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Abstract

In this thesis we research beamforming capabilities of the UEs equipped with
several antennas in a 5G scenario.

We de�ne a system model based on the use of phase codebooks that allow
to change the radiation patterns of the arrays of antennas installed in the UE.
Within this system model, we obtain optimized codebooks in terms of two met-
rics, which we consider to be of interest in this scenario, employing two di�erent
optimization approaches. We use these results to analyze, through simulations,
the estimation performance in an AoA estimation scenario. We also analyze the
detection performance in receiving the signal that can allow us to estimate the
AoA.

So as to gain more insight into how the selection of the optimum codebook
a�ects the detection performance, we de�ne a simpler scenario and we analyze it
theoretically and draw conclusions that relate to the simulations obtained.
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Popular Science Summary

When you think about mobile phones nowadays, no one thinks about the old
devices with small screens that you may still keep in a drawer full of dust in
the basement of your home. Those devices could be used to make phone calls,
maybe they could even send SMSs, and, if you were lucky, you could even use
them to play some simple games, such as "Snake" or "Tetris", that required no
internet connection. They were the only mobile phones available around 20 years
ago. Nowadays, however, one cannot think of a mobile phone without internet
connection to use social media or stream videos or music.

If we think about the original functionalities of mobile phones, i.e., phone
calls and SMSs, they are just minor features in the new mobile phones (or smart-
phones) that are getting substituted by apps running directly through the internet
connection. In addition, the number of devices connected to the mobile network
is increasing at huge rates, not only more people have access to smartphones now
(some people even have more than one), but also new devices are getting connected
to this network including tablets, TVs, cars, sensors... All these devices require
high data rates to run their services smoothly, and with the current networks it's
getting harder and harder to be able to serve those data rates. This is one of the
main reasons for the development of 5G, the next generation of mobile communi-
cations that will come to solve the increasing need of high data rates as well as
other issues related.

Many technologies are being considered to improve the data rates in 5G. Some
include putting a lot of antennas in the base stations, putting a lot of base stations
to serve smaller areas, or using new frequency bands that are highly unoccupied. In
the current generation of mobile communications, i.e. 4G, one of the improvements
with respect to the previous generation to get higher data rates was to put several
antennas in the smartphones or, in general, any device that is to be connected
to the mobile network. Thus, in 5G we expect to have smartphones with several
antennas, probably even more than in 4G, so that we can still take bene�t of them.
However, the way the base stations will work in 5G is quite di�erent to the way
they used to do in 4G. This means that we will have to think again how can we
take bene�t from the use of di�erent antennas in the 5G devices. In this thesis
we will propose some methods to utilize the antennas in these devices in a 5G
scenario and study what bene�ts can we get from them.
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List of Acronyms and Abbreviations

AoA - Angle of Arrival

AWGN - Additive White Gaussian Noise

BS - Base Station

CRLB - Cramer Rao Lower Bound

MA - Multiple Antenna

DOA - Direction Of Arrival

GLRT - Generalized Likelihood Ratio Test

LOS - Line Of Sight

ML - Maximum Likelihood

MLE - Maximum Likelihood Estimator

MRC - Maximum Ratio Combining

MSE - Mean Squared Error

PD - Probability of Detection

PDF -Probability Density Function

PFA - Probability of False Alarm

RF - Radio Frequency

ROC - Receiving Operating Characteristic

SNR - Signal to Noise Ratio

UE - User Equipment
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Chapter1

Introduction

Mobile communications technology is evolving quickly. The demand for high data
rates and low latencies, to comply with the new services being deployed, is in-
creasing and will soon be impossible to meet with the current infrastructure. In
addition, new emerging services are being developed with requirements in terms
of reliability, number of devices connected, etc, that cannot be ful�lled by the
current mobile communication systems. All these factors, together with the in-
creasing number of new devices getting connected everyday [1, 2] are forcing the
standardization bodies, and the wireless communications industry in general, to
work towards a new generation of cellular mobile communications. 3GPP has al-
ready delivered the �rst set of 5G standards in its release 15 [3] and is currently
working on the next Release.

In this thesis we will be looking at the physical layer of the next generation
5G systems. More speci�cally, we will focus on the UE side, and explore how to
exploit the beamforming capabilities available in this side.

1.1 Technical Background

In [2] an overview of the major requirements for 5G systems is exposed. We will
put the focus on the high data rates requirement since it can be seen as one of
the most challenging requirements, and most of the advances in this requirement
come from improvements in the physical layer. The main technologies that are
being explored to ful�ll this requirement are [1] the densi�cation and o�oading
by deploying more cells with smaller service areas, the exploitation of the high
bandwidths available in the millimeter-wave spectrum, and the use of massive
MIMO to improve the bandwidth e�ciency through spatial multiplexing.

Densi�cation. This strategy consists of the use of small cells, i.e., cells that
cover a smaller area by utilizing low power access nodes. These small cells
allow to reuse the spectrum more e�ciently and they reduce the number
of users sharing resources from a BS. This leads to a gain in the e�ective
data rates when the interference between cells is low enough [1], which is
the usual scenario, specially considering the mm-wave spectrum.

Regarding the in�uence of densi�cation in channel modeling, which will
be of interest for the subsequent chapters, we expect that the probability

1
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of having a LOS component increases since the users will be closer to the
access nodes.

Millimeter-Wave. Millimeter-wave spectrum is the band of spectrum be-
tween 30 and 300 GHz. This band has been historically avoided for mobile
communications mainly due to the hostile propagation conditions and the
lack of cost-e�ective technology available for this band. However, the sub-3
GHz spectrum is getting too crowded to �t the bandwidths needed for the
high data rates demanded and the growing number of devices connected.
On the other hand, a great part of the mm-wave spectrum remains unused,
which means that there is a huge amount of bandwidth available in this
band which could be used to increase the data rates and �t more users in
new mobile communication systems. Therefore, this band is being consid-
ered and research is being conducted to be able to use this band for the next
generation 5G systems [4].

The channel characteristics in a mm-wave scenario are signi�cantly di�erent
to the ones in the sub-3 GHz band due to the propagation peculiarities of
mm-waves. The penetration of these waves through walls and buildings is
low, so indoor networks would be highly isolated from outdoor networks [4].
When the transmission is highly directive, the propagation characteristics
associated to this band causes the received signals to arrive at a few main
AoAs, even if there is no LOS component [5].

Massive MIMO. Multiuser MIMO consists of a BS with a certain number
of antennas communicating with one or more UEs. Massive MIMO is an
extension over multiuser MIMO in which the number of antennas at the BS
is large compared to the number of UEs communicating with it. This way
it can spatially focus the energy to each UE, allowing spatial multiplexing,
and thus, improving the throughput [6].

Massive MIMO can concentrate the power towards speci�c directions of the
space, obtaining extremelly narrow beams. Then, if we consider the use of
massive MIMO at millimeter waves frequencies [7], together with a densi�ed
network, many of the multipath components are eliminated. This way we
can think of a quasi-LOS channel model, where we have a strong signal
arriving at a certain AoA to the UE.

A lot of research has been already conducted in these three technologies. In
most scenarios, specially if we look at the massive MIMO original scenario [8],
the UE is assumed to have a single antenna. However, since the release of LTE
by 3GPP, the UEs that have been developed included several antennas to be
able to operate in the di�erent MIMO transmission modes de�ned for LTE [9].
Furthermore, some of the proposed designs for the next generation devices include
several beamforming modules consisting of phased arrays with several antennas in
a certain con�guration, such as 4×2 [10]. If we look at the technical speci�cations
for the 5G UE, still being written by 3GPP, we can also see that the UEs in 5G
will be able to operate using several antennas [11]. The way in which the antennas
at the UE are used in a 5G scenario is still a matter of research and will be our
focus throughout this thesis.
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In [12], beamforming for UE discovery is studied, but in this scenario a simple
MIMO system is considered. We will research beamforming capabilities of the
antennas equipped in the UEs without interacting directly with the massive MIMO
algorithms that will operate on top of that. To do so, we will assume a quasi-LOS
channel with a main AoA, as a result of using the three technologies mentioned
before, and a UE with several antennas that can only use a �nite number of phase
shifts for the beamforming. All the antennas receive in the end a single digital
value, but there are individual phase rotations at each antenna. This is customary
called hybrid beamforming [13].

1.2 Objectives

The aim of this master's thesis is to study the beamforming capabilities of the UEs
in a 5G scenario. We want (1) to de�ne a codebook approach for controlling the
beamforming parameters of the UE, (2) to obtain optimum codebooks through
di�erent methods considering this approach, and (3) to analyze the performance
of these optimized codebooks in di�erent situations. To do so we will have to make
use of optimization and simulation tools, as well as theoretical analysis. It is our
goal to be able to get closed form results out of the theoretical analysis so that
they can be compared to some extent with the simulation results.

1.3 Thesis Outline

After Chapter 1, where we have introduced the main topic of the thesis and the
related information, we have three main chapters. Chapter 2 introduces the main
system model and shows the results of optimizing the beamforming characteristics
of the UE with repect to two metrics of interest. In Chapter 3, results from
Chapter 2 are used in a similar scenario, where in this case the problem considered
is to estimate the AoA of an incoming signal at the UE, and simulation results
are exposed to compare the performance of the di�erent optimization approaches.
Chapter 4 presents a new simpli�ed scenario to be able to explain theoretically
the detection performance simulated in Chapter 3 for the di�erent optimization
approaches. The last chapter provides the conclusions reached after doing this
thesis and suggestions for future work that can be done in this topic.

1.4 Limitations

Throughout this thesis we consider a theoretical scenario which in reality would
have certain limitations:

• We don't consider any interference coming from adjacent base stations. This
would limit the performance of the system considered since the optimum
phase codebooks may radiate outside the area of interest, capturing the
interference.
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• We are not considering the radiation pattern of the antenna elements con-
forming the array. This patter could in�uence the results of the optimized
codebooks.

• The phase values of the optimized codebooks can take any continuous values.
In reality, however, they are limited to have a certain resolution.

• We consider ideal noise. If there was some correlation between noise samples
the results may change.
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Chapter2
Multiple-Antenna User Equipment

Beamforming Optimization

In this chapter an optimization of the beamforming capabilities of a multiple-
antenna UE with respect to two performance metrics is presented. These metrics
are meant to increase the received power in the scenario de�ned and they will
be further analyzed. The results obtained from the optimization, as well as the
scenario that is presented, will be taken into account and analyzed more closely
in the subsequent chapters.

2.1 System Model

A receiving UE with a linear antenna array of N antenna elements is considered.
Each antenna element is equipped with a phase shift module. The antenna element
spacing is assumed to be half a wavelength and the antenna elements to be placed
in a straight line. In this scenario, an incident signal forming an angle ϑ with the
antenna array is received as

z = a(ϑ)x+ n, (2.1)

where x corresponds to a transmitted symbol, n is AWGN, and a(ϑ) is the array
response in the direction ϑ, which can be expressed as [14]

a(ϑ) =
[
1 ejπ sin(ϑ) ... ej Nπ sin(ϑ)

]T
. (2.2)

The post-processed signal after the phase shift module is

y = F (ϑ)x+ ñ, (2.3)

where F (ϑ) is de�ned as the array factor [14], and ñ is again AWGN. The array
factor is a weighted sum of the array response for each antenna element. The
array factor in our scenario, as de�ned in Figure 2.1, for an angle of arrival (AoA)
ϑ ∈ [−π/2, π/2], is given by

F (ϑ) = wTa(ϑ), (2.4)

where w collects the tunable complex phase shifts for each antenna element

w =
[
ejϕ1 ejϕ2 ... ejϕN

]T
, (2.5)

5
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and ϕk ∈ [0, 2π]. Note that, in this de�nition, w is not normalized, so that ñ has
variance N times the variance of nn. However, this won't a�ect the results in this
chapter, and we can consider a scaling factor of 1√

N
for w if we want to avoid this

fact. The array gain de�nition that we will use is

G(ϑ) = |F (ϑ)|2 = wTa(ϑ)wHa∗(ϑ). (2.6)

If we restrict w to the form (2.5) so that the power is constrained, G(ϑ) is max-
imized when w = a∗(ϑ), which corresponds to setting ϕn = nπ sin(ϑ). However,
in reality, the vector w can only be chosen from a limited set. In our scenario we
will have a limited number L of phase combinations, i.e., the vector w can only
be chosen from a closed set {wl}Ll=1, here denoted as codebook, where

wl =
[
ejϕ1,l ejϕ2,l ... ejϕN,l

]T
(2.7)

corresponds to a codeword, which gives an array gainGl(ϑ) in the direction ϑ. This
means that the phase shift modules will take values {ϕ1,l, ..., ϕN,l} ∈ [0, 2π]N , l =
1, ..., L.

Figure 2.1: Block diagram of the UE.

In this chapter we will focus on obtaining optimum codebooks, in terms of the
two performance metrics that we will de�ne, for di�erent values of L and N . The
combination of the array gains for all the wl of a codebook for all the directions
of the space considered can be associated to a total array gain for that codebook

GT(ϑ) = max
l∈[1,L]

Gl(ϑ) = max
l∈[1,L]

wT
l a(ϑ)wH

l a∗(ϑ). (2.8)

Two metrics will be considered to determine how good a �nite codebook can
perform with respect to a pure MRC approach: the average loss and the maximum
loss. We will discuss these two criteria next. Figure 2.2 shows a graphical aid to
these metrics.

2.1.1 Average loss

By average loss we mean the average loss of the total array gain GT(ϑ) with respect
to the MRC array gain throughout all the directions of the space considered Ω,
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where we will assume the incoming angle to be uniformly distributed in Ω. We
express the average loss in dB and de�ne it formally as

Lavg = 10 log10

(
1

SΩ

∫
Ω

GMRC

GT(ϑ)
dϑ

)
, (2.9)

where SΩ is the size of the space considered, which we for simplicity express in
degrees from now (and similarly for ϑ), and GMRC is the array gain obtained when
using MRC

GMRC = aHa(ϑ)aTa∗(ϑ) = N2, (2.10)

which depends only on the number of antennas and could be scaled if a di�erent
reference amplitude is considered.

2.1.2 Maximum loss

By maximum loss we mean the maximum loss of the total array gain GT(ϑ) with
respect to the MRC array gain. It will also expressed in dB scale and computed
as

Lmax = max
ϑ∈Ω

[
10 log10

(
GMRC

GT(ϑ)

)]
. (2.11)

For the de�nition of the physical space we will assume that the antenna array of
the UE is placed along theX axis. If we consider the spherical coordinates φ and θ,
for φ = 0, ϑ would correspond directly to the spherical coordinate θ. Three possible
ranges will be used for this θ coordinate, Ω60◦ = [−30◦, 30◦], Ω100◦ = [−50◦, 50◦]
and Ω140◦ = [−70◦, 70◦]. This will let us observe the e�ects of changing the width
of the space considered, i.e., SΩ, in the results obtained. Intuitively, the narrower
the space we consider, the lower codebook size, L, will be needed to obtain good
results for Lavg and Lmax. In a real scenario, the space is limited by the beam-
width of the radiating element of the array, so since we consider a collection of
widths, our results can cover various antenna element implementations.

In the case of a 2D array, the array will be positioned in the XY plane, and the
incoming angle would correspond to a combination of the spherical coordinates θ
and φ. Our analysis can be extended directly by adopting the formulation of the
array response accordingly. In this case the θ range considered will be the same
as in the previous one, but for φ we will consider the full range, φ ∈ [0, 180].

2.2 Optimization

An ideal codebook would be the one that simultaneously minimizes both met-
rics Lavg and Lmax. However, it is not intuitive whether both metrics can be
simultaneously minimized and we can expect that there would be an optimum
operating region instead. In other words, the optimal codebooks may be attained
by a carefully chosen trade-o� between Lavg and Lmax.
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Figure 2.2: Performance metrics de�ned.

2.2.1 Steering optimization

The �rst approach would be to use wl = a∗(ϑl) and �nd the optimum set of
{ϑl}Ll=1 that minimizes Lavg for a given value of Lmax. This physically means
to select a set of angles where the MRC approach will be applied, in case the
received signal comes from those directions, to optimize the total array gain in
the space considered. In array synthesis it would correspond to steer the main
lobe of the radiation pattern towards speci�c directions de�ned by {ϑl}Ll=1. So the
optimization problem would be

min
{ϑl}Ll=1

Lavg =
1

SΩ

∫
Ω

GMRC

GT(ϑ)
dϑ (2.12a)

s.t. Lmax = α, (2.12b)

where α is the desired Lmax value, and in this case

GT(ϑ) = max
l∈[1,L]

aH(ϑl)a(ϑ)aT (ϑl)a
∗(ϑ). (2.13)

This optimization approach is restricted by the fact that only speci�c values of
wl are considered, so this can limit the performance of the system. Also, the more
antennas available at the UE, the narrower the main lobe of the radiation pattern,
thus a greater L would be needed to obtain a good performance. However, this is
the most common approach due to its physical simplicity�it can be as simple as
to divide the space into L sections and de�ne each wl to point to one section.

The optimization problem is unfeasible to solve in closed form, so several nu-
merical optimization methods have been tried, obtaining poor results. Therefore,
the algorithm used in the end consists of a random search, in which we use at
least 107 iterations. Each iteration would give a value of the pair Lavg, Lmax by
randomly choosing {ϑl}Ll=1. We will store only the optimum {ϑl}Ll=1 in terms
of Lavg for every possible value of Lmax in a grid with 0.1dB spacing. All the
possible combinations Lavg and Lmax obtained will also be stored to be able to
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observe the possible operating area. In Algorithm 1 we provide pseudocode for
this optimization algorithm.

Algorithm 1 Pseudocode for the steering optimization algorithm.

1: for i = 1→ 107 do
2: get random {ϑl}Ll=1

3: compute Lavg & Lmax

4: L(i, 1)← Lavg

5: L(i, 2)← Lmax

6: R(i)← {ϑl}Ll=1

7: for α = 0→∞ with steps of 0.1 do

8: nα = arg mini L(i, 1), s.t. L(i, 2) = α
9: Save {ϑl}Ll=1 = R(nα)

2.2.2 Pure phase optimization

The second approach would be to consider any possible combination of phases
for every codeword wl. In the worst case, this optimization would give the same
solution as the steering optimization since it includes the cases where wl = a∗(ϑl).
The optimization can be then formulated as

min
{ϕ1,l,...,ϕN,l}Ll=1

Lavg =
1

SΩ

∫
Ω

GMRC

GT(ϑ)
dϑ (2.14a)

s.t. Lmax = α, (2.14b)

where we can see that the only thing that changes with respect to the previous case
is that GT(ϑ) corresponds to (2.8), where {ϕ1,l, ..., ϕN,l}Ll=1 has no restrictions,
i.e., ϕn,l can take any number between 0 and 2π. We will assume anyway that
ϕ1,l = 0 in all the codewords without losing any generality, since the only thing
that matters is the phase variation between the antennas and we can take the �rst
antenna as phase reference.

The optimization algorithm consists also in a random search with the same
considerations as in Section 2.2.1, but in this case we will use a number of iter-
ations according to the number of possible variables and the available time for
the project. This number must be much bigger than in the case of steering opti-
mization since the search space is vastly expanded, but we have been constrained
by the time limitation of the project and the results could be more accurate if
a more exhaustive optimization is used. In case worse results than the steering
optimization are obtained, we assume equal results since the pure phase optimiza-
tion is a more general case and its optimum results must be at least as good as in
steering optimization. In Algorithm 2 we provide pseudocode for this optimization
algorithm.
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Algorithm 2 Pseudocode for the pure phase optimization algorithm.

1: for i = 1→ 108 (or more) do
2: get random {ϕ1,l, ..., ϕN,l}Ll=1

3: compute Lavg & Lmax

4: L(i, 1)← Lavg

5: L(i, 2)← Lmax

6: R(i)← {ϑl}Ll=1

7: for α = 0→∞ with steps of 0.1 do

8: nα = arg mini L(i, 1), s.t. L(i, 2) = α
9: Save {ϕ1,l, ..., ϕN,l}Ll=1 = R(nα)

2.3 Results

In this section the results of the optimization problems de�ned previously are pre-
sented. For the simulation we have considered a spacing of 1◦ in the θ coordinate,
and 2◦ in the φ coordinate for the 2D arrays. The precision considered for the
results of Lavg and Lmax is 0.1dB.

Table 2.1 contains all the optimum values obtained in terms of Lavg and Lmax

for all the combinations considered. If we look at these results we notice that
in some cases the steering optimization can perform as good as the pure phase
optimization. In the simulations they could actually be worse due to the time
limitations of the project, which made the number of iterations in the pure phase
optimization in some cases insu�cient to obtain the optimum results. This hap-
pens specially when the range considered is not wide enough compared to the beam
width times the codebook size L, where both optimization results should converge.
Also, the greater the number of phase variables, i.e. more antennas or higher L,
the worse the performance of the random search optimization since the number of
possible combinations grows exponentially. To get more accurate results, a higher
number of iterations should be used, or a better optimization method should be
derived.

In general, the pure phase optimization can get much better results than steer-
ing optimization both in terms of Lavg and Lmax, but specially in the latter, when
working with a low L and/or a wide range. Furthermore, this optimization ap-
proach gives more freedom in choosing the operating region as a compromise be-
tween Lavg and Lmax since it allows to change the shape of the main lobes as well
as their steering angles.

In Figures 2.3-2.7 we can observe some examples where the pure phase opti-
mization yields better results than the steering optimization. As we could expect,
in most of the cases there is not an optimum operating point since in general the
point where Lmax is minimum doesn't correspond to the point where Lavg is min-
imum. Instead, we can see that the interesting operating region is given by the
line relating the minimum Lavg and the minimum Lmax.

In the next chapters we will focus on the results for 4×1 con�guration with L =
2 codewords and in the range Ω140◦ . This is mainly because it is the simplest use
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Figure 2.3: 4x1 antenna con�guration, L = 2.

Figure 2.4: 6x1 antenna con�guration, L = 2.
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Figure 2.5: 6x1 antenna con�guration, L = 3.

Figure 2.6: 2x2 antenna con�guration, L = 2.
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Table 2.1: Optimum results 1D arrays (in bold the values of the
metrics that are optimum for each con�guration).

Ω60◦ Ω100◦ Ω140◦

Lavg(dB) Lmax(dB) Lavg(dB) Lmax(dB) Lavg(dB) Lmax(dB)

4x1 Pure Phase Optimization. Optimum Lavg.

L = 2 1.4 3.8 3.2 5.6 4 7.4

L = 3 0.6 1.5 1.4 4.1 2.4 6.9

L = 4 0.3 0.9 0.7 2.1 1.2 3.2

4x1 Pure Phase Optimization. Optimum Lmax.

L = 2 2.1 3.6 3.3 4.9 4.6 5.8

L = 3 0.6 1.5 2.7 3.4 2.7 4.4

L = 4 0.3 0.9 0.7 2.1 1.2 3.2

4x1 Steering Optimization. Optimum Lavg.

L = 2 1.4 3.7 4.5 10.6 6.8 13.7

L = 3 0.6 1.5 1.4 4.1 2.4 6.9

L = 4 0.3 0.9 0.7 2.1 1.2 3.2

4x1 Steering Optimization. Optimum Lmax.

L = 2 1.4 3.7 4.5 10.6 7.8 12.1

L = 3 0.6 1.5 1.5 3.8 2.5 6.1

L = 4 0.3 0.9 0.7 2.1 1.2 3.2

6x1 Pure Phase Optimization. Optimum Lavg.

L = 2 3.5 5.4 5.1 7.7 5.7 9.3

L = 3 1.4 3.7 3.6 6.9 4.3 7.9

L = 4 0.7 2.2 2 5.5 3.4 8.7

6x1 Pure Phase Optimization. Optimum Lmax.

L = 2 4.7 5.2 5.7 6.3 6 7.1

L = 3 2.9 3.4 4.9 5.5 5.4 6

L = 4 0.7 2.2 3.5 4.9 4.2 5.5

6x1 Steering Optimization. Optimum Lavg.

L = 2 4.4 10.2 10.1 16.1 11 16.3

L = 3 1.4 3.7 4.6 10.8 7.4 13.9

L = 4 0.7 2.2 2 5.5 3.5 10.1

6x1 Steering Optimization. Optimum Lmax.

L = 2 4.4 10.2 10.2 15.5 11.1 16

L = 3 1.4 3.7 4.6 10.8 7.4 13.9

L = 4 0.7 2.2 2 5.5 3.6 9
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Table 2.2: Optimum results 2D arrays (in bold the values of the
metrics that are optimum for each con�guration).

Ω60◦ Ω100◦ Ω140◦

Lavg(dB) Lmax(dB) Lavg(dB) Lmax(dB) Lavg(dB) Lmax(dB)

2x2 Pure Phase Optimization. Optimum Lavg.

L = 2 0.7 3.3 2.2 9 3.5 7.3

2x2 Pure Phase Optimization. Optimum Lmax.

L = 2 1 2.8 4.6 6 4.7 6

2x2 Steering Optimization. Optimum Lavg.

L = 2 0.7 3.3 2.2 9 4.5 15.9

2x2 Steering Optimization. Optimum Lmax.

L = 2 1 2.8 2.7 7.4 5.3 12.8

4x2 Pure Phase Optimization. Optimum Lavg.

L = 2 1.7 5.5 4.8 11 6.5 10.9

4x2 Pure Phase Optimization. Optimum Lmax.

L = 2 1.7 5.5 6.5 8.6 7.1 9.8

4x2 Steering Optimization. Optimum Lavg.

L = 2 1.7 5.5 5.5 16.8 10.1 27.5

4x2 Steering Optimization. Optimum Lmax.

L = 2 1.7 5.5 7.2 15.4 11 21.4
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Figure 2.7: 4x2 antenna con�guration, L = 2.

case where a great improvement can be achieved by using pure phase optimization
instead of steering optimization, both in terms of Lavg and Lmax.

2.4 Concluding Remarks

In this chapter we have de�ned the system model, using a codebook approach for
hybrid beamforming in UEs, that will be the basis of this thesis. We have also
obtained optimum phase codebooks in terms of Lavg and Lmax. We have observed
that, in general, Lavg and Lmax cannot be simultaneously maximized, and that, in
most of the cases, the pure phase optimization method o�ers a better operating
region than the steering optimization method, i.e., with more freedom to choose
the optimum values of Lavg and Lmax. At this point we have resolved the two �rst
parts of our objectives.
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Chapter3
Angle of Arrival Estimation

In the previous chapter we have obtained some interesting results from optimizing
the phase codebooks with respect to two simple performance metrics. We would
like to go a bit further with these results and understand what practical improve-
ments we can get by using the pure phase optimization results compared to using
the steering optimization results as well as the in�uence on AoA estimation of each
of the de�ned metrics.

3.1 System Model

In this chapter we will follow the same model as in the previous chapter for the
UE. We will focus on the case where the UE has a linear array for receiving, and
more speci�cally we will only analyze the case where this array is a 4x1 array in
the range Ω140◦ and the codebook size L is equal to 2. This is mainly because it is
a simple case and the results are interesting when exploring the tradeo� between
the two performance metrics that have been optimized.

In this case, we will put our focus on the AoA (or DOA) estimation using the
results from the previous chapter. This is a common use case that is of interest
both in terms of positioning [15, 16], and in terms of minimizing the pointing losses
between the UE and the BS [17]. We will study how the results from the Chapter
2 a�ect AoA estimation.

We will assume that a pilot signal is transmitted from the BS to the UE. Taking
the narrowband assumption [18], and considering the same scenario described in
Figure 2.1, the arriving signal at the UE can be seen as just a ”1” multiplied by
the array response plus noise. So we would have an incoming signal at timeslot l

zl(ϑ) = a(ϑ) + nl, (3.1)

where a(ϑ) is de�ned as in (2.2) withN = 4 in this case (the vector zl has therefore
size N×1), ϑ corresponds to the AoA that we want to estimate, and nl is complex
AWGN distributed as

nl ∼ CN (0, N0I) . (3.2)

Each of the phase codewords inside the desired phase codebook from the ones
obtained in the previous chapter will be applied to this signal, taking as many
timeslots there are codewords in the codebook (in this case we are interested the

17
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size L = 2). Note that the same signal is transmitted over the L timeslots and ϑ is
assumed to be constant over these timeslots. This will give an equivalent received
signal

y = W Ta(ϑ) + ñ, (3.3)

where W is the matrix associated to a whole codebook using the codewords wl

from (2.7) as columns and normalizing so as not to increase the noise

W =

[
w1√
N

w2√
N

...
wL√
N

]
, (3.4)

where L = 2 and N = 4. Note that the new noise vector has elements of the form

ñl = wT
l nl, (3.5)

so that the total vector ñ has distribution

ñ ∼ CN (0, N0I) . (3.6)

Equation (3.6) holds true because the samples of nk are independent among each
other. Furthermore, the normalization considered in W will assure that the noise
component obtained in each time slot is not ampli�ed.

The estimation of the AoA will be done using Maximum Likelihood Estima-
tion (MLE) since this estimation is asymptotically optimum [19]. This estimation
maximizes the likelihood function de�ned as the conditional PDF of y given the
parameter ϑ

L(ϑ) = p(y;ϑ). (3.7)

Therefore, we can express the ML estimator as

ϑ̂ML = arg max
ϑ

p(y;ϑ). (3.8)

where p(y;ϑ) is given by

p(y;ϑ) =
1√

(πN0)L
exp

−
∥∥∥y −W Ta(θ)

∥∥∥2

N0

 . (3.9)

Since this estimator can be shown to be too di�cult for analytic computation,
we will use a numerical algorithm to get a good approximate solution instead. The
algorithm will calculate L(ϑ) over a sweep of ϑ values, select the value of ϑ that
gives the maximum L(ϑ), and re�ne the result by doing a new sweep around the
ϑ obtained before and getting the new ϑ that gives the maximum L(ϑ).

Now that we have de�ned our estimation problem, it is our main interest to see
how the di�erently optimized codebooks obtained in the previous chapter perform
in this problem. To do so, we will take the matrix W in (3.3) as one of the
optimized codebooks from Chapter 2.
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3.2 Estimation Performance of the Optimized Codebooks

Taking the optimized codebooks obtained from the previous chapter, we would
like to see what in�uence the performance metrics being optimized for, as well
as the optimization method, have on the performance for the AoA estimation.
To do so, we perform simulations where we estimate the AoA using the di�erent
optimized codebooks. We would like to answer the question: "In order to obtain
high precision in the AoA estimation, should the codebook be optimized for Lavg

or Lmax, and using pure phase optimization of steering optimization?".

We evaluate the performance of each phase codebook as the MSE (Mean
Squared Error) committed in the estimation using that codebook with respect
to the true value

MSE(ϑ) = E{(ϑ̂− ϑ)2}. (3.10)

Since we are interested in the whole range Ω140◦ we have to average ϑ over this
range assuming that the AoA is uniformly distributed in this range. So this gives
us

MSEavg =
1

SΩ

∫
Ω

MSE(ϑ)dϑ

=
1

140

∫ 70

−70

MSE(ϑ)dϑ. (3.11)

Thus, we run simulations to analyze the performance of each of the optimized
codebooks in terms of MSEavg as de�ned in (3.11).

3.2.1 Simulation results

In Figure 3.1 we can see the MSE results for the di�erently optimized codebooks.
The results are apparently not as positive as we would have expected beforehand.

As we can see, for some SNR values the steering optimization performs better
than the pure phase optimization. In the region below −10dB the best codebook
is the one associated to the steering optimization for Lmax, in the region between
−10dB and −2dB the pure phase optimization for Lavg is best, while above −2dB
the best one is the codebook associated to the steering optimization for Lavg,
although they all converge to MSEavg = 0 if the SNR is su�ciently high.

These results make sense since we are considering that the signal y(ϑ) is being
detected properly in all cases. This means that if the received signal is coming from
an angle that corresponds to a minimum in the total array gain of one codebook
we could still estimate its AoA, since if y(ϑ) is almost 0 we would say that the
received signal is coming from one of the directions where we have a minimum in
GT(ϑ). However, in a real scenario this would not be possible since the �rst step
would be to know if we are actually receiving any signal and then to estimate the
AoA associated to that signal. In other words, if we do not receive any signal we
are not able to to detect any AoA; we would rather say that the signal is absent.
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Figure 3.1: MSE of the estimator for the di�erent optimized code-
books.
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3.3 Detection Performance of the Optimized Codebooks

After taking a look at the simulation results for the AoA estimation performance of
the codebooks in the previous section, and noticing that these results are assuming
perfect detection, we �nd it interesting to take a look at how these codebooks
actually perform in terms of detection performance. This means that we are
interested now in knowing under which conditions would the di�erent codebooks be
able to detect an incoming signal in any of the possible AoAs uniformly distributed
in the space de�ned. We use the same system model as we de�ned at the beginning
of the chapter, but now we will focus on detecting if the received signal after the
phase shift modules, y (in this case the dependence on ϑ doesn't concern us since
we are not interested in estimating it), contains the signal W Ta(ϑ) or if it is just
noise, thus we have two possible hypothesis

H0 : y = ñ (3.12a)

H1 : y = W Ta(ϑ) + ñ, (3.12b)

where H0 corresponds to assuming that there is no received signal while H1 as-
sumes that there is a received signal at a certain angle. Note that H1 is a com-
posite hypothesis [20] where ϑ can take any value in the space de�ned, since
ϑ ∼ U(−70, 70).

To compare the performance of the di�erent optimized codebooks we obtain
the ROC curves associated to each of them. These curves relate PD and PFA,
de�ned respectively as the probability of detecting the signal when it is present,
and the probability of detecting a signal when it is not present (false alarm).

According to the Neyman-Pearson lemma [20], to maximize PD for a given
PFA, H1 should be selected if

L(y) =
p(y;H1)

p(y;H0)
> γ, (3.13)

where γ is related to the given PFA through

PFA =

∫
L(y)>γ

p(y;H0)dy (3.14)

while PD is obtained by

PD =

∫
L(y)>γ

p(y;H1)dy. (3.15)

The PDF under H0 is given directly by

p(y;H0) =
1

(πN0)L
exp

(
−‖y‖

2

N0

)
(3.16)

‖y‖2 =

L∑
i=1

|yi|2 (3.17)
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with L = 2 in this case, corresponding to the number of codewords in the codebook,
and thus the length of vector y.

For the PDF under H1, since it is a composite hypothesis with a random
variable we need to take a di�erent approach. We have two possibilities, the
Bayesian approach and the GLRT (Generalized Likelihood Ratio Test) approach.
The Bayesian approach consists in de�ning p(y;H1) as

p(y;H1) =

∫
Ω

p(y|ϑ;H1)p(ϑ)dϑ

=
1

140

∫ 70

−70

p(y|ϑ;H1)dϑ, (3.18)

where p(y|ϑ;H1) equals

p(y|ϑ;H1) =
1

(πN0)L
exp

−
∥∥∥y −W Ta(θ)

∥∥∥2

N0

 . (3.19)

The GLRT (Generalized Likelihood Ratio Test) approach consists of �rst assuming

H1 and obtaining ϑ̂ as the MLE, and then de�ning p(y;H1) as

p(y;H1) = p(y|ϑ̂;H1). (3.20)

We will be using the Bayesian approach since it o�ers a better performance (al-
though we will also check the GLRT to compare them).

With these considerations, we run simulations to obtain the ROC curves as-
sociated to the di�erent codebooks. To do so, we compute p(y;H1) and p(y;H0)
for a number of realizations of y, considering that both ñ and ϑ are random, and
get the PFA and PD using (3.13) for a sweep of γ values.

3.3.1 Simulation results

In Figures 3.2-3.6 we show the ROC curves resulting from the simulations for dif-
ferent SNR values. We can see that in general the curves associated to codebooks
using pure phase optimization perform better, and more speci�cally the one opti-
mizing Lmax is generally the best. However, if we take a close look at the curves
for low SNR, specially in Figure 3.2, we notice that for low PFA values (in general
we would like a low PFA value so that we don't waste energy on trying to decode
noise) the curves cross each other and the steering optimization for Lavg performs
better than the rest in some cases. This fact is eliminated as SNR goes above
0dB, and we see that the performance of pure phase optimization gets a clearer
gain in detection performance as SNR grows until the curves begin to saturate at
SNR over 10dB. This saturation may happen when the SNR is su�ciently high
so that the received power is high enough even at the directions where the total
array gain reaches the value Lmax.
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Figure 3.2: ROC curves for the optimized codebooks at SNR =
−5dB.

Figure 3.3: ROC curves for the optimized codebooks at SNR =
0dB.
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Figure 3.4: ROC curves for the optimized codebooks at SNR =
2.5dB.

Figure 3.5: ROC curves for the optimized codebooks at SNR =
5dB.
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Figure 3.6: ROC curves for the optimized codebooks at SNR =
10dB.

3.4 Concluding Remarks

In this chapter we have analyzed the AoA estimation using the optimized phase
codebooks obtained in the previous chapter. We have seen that the pure phase
optimized codebooks don't pose a clear improvement in terms of MSE in the AoA
estimation. Nevertheless, this could be explained by the fact that for the MSE
calculations we assume perfect detection, and not all the codebooks have the same
detection performance.

So as to check the detection performance we have simulated the ROC curves
for the di�erent codebooks. We have observed that in general the pure phase
optimized codebooks, specially the one optimizing Lmax, o�er a better detection
performance. We can expect therefore that the most important metric for this
detection performance is Lmax, which it is the one that the pure phase optimization
can improve the most over the steering optimization if we look at Table 2.1. Now
we would like to �nd an explanation to this improvement in detection performance,
but the scenario looks too complex to analyze it theoretically. Therefore, in the
next chapter we will take a simpli�ed scenario related to the original one to be able
to analyze it theoretically and get some understanding about how this detection
performance is a�ected by the metrics Lavg and Lmax.
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Chapter4
Detection Performance in a Simpli�ed

Scenario

In this chapter a simpli�ed scenario will be presented and analyzed to get some
insights regarding the detection performance of our optimized codebooks. We
would like to understand why the pure phase optimized codebooks, and above
all the one optimizing Lmax, perform better than the rest. As we could see in
the previous chapter, Lmax is the metric that should be reduced to get a better
detection performance, so we will try to de�ne a scenario which allows to see this
relationship.

4.1 Scenario De�nition

If we look at the original scenario from Chapter 3 we can see that we are just
receiving a vector containing complex exponentials associated to the AoA plus
some noise, multiplying it by a certain codebook and trying to estimate the AoA
from the resulting signal. This is equivalent in some way to introducing a pure tone
plus some noise to a speci�c �lter or channel with a known response in frequency,
and determining the frequency of the signal.

It is clear that a pure tone in the time domain is just a complex exponential
associated to the frequency of the tone and �ltering it would mean to multiply it
in frequency by a certain value, although for pure tones this multiplication in the
frequency domain can be translated to a multiplication in the time domain since
the bandwidth is close to 0. If we focus on the frequency domain, without loss
of generality, we can get a simpli�ed scenario which will give us understanding
of our original problem. Furthermore, we can de�ne a �lter such that it has just
two values throughout its bandwidth. The �rst value, A, will be associated to the
metric Lmax of the original scenario, and the second value, B, will be associated
to the MRC gain , with A < B.

So the scenario can be seen as a transmitted signal x that takes the value 1 at
a random position p while having the rest of the positions equal to 0. The total
length of x is P so that p ∼ U(0, P −1). This signal goes through a channel which
takes the value A for p ≤ C and B for p > C and adds AWGN of variance N0/2.
Therefore, the received signal is

y = Dx + n, (4.1)

27
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where n is the noise signal n ∼ N (0, N0/2), and D = diag(λ1, λ2, ..., λP ) is the
diagonal matrix representing the channel or �lter response

λi =

{
A if i ≤ C
B if i > C.

(4.2)

Our interest is to analyze the detection performance in the scenario with re-
spect to the parameters A, B and C that de�ne the channel. We can therefore
de�ne two possible hypothesis H0 and H1, where H0 corresponds to the case where
the transmitted signal x is not present (x = 0) and H1 corresponds to the case
where it is present

H0 : y = n (4.3a)

H1 : y = Dx + n. (4.3b)

Note that these equations are similar to (3.12).
So it can be clearly seen that under H0, y ∼ N (0, N0/2) while under H1,

y ∼ N (Dx, N0/2I). Since x has an unknown random parameter p we will have
to take a composite hypothesis testing approach.

4.2 Detection Probability Characterization

4.2.1 Calculations

We can take again the Neyman-Pearson lemma (3.13) to maximize PD given PFA.
A reader not interested in the detailed derivation of PD can proceed directly to
Equation (4.24), where the result is stated. Under H0 the PDF is perfectly known
and gives

p(y;H0) =
1√

(πN0)P
exp

(
−‖y‖

2

N0

)
(4.4)

‖y‖2 =

P∑
i=1

|yi|2. (4.5)

However, as we mentioned before H1 has a PDF containing a random pa-
rameter p. This means that we need a composite hypothesis testing approach
for de�ning p(y;H1). Due to its good performance we will use again a Bayesian
approach where in this case

p(y;H1) =

∫
p(y|p;H1)p(p)dp. (4.6)

In our case p is a discrete uniformly distributed random variable, so we can
express this integral as

p(y;H1) =
1

P

P∑
i=1

p(y|p;H1). (4.7)
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The PDF p(y|p;H1) corresponds to

p(y|p;H1) =
1√

(πN0)P
exp

(
− (yp − λp)2

N0

)
exp

(
−
∑
i 6=p y

2
i

N0

)

=


1√

(πN0)P
exp

(
− (yp−A)2

N0

)
exp

(
−
∑
i6=p y

2
i

N0

)
if p ≤ C

1√
(πN0)P

exp
(
− (yp−B)2

N0

)
exp

(
−
∑
i6=p y

2
i

N0

)
if p > C.

(4.8)

If we simplify the expression we get

p(y|p;H1) =
1√

(πN0)P
exp

(
−

(yp − λp)2 − y2
p

N0

)
exp

(
−
∑P−1
i=0 yi

2

N0

)

=
1√

(πN0)P
exp

(
2ypλp − λ2

p

N0

)
exp

(
−‖y‖

2

N0

)
. (4.9)

Taking the Bayesian approach we get

p(y;H1) =
1

P

P∑
p=1

1√
(πN0)P

exp

(
2ypλp − λ2

p

N0

)
exp

(
−‖y‖

2

N0

)

=
exp

(
−‖y‖

2

N0

)
P
√

(πN0)P

P∑
p=1

exp

(
2ypλp − λ2

p

N0

)

=
exp

(
−‖y‖

2

N0

)
P
√

(πN0)P

 C∑
i=1

exp

(
2yiA−A2

N0

)

+

P∑
j=C+1

exp

(
2yjB −B2

N0

) . (4.10)

This gives us a likelihood ratio of

L(y) =
p(y;H1)

p(y;H0)

=
1

P

C∑
i=1

exp

(
2yiA−A2

N0

)
+

P∑
j=C+1

exp

(
2yjB −B2

N0

)

=
1

P

P∑
i=1

exp

(
2yiλi − λ2

i

N0

)
. (4.11)
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From (4.3) it can be derived that under H0, yi ∼ N (0, N0/2) ∀i ∈ [0, P − 1].
On the other hand, under H1, these random variables depend on the position p of
the 1 in x. This means that, under H1,

yi ∼

 N (A, N0/2) if i = p and p ≤ C
N (B, N0/2) if i = p and p > C
N (0, N0/2) if i 6= p.

(4.12)

The term inside the exponentials in (4.11) is also a normal random variable
since it is formed from a multiplication and a sum with a constant value. It can
be easily derived that under H1

2yiλi − λ2
i ∼



N
(
A2

N0
, 2A2

N0

)
if i = p and p ≤ C

N
(
B2

N0
, 2B2

N0

)
if i = p and p > C

N
(
−A2

N0
, 2A2

N0

)
if i 6= p and i ≤ C

N
(
−B

2

N0
, 2B2

N0

)
if i 6= p and i > C.

(4.13)

Under H0 the same random variable would be distributed as in the case where
i 6= p under H1. By de�nition, the exponential of a normal random gives a
log-normal random variable. Our likelihood function L(y) is therefore a sum of
log-normal random variables. Furthermore, the mean and variance of each of these
variables may not be the same as we can predict from (4.13). All this makes L(y)
to be distributed in an apparently unknown way. However, as discussed in [21],
we could approximate this distribution as a log-normal distribution with mean
and variance being the sum of the means and variances respectively of each of the
log-normal variables being summed.

If we have a normally distributed random variable with mean µ and variance
σ2, the log-normal random variable resulting from taking the exponential of this
normal random variable will have mean µlog and variance σ2

log

µlog = exp

(
µ+

σ2

2

)
(4.14a)

σ2
log = (exp(σ2)− 1) exp(2µ+ σ2). (4.14b)

Therefore, we can get the distribution for the exponentials under H1 as
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exp(2yiλi−λ2
i ) ∼



LN

[
exp

(
2A2

N0

)
,

(
exp

(
2A2

N0

)
− 1

)
exp

(
4A2

N0

)] if i = p,

and p ≤ C

LN

[
exp

(
2B2

N0

)
,

(
exp

(
2B2

N0

)
− 1

)
exp

(
4B2

N0

)] if i = p,

and p > C

LN
(

1, exp
(

2A2

N0

)
− 1

)
if i 6= p,

and p ≤ C

LN
(

1, exp
(

2B2

N0

)
− 1

)
if i 6= p,

and p > C.

(4.15)
Again, under H0 the distribution would correspond to the case where i 6= p.

The mean and variance of the likelihood function under H0 will then be

E{L(y;H0)} =
1

P
(C + P − C) = 1 (4.16a)

Var{L(y;H0)} =
1

P 2

C
exp

(
2A2

N0

)
− 1



+(P − C)

exp

(
2B2

N0

)
− 1


 . (4.16b)

Under H1 we have the case that p ≤ C and the case that p > C

E{L(y|p ≤ C;H1)} =
1

P

C − 1 + P − C + exp

(
2A2

N0

)
=

1

P

P + exp

(
2A2

N0

)
− 1

 (4.17a)

Var{L(y|p ≤ C;H1)} =
1

P 2

(C − 1)

exp

(
2A2

N0

)
− 1


+ (P − C)

exp

(
2B2

N0

)
− 1

 (4.17b)

+

exp

(
2A2

N0

)
− 1

 exp

(
4A2

N0

) .
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E{L(y|p ≤ C;H1)} =
1

P

C − 1 + P − C + exp

(
2B2

N0

)
=

1

P

P + exp

(
2B2

N0

)
− 1

 (4.18a)

Var{L(y|p ≤ C;H1)} =
1

P 2

C
exp

(
2A2

N0

)
− 1


+ (P − C − 1)

exp

(
2B2

N0

)
− 1

 (4.18b)

+

exp

(
2B2

N0

)
− 1

 exp

(
4B2

N0

) .
Now that we have characterized L(y) as a log-normal distribution, with a

mean and variance for the di�erent cases, we can take the logarithm of it. This
means obtaining the log-likelihood function, ln(L(y)), which should be distributed
approximately as a normal random variable. In order to obtain the mean and
variance of ln(L(y)) we can use the results in (4.16), (4.17) and (4.18), and derive
using (4.14)

µ = ln(µlog)− 1

2
ln

(
σ2

log

µ2
log

+ 1

)
(4.19a)

σ2 = ln

(
σ2

log

µ2
log

+ 1

)
. (4.19b)

The �nal expressions are too long to write them down and analyze them, but
they can be computed easily with the help of software tools.

Now we are able to characterize approximately the log-likelihood function by
a normal distribution ln(L(y)) ∼ N (µ, σ2) with a �xed mean and variance for H0,
µH0

and σ2
H0

. Under H1, however, the log-likelihood function can take one of two
sets of possible means and variances:

ln(L(y|p ≤ C;H1)) ∼ N (µH1A, σ
2
H1A) (4.20)

when the uniformly distributed random variable p takes values below C, and

ln(L(y|p > C;H1)) ∼ N (µH1B, σ
2
H1B) (4.21)

in the complementary case. In this case it poses no problem since p is uniformly
distributed and we can just average the two distributions considering the length
of the intervals where each of the distributions take place.
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With all these derivations we consider again the Neyman-Pearson lemma (3.13)
[20], where in this case we have taken the logarithm, but since it is a monotonic
function it only a�ects to the fact that the variable γ is now a di�erent one γ′.
We get PFA from (3.14)

PFA =

∫
ln(L(y))>γ′

p(y;H0)dy

= Q

γ′ − µH0√
σ2
H0

 . (4.22)

From this result we can also get γ′ as a function of PFA

γ′ =
√
σ2
H0

Q−1(PFA) + µH0
. (4.23)

PD can be also computed as

PD =

∫
ln(L(y))>γ′

p(y;H1)dy

=
C

P
Q

γ′ − µH1A√
σ2
H1A

 P − C
P

Q

γ′ − µH1B√
σ2
H1B



= α Q


√
σ2
H0

Q−1(PFA) + µH0
− µH1A√

σ2
H1A


(4.24)

+(1− α) Q


√
σ2
H0

Q−1(PFA) + µH0
− µH1B√

σ2
H1B

 ,

where we have de�ned α = C/P .

4.2.2 Validation of the results

For the validation of (4.24), where we have used approximations that may not be
tight in all cases, we will run simulations of the scenario de�ned and compare the
results with those obtained using the formula we have obtained. For normalization
purposes, we set the total power of the channel to 1, i.e.,

A2αP +B2(1− α)P = 1. (4.25)

We also de�ne the productN0×P instead of justN0 so that the SNR is maintained.
In Figures 4.1-4.10 we have the ROC curves comparing the simulated results

and the calculated ones. We can see that in general the approximations leading
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to (4.24) are fairly accurate. However, as SNR decreases, which can be related to
1

P×N0
, we can see that the approximation gets worse performance. This e�ect is

higher if we lower the α value, where the limiting SNR gets lower as can be seen
from Figures 4.8 or 4.6. Therefore, the most limiting case in terms of SNR for the
approximation to withhold is the case for α = 0, where we can note that in this
case the A value doesn't a�ect at all. Thus, we can see that it is equivalent in
this sense to use a low α to using an A value close to the B value (it's the same
setting A = B and setting α = 0) as can be seen from Figure 4.4. Another thing
we have noticed from Figures 4.9 and 4.10 regarding our approximation is that, if
we increase P with respect to the SNR, the formula is less accurate.

Figure 4.1: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.2, A = 0.02, B =
0.11, P = 100 and α = 0.5.

Figure 4.2: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.4, A = 0.02, B =
0.11, P = 100 and α = 0.5.

4.3 Simpli�cation and Approximation

As it has been mentioned before, the �nal expressions for the statistics of the log-
likelihood function are far too long and di�cult to analyze. In order to make them
more tractable, we are going to simplify the scenario and invoke approximations
until we get a closed form formula easy enough to gain some understanding from.

4.3.1 Assumptions

So as to be able to simplify our results and to be able to apply approximations we
have to make assumptions �rst. We consider from now on only the case in which
the variable A, corresponding to the �rst value of the channel, is either 0 or equal
to B, corresponding to the second value of the channel. Nonetheless, this second
case is the same as to say that the value α de�ned in (4.24) is set to 0 and A is
not considered at all.
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Figure 4.3: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.4, A = 0.02, B =
0.22, P = 100 and α = 0.8.

Figure 4.4: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.4, A = 0.02, B =
0.22, P = 100 and α = 0.8.

Figure 4.5: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.2, A = 0.04, B =
0.11, P = 100 and α = 0.2.

Figure 4.6: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.25, A = 0.04, B =
0.11, P = 100 and α = 0.2.
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Figure 4.7: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.15, B = 0.1, P =
100 and α = 0.

Figure 4.8: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.2, B = 0.1, P = 100
and α = 0.

Figure 4.9: Simulated and calcu-
lated ROC curves for N0 ×
P = 0.15, B = 0.1, P = 50
and α = 0.

Figure 4.10: Simulated and cal-
culated ROC curves for N0×
P = 0.15, B = 0.1, P =
200 and α = 0.
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The main goal of this model now is to compare the performance for di�erent
values of α. To do so we need to normalize then the value B so that the total
power of the channel is kept constant. A good normalization is to set the total
power of the channel to be 1

‖D‖2F = trace(DHD) = (P − C)B2 = P (1− α)B2 (4.26)

Thus, this can be done just by setting

B =
1√

P (1− α)
(4.27)

Note that we are already considering that A = 0, and that A = B is just done by
setting α = 0. However, with this normalization if we increase P , then B would
get smaller and smaller, making the signal y to be almost noise. So as to remove
this e�ect we will set

N0 =
N0ref

P
(4.28)

N0ref being a reference noise spectral density. This way we can de�ne our signal
to noise ratio as

SNR =
2(1− α)B2

N0
=

2

N0ref
(4.29)

which is constant over P . The factor 2 is just a scaling factor that comes in handy
to simplify the expressions, but we would have to subtract 3dB to be able to
compare with other real scenarios.

Another assumption that we will make is that we assume high SNR, more
speci�cally

exp

(
2B2

N0

)
≥ exp(SNR)� 1 (4.30)

and also, although this limits the approximation, especially for certain values of
α, we assume

1

P
exp

(
2B2

N0

)
� 1. (4.31)

Of course P has to be also big so that the previous approximations stand, but not
as large as the exponential of 2B2/N0.

4.3.2 Approximations

To simplify our expressions we will �rst take as starting point the expressions
(4.16), (4.17) and (4.18). It can be easily seen that the expressions in (4.16) and
(4.17) are the same for A = 0, so we will just have to simplify them once. A reader
not interested in the detailed derivations can proceed directly to (4.42), where the
formula (4.24) is presented after approximating.
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Evaluating (4.17) at A = 0 we get

E{L(y|p ≤ C;H1)} = E{L(y;H0)}

=
1

P
(P + 1− 1)

= 1 (4.32a)

Var{L(y|p ≤ C;H1)} = Var{L(y;H0)}

=
1

P 2

(P − C)

exp

(
2B2

N0

)
− 1




=
1

P

(1− α)

exp

(
2B2

N0

)
− 1


 . (4.32b)

Then if we invoke the assumption (4.30) in (4.32b) we get

Var{L(y;H0)} ≈ 1

P

(1− α) exp

(
2B2

N0

) . (4.33)

We next develop the expression under H0, although it is clear that it will be the
same as H1 with p ≤ C. Then, if we take (4.19) to get the mean and variance of
the log-likelihood function we get

E{ln(L(y;H0))} = −1

2
ln

(
1− α
P

exp

(
2B

N0

)
+ 1

)
(4.34a)

Var{ln(L(y;H0))} ≈ ln

(
1− α
P

exp

(
2B

N0

)
+ 1

)
, (4.34b)

where we can approximate, through (4.31),

E{ln(L(y;H0))} ≈ −1

2
ln

(
1− α
P

exp

(
2B

N0

))

=
1

2
ln

(
P

1− α

)
− B

N0
(4.35a)

Var{ln(L(y;H0))} ≈ ln

(
1− α
P

exp

(
2B

N0

))

=
2B

N0
− ln

(
P

1− α

)
. (4.35b)

These results apply also to E{ln(L(y|p ≤ C;H1))} and Var{ln(L(y|p ≤ C;H1))}
as mentioned before.
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If we take (4.18) for A = 0 we have

E{L(y|p > C;H1)} ≈ 1

P

P + exp

(
2B2

N0
− 1

) (4.36a)

Var{L(y|p > C;H1)} ≈ 1

P 2

(P − C − 1)

exp

(
2B2

N0

)
− 1



+

exp

(
2B2

N0

)
− 1

 exp

(
4B2

N0

) .
(4.36b)

Considering the assumption (4.30) we can approximate (4.36) as

E{L(y|p > C;H1)} ≈ 1

P

P + exp

(
2B2

N0

) (4.37a)

Var{L(y|p > C;H1)} ≈ 1

P 2

(P − C − 1) exp

(
2B2

N0

)
+ exp

(
6B2

N0

) . (4.37b)

Then using (4.31) we get

E{L(y|p > C;H1)} ≈ 1

P
exp

(
2B2

N0

)
(4.38a)

Var{L(y|p > C;H1)} ≈ 1

P 2
exp

(
6B2

N0

)
. (4.38b)

For the log-likelihood function, (4.21), we can again use (4.19)

E{ln(L(y|p > C;H1))} ≈ ln

 1

P
exp

(
2B2

N0

)
− 1

2
ln

exp

(
2B2

N0

)
+ 1

 (4.39a)

Var{ln(L(y|p > C;H1))} ≈ ln

exp

(
2B2

N0

)
+ 1

 . (4.39b)
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Assuming once again (4.30) and (4.31)

E{ln(L(y|p > C;H1))} ≈ 2B2

N0
− ln(P )− B2

N0

=
B2

N0
− ln(P ) (4.40a)

Var{ln(L(y|p > C;H1))} ≈ 2B2

N0
. (4.40b)

So we have obtained through approximation fairly simple expressions to char-
acterize the statistics of the log-likelihood function for the di�erent cases. We can
now plug these expressions in (4.24) where we can notice that since the statistics
for H0 coincide with the ones for H1 and p ≤ C the �rst part simpli�es to PFA

PD = αPFA + (1− α)

× Q


√

2B2

N0
− ln

(
P

1−α
)
Q−1(PFA) + 1

2 ln
(

P
1−α

)
− 2B2

N0
+ ln(P )√

2B2

N0


= αPFA + (1− α) Q

√1− N0

2B2
ln

(
P

1− α

)
Q−1(PFA)

(4.41)

−

√
2B2

N0
+

1

2

√
N0

2B2
ln

(
P 3

1− α

) .
The last step would be to rearrange the expression using (4.29)

PD = αPFA + (1− α) Q

√1− 1− α
SNR

ln

(
P

1− α

)
Q−1(PFA)

−
√

SNR

1− α
+

1

2

√
1− α
SNR

ln

(
P 3

1− α

) .
(4.42)

This formula will be useful for analyzing the scenario from a theoretical point of
view and get further understanding of the problem.

4.3.3 Validation of the approximation

So as to know how well our approximations perform we will compare the approx-
imated formula with the original formula. We will also check with the simulation
results, although in this case we will take the assumptions that A = 0, that the
power of the channel is just 1 and that the SNR is de�ned as in (4.29). Therefore,
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each ROC curve obtained will just depend on the SNR, the P value and the α
value.

In Figures 4.11-4.20 we can see the ROC curves for the simulated, calculated
and approximated results. We can see that, in general, the approximation (4.42)
gets almost the same ROC curves as the the original formula (4.24), and thus, it
is the previous characterization that limits the applicability of our �nal formula.
However, if we look at Figure 4.18 we see a small error between the approximation
and the original formula. This is because in our approximation we are using
directly the value α without computing C = αP , which has to be an integer, and
so it is rounded to the nearest one. Therefore, if we use a P which is too small
to ignore this fact, and such that αP doesn't give an integer value we can have
this problem, but we will be working with large enough P values so this shouldn't
pose a problem.

Figure 4.11: Simulated, calcu-
lated and approximated ROC
curves for SNR = 13.3,
P = 100 and α = 0.

Figure 4.12: Simulated, calcu-
lated and approximated ROC
curves for SNR = 10, P =
100 and α = 0.

4.4 Interpretation of the Formula

After obtaining and approximated formula (4.42) for PD, the problem is now to get
some insight out of it. We can easily see that the PD grows with SNR, as common
sense would suggest, since the value inside the Q function gets more negative
(Q(x) is decreasing with x). We can also get an upper limit for the probability of
detection in case Q gets to its maximum, 1. This would give us

PD ≤ PDmax = αPFA + (1− α), (4.43)

where the optimum is α = 0, where we would get PD = 1. However, apart from
these simple relations it is hard to see clear relations between PD and the rest of
the variables, specially α. A good way to get some more insight of these relations
is to take derivatives with respect to α and analyze what we get.
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Figure 4.13: Simulated, calcu-
lated and approximated ROC
curves for SNR = 10, P =
100 and α = 0.2.

Figure 4.14: Simulated, calcu-
lated and approximated ROC
curves for SNR = 8, P =
100 and α = 0.2.

Figure 4.15: Simulated, calcu-
lated and approximated ROC
curves for SNR = 10, P =
5 and α = 0.2.

Figure 4.16: Simulated, calcu-
lated and approximated ROC
curves for SNR = 10, P =
300 and α = 0.2.
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Figure 4.17: Simulated, calcu-
lated and approximated ROC
curves for SNR = 5, P =
200 and α = 0.5.

Figure 4.18: Simulated, calcu-
lated and approximated ROC
curves for SNR = 5, P = 5
and α = 0.5.

Figure 4.19: Simulated, calcu-
lated and approximated ROC
curves for SNR = 10, P =
100 and α = 0.8.

Figure 4.20: Simulated calcu-
lated and approximated ROC
curves for SNR = 5, P =
100 and α = 0.8 and α = 0.
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4.4.1 Di�erentiation with respect to α

In Figures 4.21, 4.22 and 4.23 we have some examples of how would the PD over
α look like depending on the properties of its derivatives that we could expect. If

Figure 4.21: Example of PD over
α with negative �rst deriva-
tive.

Figure 4.22: Example of PD

over α with negative second
derivative.

Figure 4.23: Example of PD over
α with unconstrained deriva-
tives.

we take the �rst derivative of the PD in (4.42) with respect to α we get

∂

∂α
PD = PFA + (1− α)

∂Q(g(α))

∂α
−Q(g(α)), (4.44)

with

g(α) =

√
1− (1− α)

SNR
ln

(
P

(1− α)

)
Q−1(PFA)−

√
SNR

(1− α)

+
1

2

√
(1− α)

SNR
ln

(
P 3

(1− α)

)
,

(4.45)

and where we have the problem of di�erentiating the special function Q(x). How-
ever, this function is just an integral of the form

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du. (4.46)
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Therefore, we can use the Leibniz integral rule [22] that states

d

dx

(∫ b(x)

a(x)

f(x, t)dt

)
= f(x, b(x))

d

dx
b(x)− f(x, a(x))

d

dx
a(x)

+

∫ b(x)

a(x)

∂

∂x
f(x, t)dt.

(4.47)

In our case, we can express ∂Q(g(α))
∂α as

∂Q(g(α))

∂α
=

∂

∂α

 1√
2π

∫ ∞
g(α)

exp

(
−u

2

2

)
du


= − 1√

2π
exp

(
−g(α)2

2

)
∂g(α)

∂α
, (4.48)

where we just need to calculate the derivative of g(α) which gives

∂g(α)

∂α
=

ln( P
1−α )− 1

2SNR

√
1− (1−α)

SNR ln
(

P
1−α

)Q−1(PFA)−
ln
(
P 3

1−α

)
4SNR

√
1−α
SNR

+
1

2(1− α)

√
1− α
SNR

(
1− SNR

1− α

)

=
ln
(

P
1−α

)
− 1

2SNR

√
1− (1−α)

SNR ln
(

P
1−α

)Q−1(PFA)

(4.49)

+
1

2
√

SNR(1− α)

1− SNR

1− α
−

ln
(
P 3

1−α

)
2

 .

Having characterized ∂
∂αPD, we know that if this derivative is always negative

then the optimum α would just be 0. Another possibility is that, if we can prove
that the second derivative is always negative, it is enough to evaluate the �rst
derivative at the point α = 0 to see if there would be a maximum α di�erent
from 0 (in case this derivative is positive) or if the optimum α is 0 (in case this
derivative is negative). So if we take the second derivative over PD we have

∂2

∂α2
PD =

∂

∂α

(
PFA + (1− α)

∂Q(g(α))

∂α
−Q(g(α))

)
= (1− α)

∂2Q(g(α))

∂α2
− 2

∂Q(g(α))

∂α
, (4.50)
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where we just need to calculate ∂2Q(g(α))
∂α2 since we already have the rest. We can

express this second derivative as

∂2Q(g(α))

∂α2
=

∂

∂α

− 1√
2π

exp

(
−g(α)2

2

)
∂g(α)

∂α


=

1√
2π

exp

(
−g(α)2

2

)(
g(α)

(
∂g(α)

∂α

)2

− ∂2g(α)

∂α2

)
, (4.51)

and where again we already know everything except for ∂2g(α)
∂α2 , which can be

obtained di�erentiating (4.49) as

∂2g(α)

∂α2
= Q−1(PFA)

×

2
1−αSNR

√
1− (1−α)

SNR ln
(

P
1−α

)
−
(

ln
(

P
1−α

))(
ln
(

P
(1−α)

)
− 1

)
2SNR

√
1− 1−α

SNR ln
(

P
1−α

)

+

2
√

(1− α)SNR
(
− SNR

(1−α)2 −
1

2(1−α)

)
+ SNR

(
1− SNR

1−α −
ln
(
P3

1−α

)
2

)
4

√(
(1− α)SNR

)3

=
Q−1(PFA)

2SNR(1− α)

√
1− (1−α)

SNR ln
(

P
1−α

)
1−

(1− α)

(
ln
(

P
1−α

)
− 1

)2

2SNR

(
1− 1−α

SNR ln
(

P
1−α

))


(4.52)

−
6SNR + (1− α)ln

(
P 3

1−α

)
8(1− α)2

√
(1− α)SNR

.

As it can be seen, the expressions obtained are not straightforward to analyze
without taking further assumptions or computing them numerically for di�erent
cases. If we compute PD with respect to α for a given PFA, let's say PFA = 10−3

since we are interested in low false alarm probabilities, we can get insights on how
to optimize α for di�erent SNR values. This relates with the results from the
previous chapter, where the maximum loss optimization would correspond in the
extreme case to set α to 0 by decreasing the maximum gain (yet maintaining the
same Lavg).

If we look at Figure 4.24, where the value of SNR has been chosen as the limit
where our approximated formula (4.42) is close to the simulations, we notice that
the optimum α is not 0. However, if we increase the SNR, in Figure 4.25 we see
that the optimum α is 0 in this case, and can see that the relation between PD and
α is almost linear. This suggests us that, if we go to the asymptotically high SNR
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Figure 4.24: PD over α for
PFA = 10−3, P = 100 and
SNR = 10dB using the ap-
proximated formula.

Figure 4.25: PD over α for
PFA = 10−3, P = 100 and
SNR = 16dB using the ap-
proximated formula.

region, ∂
∂αPD will tend to be a negative constant. Thus, ∂2

∂α2PD will tend to 0, and
the optimum α will be always 0. Our main interest is to get closed form results,
and the low SNR case appears to be too complicated to get them. Therefore, due
to the intuition we get from Figure 4.25, we would like to explore in more detail
the high SNR region to be able to get a better understanding of our results.

4.4.2 Asymptotic analysis

We want to �nd the limit of our formulas if we go to the asymptotically high
SNR regime. However, it is of interest to analyze what happens if the constant P ,
which can be seen as the angular resolution in our original scenario, goes high too.
By looking at (4.42), as well as at the expressions obtained for the the di�erent

derivatives, we notice that there are many fractions of the form ln(P )
SNR , so it can be

of interest to take both the SNR and the ln(P ) to in�nity at a constant rate

ln(P )

SNR

∣∣∣∣ P→∞SNR→∞ = β, (4.53)

and get the asymptotic results. Note that, considering (4.31), β has to be at least
lower than 1 for our approximations to hold, and that we could compute the limit
of the SNR going to in�nity for a �nite P if we set β = 0.

Due to the complexity of the �nal expressions we are going to go step by step,
but a reader not interested in these derivations can continue from (4.60).
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If we assume (4.53) in (4.45) we get

g(α)

∣∣∣∣ P→∞SNR→∞ =
√

1− (1− α)β Q−1(PFA)−

√
SNR

(1− α)

+
3

2

√
(1− α)SNR β

=

√
SNR

1− α

(
3β(1− α)

2
− 1

)
. (4.54)

Note that this expression can either go to +∞ or −∞ depending on the sign of(
3β(1−α)

2 − 1
)
. We do the same for (4.49)

∂g(α)

∂α

∣∣∣∣ P→∞SNR→∞ =
β

2
√

1− (1− α)β
Q−1(PFA)

+

√
SNR

1− α

(
1√

SNR
− 1

1− α
− 3β

2

)
= −1

2

√
SNR

1− α

(
1

1− α
+

3β

2

)
, (4.55)

where in this case the result will always tend to −∞ no matter the value of β we
choose. For (4.52) we have

∂2g(α)

∂α2

∣∣∣∣ P→∞SNR→∞ =
Q−1(PFA)

4(1− α)
√

1− (1− α)β

(
(1− α)β2

(1− (1− α)β)

)

−

√
SNR

(1− α)3

6 + (1− α)3β

8

= −

√
SNR

(1− α)3

6 + (1− α)3β

8
, (4.56)

where again this result will tend to −∞ regardless of the value of β. Now we can
use these results in (4.48) and (4.51) getting

∂Q(g(α))

∂α

∣∣∣∣ P→∞SNR→∞ =
1√
2π

exp

− SNR
1−α

(
3β(1−α)

2 − 1
)2

2


×1

2

√
SNR

1− α

(
1

1− α
+

3β

2

)
= 0, (4.57)

since the exponential of -SNR goes to 0 much faster than
√

SNR goes to ∞. For
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(4.51) we have a similar case

∂2Q(g(α))

∂α2

∣∣∣∣ P→∞SNR→∞ =
1√
2π

exp

− SNR
1−α

(
3β(1−α)

2 − 1
)2

2


×

√( SNR

1− α

)3(
3β(1− α)

2
− 1

)(
1

1− α
+

3β

2

)2

+

√
SNR

(1− α)3

6 + (1− α)3β

8


= 0, (4.58)

where in this case the exponential of −SNR still goes to 0 much slower than
√

SNR3

goes to in�nity. We can also compute the limit for Q(g(α)) which gives

Q(g(α))

∣∣∣∣ P→∞SNR→∞ =


1 if β < 2

3(1−α)

0 if β > 2
3(1−α) .

(4.59)

Using (4.57) and (4.58) in (4.50) we get

∂2

∂α2
PD

∣∣∣∣ P→∞SNR→∞ = 0. (4.60)

This means that, as we expected from Figure 4.25, if we increase su�ciently the
SNR, the second derivative of PD goes to 0. So if the �rst derivative at α = 0 is
negative then it would be optimum to choose α = 0. If we use now the results in
(4.44) we have

∂

∂α
PD

∣∣∣∣ P→∞SNR→∞ =


PFA − 1 if β < 2

3(1−α)

PFA if β > 2
3(1−α) ,

(4.61)

where we can note that PFA is a value between 0 and 1 (and we are interested
in the region near 0), so PFA − 1 will be a negative constant and PFA will be a
positive constant. If we take α = 0 we have

∂

∂α
PD

∣∣∣∣ P→∞SNR→∞ =


PFA − 1 if β < 2

3

PFA if β > 2
3 .

(4.62)

This means that, if β > 2
3 , the �rst derivative of PD is negative at α = 0 while the

second derivative is always 0, so the maximum PD is found at α = 0. On the other
hand, if β < 2

3 , the �rst derivative of PD is positive at α = 0 while the second
derivative is still 0, so it is optimum to choose α as close as possible to 1 (note
that it cannot be 1 since it would mean that we are not receiving anything at all).
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At this point we should consider the meaning of β. In a normal scenario β
will be a really small number since increasing P exponentially with relation to the
SNR appears to be unreasonable; if we see P as the precision it would be the same
as saying that we are increasing the precision with the exponential of the SNR.
In reality the precision will be �xed and limited by other factors so that β will in
general be smaller that 2

3 .

4.5 Concluding remarks

Through this chapter we have de�ned a simple scenario to be able to get under-
standing of our original problem. We have characterized the scenario by obtaining
an approximated formula and we have been able to get closed form results in the
asymptotically high SNR region.

Taking the asymptotic results and with the consideration that β will be in
general smaller than 2

3 we can see that the best option is to set α = 0 if the SNR
is su�ciently high. This can be related to our original problem, in which we were
trying to optimize the maximum loss, Lmax, and the average loss, Lavg. In this case
Lavg is �xed and we can see that the best option, with the previous considerations,
is to have the same gain all throughout the de�ned space instead of focusing just
in some areas and get a higher gain there. So if we optimize the Lmax using pure
phase optimization we will have better detection performance considering that we
have a su�ciently high SNR. Furthermore, the steering optimization results will
have worse detection performance since they have in general a higher Lmax.
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Conclusions and Future Work

5.1 Conclusions

Throughout this thesis we have studied the possibilities of UE beamforming through
a codebook approach in which the UE can only do beamforming using a closed
set of phase combinations. We have obtained optimum codebooks for the metrics
Lavg and Lmax that we have de�ned. Optimizing these metrics can be helpful in
5G scenarios such as the initial discovery of the UE and the BS. For the optimiza-
tion we have considered two approaches: steering optimization and pure phase
optimization. The steering optimization de�nes the phase codebook in such a way
that each codeword corresponds to steer the antenna at the UE to a certain di-
rection. The pure phase optimization puts no constraint io the phase codebook so
that the radiantion pattern of the antenna array at the UE for a given codeword
don't necessarily have to point to a certain direction.

The optimized codebooks obtained have been utilized to analyze the estima-
tion of the AoA at which an a signal coming from a BS is arriving the UE. The
simulations showed that the pure phase optimized codebooks didn't have a clear
improvement in terms of MSE for the AoA estimation. However, we noticed that
the pure phase optimized codebooks performed better in detecting if a signal is
being received or not (specialy the one optimizing Lmax), which is a necessary step
before performing the AoA estimation.

We have also carried out a theoretical analysis to understand the in�uence of
Lmax in the detection performance. After an asymptotic analysis we have con-
cluded that in the high SNR region it is best to optimize the metric Lmax in terms
of detection performance.

5.2 Future Work

The utilization of the antennas in the 5G UEs is still in need of deep research. The
results from this thesis can be helpful for understanding some of the possibilities
that utilizing these antennas o�er. Some ideas for future research include the
development of algorithms for the UE discovery, the construction of testbeds for
testing these algorithms, the de�nition of the transmission and reception operating
modes of the UEs, etc.

51
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We can also think of future work more closely related to the results of this
thesis. It would be interesting for example to look at the CRLB of the AoA esti-
mation with respect to the phase codebook. This way we could obtain a direct way
to optimize the phase codebooks this time in terms of MSE in the AoA estimation.
Another suggested work is to calculate the AoA estimation performance when the
signal is detected for a given PFA, thus, considering the estimation problem and
the detection problem altogether.
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