful ANNs.

The conjunction of these two fields of technology has led to remarkable progress in
robotic hand research projects. This chapter gives the background to the three main topics
discoursed in the project: exoskeletons, the human hand, EMG and ANN.

2.1. EXOSKELETON DEVELOPMENT 5

2.1 Exoskeleton Development
The development of exoskeletons are often overshadowed by the devolopment of robotic
prosthetics. However, the last decade has seen a shift of attention probably thanks to
prominent products developed by military materiel companies mentioned earlier and for
example Hondas walking assistants, seen in Figure 2.2 [11]. A constant strive towards
higher quality of life for elderly people in combination with an aging population with mo-
bility disorder caused by stroke, osteoarthritis, spinal cord injury or other related diseases
hints that the need, demand and development of functional exoskeletons could increase
drastically [2].

Figure 2.2: Hondas walking assist exoskeletons and their robot Assimo.
Source: Honda

Exoskeletons are wearable bionic devices with powerful actuators that enhance or ease
normal human movement. They can enable otherwise unattainable independence for peo-
ple. An example is making a person paralyzed from the waist down able to stand up and
walk and use the stairs. There are many sorts of exoskeletons depending on what part of
the body they assist. They can roughly be divided into four groups: upper extremity ex-
oskeletons (UEE), lower extremity exoskeletons, full body exoskeletons, and specific joint support
exoskeletons. This project mainly focuses on the possibilities with UEEs but the technol-
ogy, theory and solutions discussed can be applied to all groups. It is mainly the hardware
implementation that differs. Many non-military commercial exoskeletons available today
are developed as permanent solutions for people with disabilities and mobility issues. In
addition, exoskeletons have the potential to help rehabilitation of patients. For example,
an exoskeleton could ease the weight on a joint or bone throughout the day to help heal-
ing or constrict the range of motion of a joint to avoid pain and tears. This could lead to
reduction of the work done with therapists at the same time as patients heals faster and in
the right way.

6 CHAPTER 2. BACKGROUND & THEORY

2.2 Hands and Prosthetics
Human hands are very complex musculoskeletal system of bones, joints, tendons, liga-
ments and muscles. They contain mainly the muscles of the thumb, the little finger and
the muscles in the palm around the metacarpal bones, seen in Figure 2.3. The muscles

Figure 2.3: Anatomy of the palmar surface of the left hand.
Source: Gray and Lewis [9].

seen in the hand are mostly abductors and adductors. The main muscles for each finger
are located in the forearm, Figure 2.4 and 2.5. Tendons and tendon sheaths connect each
finger to the muscles. The abductor pollicis longus (left in Figure 2.4) is a thumb abductor
that lies underneath the brachioradialis, seen to the right in Figure 2.4. The major flexor
digitorum profundus is seen to the left in Figure 2.4 and the large extensor digitorum can be
seen to the right in Figure 2.5.

The dexterity of our hands requires a relatively large amount of our brain capacity and
they can be a good indicator for our perception of other, more abstract intellectual abilities
[10]. Our ability to grip small objects, play the piano and rock climb is possible thanks to
the biomechanic structure of our hands and arms in combination with a well developed
sensory perception and eye-hand coordination. The movement of our fingers needs to be
simulated with at least 20 degrees of freedom to create a somewhat realistic model [19].
Many research projects have been successful in recreating one of the abilities mentioned

2.2. HANDS AND PROSTHETICS 7

Figure 2.4: Anatomy of anterior left arm muscles. Deep muscles are shown to the left
and superficial muscles to the right.

Source: Gray and Lewis [9].

above, but combining them in to one system has proven more difficult [3]. Most research
regarding hand prosthetics seems to revolve around replacing functionality of lost limbs
and less about enhancing lost function.

The muscles in our body are modeled as bundles of muscle fibers called motor units
(MU). Each MU is controlled by an axon. When activated these signals produce a po-
tential in the fiber bundle, called a Motor unit activation potential (MUAP). The tension
in the MU will increase with the frequency of the pulses [23]. The maximum force de-
veloped in the MU depends on the size and amount of the fibers in it. When a muscle is
activated, for example in a bicep curl, it contracts. The body does this by recruiting MUs
in the order smaller to larger as the load increases. However, this is not always the case.
Depending on the task performed MUs with different fiber types and electrical abilities
will be activated at different phases of a muscle contraction [23].

8 CHAPTER 2. BACKGROUND & THEORY

Figure 2.5: Anatomy of posterior left arm muscles. Deep muscles are shown to the left
and superficial muscles to the right.

Source: Gray and Lewis [9].

2.3 Electromyography
The first research on electromyography (EMG) goes as far back as the discovery of electric-
ity itself [13, 16]. In the late 1700’s Luigi Galvani conducted some of the first experiments
that showed the importance of electricity in the neuromuscular system in animal bodies
[8]. In the 1980s other technological advancements made it practically possible to utilize
a body’s electrical signals which require small electrodes that handle potentials in the µV
range together with cables and corresponding amplifiers.

There are two types of EMG. Intramuscular EMG is often used with needle electrodes
inserted through the skin. Surface EMG (also denoted sEMG) is instead used with ad-
hesive patch electrodes attached to the skin above the muscles. These praThese electrodes
measures the MUAP described in the previous section and the root-mean square (RMS)
of the sEMG signal U at time t is approximately proportional to the force F developed
in the muscle seen in Eq. (2.1).

Ft ∝
√

Ut (2.1)

With sEMG it is practically impossible to separate individual MUAPs because the surface
electrodes cover an area larger than one single MU and signals from superficial and deeper
laying muscles will overlap. The resulting measurements of a muscle activation will there-

2.3. ELECTROMYOGRAPHY 9

fore be of several, superposed, MUAPs. Because of the electrode placement, movement
and the difficulty to know which MUs are measured over the signal is noisy [23]. The
sEMG signal has a rather high signal-to-noisie ratio, defined as the ratio of the power of
a signal (meaningful information) to the power of background noise (unwanted signal),
see Eq. (2.2).

SNR =
Pinformation

Pnoise
(2.2)

In regards to what you want to measure the configuration, dimension, and electrical char-
acteristics of the electrode unit must be considered. By using many neighbouring elec-
trodes there will be crosstalk, and when the arm is rotated the patch will significantly
change its position relative to the muscles it was applied above. Because the activation
pattern of the motor units is not fully understood a MU might alternate between the state
of recruitment and derecruitment in a unpredictable fashion. Another question that does
not have a clear answer is the relation of the synergistic and antagonistic muscles associated
with a movement which could help understand the signals and their origins better [6].

0 100 200 300 400 500 600 700 800 900 1000

-100

-50

0

50

100

Unfiltered

0 100 200 300 400 500 600 700 800 900 1000

0

50

100

150

Rectified

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

Filtered

Figure 2.6: The same sEMG signal raw (red), rectified (green) and filtered with a
third-order Butterworth lowpass filter (blue).

In practice the noise that comes from shifting surface impedance for electrodes and
skin, muscle and fat tissue contraction is regarded as normal part of the signal and is fil-
tered with both hardware and software. With the use of portable devices mains hum and
its harmonics will not be an issue. Pre-processing methods of EMG signals are divided in
two groups: methods in the frequency domain and in the time domain. Frequency do-
main methods are often considered more complicated because of the initial mathematical
operation needed, such as Fourier transforms. Once transformed to the frequency domain
requiring and filtering information about a signal’s components can be much easier. On
the contrary time domain processing can be made rather straightforward.

10 CHAPTER 2. BACKGROUND & THEORY

As seen in Figure 2.6 the visual information becomes clearer but some information
on the signal could be lost when a filter is used. An EMG signal is usually in the range
of 20-500 Hz so a filter can be used to remove some of the most cluttering details outside
this spectrum, [6]. When recording a signal the Nyquist–Shannon sampling theorem is
important to consider. According to the theorem a signal sampled at 100 Hz can properly
reconstruct information from a signal of only 50 Hz or less [24].

In Figure 2.6 the red graph shows the original signal. The green graph shows the signal
rectified. This means that the absolute values of each data point is calculated, see Eq. (2.3).

|x| =
√
x2 (2.3)

Thereafter the blue graph shows the signal after being filtered digitally with a third-
order Butterworth lowpass filter described mathematically by a transfer function declared
in Eq. (2.4).

H(s) =
Vo(s)

Vi(s)
=

R4

s3(L1C2L3) + s2(L1C2R4) + s(L1 + L3) +R4
(2.4)

Where V, L1, C2, L3 and R4 has its physical equivalents explained in Figure 2.7 and
s is the complex frequency of the signal, s = σ + jω in Cartesian form.

Figure 2.7: An analog third-order Butterworth lowpass filter.

2.4. ARTIFICIAL NEURAL NETWORKS 11

2.4 Artificial Neural Networks
An ANN is a mathematical system and model that mimics the way we believe the hu-
man brain and other biological networks work. To clear things up with the terminology
an ANN is considered an important branch of Deep learning which is a subset of Ma-
chine Learning (ML). ML itself is considered a subset of AI [4]. There are two important
concepts, both proposed in the 1940’s, that led up to ANNs as we know them today.
Firstly Threshold Logic, which is the conversion of a continuous input to a discrete output,
and secondly Hebbian Learning, a neural plasticity model describing how synaptic efficacy
increases.

It was not until 1954 that researchers at MIT managed to build a computational
system based on the Hebbian network [21]. Frank Rosenblatt proposed the idea of a
perceptron in the 1958 and eleven years later Marvin Minsky wrote his book “Perceptrons”
in which he described the problems of translating a single layer problem to a multilayer
network. And with that book came the so called AI winter and the research field stood still
until the 1980’s. From there on the progress has been steady, with a few groundbreaking
discoveries like the recent AlexNet mentioned earlier and the development of better suited
hardware for these types of calculations. The last five years of academic and industry
driven research of AI in general, and ANN and deep learning in particular has resulted in
an exploding interest of the technology and its potential.

2.4.1 Fundamental Design

When discussing ANNs from the 1980’s and forwards some terms are especially important
to consider: neurons, weights, connections, activation function and training. It is also impor-
tant to distinguish between ANN models, which is the network’s arrangement, and ANN
algorithms, the computations that eventually produce the network outputs. A graphic
representation of a simple ANN can be observed in Figure 2.8. A layer consists of neu-
rons that does not send information to eachother In Figure 2.8 each layer is represented
by a color. Red for the inout layer, blue for the hidden layer and green for the output
layer. A Deep Network has at least two hidden layers between the inout and output layers.
In Figure 2.8 each circular node represents an artificial neuron and each arrow represents
a connection from the output of one neuron to the input of another neuron. In the ex-
ample in Figure 2.8 the red neurons are the input nodes of the network. In this image
all red input neurons, including a bias term, pass their data to all blue hidden neurons.
These connections are associated with a weightwi

j,k = wcurrent neuron,next neuron that dictates
the importance of each input. The blue neurons in the hidden layer applies the activation
function, which in this example and many others, implies summarizing the input and bias
term and thereafter performing the mathematical computation also known as the squash-
ing function and forwarding the result to the green output layer. In a simple network
this function could summarize all inputs multiplied by their weights and squash them to

12 CHAPTER 2. BACKGROUND & THEORY

a number between 0 and 1 like the sigmoid function in Eq. (2.5).

σ(z) =
1

1 + e−z
(2.5)

Other squashing functions are Heaviside step function, which produces a binary output
of either 0 or 1, tanh, which outputs a values between -1 and 1, and Rectified linear
function, which is a linear function that squases negative values to 0. In Figure 2.8 z
could be described as z = f(x,w) =

∑
xiwi + bi.

bias

X2

∑
7→ f

∑
7→ f Output 1

Output 2

X1

w1,1

w2,1

b1

w1,2

w2,2

b2

Figure 2.8: ANN schematic. Feedforward ANN with input layer (red), one hidden
activation layer (blue) and output layer (green).

The networks’ weights are initiated randomly and thus the network needs to be trained,
meaning that the weights are changed, to produce a desirable output. This is important
to have in mind regarding the reproducibility of the results, it might be practically impos-
sible to acquire the same numbers and figures for each trining session. Neural networks
are trained using a stochastic optimization algorithm called stochastic gradient descent
where randomized which uses randomness in order to find an arbitrary set of weights fit-
ting the mapping function of your data from input to output [25]. Training networks
can be roughly sorted into two categories, supervised learning and unsupervised learning.
Supervised learning means that the process of training a network is dependent on a known
target output, e.g. an image recognizing network that will sort out photos of horses needs
to be trained with images already marked as horses so the weights in the network can be
be trained accordingly. With unsupervised learning the learning process is independent.
No feedback is given from the environment as to what should be the desired output. This
type of learning forces the network to find patterns, features and relations from the input
data itself. This might seem like a complicated and time consuming process but can be
an effective solution for a deeper network with a very complex data set where patterns,

2.4. ARTIFICIAL NEURAL NETWORKS 13

relations and features are not known beforehand. This project covers supervised ANNs,
which are able to classify and predict data.

The network in Figure 2.8 is a Feedforward ANN, which means that data is always
pushed forward, left to right in the figure, through the layers. In contrast to these ANNs
there are Feedback ANNs with recurrent design where the output of a layer also routes back
to an input of itself or earlier layers. These are called Recurrent Neural Networks (RNN)
and illustrated in Figure 2.9. Unlike in Figure 2.8 these networks activation functions
usually include the input from their own neurons or neurons further down the network,
which could look like factivation = 1

1+e−z , where z = f(x,w) =
∑

(xiwi + bi)+Yi ·
whi +Outputi · woi.

X1

X2

bias

∑
7→ f

∑
7→ f

output 1

output 2

w1,1

w2,1

w1,2

w2,2 b1

b2

wh1

wh2

wo1

wo2

Figure 2.9: Schematics of a RNN, also known as a Feedback ANN. Input layer (red),
one hidden activation layer (blue) and output layer (green).

RNNs share the basics of a feedback network but focus on the class of problems within
the time series and sequential tasks domain. RNNs are very effective at Natural language
processing (NLP) because they are good at predicting the outcome of the upcoming time
steps based on previous outcome, e.g. the letters ”natura” will most probably produce a
prediction of next letter to be ”l” to form the word ”natural”. The problem with simple
RNNs are that they are bad at remembering many time steps and what is of importance
and what is not. In a text about about grammar the letters ”nou” would hopefully result
in a prediction for the next word to be ”noun” and in a text about chocolate those same
three letter would instead result in the prediction ”nougat”. Depending on the context
different details are important. Humans are very good at filtering the important details
in large chunks of information because we learn and focus on the context, a simple RNN
does not have this ability. Hence Long Short-Term Memory (LSTM) units were a necessary
development. These units can remember and forget values over arbitrary time intervals
and thus solving the problem with context [12]. In Figure 2.10 a schematic view of a

14 CHAPTER 2. BACKGROUND & THEORY

classic RNN is seen.

Figure 2.10: One-unit recurrent neural network (RNN). From bottom to top: input
state, hidden state, output state. U, V, W are the weights of the network.

Compressed diagram on the left.
Source: Wikimedia: Recurrent neural network, F. Deloche

2.4.2 ANN algorithm

In this section we will look closer at the architecture of RNNs, and specifically the archi-
tecture of a LSTM. RNN make use of sequential data such as stock prices, the weather
and letters in a text and to name a few examples. RNNs perform the same task for every
element of a sequence and the output is dependent on previous computations and it can
therefor exhibit dynamic temporal behavior in data. A LSTM is a deep ANN algorithm
that has the ability to avoid the vanishing gradient problem and remember arbitrary time
steps earlier [12]. There are different designs to an LSTM. One of them is the design
illustrated in Figure 2.11. Here the activation functions, also known as squashing func-
tions, are depicted by the square yellow boxes. The round yellow boxes represent pointwise
operations addition and multiplication and the lines are the flow direction of data. The
horizontal line going left to right is the cell state which is a key component conveying in-
formation along the time steps [18]. It is important to note that the feedback capacity in
this network is based on time-steps, from left to right, which necessarily is not same type
of feedback delivered to and by the Feedback ANN seen earlier in Figure 2.9.

The input at time t is denoted xt, Ct is the cell state, ht is the output of the unit and
the output neuron is denoted ot. This design can be divided into four separate Neural
Network layers. The first one is the forget gate layer Ft, seen in Figure 2.11. It is a sigmoid
layer that processes ht-1 and xt, and outputs a number between 0 (= forget completely)
and 1 (= remember fully) with the help of a sigmoid squashing function for each number
in the cell state Ct−1. The mathematical equivalent is seen in Eq. (2.6).

ft = σ(Wf · [ht−1, xt] + bf) (2.6)

For each input element in the forget gate layer the weights Wf and biases bf applies.

2.4. ARTIFICIAL NEURAL NETWORKS 15

Figure 2.11: LSTM module in an RNN, containing four interacting layers.
Source: Wikimedia: Recurrent neural network, F. Deloche

The next layer and operation is the two-parted storage gate layer. The first part It uses a
sigmoid input gate layer to decide which cell state values to update. The tanh layer creates
input C̃t for new candidates to the state described mathematically in Eq. (2.7).

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
(2.7)

As the flowchart in Figure 2.11 indicates it is now possible to update Ct as described
in Eq. (2.8)

Ct = (ft ◦ Ct−1 + it ◦ C̃t[ht−1, xt] + bf) (2.8)

There is now a cell state that will be directly passed on to the next, identical, LSTM
unit. Each instance also has an output ht which is the cell state tanh-squashed (values
between -1 and 1) and multiplied with the output of a sigmoid gate of our previous time
step output, as seen in Eq. (2.9).

ot = σ(Wo[ht−1, xt] + bo)
ht = ot ◦ tanh(Ct)

(2.9)

This is the operations and workflow of a standard LSTM, but there are many variants.
A popular tweak is to introduce peephole connections, which introduce all gate layers to
information about the current or previous cell states Ct and Ct−1.

2.4.3 Time-steps

To better explain the use of time steps and sequential data further it is best to look at
Figure 2.10 and 2.11. The schematics show the layer being unfolded and the details in
each LSTM unit, thereby it is possible to see and understand the network for the whole
sequence. xt is the input at time step t, for example x1 can be the the stock price at day

16 CHAPTER 2. BACKGROUND & THEORY

2 (x0 would be day one). Ct is the cell state at time step t, ht is the hidden state which
also ends up in the output neuron ot for each unit. These states are the “memory” of the
network. Ct is calculated based on the previous hidden state ht−1, cell state Ct−1 and the
input xt at the current time. According to the LSTM above this calculation is described
in Eq. (2.8).

2.4.4 Training and optimization

When working with an ANN one usually starts with gathering data, whether it is images
of dogs, stock prices or drive route information. After creating the network it needs to be
trained. The data is divided into two groups, training data and testing data. The training
data will be used to optimize the network and alter its weights. The test data will be used
for validation, to test the network on data it hasn’t seen before. Because of the fact that
a net naturally gets good at classifying data it already has seen the test data is crucial. A
cross-validation subset of the training data is normally used to make sure the net doesn’t
get to good at predicting what it’s learning and can’t handle cases outside this domain.
This phenomena is called overtraining and is a crucial aspect to consider.

Figure 2.12: A loss function with two variables minimizing process using gradient
descent.

Source: http://blog.datumbox.com/
tuning-the-learning-rate-in-gradient-descent/

Looking at Figure 2.12 we see a visual 3D graph of error function during training of a
network. Gradient descent is a common and easy-to-use technique to calculate the mod-
els parameters and to minimize the models’ error function (usually referred to as as the
loss function or cost function). The gradient descent estimates the weights of the model in
many iterations by minimizing the cost function (the sum of the predicted value minus
the actual value) at every step. One of the more obvious problems with this method is
clearly visible in the Figure 2.12. Depending on how the weights are initiated we end up

http://blog.datumbox.com/tuning-the-learning-rate-in-gradient-descent/
http://blog.datumbox.com/tuning-the-learning-rate-in-gradient-descent/

2.4. ARTIFICIAL NEURAL NETWORKS 17

at two different minimums. There is little chance for this method to know whether it has
reached a local minimum or a global minimum. The Adam optimization algorithm is an
evolution of Stochastic gradient descent and inherits features directly from two other opti-
mizers: RMSProp and AdaGrad [14]. The authors themselves describes the main features
of Adam in the following list:

• Straightforward to implement, computationally efficient and it uses relatively little
memory.

• Parameters update are invariant to re-scaling of gradient. Changing f(x) to k∗f(x)
does not effect performance.

• The algorithm doesn’t require a stationary objective, f(x) can change over time and
the solution will still converge.

• Suitable for systems with noisy or sparse gradients.

• Hyper-parameters have intuitive interpretation and typically require little tuning
and approximately binds to the step-size.

Adam is also described very intuitively by the authors themselves in the following
pseudo code. They recommend default settings for tested ML problems around: α =
0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. ϵ is used to avoid an unfortunate division
by zero:

Require: α: Step size
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates as it is and
squared respectively.
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector

m0 ← 0 (Initialise 1st moment vector)
v0 ← 0 (Initialise 2ⁿd moment vector)
t← 0 (Initialise timestep)
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) (Get gradients with respect to stochastic objective at time t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt

1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt

2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ) (Update parameters)

end while
return θt (Resulting parameters)

18 CHAPTER 2. BACKGROUND & THEORY

2.4.5 Guidelines in building an ANN

The strategy towards designing an ANN model is usually based on research papers, a few
fundamental assumptions depending on the aim of the network, forum discussions and a
tedious process of trial and error. A functional combination of the amount of neurons in
each layer and depth can be a time consuming task, but there are some guidelines. There
is only one Input layer. The amount of neurons is completely and uniquely determined
once the format of the training data is known. Usually the amount of neurons equals the
amount of features or columns of your data. An extra bias neuron could also be added
directly at the input. The Hidden layer parameter is a bit more complex. The number of
layers and the amount of neurons in each can be a challenge to decide. A rule of thumb is
formulated as ”the optimal size of the hidden layer is usually between the size of the input and
size of the output layers” [22]. One thing to consider is that a linearly separable problem
would only need one hidden layer, but then again that sort of problem could be solved
without a network, and a nonlinear problem could be solved with a set of linear equations.
Using more layers than necessary could lead to overfitting of the model with complicated
features that will impair the results. Lastly every ANN has exactly one Output layer. If
we expect a single number or word as an output only one neuron is needed.

There is a convention on how to divide the data that the network should be trained on.
Depending on how scarce your data is and how good or ”typical” it is. A separation used
in online courses, by experts and that is often read about in forums is to divide the data
into three groups [17]. These numbers are an estimate and could be at rounded ±15%
points depending on the application and the amount of data.

• Training set - 60% of the data

• Cross-validation set - 20% of the data

• Test set - 20% of the data

Chapter 3

Method

3.1 Approach
This chapter explains the approach chosen to evaluate wether grip classification with forece
and sEMG data can be done with an ANN. The ground work is described, meaning
collecting and processing data, that is required for the creation and utilization of an ANN.
Questions are raised in the end of this chapter to clarify what criterions the ANN and
data must have. This includes features that makes the classification and prediction better
or worse. These questions are answered by distinguishing behaviours and features in the
figures in the Chapter 4 and discussed later in Chapter 5.

3.2 Literature study
The initial study was built around papers and research that are used as documentation
for the program packages used during the project. ”Myoelectric Control of Hand Prosthe-
ses” [23] was used as main reference for both theory and during the process of collecting
and processing data. Research papers were also found through popular blogs on ANNs.
Searches were made on Google Scholar that provided a good overview of peer reviewed pa-
pers accessible through the university network. Links and references were followed from
popular articles on popular sites such as Medium, www.machinelearningmastery.
com and colah.github.io/. Questions on platforms such as Quora and ResearchGate
that had well supported answers where sometimes used. Articles used were peer reviewed
and their content directly related to the topic or used in any program packages. Some
exceptions were made for the very old articles, such as Galvanis work from 1791, that
were used mainly to show the historical development within the field.

19

www.machinelearningmastery.com
www.machinelearningmastery.com
colah.github.io/

20 CHAPTER 3. METHOD

3.3 Data collecting & sEMG
sEMG and force data was collected with a Myo Armband and a Neulog Hand Dynamome-
ter logger sensor NUL-237 seen in Figures 3.1 and 3.2. Two sets of data were collected
from two different subjects. Instruction were given to perform random pinch-like grip
movements with the forearm laying still on a table. The sample rate of the Myo is 200
Hz and the Neulog can sample at 100 Hz. Three of the Myo Armbands eight channels
were recorded and approximately aligned over the muscles Brachioradialis, Flexor Digito-
rum Profundus and Extensor Digitorum. The Neulog measured the force between the index
and middle fingers and the thumb with a pinch-like grip.

Figure 3.1: The Myo Armband used to collect sEMG data.
Source: Thalmic Labs/Myo

Figure 3.2: The Neulog Hand Dynamometer logger sensor NUL-237 used to collect grip
force data.

Source: Neulog

The force data did not require post processing and was sampled with the included

3.3. DATA COLLECTING & SEMG 21

software. A ready made script was used to sample the sEMG-signals at 100 Hz at syn-
chronized time step as the force data. This data was processed with a Matlab script, see
appendix A. The script rectified the sEMGsign-als and filtered it through a third-order
Butterworth lowpass filter with a cutoff frequency at 10 Hz and outputs a .csv-file with
force and EMG in four columns.

22 CHAPTER 3. METHOD

3.4 Building ANN
The ANN was built in Python 3.6 with the use of the Tensorflow 1.4 framework and the
Keras 2.0.8 interface framework on top. The complete code can be seen in appendix B.
The code was built around a Session class for running TensorFlow operations and was
inspired by the solution of a sequential weather data forecasting network [1]. The data
was imported and formated and handled with the help of the Numpy, Pandas, SciKit
and Math packages. The data was divide into batches and how many epochs (times the
network should run through and train on the data) was declared. The data was divided
into training, test and cross-validation sets and the amount of time-steps that the network
should look back was chosen. The ANN model used is seen in code below. Each row
declares a specific layer with the arguments following as arguments for the function. For
LSTM these arguments are dimensionality of the output space, activation method and
Whether to return the last output in the output sequence, or the full sequence. The
Dropout layer deactivates a set fraction of the next layer to improve over-fit on ANNs.
The Dense layer are identical to ones described in Figure 2.8. The Lambda layer is a
arbitrary expression, here x ∗ 2, wrapped as a layer.

1 model = Sequential([LSTM(numChan2, activation='sigmoid', returnsequences
=True, inputshape=(timeStepDelay, numDataChan)),

2 LSTM(numChan2, activation='sigmoid', returnsequences=True),
3 Dropout(0.1),
4 Dense(numChan4),
5 LSTM(numChan4, activation='sigmoid', returnsequences=True),
6 LSTM(numChan4, activation='sigmoid', returnsequences=True),
7 Dense(numChan4),
8 LSTM(numChan2, activation='sigmoid', returnsequences=True),
9 LSTM(numChan2, activation='sigmoid'),

10 Dense(1),
11 Lambda(lambda x: x * 4),
12])

The code below declares that the Adam optimizer was going to be utilized and sets the
learning rate (lr), decay (decay) and how the loss will be calculated.

1 adam = optimizers.Adam(lr=0.01, decay=0.0001)
2 model.compile(loss='mean_squared_error', optimizer=adam)

The following code, found in the train_mode class, initiates the training so that optimal
weight values can be found. It also saves the fitting loss data.

1 history = model.fit(trainX, trainY, validation_split=val_split, epochs=
num_epochs, batch_size=batch_si, shuffle=False)

To verify the stability of the network and how well it predicts a grip pattern, the

3.4. BUILDING ANN 23

training loss is measured. A quantitative comparison between different runs with different
parameters, data and models were conducted and the prediction was plotted next to the
actual force. First of all a run that would work as a reference point was conducted. Then
a number of questions where answered.

• How different does the network predict the force at the next time-step when it’s fed
the force at the current time-step?

To answer this question a run where the network input was slightly changed so that the
force data was shifted one step forward in the time steps. The loss and graph was compared
to the reference run.

• How well does the network perform on another data set?

The ANN was trained and tested on the second dataset.The loss and graph was compared
to the reference run.

• Can fewer time steps create equal results?

This third question was answered by adjusting the code so that the ANN used 5 times
steps instead 10 as in the other runs.

• How different does a simpler RNN perform?

The fourth question was answered by creating a less complex network seen in the code
below. Mainly the output space for some layers have changed and four layers were disposed
of.

1 model = Sequential([
2 LSTM(numChan, activation='sigmoid', return_sequences=True,

input_shape=(timeStepDelay, numChan)),
3 LSTM(numChan, activation='sigmoid', return_sequences=True),
4 Dropout(0.1),
5 LSTM(numChan*2, activation='sigmoid', return_sequences=True),
6 LSTM(numChan*2, activation='sigmoid'),
7 Dense(1),
8 Lambda(lambda x: x * 4),
9])

The loss and graph was compared to the reference run.

• How different are the results when the sEMG signal is unfiltered?

This question was answered by feeding the network rectified data that had not been pro-
cessed by the Butterworth filter. The loss and graph was compared to the reference run.

• Is an ANN good enough at classifying a grip?

The sixth and final question was answered as a qualitative conclusion of the first five an-
swers.

Chapter 4

Results

Figures 4.1 to 4.6 shows the results of the various runs and ANN versions created. They
all follow the same colour scheme. The blue line is the recorded force data. The dotted
yellow, magenta and black lines are the recorded EMG data. The green line are the force
prediction made on training data (including the validation data randomly scattered across
the set) and the red line is the prediction made on the test data. The data is divided
were the green line meets the red line, around the 6000t time-step in all Figures but
4.3 where its around 2700t time-step. The results of the force training loss are presented.
Because of the randomness introduced in the initiation of the network the loss varies rather
drastically for each run. Therefore a prediction/actual value error is not presented. Instead
a qualitative comparison serves the purpose better.

Figure 4.1 shows the standard version and run of the network that works as a point of
reference. The fitting loss on the cross validation set is 0.0148.

Figure 4.2 answers question one and shows the network being fed the standard EMG
signals and the current force data as an input. The fitting loss on the cross validation set
is below 0.0002.

Figure 4.3 answers question two and shows the same network being trained and run
on new data. The fitting loss on the cross validation set is 0.0074.

Figure 4.4 answers question three and and shows the result when the network takes
half the amount of time-steps 5 instead of 10. The fitting loss on the cross validation set
is 0.0104.

Figure 4.5 answers question four and shows the result when the network is modeled
much simpler as seen in the last code snippet in section 3.4. The fitting loss on the cross
validation set is 0.0110.

Figure 4.6 answers question five and shows the result of a run where the EMG data
has not been processed with the Butterworth filter. The fitting loss on the cross validation
set is 0.0179.

25

26 CHAPTER 4. RESULTS

0 50 100 150 200 250 300
Epochs [~]

0.0

0.2

0.4

0.6

0.8

Er
ro
r [
~]

Fitting loss
Training
Cross-validation

0 2000 4000 6000 8000
Time-steps [s/100]

0

20

40

60

80

100

120

140

160

Fo
rc
e
[~
]

Prediction

0.0

0.2

0.4

0.6

0.8

1.0

sE
M
G
[~
]

Actual force
Training results
Test results
EMG 1
EMG 2
EMG 3

Figure 4.1: Network results with original settings. Above: Fitting loss on training and
cross-validation set for standard 3 signal input. Below: Results on training
data (green) and test data (red). The blue line represents the actual force.

0 50 100 150 200 250 300
Epochs [~]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Er
ro
r [
~]

Fitting loss
Training
Cross-validation

0 2000 4000 6000 8000
Time-steps [s/100]

0

25

50

75

100

125

150

Fo
rc
e
[~
]

Prediction

0.0

0.2

0.4

0.6

0.8

1.0

sE
M
G
[~
]

Actual force
Training results
Test results
EMG 1
EMG 2
EMG 3

Figure 4.2: Network results with force input channel. Above: Fitting loss on training
and cross-validation set. Below: Results on training data (green) and test

data (red). The blue line represents the actual force.

27

0 50 100 150 200 250 300
Epochs [~]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Er
ro
r [
~]

Fitting loss
Training
Cross-validation

0 500 1000 1500 2000 2500 3000 3500 4000
Time-steps [s/100]

0

20

40

60

80

100

120

140

160

Fo
rc
e
[~
]

Prediction

0.0

0.2

0.4

0.6

0.8

1.0

sE
M
G
[~
]

Actual force
Training results
Test results
EMG 1
EMG 2
EMG 3

Figure 4.3: Network results with new grip and EMG data. Above: Fitting loss on
training and cross-validation set. Below: Results on training data (green) and

test data (red). The blue line represents the actual force.

0 50 100 150 200 250 300
Epochs [~]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Er
ro
r [
~]

Fitting loss
Training
Cross-validation

0 2000 4000 6000 8000
Time-steps [s/100]

0

20

40

60

80

100

120

140

160

Fo
rc
e
[~
]

Prediction

0.0

0.2

0.4

0.6

0.8

1.0

sE
M
G
[~
]

Actual force
Training results
Test results
EMG 1
EMG 2
EMG 3

Figure 4.4: Network results with 5 time-steps instead of 10. Above: Fitting loss on
training and cross-validation set. Below: Results on training data (green) and

test data (red). The blue line represents the actual force.

28 CHAPTER 4. RESULTS

0 50 100 150 200 250 300
Epochs [~]

0.0

0.1

0.2

0.3

0.4

Er
ro
r [
~]

Fitting loss
Training
Cross-validation

0 2000 4000 6000 8000
Time-steps [s/100]

0

20

40

60

80

100

120

140

160

Fo
rc
e
[~
]

Prediction

0.0

0.2

0.4

0.6

0.8

1.0

sE
M
G
[~
]

Actual force
Training results
Test results
EMG 1
EMG 2
EMG 3

Figure 4.5: Network results with simplified ANN model. Above: Fitting loss on training
and cross-validation set. Below: Results on training data (green) and test

data (red). The blue line represents the actual force.

0 50 100 150 200 250 300
Epochs [~]

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Er
ro
r [
~]

Fitting loss
Training
Cross-validation

0 2000 4000 6000 8000
Time-steps [s/100]

0

20

40

60

80

100

120

140

160

Fo
rc
e
[~
]

Prediction

0.0

0.2

0.4

0.6

0.8

1.0

sE
M
G
[~
]

Actual force
Training results
Test results
EMG 1
EMG 2
EMG 3

Figure 4.6: Network results with unfiltered EMG data. Above: Fitting loss on training
and cross-validation set. Below: Results on training data (green) and test

data (red). The blue line represents the actual force.

Chapter 5

Discussion

Before analyzing the results it is important to remember that the weights are initiated
randomly it is therefor impossible to reproduce the results and get the same numbers. A
qualitative comparison between the figures, and not the fitting or prediction loss, could
provide a better understanding of how well these ANNs work for this application. To
conclude whether AI in general, and specifically ANNs, are a promising additive in a con-
trol scheme for an exoskeleton glove we can look at the results in Figure 4.1 to Figure 4.6.
It shows that just after a rather straightforward network with a relatively small amount
of training data, the predicted grip force on test data (red) follows the actual force (blue)
rather well. Overall the fitting loss at the end of the runs are about the same for all test
runs, around 0.02± 0.005 except for in Figure 4.2 where it’s below 0.005. It is observed
that the cross-validation error is lower than the training loss during the runs. The cap
on the test (red) and training (green) curve is a indication that the network needs to be
tweaked further. Figure 4.3 tells us that the RNN is compatible and promising, even with
another test subject. Figure 4.2 gives an indication that a RNN is an effective way to
predict the grip force. Figure 4.4 shows that more time-steps results in a more balanced
prediction of force. Using a simpler network layout seems to result in a better prediction
in some grips, and the cap is not present, see Figure 4.5. Alhtough, the predicted force
generally does not reach as high as the actual force. Looking at the last run on unfiltered
EMG data that although the prediction is much more volatile and not as precise it is still
acceptable. With a lite tweaking ANNs seems to be a promising approach for this kind of
application.

5.1 ANN evaluation
Regarding the overall performance of the network some aspects needs to be discussed.
The prediction signal cap is a rather clear indication that the neural network squashed
the output too much and the prediction therefore loses some of its preciseness. This is

29

30 CHAPTER 5. DISCUSSION

probably a technical issue with the network and could probably be adjusted with a slightly
different network design. Perhaps training the network with more data could counteract
this behaviour. Regarding the fact that the cross-validation fitting error is lower than
the training error is difficult to understand. The most probable explanation is that it is
either something wrong with the methodology used or it could be that the training data
has much more ”hard cases” and the cross-validation data has more ”easy cases”. This
could also be a symptom of to few data points. Even though it intuitively seems wrong,
other well esteemed sources, such as the tutorial for the Lasagne library for Theano (http:
//lasagne.readthedocs.io/en/latest/user/tutorial.html, top of the page)
demonstrates the same behaviour without noting any problem with it.

The lack of preciseness could also be a result of another aspect, which becomes clear
when looking at the end of the graphs where the network predict false grips because of
EMG signals. A grip is initiated with the flexion of finger muscles before the finger gets
contact with the Neulog but the grip force is only recorded during the last, more or less,
isometric phase. This leads to loss in fidelity and a better grip and force measuring system
could be of importance. Reading the tension in or position and elongation of a tendon
would probably be better. We see that the EMG and force data appears to be a bit out of
sync with the new data set in Figure 4.3 but the results still are effective.

Reducing the time we look backwards by half, to five hundreds of a seconds results
in a more volatile prediction. This might not be that surprising because the longer the
network looks back and remember the better it can decide upon patterns of the EMG
signals: is this peak or dip only noise, is this data a short pinch or part of a firm and steady
grip.

Looking at the results when the network is fed three EMG signals plus data force data
we see that the prediction is spot on. Only at a steep gradient is it somewhat unable to
predict for one time-step, but catches on at the next. This method is so promising that it
makes it reasonable to question whether it is necessary to use a ANN at all when using force
as a forth input. An automatic control scheme with regulators could probably accomplish
something similar. On the other hand this works well and if the computational power is
available there is no need to fix something that is not broken. Figures 4.4 and 4.5 further
indicates that more work should be put in to perfect the parameters of depth, neurons and
time-steps to get a better balance between complexity and efficiency.

The results from the run with the unfiltered EMG signals shows that even though
the prediction becomes a bit more volatile the general shape of the prediction follows the
recorded force signal.

It is also important to consider the consequences of wearing a exoskeleton that en-
hances your grip. The muscle activation might change drastically over time when the user
experience how the glove changes their ability to grip. This can be both negative if the
user end up not activating the muscles enough or correctly so that the sensors might get
a hard time distinguishing a proper signal. Or they start loosing mobility and strength at
at increasing rate. On the other hand this can also be positive as the user learns to con-
trol the exoskeleton better by simply activating other smaller muscles on the forearm that

http://lasagne.readthedocs.io/en/latest/user/tutorial.html
http://lasagne.readthedocs.io/en/latest/user/tutorial.html

5.2. FUTURE PROSPECTS 31

contributes to the control scheme. This could hypothetically lead to the user being able
to easy and selectively chose when to activate the aid from the exoskeleton.

5.2 Future Prospects
Given more time and the experience I have got from this project there are a few details
that would be interesting to put further work into. Because the nature of RNNs are so
generic this solution is of actually applicable in other areas and it is easily transferable to
other areas such as Natural language processing, Equity trading and any kind of field that
handles sequential data. And of course a this technology could also be used for controlling
movements and muscles in our feet.

Looking back at what I did on this project there are a few things that I would have
like to do differently and put more work into. As mentioned in the discussion I would
have liked to try a different test jig setup when collecting data. The Neulog only measures
force applied between fingers in an isometric phase of a grip. Measuring tension and
elongation in the flexor tendons in the index finger and the thumb as two signals instead
could result in a more natural indication and detection of a grip. This could also help
with the recording of different grip sequences better because many grips scenarios are not
full flexion but rather a balance of the objects shape, weight and friction on our fingers.
Of course there are practical aspects to consider when trying to measure what kind of
stress and movement is happening in tendons. A possible solution could be some kind of
artificial external tendon with strain gauge together with EMG sensors.

With a new data collection setup I think more and better data should be recorded.
I think that the amount of data recorded in this project is on the low side or even less
than that. The aspect of using data from a person with a severe muscular deficiency in
their lower arm or hand might result in a situation where the application of the network
might have to be remodeled completely. If no muscular activity results in a grip that can
be passably recognized as a grip the data might have to be manually classified.

Another necessary step after those issues have been checked of would be to work on the
implementation of the network. To save the network structure and weights and transfer
them to portable microcomputer or microcontroller that is powerful, energy efficient and
small enough be used in an exoskeleton. From there a hardware software solution for the
setup also needs to be created.

5.3 Ethics, risks and sustainability
No questionable ethical situations or obvious risk were encountered during the project it-
self. Instead the critical question of ethics and risks should be directed towards the whole
research fields as a whole. As mentioned in the Chapter 2 much of the exoskeleton devel-
opment and its applications derives from companies producing military material. The idea
to enhance are bodies and accomplish super human strength and endurance is intriguing.
But these new artificial abilities must not come with the price tag of war and conquering.

32 CHAPTER 5. DISCUSSION

Regarding the field of AI nothing was mentioned earlier but there’s potentially an even
bigger threat that needs to be addressed. Although highly speculative the idea of artificial
entities and weapon systems that goes rouge, e.g. Skynet in the Terminator movies, is
according to many a potential threat [26]. Even though an exoskeleton is harmless even
an unintentional, or intentional, malfunction in a critical situation could prove fatal. If
a conscious artificial superintelligence is ever developed the consequences could without a
doubt be severe but it’s also hard to fathom the shear nature of such a entity and how it
would process information and data and what its purpose would be.

Lastly the sustainability aspect should be considered. While the project itself has just
trivial impact a final product that derives from this technology could have a great impact
on peoples lives. Not needing to adapt your behavior because of varying physical abilities
is a big step towards a more equal and sustainable society.

Chapter 6

Conclusion

This report has covered the creation of a RNN, collecting of necessary data and finally
the process of training of the network. Although the original aim of the project was to
include implementation of a controlling scheme important progress towards this goal has
still been made. A fully functional ANN, or rather a handful slightly different ANNs, with
recurrent properties has been created. They have successfully predicted grip force under
various circumstances and further developments of the jig setup as well as a larger data set
has been proposed. The project never reached the implicit stretch goal of implementation
of the ANN.

Regardless if my work and findings in this report is continued upon or not it has been
extremely fun, interesting and instructive. This was my first experience working with and
creating something within the AI domain but certainly not the last. It will be facinating
to see what comes out of the conjunction of AI and exoskeletons in the near future.

33

Acknowledgements

Although this is an individual endeavor, this project would not have been made possible
without the help an opportunity given to my by other people.

First of all I want to thank Sofie, Pontus and Robin for taking me under their wings
during the harsh autumn in Odense. I would also like to show an extra amount of gratitude
towards Pontus for helping me with many of the details and being my sounding board in
times of need.

Secondly I want to thank my supervisor Danish for helping me with the details, ex-
plaining concepts to me men my brain didn’t make sense. Danish had a way of making
sure that I did not get stuck for to long at certain steps. Your help was invaluable.

I want to thank my second supervisor Anders for supporting me and keeping me and
the project in check remotely and giving me this opportunity to dive into a field that was
new to me. I’m forever grateful. And thank you Anders for your patience when the project
got adjourned.

Lastly would like to thank Joe for keeping me company at Odense Robotics and ev-
eryone else that I have forgot to mention.

35

Bibliography

[1] Jason Brownlee. Time series prediction with lstm recurrent neural networks in
python with keras. Technical report, Machine learning mastery, 2016.

[2] Bing Chen, Hao Ma, Lai-Yin Qin, Fei Gao, Kai-Ming Chan, Sheung-Wai Law, Ling
Qin, and Wei-Hsin Liao. Recent developments and challenges of lower extremity
exoskeletons. Journal of Orthopaedic Translation, 5:26–37, 2016.

[3] Gordon Cheng. Humanoid robotics and neuroscience: Science, engineering and society.
CRC Press, 2014.

[4] Michael Copeland. What’s the difference between artificial intelli-
gence, machine learning, and deep learning? Technical report, Nvidia,
2016. URL https://blogs.nvidia.com/blog/2016/07/29/
whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/.

[5] Erika Dahlin and Marie Stegard Lind. På lika villkor! Technical Report 43, Statens
Offentliga Utredning, 2017. URL https://www.regeringen.se/49c8c5/
contentassets/09ba8e1b70554a88a21c6450cc10af8e/sou-2017_43_
webb_ta.pdf.

[6] Carlo J De Luca. The use of surface electromyography in biomechanics. Journal of
applied biomechanics, 13(2):135–163, 1997.

[7] Jacqueline Louise Finch, Glyn Harvey Heath, Ann Rosalie David, and Jai Kulkarni.
Biomechanical assessment of two artificial big toe restorations from ancient egypt
and their significance to the history of prosthetics. Journal of Prosthetics and Orthotics,
24(4):181–191, 2012.

[8] Luigi Galvani. D viribus electricitatis in motu musculari: Commentarius. Bologna:
Tip. Istituto delle Scienze, page 58, 1791.

[9] Henry Gray and Warren H Lewis. Anatomy of the Human Body. Philadelphia: Lea
& Febiger, 1918.

37

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://www.regeringen.se/49c8c5/contentassets/09ba8e1b70554a88a21c6450cc10af8e/sou-2017_43_webb_ta.pdf
https://www.regeringen.se/49c8c5/contentassets/09ba8e1b70554a88a21c6450cc10af8e/sou-2017_43_webb_ta.pdf
https://www.regeringen.se/49c8c5/contentassets/09ba8e1b70554a88a21c6450cc10af8e/sou-2017_43_webb_ta.pdf

38 BIBLIOGRAPHY

[10] David Grissmer, Kevin J Grimm, Sophie M Aiyer, William M Murrah, and Joel S
Steele. Fine motor skills and early comprehension of the world: two new school
readiness indicators. Developmental psychology, 46(5):1008, 2010.

[11] Mike Hanlon. Honda begins leasing walking assist exoskeleton. Tech-
nical report, New Atlas, 2013. URL https://newatlas.com/
honda-leasing-walking-assist-device-exoskeleton/27681/.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[13] Mohamed Kazamel and Paula Province Warren. History of electromyography and
nerve conduction studies: A tribute to the founding fathers. Journal of Clinical
Neuroscience, 43:54–60, 2017.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
Computing Research Repository, abs/1412.6980, 2014. URL http://arxiv.org/
abs/1412.6980.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[16] Alan McComas. Galvani’s spark: the story of the nerve impulse. Oxford University
Press, 2011.

[17] Andrew Ng. Model selection and train/validation/test sets. Tech-
nical report, Stanford & Coursera, 2018. URL https://www.
coursera.org/learn/machine-learning/lecture/QGKbr/
model-selection-and-train-validation-test-sets.

[18] Christopher Olah. Understanding lstm networks. Technical re-
port, Colah, 2015. URL http://colah.github.io/posts/
2015-08-Understanding-LSTMs/.

[19] Esteban Peña Pitarch, Jingzhou Yang, and Karim Abdel-Malek. Santos™ hand: a 25
degree-of-freedom model. Technical report, SAE Technical Paper, 2005.

[20] Reinhold Reiter. Eine neue elektrokunsthand. Grenzgebiete der Medizin, 4:133–135,
1948.

[21] Jaspreet Sandhu. A concise history of neural networks. Techni-
cal report, Medium, 2016. URL https://medium.com/@Jaconda/
a-concise-history-of-neural-networks-2070655d3fec.

[22] Warren S Sarle. Neural networks faq. Technical report, SAS Institute Inc., 1997.

https://newatlas.com/honda-leasing-walking-assist-device-exoskeleton/27681/
https://newatlas.com/honda-leasing-walking-assist-device-exoskeleton/27681/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.coursera.org/learn/machine-learning/lecture/QGKbr/model-selection-and-train-validation-test-sets
https://www.coursera.org/learn/machine-learning/lecture/QGKbr/model-selection-and-train-validation-test-sets
https://www.coursera.org/learn/machine-learning/lecture/QGKbr/model-selection-and-train-validation-test-sets
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/@Jaconda/a-concise-history-of-neural-networks-2070655d3fec
https://medium.com/@Jaconda/a-concise-history-of-neural-networks-2070655d3fec

BIBLIOGRAPHY 39

[23] Fredrik Sebelius. Myoelectric control for hand prostheses. PhD thesis, Lund University,
2004.

[24] Claude Elwood Shannon. Communication in the presence of noise. Proceedings of
the IRE, 37(1):10–21, 1949.

[25] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In Sanjoy Das-
gupta and David McAllester, editors, Proceedings of the 30th International Con-
ference on Machine Learning, volume 28 of Proceedings of Machine Learning Re-
search, pages 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
http://proceedings.mlr.press/v28/sutskever13.html.

[26] Tim Urban. The ai revolution: Our immortality or extinction. Technical
report, Wait But Why, 2015. URL https://waitbutwhy.com/2015/01/
artificial-intelligence-revolution-2.html.

http://proceedings.mlr.press/v28/sutskever13.html
https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-2.html
https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-2.html

Part I

Appendix

41

Appendix A

Matlab code

Main code from the Matlab file procesing the data.

1 %clear;
2 %clc;
3 clf
4

5 data = load('pontGrip.txt');
6 timeStamp = data(:,1);
7 emgVal = data(:,1:end-1);
8 forceVal = data(:,end);
9

10 %newton = resample(forceVal,length(emgVal),length(forceVal))
11 newton = forceVal;
12

13 freq = 100; %sample frequency
14

15 t = 1/freq ; %sampling period
16

17 l = size(forceVal, 1); %timeVector length
18

19 %ivt = cumtrapz(timeStamp, emgVal); % Integrated Rectified V w.r.t T
20

21 %plot(timeStamp, emgVal);
22 %hold on
23

24 % remove DC offset (linear trend from vector) in data
25 emgNooffset=detrend(emgVal);
26

27 %rectify EMG signal. Abs value
28 emgRect=abs(emgNooffset);

43

44 APPENDIX A. MATLAB CODE

29 forceRect=abs(newton);
30

31 %plot(emgRect/10)
32 %plot(emgRect)
33

34 %plot(newton*1, 'k')
35 hold on
36 xlabel('Sample number')
37 ylabel('XYZ EMG signal + Force')
38

39 %Linear Envelope (YEAH!!) of the EMG signal
40 [b,a] = butter(3,0.15 ,'low'); %lowpass filter @10Hz for sampling freq
41

42 filter_emg=filtfilt(b,a,emgRect);
43

44 exp_data = [filter_emg , forceRect];
45

46 csvwrite('pontData.csv',exp_data)
47

48 plot(emgRect(:,1))
49 hold on
50 plot(-filter_emg(:,1))
51

52 %plot(-emgRect(:,1))
53 %xlabel('Sample number')
54 %ylabel('Low Pass Filtered EMG signal')
55

56 %
57 %code to find onset? (when muscle activety starts)
58 %
59

60 %
61 % Fourier analysis
62 %
63 % Y = fft(filter_y);
64 % P2 = abs(Y/l);
65 % P1 = P2(1:l/2+1);
66 % P1(2:end-1) = 2*P1(2:end-1);
67 %
68 % f = freq*(0:(l/2))/l;
69 % plot(f,P1)
70 % axis([0 50 0 0.01])
71 % title('Single-Sided Amplitude Spectrum of X(t)')
72 %
73 % xlabel('f (Hz)')
74 % ylabel('|P1(f)|')

Appendix B

Python code

Main code from the python file implementing Tensorflow TM through Keras TM ??!

1 import numpy
2 import matplotlib.pyplot as plt
3 import pandas
4 import math
5 #import json
6

7 from keras.models import Sequential, load_model
8 from keras.layers import Dense, LSTM, Lambda, Dropout
9 from keras import optimizers

10

11 from sklearn.preprocessing import MinMaxScaler
12 from sklearn.metrics import mean_squared_error
13

14 class RnnTraining(object):
15

16

17 def __init__(self):
18 print('RNN initiated')
19

20 def create_dataset(self, dataset, timeStepDelay):
21 dataX, dataY = [], []
22 for i in range(len(dataset) - timeStepDelay - 1):
23 a = dataset[i:(i + timeStepDelay), 0:3]
24 dataX.append(a)
25 b = dataset[i + timeStepDelay, 3]
26 dataY.append(b)
27 return numpy.array(dataX), numpy.array(dataY)
28

45

46 APPENDIX B. PYTHON CODE

29 def import_format_data(self, fileName='pontData.csv', split=0.67,
timeStepDelay = 10, numChan = 3):

30 # load the dataset
31 dataframe = pandas.read_csv(fileName, engine='python')
32 dataset = dataframe.values
33 print(len(dataset))
34 # normalize the dataset
35 scaleFactor = MinMaxScaler(feature_range=(0, 1))
36 #dataset = scaleFactor.fit_transform(dataset)
37 dataset[:] = [x / 150 for x in dataset]
38

39 # split into train and test sets
40 train_size = int(len(dataset) * split)
41 test_size = len(dataset) - train_size
42 train, test = dataset[0:train_size, :], dataset[train_size:len(

dataset), :]
43

44 # reshape into X=t and Y=t+1
45 trainX, trainY = self.create_dataset(train, timeStepDelay)
46 testX, testY = self.create_dataset(test, timeStepDelay)
47

48 # reshape input to be [samples, time steps, features]
49

50 trainX = numpy.reshape(trainX, (trainX.shape[0], timeStepDelay,
numChan)) # change 1 into timeStepDelay

51 testX = numpy.reshape(testX, (testX.shape[0], timeStepDelay,
numChan)) #change 1 into timeStepDelay

52

53 return trainX, trainY, testX, testY, scaleFactor, dataset
54

55 def setup_model(self, timeStepDelay = 15, numChan = 3):
56 model = Sequential([
57 LSTM(numChan*2, activation='sigmoid', return_sequences=True,

input_shape=(timeStepDelay, numChan)),
58 LSTM(numChan*2, activation='sigmoid', return_sequences=True),
59 Dropout(0.1),
60 Dense(numChan*4),
61 LSTM(numChan*4, activation='sigmoid', return_sequences=True),
62 LSTM(numChan*4, activation='sigmoid', return_sequences=True),
63 Dense(numChan*4),
64 LSTM(numChan*2, activation='sigmoid', return_sequences=True),
65 LSTM(numChan*2, activation='sigmoid'),
66 Dense(1),
67 Lambda(lambda x: x * 4),
68])
69

47

70 adam = optimizers.Adam(lr=0.01, decay=0.0001)
71

72 model.compile(loss='mean_squared_error', optimizer=adam)
73 print("Done setting up Neural Network...")
74

75 return model
76

77 def load_model(self, modelName):
78 model = load_model(modelName)
79 return model
80 def train_model(self, model, trainX, trainY, val_split=0.12,

num_epochs=20, batch_si=100):
81 print("Start fitting...")
82 history = model.fit(trainX, trainY, validation_split=val_split,

epochs=num_epochs, batch_size=batch_si, shuffle=False)
83

84 print("Done fitting!")
85 answer = 'n' #input("Do you want to save the model? (y/n): ")
86 if answer in ['y', 'Y', 'yes', 'Yes']:
87 model.save('rnn_model.h5')
88 print("Saved model as: rnn_model.h5 ")
89 else:
90 print("Model not saved!")
91 # save as JSON
92 # serialize model to JSON
93

94 # answer = raw_input("Do you want to save the model as JSON?
(y/n)")

95 # if answer in ['y', 'Y', 'yes', 'Yes']:
96 # model_json = model.to_json()
97 # with open("model.json", "w") as json_file:
98 # json_file.write(model_json)
99 # print("Saved model as Json: model.json ")

100 # else
101 # print("JSON not saved!")
102 return history, model
103

104 def getPredictData(self, numChan, data2Predict, scaleFactor, model):
105

106 dataPredict = model.predict(data2Predict)
107

108 # Get something which has as many features as dataset
109 dataPredict_extended = numpy.zeros((len(dataPredict), numChan))
110 # Put the predictions in last coloumn
111 dataPredict_extended[:, 2] = dataPredict[:, 0]
112 # Inverse transform it and select the 3rd column.

48 APPENDIX B. PYTHON CODE

113 dataPredict = dataPredict_extended[:, 2]
114 #dataPredict[:] = [x / 150 for x in dataPredict]
115 #dataPredict = scaleFactor.inverse_transform(dataPredict_extended

)[:, 2]
116 return dataPredict
117

118 def prep_results(self, numChan, timeStepDelay, scaleFactor,
data2PredictTrain, targetDataTrain,

119 data2PredictTest, targetDataTest, dataset, model):
120

121 dataPredictTrain = self.getPredictData(numChan, data2PredictTrain
, scaleFactor, model)

122 dataPredictTrainPlot = numpy.empty_like(dataset)
123 dataPredictTrainPlot[:, :] = numpy.nan
124

125 dataPredictTrainPlot[timeStepDelay:len(dataPredictTrain) +
timeStepDelay, 2] = dataPredictTrain

126

127 dataPredictTest = self.getPredictData(numChan, data2PredictTest,
scaleFactor, model)

128 dataPredictTestPlot = numpy.empty_like(dataset)
129 dataPredictTestPlot[:, :] = numpy.nan
130

131 dataPredictTestPlot[len(dataPredictTrain) + (timeStepDelay * 2) +
1:len(dataset) - 1, 2] = dataPredictTest

132

133 return dataPredictTrain, dataPredictTrainPlot, dataPredictTest,
dataPredictTestPlot

134

135 def print_RMSE(self, targetData, predictData):
136 # calculate root mean squared error
137 trainScore = math.sqrt(mean_squared_error(targetData, predictData

))
138 print('Target/predict data score: %.2f RMSE' % (trainScore))
139

140 def plot_results(self, history, dataset, scaleFactor, trainDataPlot,
testDataPlot):

141

142 plt.subplot(2, 1, 1)
143 plt.plot(history['loss'])
144 plt.plot(history['val_loss'])
145 plt.title('Fitting loss')
146 plt.ylabel('Value')
147 plt.xlabel('Epochs')
148 plt.legend(['Training set', 'Cross-validation set'], loc='upper

right')

49

149

150 dataset[:] = [x * 150 for x in dataset]
151

152 plt.subplot(2, 1, 2)
153 serie, = plt.plot(dataset[:, 3])
154 emg1, = plt.plot(dataset[:, 0], 'm--')
155 emg2, = plt.plot(dataset[:, 1], 'y--')
156 emg3, = plt.plot(dataset[:, 2], 'k:')
157 # serie, = plt.plot(scaleFactor.inverse_transform(dataset)[:, 3])
158 # emg1, = plt.plot(scaleFactor.inverse_transform(dataset)[:, 0],

'm--')
159 # emg2, = plt.plot(scaleFactor.inverse_transform(dataset)[:, 1],

'y--')
160 # emg3, = plt.plot(scaleFactor.inverse_transform(dataset)[:, 2],

'k:')
161 trainDataPlot[:] = [x * 150 for x in trainDataPlot]
162 testDataPlot[:] = [x * 150 for x in testDataPlot]
163

164 predictTrain, = plt.plot(trainDataPlot[:, 2], 'g:')
165 predictTest, = plt.plot(testDataPlot[:, 2], 'r--')
166

167 plt.title('Kraft & sEMG')
168 plt.ylabel('Kraft & sEMG [N & mV]')
169 plt.xlabel('Tidssteg [100 Hz]')
170 plt.legend([serie, predictTrain, predictTest, emg1, emg2, emg3],
171 ['Real data', 'training data', 'validation data', 'emg1

', 'emg2', 'emg3'],
172 loc='upper right'
173)
174 plt.show()
175

176 def plot_testResults(self, dataset, scaleFactor, trainDataPlot,
testDataPlot):

177

178 dataset[:] = [x * 150 for x in dataset]
179

180 serie, = plt.plot(dataset[:, 3])
181 emg1, = plt.plot(dataset[:, 0], 'm--')
182 emg2, = plt.plot(dataset[:, 1], 'y--')
183 emg3, = plt.plot(dataset[:, 2], 'k:')
184 trainDataPlot[:] = [x * 150 for x in trainDataPlot]
185 testDataPlot[:] = [x * 150 for x in testDataPlot]
186

187 predictTrain, = plt.plot(trainDataPlot[:, 2], 'g:')
188 predictTest, = plt.plot(testDataPlot[:, 2], 'r--')
189

50 APPENDIX B. PYTHON CODE

190 plt.title('Kraft & sEMG')
191 plt.ylabel('Kraft & sEMG [N & mV]')
192 plt.xlabel('Tidssteg [100 Hz]')
193 plt.legend([serie, predictTrain, predictTest, emg1, emg2, emg3],
194 ['Serie', 'training data', 'test data', 'emg1', 'emg2',

'emg3'],
195 loc='upper right'
196)
197 plt.show()
198 print("Initiating RNN run/train session...")
199

200 # Initial parameters
201 fileName = "pontData.csv"
202 split = 0.67
203 timeStepDelay = 20
204 numDataChan = 3
205 val_split = 0.12
206 num_epochs = 500
207 batch_si = 320
208

209 # Execution session
210 trainSession = RnnTraining()
211 trainX, trainY, testX, testY, scaleFactor, dataset = trainSession.

import_format_data(fileName, split, timeStepDelay, numDataChan)
212 rnnModel = trainSession.setup_model(timeStepDelay, numDataChan)
213

214 trainHistory, fittedModel = trainSession.train_model(rnnModel, trainX,
trainY, val_split, num_epochs, batch_si)

215

216 print('Prepare results for training data...')
217 predictTrain, predictTrainPlot, predictTest, predictTestPlot =

trainSession.prep_results(numDataChan, timeStepDelay, scaleFactor,
trainX, trainY, testX, testY, dataset, fittedModel)

218 # Plot Loss and Prediction
219 trainSession.plot_results(trainHistory.history, dataset, scaleFactor,

predictTrainPlot, predictTestPlot)
220

221

222

223

224 # New Data test session run on old network!
225 #file2Load = "rnn_model.h5"
226 #data2Load = "pontData.csv"
227 #rnnModel = trainSession.load_model(file2Load)
228 #trainX, trainY, testX, testY, scaleFactor, dataset = trainSession.

import_format_data(data2Load, split, timeStepDelay, numDataChan)

51

229 #print('Prepare results for training data...')
230 #predictTrain, predictTrainPlot, predictTest, predictTestPlot =

trainSession.prep_results(numDataChan, timeStepDelay, scaleFactor,
trainX, trainY, testX, testY, dataset, rnnModel)

231 # Plot Loss and Prediction
232 #trainSession.plot_testResults(dataset, scaleFactor, predictTrainPlot,

predictTestPlot)

	Figures
	Abbreviations
	Abstract
	Sammanfattning
	Introduction
	Background & Theory
	Exoskeleton Development
	Hands and Prosthetics
	Electromyography
	Artificial Neural Networks
	Fundamental Design
	ANN algorithm
	Time-steps
	Training and optimization
	Guidelines in building an ANN

	Method
	Approach
	Literature study
	Data collecting & sEMG
	Building ANN

	Results
	Discussion
	ANN evaluation
	Future Prospects
	Ethics, risks and sustainability

	Conclusion
	Acknowledgements
	Bibliography
	I Appendix
	Matlab code
	Python code

