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Abstract
Augmented reality is a field which is getting increased funding every year, as
more businesses are realizing the potential of rendering virtual objects in the real
world. As the equipment gets more commercialized, the costs will get lowered
while performance also goes up. As of now, augmented reality mostly makes use
of plane detection and marker detection to find and locate objects. We want to
incorporate machine learning using deep neural networks to be able to find objects
in an augmented reality scene.

In this report we go through the process of developing an iOS application, which
incorporates use of object detection, object recognition and augmented reality. Our
goal is to identify if the combination of these fields is both feasible and desirable
with modern tools available. The application is supposed to work as an alternative
to conventional assembly manuals for furniture.

The project is about showing a user how to, step by step, put together a furniture
using an iPhone X and give instructions in an augmented reality experience. The
machine learning model is taught to recognize all the di�erent parts of a furniture
and where they are in the image. Di�erent methods were tried to make this possible,
such as image segmentation, edge detection and object detection. One of the object
detection methods used is called YOLO.

The final product makes use of a toolkit useful for developing augmented reality
application, called ARKit. It is developed by Apple, and is used to render the
augmented reality scene. It also uses Turi Create to train a neural network for
object detection and classifier.

We then evaluate the application with user tests. We further conclude that
modern technology available makes our idea possible and the user tests show that
the concept has great potential and is desirable.
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Chapter 1

Introduction

To first get an understanding of why this project was done, it is important for the
reader to learn, not only the background of the fields studied, but also about the
prospects of the technologies involved. At 1.1 we go through the current and the
potential use of these technologies, as well as what prospects the consumers and
the industry have. Later on, at 1.2 we go through some of the previous research
that has been done in the fields that are studied in the report. In section 1.3 we
explain what we hoped to achieve with this project and a brief rundown of how.
Section 1.4 tells about the company that ordered the project and why they were
interested in it. This chapter is rounded o� with section 1.5, which illustrates a
mock up of how we had hoped the final product would have ended up looking like.

The full repository for this project can be downloaded at https://github.
com/iSadist/master-thesis.

1.1 Background
The idea of Augmented Reality, often referred to as just AR, is to render virtual
objects in the real world. This usually requires hardware in the form of a camera
and display, a processing unit and software. Common devices capable of AR today
are the HoloLens [1], Google Glass [2] and a vast amount of mobile devices, such
as Apple’s iPhone X [3].

The general interest for AR has undeniably grown in recent years, with mobile
games and applications such as Niantic’s Pokémon Go [4] and IKEA Place [5] the
AR industry has peaked a general interest and sources speculate it could be a $90
billion dollar industry by 2022 [6]. But Augmented Reality has not only reached
the end users; the technology has also peaked an interest in several industries. One
such project is Fieldbit Hero [7], a platform enabling technicians to get instant AR
annotations to their AR devices from an engineer, allowing the technician to get
visual instructions while simultaneously being able to work hands-free.

However, as of now, most localization and identification of objects within
AR are done using marker detection [8]. An alternative to this would be to use
Convolutional Neural Networks, as they have been proven to be very useful for
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object detection in images. The hype around neural networks has been particularly
strong since AlexNet scored high in the ImageNet LSVRC-2010 challenge and the
ImageNet ILSVRC-2012 challenge [9], which are are image classification contests.
They accomplished these feats by making use of new methods, e.g. dropout
(explained in section 4.1.6). Since then several di�erent types of network models
have been created. Now we have network models that can detect both where an
object is in an image, and what the object is in one go. One such network is
YOLO[10]. By adopting such a network, the need for having to mark objects would
drop significantly and it could open up for many more possible use cases for AR.

1.2 Previous studies
D. Chatzopoulos et al.(2017) describes the basics of MAR, or Mobile Augmented
Reality, its advancements and it’s flaws. They estimate that MAR is the most
promising field of mobile applications and that it will have a massive impact on how
we interact with the real world. However, they also go through some of the current
hiccoughs with the technology, such as bandwith limitation and the computing
power required [11].

S.Gould et al.(2009) writes about a hierarchical model for joint object detection
and image segmentation, where they basically tried to segment all objects in an
image and classifies every pixel [12].

Y LeCun and M.A. Ranzato goes in-depth on the history and progress of deep
learning, from the first machine learning model, the Perceptron, to future challenges
with deep learning. They write about the use cases for machine learning and how
models generally work. They also classify di�erent kinds of models into separate
categories. Also written about is areas such as what makes a good feature and how
convolutional neural networks are constructed [13].

1.3 The goal of this project
Our goal is to try to combine Augmented Reality with Object detection and Object
recognition to find out if it is feasible and if there is an actual desirable use case
for this technique.

This will be limited to the use of ARKit, a toolkit for developing AR applications,
developed by Apple for iOS devices. An augmented reality application for iPhone
X incorporating the use of modern machine learning models for object detection
and recognition will be developed in order to test our thesis. The application will
be an assembly manual for furniture. A Deep neural network will be trained to
recognize the di�erent available parts and configurations of said parts. The model
should then predict which parts it is seeing in the camera feed, where they are and
show how they should be assembled in an AR scene.

Hence, we will not research what is possible with other hardware, although, we
will mention them. We will also restrict the amount of furniture we train on, as
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well as the environments they will be built in. However, we hypothesize that if it
works for one furniture and one set of environments, it should be possible to scale
for larger sets.

1.4 Jayway
This project is conducted partly on Jayway’s request and much of the work is
done in their o�ce in Malmö. Jayway is a software studio with o�ces in Malmö,
Halmstad, Stockholm, Copenhagen and Palo Alto. They aim to provide costumers
with digital solutions within fields such as mobile, web, backend, cloud as well
as UX & design. They also have a focus on AR & VR, where they hope to give
businesses a new perspective on the technologies.

The purpose of this project for Jayway is mainly to explore Object Recognition
and ARKit, and how they could be combined together to create value. The main
question is to know, if possible, how easy it is to implement a solution. Jayway
is continuously looking to explore new technologies and Augmented Reality is
a hot new trend emerging in the markets in the time of writing this report. A
second objective is for Jayway to take the finished implementation to one of their
customers and present an example of what they are able to do for their customers.

1.5 Mock-up of the planned product
To be able to design the layout and flow of the application, a mock-up of the
application was first created, illustrating the information and use flow throughout
the usage. In this section the general concept will be described and why it was
designed in this way. The mock up was created using a free online tool called
MockFlow[14].

When the application is opened up, one is taken to a furniture selection screen,
see figure 1.1, which allows the user to select which furniture they want to assemble.
A user can select the furniture by either scrolling through the list, using the search
bar, or using the built in barcode scanner. It was important for a first time user to
understand what the purpose of the application was when they first open up the
app. Therefore, first time users are greeted with an informative pop-up notification
explaining the general purpose.

After selecting a furniture the user is taken to a detail view, figure 1.2. This
view is there for the user to see bigger images of the furniture and its unique article
number. This is useful since some furniture models look very similar. Here the
user can also read other specific information about the piece of furniture as well
as preview a 3D model of the furniture, showing how it will look like when it’s
completed. Once the user is ready, they are supposed to press the "Assemble"
button to progress.

In the Assemble view the user is greeted with a live feed camera view as well as
an information field containing instructions, see figure 1.3. The first step for the
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Figure 1.1: Furniture selection screen which the user is greeted with when starting
the application. The left image shows how it looks for first time users, and right
side how it looks for known users.

Figure 1.2: .
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user is to scan the pieces on the floor, allowing the machine learning model to find
the pieces that are supposed to be assembled. Once the first parts are automatically
found, they are highlighted using bounding boxes to alert the user of their current
importance. The user can then press the "Next" button to continue. Afterwards,
an animation showing the 3D parts in question being assembled properly and
informatively. When the user has put together the parts, they press "Next". This
process will then be fed with the next set of instructions and will continue like this
until the piece of furniture is fully assembled.

Figure 1.3: Shows from left to right the user flow of putting two pieces together.
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Chapter 2

Project Methodology

When working in a project it is generally a good idea to work according to a
predetermined project methodology model. This tends to make the work more
e�ective and produce better quality. That is, more is produced during the same
amount of time, the final product is more thought out, better teamwork etc.

Simply, if you have a plan at the start it is easier to stick to that plan and stay
on the same path as intended, rather than shifting to another one. That is not to
say that the plan cannot change, but if it does it does so controllably.

A historically good model has been the waterfall model. However, in the
software industry this has changed lately with the agile methodology being more
popular and it has proven to be very e�ective.

2.1 Agile
We have used the scrum method, which is an agile method. Basically, the scrum
model says that rather than planning a workload for 6 months forward or so it
is better to work in short iterations. These iterations should be between 1 - 4
weeks depending on the team. Instead of trying to estimate the time it will take
to complete an entire project, the team is given a finite time frame and tries to
complete as much as possible during that time. During this time, the team works
very closely to the customer and project owner to make sure that they will get what
they want and ask for. For selecting items to work with for every sprint (explained
further in section 2.2) the team keeps a backlog of items it wishes to complete
during the project. Every sprint, these items or stories are picked out and included
into the sprint and estimated in size. The stories themselves should be collected
from customers, project owner, users and people connected to the product. This
way, the team knows what the purpose of developing a certain thing is. If there is
any doubt about a specific feature it should be easier to ask than to assume.

This is of course a simplified version of how the agile method works. ’Extreme
Programming Pocket Guide’ is a good book for anyone who wants to read more
about agile methodology [15] .
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2.2 How we used the agile methodology
Sprints
For our planned work we have decided to work in two week period sprints. At each
start of a sprint we pick out stories to focus on for the coming two weeks and try
to estimate how long each of them will take. On weekdays we start with a quick
discussion about yesterdays work and what we are planning to do today. This is
for everyone to be up to speed about the other person’s work. At the end of the
sprint everything is reviewed and analyzed so to do even better the next sprint by
correcting possible faults.

Story board
For organizing our sprints we used a story board which contained an area for our
backlog items and four rows for our stories during a sprint. The stories were broken
into tasks which were placed on either one of the columns (Started, In Progress,
Waiting, Completed). Each story was estimated with a size which was a number in
the fibonacci sequence. Each story was also divided into 5 parts (Started, Halfway
done, Completed, Reviewed, Verified). These two numbers were multiplied and
summed up with all the other stories to get how many points the sprints had. As
we worked these points were subtracted and ultimately hit zero when we were
done with everything. We plotted the progress on a chart as well for graphic
representation. This is called a burndown.

Figure 2.1: Story board used during the project

Close relationship with project owner
We worked very close to the project owner by sitting on desks right across him.
Whenever we had a questing we could simply raise our head and ask it.
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Chapter 3

Augmented Reality

To help better the understanding of augmented reality, this chapter will describe
the historical background as well as how it works. In section 3.1 there are a few
di�erent types of AR explained. Then a brief history of AR is presented in section
3.2. Afterwards, a method about mapping the environment called Simultaneous
Localization and Mapping, S.L.A.M, is described in section 3.3. The chapter is
rounded in section 3.4 with some information about how the the toolkit used in
this project, ARKit, functions.

3.1 The di�erent types of Augmented Reality
There are di�erent types of augmented reality. Some of those are marker-based,
location-based, superimposition-based and projection-based.

Marker-based AR is when markers, in the form of images have to be placed
in the real world and detected by the application. Virtual object are rendered on
top of these markers. An example would be a picture in a magazine which, when
pointing a camera at it, the application renders a 3D object on top. An example is
shown in figure 3.1.

Location-based AR is when the content on the users screen di�ers depending
on the location of the user. This type is highly dependent on the GPS signal. An
example of where this could be useful is in a museum where di�erent information
could be given to the user depending on which room he or she is in.

Superimposition-based AR uses object recognition in order to enhance that
object with some sort of visual information. It replaces the real object with an
enhanced virtual one. It could be used in retail to display di�erent patterns on a
piece of clothing.

Projection-based AR is when virtual object can be placed in a room to make
it appear as if they were there. A popular example of this would be the IKEA
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Figure 3.1: A virtual object in the form of a car being rendered on top of a marker
in a magazine.

Place app that was mentioned in the introduction. An example is shown in figure 3.2.

In this paper we will mainly be using projection based AR with a form of
recognition. The projections will be in the form of way-pointers used as instructions
for the user to perform the next step in putting together a furniture piece. These
instructions can visualize how the pieces will look like after the step is completed,
and to show arrow pointers between the pieces that are supposed to be put together.

3.2 History of AR
The idea of augmented reality has existed a long time, the phrase has only been
used for about 30 years but it is not until recently that the technology has become
mainstream. This is mainly due to it becoming good enough to be used by the
average person at home. Today we can just download an app on our smart phones
to enjoy the technology. Below follows a brief history of how augmented reality
has progressed throughout the years.

1968 The Sword of Damocles - The first mounted headset. This device was
mounted on the head and could display a cube wireframe floating in the air. It
was invented by Ivan Sutherland.

1975 Myron Krueger - Videoplace. Using cameras to interact with a digital
world with shadows. This application could be used to draw things or play simple
video games with the shadow of your hand [16].
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Figure 3.2: A virtual sofa chair being added to a room within the IKEA Place app.

1990 The first time the term "Augmented Reality" was used by the Boeing
researcher Tom Caudell.

2009 AR comes to the web in the form of an open source toolkit called AR-
ToolKit.

2017 Apple launches AR Kit and Google launches AR Core.

3.3 S.L.A.M.
S.L.A.M is a way for a machine to get to know the environment that it is in. It
registers features and maps them to its surroundings. S.L.A.M is about having the
map of the environment and knowing where the robot is in that map. The problem
with this is that a map is needed for knowing where you are, and you have to know
where you are to be able to create a map. That is why S.L.A.M is doing this at the
same time, hence ’Simultaneous’. The system is used in autonomous robots, but
also valuable in Augmented Reality [17]. In figure 3.3 a robot is driving around in
a room collecting data. The robots camera can be seen in the lower left corner.
On the right, a 3D model with recognized feature points has been created.

iPhone X does this by tracking multiple reference points in space and from
them building a 3D model of the surroundings using a form of S.L.A.M technique.
This is accomplished by keeping a map of the features while keeping track of the
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path the observer is taking. A number of hardware components make this task
possible, including gyroscope, accelerometer and a compass. [46]

Figure 3.3: A robot performing S.L.A.M in an environment and the 3D model
created.

3.4 How ARKit works
The easiest way to use ARKit is to use it through Xcode, which can be downloaded
from the Mac App Store. The coding language can be either Objective-C or Swift.
We will be using Swift for all examples.

ARKit works similar to SceneKit where a scene, which is basically a 3D
environment in which nodes containing 3D models, known as geometries, can
be rendered, is loaded at start up and interacted with. An ARScene is contained
inside an ARSCNView (AR Scene View) which also has an ARSession that that
manages the motion tracking and camera image processing. For an ARScene to
work, it must have a running ARSession. The session is started with configuration
(ARConfiguration). This configuration can be of many kinds, the most common
ones being ARWorldTrackingConfiguration and ARFaceTrackingConfigurations.
For this project, ARWorldTrackingConfiguration will be used since the face tracking
one uses the front camera.

An example of how to setup a configuration and running a session using Swift
is given in appendix A.1.

But before a session can be started, an ARScene must exist and be loaded. The
ARScene is a regular .scn file that has the starting nodes that together form the
starting environment the user will interact with. An example of how a scene like
that looks like is shown in figure 3.4.

To load a scene, a new .scn file must be created in the art.scnassets folder and
fetched, as seen in the code snippet in appendix A.2.
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Figure 3.4: An example of a 3D scene created in XCode with a camera, a plane,
directional light and three geometry nodes.

When ARScene detects objects, images, planes etc. it calls the renderer function.
This function can be implemented by setting the ViewController to conform to
the ARSCNViewDelegate. ARScene adds an anchor (ARAnchor) and a node
(SCNNode) for the place where it detected it, and this can be used inside the
function to render new nodes or other logic. The code we used to do this is seen in
appendix A.3.
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Chapter 4

Neural Networks

This chapter will focus on neural networks and how they were utilized for parts
of this report. First, some theoretical background surrounding neural networks
in general, and then more specifically, convolutional neural networks, is given in
sections 4.1 and 4.2. Afterwards, the chapter goes more into how neural networks
were tried and used during this project. Data collection and augmentation is
described in sections 4.3 and 4.4. Further sections, 4.5 & 4.6, describe how this
data was used to train neural networks, with the latter section explaining an
alternative to training a model from scratch.

4.1 How neural networks work
There exists many di�erent machine learning techniques out there today. Due to
its high e�ectiveness and relevance, for this report we are going to focus on the
highly popular method of artificial neural networks. A variant, convolutional neural
networks, is a proven method for working well with images and is therefore highly
relevant for this project.

4.1.1 Artificial neuron
An artificial neuron is the simplest form of the neural network. It has a set of
inputs and an output. The artificial neuron first sums up all the input values,
x, multiplied with the weight value, w. After that it passes that sum through
an activation function. This activation function can be everything from a simple
f(x) = x to the more complex sigmoid function, depending on the need. More on
this in section 4.1.2.

A bias also exists in every node which is not based on any input. The bias
function in the artificial neuron is similar to what the m in y = kx+m does. It gives
the function the ability to move up and down in the graph for more possibilities
of splitting the data set. The bias is usually disregarded when illustrating the
artificial neuron.
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Figure 4.1: An illustration of an artificial neuron, the simplest version of a neural
network.

The artificial neuron only has the ability to draw a single line and thus is only
able to split simple data sets.

The output of an artificial neuron is described by the following formula:

y = b +
nÿ

i=1
xi · wi

y = f(b +
nÿ

i=1
xi · wi)

where b is the bias value, x is the input, w is the weight for that input, n is the
number of inputs and f(ú) is the activation function.

4.1.2 Activation functions
The activation function, „(vi) , takes the sum of all the inputs from a node as input
and passes them through a function before giving an output. This is beneficial
when for instance the output should be kept in a range between 0 and 1, or perhaps
when negative values don’t make sense. Usually, activation functions are attributed
to layers instead of individual nodes.

A few commonly used functions are ReLu, Tanh, Sigmoid and Softmax.
ReLu is described as

f(x) = max(0, x)

and is a good option when negative values should be ignored or don’t make sense.
It is also a good choice avoiding the net to become computationally heavy, since
it only outputs the same input value but sets all negative values to zero. That is
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usually a good choice in larger networks with many neurons which can become
slow.

Tanh is the tangens hyperbolicus function and is used to output values either as
-1 or 1 like a binary operator. Unlike a binary operator, tanh’s derivative is always
defined which makes back propagation possible. Back propagation is described in
section 4.1.4

Sigmoid is described as
e

x

1 + ex

and works like the Tanh function but keeps the values between 0 and 1 and sets
y(0) = 0.5 instead.

Softmax is a little bit more complex. It takes a vector v of dimension n and
turns it into a vector ‡(v) of the same dimension where

nÿ

i=1
‡i(v) = 1 and each

element value is between zero and one.
Each element in the array is described as below

‡i(v) = e
vi

nÿ

j=1
e

vk

This output is good for describing the probability for each element to be correct
and is therefore commonly used in the output layer.

4.1.3 Calculating the loss
When training the model, it will at first make a guess to what the right answer or
value is based on the random initial weigh values. In the beginning, the model is
usually mostly wrong and it is then important to know how wrong it was and in
what direction it should go.

For this, the model uses a loss function to calculate that error. For di�erent
applications the loss function can be di�erent. One way to calculate the error, E,
is to simply take the predicted value, yp, and subtract it with the correct value, yc.

E = yp ≠ yc

Sometimes the sign of the error is not important. Then the absolute value can
be calculated instead. E = |yp ≠ yc|

Another approach is the mean squared error which squares the di�erence
and takes the mean value over a few predictions. n is the number of predictions.

E(n) = 1
n

·
nÿ

(yp ≠ yc)2
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4.1.4 Optimizers
Once the error has been calculated, the network will make changes to itself to
improve the performance by decreasing the error value. This is called backpropa-
gation. The principle behind backpropagation is to go backwards in the network
from the output node and changing the weight values, Ê. The optimizers decide
how the weights should change.

A popular method for minimizing the error is to use Gradient Decent which
works by, step by step, move in the negative direction that minimize the error. The
direction is determined by taking the derivative of the error function. The new
weight value is calculated accordingly. ÷ is a chosen parameter called the learning
rate.

�Êik = ≠÷
”E

”Êik

where the error function is

E = 1
N

Nÿ

i=1
E(n)

where N is the total number of neurons. This leads to

ˆ�Êik = 1
N

Nÿ

i=1
�Êik(n)

E(n) can be, for example, mean squared error mentioned above. The most
common form of gradient decent is called Stochastic gradient decent, SGD.
The di�erence is that SGD only evaluates on a small number of nodes/patterns, P

and updates all the weights from that observation.

ˆ�Êik = 1
P

Pÿ

i=1
�Êik(p)

Adam[18], short for Adaptive moment estimation, is another optimizer which
is quite popular. The reason is because it has been proven to be a very e�ective
algorithm in many di�erent use cases.

Adam is a kind of combination of using RMSPROP[19] and SGD with mo-
mentum. Without going into too much detail, SGD with momentum keeps track
of which direction the the improvement is in and keeps the improvement going in
that same way. The optimisation goes faster when the previous direction is the
same and slower when they are di�erent. Almost like a rolling ball that gains speed
as it is rolling down hill. RMSPROP does something similar and uses a running
average of each weight value and the previous values importance can be controlled
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with a parameter. It also only uses the sign of the direction and not its value. Also
RMSPROP has individual weights.

Adam keeps a running average of both the past gradients and the squared past
gradients. The full mathematical description of Adam is given by the formula
below where t is a time iteration index.

Êi(t + 1) = Êi(t) ≠ ÷
miÔ
vi + ‘

where

mi(t + 1) = —1mi(t) + (1 ≠ —1)
”E(t)
”Êi

vi(t + 1) = —2vi(t) + (1 ≠ —2)(
”E(t)
”Êi

)2

and ÷, —1 and —2 are adjustable parameters and ‘ a small value to keep the
equation from dividing by zero.

There are a lot of other optimizers such as Adagrad, Adadelta, Nadam [20].
They all have their own advantage and use-cases. We won’t go into further details
about them.

4.1.5 Layers
With more layers and more neurons the networks parameters and complexity begins
to grow. So does also the training time, size of the model and the cost for doing
predictions. Thus, these networks are capable of describing much more complex
data sets. But as a result of that, the risk of overfitting, the act of describing the
training data set too well so that new data sets will not get recognized, becomes
much greater. That is why a complex network is not always wanted. In figure 4.2
an example is given of how a network with many layers might look.

4.1.6 Overfitting
When training a neural net, one needs to be careful not to train the model too
much or overfitting is likely to happen. Overfitting is when a model gets really
good at predicting the data that it is training on but fails to predict accurately
on new data. This is because it starts to pick up too much on detail or in some
instances even noise. For this reason it fails to pick up the general trends, which is
more valuable. An illustration is given i figure 4.3.

There are a few methods that can help handle the problem of overfitting. They
usually involve trying to limit the size of a small amount of weights. The hypothesis
behind this is that if a weight is much larger than the rest it also has much more

17



Figure 4.2: Two fully connected layers. One with 3 neurons and one with 2 neurons.

Figure 4.3: Overfitting of a dataset. On the left is a generalized trained model and
on the right is an overtrained model. Image taken from OReilly.com [21].
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influence over the final prediction. That way, a small detail in the data can have
much more influence than the general trend.

One way to do this is to cut random connections between layers during epochs,
usually by specifying a certain amount that is going to be cut. This way, the model
is not relying on a small number of nodes to make the correct predictions. This
method is called dropout [22].

Another way is to introduce random noise on a layer during training. This works
because if a node with a large weight receives noise, it will be heavily amplified
and probably give a false prediction. When doing this, Gaussian noise is usually
implemented, which is basically random noise with a gaussian distribution.

To force the model to keep weights small, one way is to add a penalty to the
loss for every weight based on its size. This is called weight regularisation and is
widely used and exists in two forms, L1 and L2. L1 simply adds the weights size
multiplied with an L1 term that is chosen by the designer. The other, L2, is to do
the same but in this case square that value. This has the e�ect of making values
over 1 even bigger and values less than 1 smaller. In that way, it doesn’t a�ect the
loss as much as L1 when not being overtrained. L2 is also called weight decay and
is the more common method of the two.

Another way to keep the values small is to normalize the input to every layer
and set the mean to 0 and variance to 1. In Tensorflow, this can be done with the
BatchNormalization layer [23].

One important thing to point out is that all these methods mentioned so far are
only active during training and is not doing anything when making real predictions.

If lots of training data exists, the ensemble technique could be a good way to
go. This technique divides the training data into smaller sets and trains a model
for every data set. The final prediction is then an average of the predictions of all
the models. This technique works because if the model is highly overtrained in a
certain direction, chances are that the other networks will drown out this result by
the many other models.

It is kind of like when someone has an o� pitch in a big choir. If there are many
other singers, this o�-pitch will not be noticed very much.

The final technique is called early stopping and is based on validating the model
after every epoch and stopping the training when the validation loss, or some other
criteria, is not improving anymore. A graph showing when to do early stopping is
given in figure 4.4.

4.2 Convolutional Neural Networks
Convolutional neural networks, CNN, have been used for quite some time when
it comes to deep learning and their capabilities are rather astounding, as proved
by Krizhevsky et al [9]. They use layers which perform convolutions, hence it’s
name. The input to a convolutional network are either 2D or 3D tensors, where
the 3D alternative usually has color channels along the third dimension. Use of
convolutional neural networks in image recognition can be practical for several
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Figure 4.4: A graph showing when to do an early stop. The graph shows the
total loss over trained epochs. Notice that the validation starts to increase again
somewhere after epoch 20.

reasons, e.g., it can tell of spatial relationships in an image. This section has been
written with reference to V. Dumolin et al [24]. Figure 4.5 shows an example of
how a CNN may look.

A convolutional layer performs the mathematical operation convolution on the
input tensor, which can be presented as an image. A convolutional filter, or kernel,
of size k · l slides across the input. The kernel consist of weights in each element.
These weights are found during the training process of the network. As the kernel
is slides across the image, the dot product of the weights of the kernel and the
pixels the the kernel is above, is calculated as the output. Afterwards, a new image
containing all of the produced dot products is formed.

Padding on the input can be used to account for values when the kernel is
outside the input. Use of padding have an impact on the output size after the
convolutional layer. Stride can also be used, which tells how much the kernel
translates along an axis; increased stride leads to subsampling. Since changes of
parameters in one axis do not a�ect outcome in another axis it simplifies explaining
CNNs by having the parameter values being the same along both axes. The more
convolutional layers used in a network, the more complex shapes are detected.
First layers may detect edges and corners, whereas, later layers may find features
representing, for example, a car or a dog. A common addition to the layers is an
activation function, commonly ReLU (which is described in section 4.1.2). This
gives faster training by only allowing for positive weights to pass the layer.
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Figure 4.5: Image shows the flow of a convolutional neural network from left to
right. Several convolutions as well as pooling functions are done in order on the
input image. The last feature map is then flattened to fit into the hidden layers, to
then be classified with a softmax function. Image taken from [25].

The common types of padding is no zero, same and full; examples seen in figure
4.6. No Zero padding involves having no padding outside of the input. This means
that the kernel never goes outside of the actual image, once a side of the kernel
hits the side of the input it jumps down to the next line (if stride is 1).

Same padding is used when one desires the output size of the layer to be the
same as the input size. This is achieved by having a padding p be p =

Í
k
2

Î
for any

odd kernel size k.
With full padding one actually makes the output size larger than the input, by

fully utilizing every possible combination of the kernel and the input image. This
is accomplished by having the padding p be p = k ≠ 1 for any kernel size k.

Another useful feature used in a lot of convolutional neural networks is pooling.
Pooling layers are somewhat similar to convolutional layers in that they use a
sliding window which performs an operation on the contents of the window and
outputs a new value. However, the di�erence is that they use other functions
instead of linear addition. Two common pooling functions are max pooling, where
the output is the largest value within the window, and average pooling, where the
output is the average of the components within the window. Pooling is commonly
done do reduce the size of the input. Figure 4.7 shows example of pooling being
used.

When a classification is to be done in the CNN, the shape needs to be shifted
to an array. This is done after the last pooling layer or convolutional layer. This
array can then be passed into a hidden layer for classification.

4.3 Collecting data
When working with machine learning, big sets of data is often required for a good
resulting model. A problem with this is that it can be tricky to obtain such a large
data set because it usually also requires labels with that data to be manually put
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Figure 4.6: Di�erent examples of padding. Grid in green is the output, grid in blue
is the input, and area in shadow is the current area where the kernel is currently at.
Leftmost image shows a no zero padding being used. Here the kernel size is k = 3,
input size is i = 4 and the output size is o = 2, i.e., smaller than input. In the
middle image same padding is used; output size is the same as input size o = i = 5.
In the rightmost image full padding is used. Here a bigger output size than the
input size is produced, o = 7, i = 5. Images taken from [24]

Figure 4.7: Examples of two types of pooling. Blue grid represents input, green
grid represents the output, and the shaded area is where the sliding window is
located. The left image shows the use of average pooling, while the right one shows
the use of max pooling. Images taken from [24]
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in. These labels will be used by the neural network to, during training, check if the
predicted value is correct or not.

In this project the data is sets of images of di�erent furniture parts. These
images did not exist anywhere online, so they had to be collected by taking lots of
photos. The photos contained the part in di�erent background and from di�erent
angles. Table 4.1 shows how many images of each class we had. The backgrounds
were mostly of typical o�ce surroundings, although there were exceptions (example
is shown in figure 4.10). All the photos were then resized to 256x256 pixels. The
reason for choosing a square size is because when rotating them (this will be useful
later on when augmenting data in section 4.4) the images will not have any black
bars on the sides nor be stretched.

Class Number of images
Leg piece 203

Bridge piece 210
Seat 216

Table 4.1: Table showing how many images of each class we had.

For the first furniture Nolmyra, there were only 3 unique parts (excluding
screws and similar parts). Therefore the model was trained to recognize 4 things;
the di�erent parts and an unknown object. The unknown label was because the
object detection algorithm could detect other objects and it is then unwanted that
those objects be mistaken for furniture parts. This could of course also be done
by setting a threshold on the confidence value, i.e., if the model gives a confidence
value under 0.8 it discards it as being an unknown object. The problem with this
type is that it is much harder to distinguish parts from unknown objects. This
is due to that the best model is the one that can give a close to 100% confidence
value on every prediction.

For this reason, photos of random objects were also added to the data set. Most
of these photos were taken by ourselves, but some were also collected from the web.
The images were placed in folders with a specific item which meant labelling them
became much simpler. Just put all the images containing a certain part in the
same folder.

Training a model usually requires hundreds of thousands or even millions of
photos. That much data is hard to get and would take a lot of time to obtain
Going around the o�ce to snap that many photos is almost unthinkable. However,
there are other options which will be explained in the next section.

4.4 Augmenting data
Instead of training on only original images, some images can be created from other
images by for example rotating, flipping, changing brightness, saturation, contrast
etc. This will essentially be an image of the same object, but the data will look
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Figure 4.8: Images showing di�erent samples of training data used for training the
model. From left to right: seat, bridge piece, leg piece.

di�erent, thus giving the model more relevant data to train on, see figure 4.9. When
doing this it is important to keep in mind that the augmented data should be
relevant to real situations. Creating data with only the blue color band when the
real situations are only in daylight makes no sense.

Furthermore, images of objects of interest can be cut out and pasted into
random environments to create even more data, see figure 4.10. The idea of this is
to try and make the model understand that the focus should be on the furniture
part and the background environment is irrelevant. While doing this, even though
the parts could be cut into totally random environments we tried to focus on
pasting them into relevant spaces like o�ce floors or carpets. In our project, this
gave a good result as it increased the test accuracy by 8%.

Doing this by hand can still be very time consuming, so automating this process
as far as possible is recommended.

4.5 Image classification
Designing a neural network for the image classification is not the easiest task and
much work consists of trying things and making intelligent guesses. As stated
in the section about data collection we had 4 di�erent classes to classify, which
means that a test accuracy of over 25% would be significant. We were aiming for
somewhere above or around 90% with a relatively small amount of data.

We started out with many convolutional layers layered with pooling layers
and a few dense layers at the end. The final layer had four nodes and softmax
activation functions to give a classification probability between four classes. The
activation functions of the other layers were set to ReLu since they are the fastest
and preferred for larger nets. Tanh was also tried but with no success.

SGD with momentum as an optimizer was tested but was changed to Adam quite
early on since it had better performance. Only linear optimizers were considered
because non-linear optimizers take a lot of computing power and are usually only
recommended for small networks.
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Figure 4.9: Images showing some resulting images from augmentation. Top left
image shows the original image. Top middle image shows the result after rotating
180 degrees. Top right image shows result after rotating ≠90 degrees. Bottom left
image show result after reducing the contrast with by 30%. Bottom middle image
shows result after reducing color balance by 70%. Bottom right image shows result
after increasing color balance by 60%.

Figure 4.10: Images showing how cutouts of images were utilized. Leftmost image
shows a cutout of one of the furniture parts. The other two images show the result
after they were pasted in to di�erent environments to artificially increase training
data.
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We went back and forth with trying di�erent mixes of kernel sizes, amounts
of convolutional layers, insertion of pooling layers on di�erent places, stride sizes,
amount of dense layers and how many nodes they had.

When training the models, overfitting was a big problem from the start. The
tested methods for combating this was dropouts with di�erent values, L2 weight
regularisation, batch normalization and reducing the number of weights.

It was hard to reduce the number of weights as the evaluation usually converged
around 25% whenever it was tried. When using the dropout method a value of
50% with a minimum of 64 nodes in the layer reduced overfitting most e�ectively.
That, with a combination of weight regularisation and batch normalization gave
good results. Figure 4.12 shows how overfitting was avoided.

Gaussian Noise gave very good results, but was unfortunately not possible to
be converted from the model format generated in keras, to the mlmodel format
that is required for Xcode.

The most important thing to mention is the di�erence the amount of photos
we had and how they were taken. Adding more photos made a huge di�erence
to the test evaluation score. After having added 50 more images per class with
a library of 600 images the test score increased from 80.55% to 83.45% in accuracy.

When finally testing the model we made a mistake by not separating the training
data and test data. Since we shu�ed our data before splitting it up into two parts,
some augmented data got into the test set. The model had already trained on the
original image and it was similar enough to give unrealistic good results of 99.52%.
This was finally fixed by splitting up the test and train data into separate folders.
Figure 4.11 shows the printed graph from one of those training sessions.

Figure 4.11: Test and train accuracy over a 100 epochs. The performance seems
much better than it actually is.

As shown in the code in appendix B.1., early stopping was also finally imple-
mented with a callback to save the highest performing model at the end of the
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Figure 4.12: Images shows the result from introducing weight regularisation and
dropout to a model. The graphs show the training loss (green) and evaluation
loss (red). The upper left image shows the training without any dropout or
weight regularisation. The upper right image shows the training with dropout
implemented. The bottom image shows the training with dropout and weight
regularisation implemented.
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process.
The network that proved to be the best performing network (92.25% accuracy)

had the configuration shown in appendix B.2.
A model with many convolutional layers and a few dense layers at the end

gave the best results. A larger network could have been implemented and tests as
well but since the model size would grow more and training time would increase
drastically, we didn’t increase it further.

4.6 Transfer Learning
After trial of designing the network from scratch, it was decided to try and make
use of pre-trained networks and then retrain them for another purpose. Models
trained on imageNet [26] were chosen since that source domain is similar to this
target domain. The models with their respective weights were loaded, without
their fully connected layer. The top layer’s weights were then frozen at di�erent
stages, and new fully connected layers were added on top, and new classifiers were
trained. Several di�erent models were tried, including ResNet50, InceptionV3 and
VGG16, which where all integrated in Keras to start with.

The code shown in appendix B.3. shows how to load the VGG16 network which
has weights that has been pretrained on imageNet. The fully connected layer is
then removed and instead a custom top layer is added to be trained.

The best result that was achieved for each of the models using this method is
listed in table 4.2. It shows that using InceptionV3 model with pretrained weights
gave the best result. However, a few factors, such as, where the models were frozen,
how adding and removing layers, has most likely a�ected the results. As can be
seen from using ResNet, the best model achieved 25% accuracy, which is the same
as making a guess, seeing as there are only four possible classes. These models
could, and would most like have been, improved if it was not decided to take a new
approach to the problem, which is described further in section 5.4.

Pretrained model used Best achieved accuracy
VGG16 70.8%.
ResNet 25.0%

InceptionV3 72.9%

Table 4.2: Results from doing transfer learning .
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Chapter 5

Object Detection

At this point of the project process, a machine learning model capable of decently
classifying which of the furniture parts were in the image existed. However, when
using the planned application, it is very likely that there are several parts within
the same frame. Hence, a method of localizing where an object was located was
highly sought after. The idea was to find such a method, segmenting out the areas
containing an object, and then use these areas as input images for to the machine
learning model.

In this chapter, a few of the methods for object detection that were tried is
explained, even though none of them ended up being viable in the end.

5.1 Testing Object Scanning with ARKit2
Apple’s ARKit has a feature where it can detect scanned 3D objects. For scanning,
they have developed an app that can be downloaded from their website [27].
After the scanning is complete the app lets you export the model to then include
it in your ARKit project. Once in the project it is simply imported into the
ARWorldTrackingConfiguration in a way show in appendix C.1. (The models are
kept inside the Assets.xcassets catalogue in a folder called ’Objects’).

Once imported into our project we were able to test the performance of recog-
nizing and tracking three pieces of our furniture. Sadly, this method came up short
for our purpose. When testing live in our app the time for detection were much
longer (over 1 second) which made tracking them di�cult. The tracking wasn’t
smooth but rather choppy. Many times, the object wasn’t detected at all. This was
mainly due to our objects being a little big to fit the screen while being close with
the camera but also that the object had a lot of empty space within its bounding
box.

The detection worked best while being in the same environment, static with
the same kind of lightning conditions, but fell short when the object was moving
or being held. Therefore, since the user is going to hold the pieces by hand and
moving them around, this method cannot be used for our purpose.
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Figure 5.1: 3D Scanning using Apple’s app. On the left, the bounding box is
defined so that no reference points from other objects are included. In the middle,
the object is scanned by aiming the camera around the object at all angles. On
the right the created model is tested. In this case, the object is detected after 0.4
seconds.
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5.2 Object Detection with traditional machine
learning

When trying to detect objects in a still image we have looked into two main methods.
One typical way is to try and look for patterns or features in the image. Either a
specific image can be matched within the larger image or a series of features can be
found. An example of the latter is Haar features which is used in the Viola-Jones
for face detection[28].

Using the image integral (which is the summation of pixel values in a specific
region) di�erent features can be obtained.

Figure 5.2: A set of Haar features used to detect faces in the Viola-Jones method.
The pixels in the white regions are summed and subtracted with the pixels in the
black region. The algorithm will later decide if a specific feature has been found or
not, depending on obtained value.

This method is based on the fact that every face shares some basic similarities.
Even objects of the same type can share some similarities.

Another way to find objects in an image is to try to classify each pixel as either back-
ground or foreground, usually referred to as Foreground/Background-segmentation.
This usually requires some background knowledge of how the background usually
looks like, for example, if the background is grass or a concrete floor.
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One of the most basic functions for separating background and foreground is
the flood fill method. Anyone that has used Paint for Windows knows exactly
what this one is. It fills a segment of similar pixels with the same color. This
method works best on one backgrounds with only one color. Online there are many
di�erent variations but they all accomplish the same goal.[29]

One possible way of detecting objects in an image is to use depth data, or
RGB-D which is depth data embedded in an RGB photo. A popular device that
uses depth data for object detection is the Kinect camera for Xbox.

On the iPhone X, depth data can be captured by either True Depth on the front
camera or with the dual cameras on the back. The True Depth camera works by
having a dot projector emit light dots (mainly on a face which is why this feature
is found on the front camera) and picking those dots up with an infrared camera.

The dual camera on the back works by taking two photos and comparing those
to find the pixel shifts of the same objects. The distance is calculated by

pixelShift

pixelFocalLength · baselineInMeters

and gives the unit in 1/meter. It is the same principal to how we humans see
distance by having two eyes pointing the same direction. [30]

However, obtaining the depth data from the dual cameras in real time is not
possible since it requires too much computational power. This unfortunately makes
it impossible to use in an ARScene and thus not possible for this project.

Despite all the available methods above, object detection without machine
learning is still very tricky. These methods work best when the images are in
an controlled environment, typically industrial, like finding screws on a white
background (as they do in an article posted by combine.se). [31] When the
environment is a more casual place though, e.g., recognizing furniture indoors, the
task becomes much more di�cult. For this reason, object detection with pure
algorithms is not very common in household applications. Instead object detection
with machine learning methods such as R-CNN’s (Regional-Convolutional Neural
Network) are much more common nowadays.

5.3 MATLAB prototype for Object Detection
A purely feature based object segmentation method was implemented as a prototype
in MATLAB. This was done to see if a machine learning model for detecting objects
could be dismissed. The idea was that if one sent an image into the system, the
resulting output would be bounding box coordinates for each respective object
within the image. These smaller sub-images would later be separately classified
using a deep neural networks. The bounding boxes would also be useful for user
interface in the application.

First, an edge detection method was run on the entire image, to find the
edges, which would serve as a good variable for the segmentation. Then, Bradley’s
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threshold algorithm [32] would binarize the image. Bradley’s method is locally
adaptive and computes the threshold value for each pixel by looking at the mean
intensity of a neighborhood of pixels surrounding it. From this, one can find
enclosed blobs, and by finding enclosed blobs containing more than a certain
amount of pixels, to remove noisy errors, one can find the objects. The bounding
boxes are then found by selecting the minimal and maximal height and weight
values of the blobs.

5.4 Results from doing object detection in MAT-
LAB

A MATLAB script was tried in order to find possible ways of segmenting out regions
containing objects in an image. The output segments would then each be classified
separately. This way we would have both object locations and classifications on
each object. Figure 5.3 shows an example of when this method worked. However,
results from this were highly unpredictable and the parameters were too dependent
on lighting, shadows, the background among other features. Figure 5.4 shows an
example of when applying the same method on a di�erent input image. Because of
these unreliable results, this method was scrapped.
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Figure 5.3: Images showing the results from doing object detection in MATLAB.
Top left image shows the original image. The top right image shows the result
from running edge detection on the original image. Bottom left image shows the
the result after binarizing the top right image. the bottom right image shows the
generated bounding box superimposed on the original image
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Figure 5.4: Example image of when this method did not work as well.
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Chapter 6

One Stage Detector

After getting stuck for trying to develop a solution that would first do object
detection, and then afterward classify the segmented areas separately, it was
decided to try a di�erent approach. The one stage detector You Only Look Once
method was tried to great success. This chapter will describe how it works, sections
6.1 6.2, how the models were created and trained, section 6.3, and then an evaluation
of the resulting models in section 6.4.

There are other methods of doing object detection and classification, such as
Mask R-CNN and Faster R-CNN, however, they are outside of the scope of this
project.

6.1 YOLO
YOLO, or You Only Look Once, is a one stage detector approach to object detection
and recognition [10]. It takes an image and predicts both bounding boxes and the
probabilities of the classes being within these bounding boxes in one run, hence its
name. It was designed to be fast and usable in real-time scenarios. Since YOLO
sees the entire image during training and testing, it receives contextual information
about the classes and reduces error with matching background patches for objects.

The architecture for YOLO consist mainly as a convolutional neural network,
with 24 convolutional layers and two fully connected layers. There was also a
smaller neural network trained called Fast YOLO trained which were only 9 layers
which was designed to create an even faster system for object detection.

The system first divides the input image into an S ◊ S grid, where each
cell predicts B amount of bounding boxes respectively confidence scores for the
boxes. Each bounding box prediction consists of 5 separate predictions: the x, y
coordinates, represented as their position relative to the the grid cell, width and
height relative to the entire image and a confidence value. The confidence values
are there to reflect how certain the model is that there exists an object within the
box, i.e. ideally, confidence should be zero when no object, and the intersection
over union between ground truth and the predicted box if there is. Each grid
cell also predicts C probabilities for each class, conditioned that there’s an object
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within the boxes.
Intersection over union, also known as the Jaccard index, is a way of measuring

similarity between sets. It can be written as

IOU(A, B) = |A fl B|
|A fi B| = |A fl B|

|A| + |B| ≠ |A fl B| , 0 Æ IOU(A, B) Æ 1

if A, B are two finite sets. If the two sets are equal, then

IOU(A, A) = |A fl A|
|A fi A| = |A fl A|

|A| + |A| ≠ |A fl A| = |A|
|A| = 1

When testing, these scores are then combined to give the class specific confidence
values for each of the boxes, thus it receives both the confidence of the class being
in the box, and how well the box fits the object. Figure 6.1 summarizes the flow in
YOLO.

Figure 6.1: The stages of YOLO. First dives into S ◊ S grid. Separately predicts
bounding boxes with respective confidence, as well as class probability. Then,
combines the two to form the final predictions. Image taken from [10].

Comparisons done by the team working on YOLO found that, compared to
other real-time systems at the time, both Fast YOLO and YOLO outperformed
them all with Fast YOLO being the fastest, but YOLO being more accurate on
the PASCAL VOC data sets [35].

Throughout the years Redmon et al. has been working on updating the design
pattern of the YOLO network. First in 2016 when they introduced YOLOv2 and
then April 2018 with YOLOv3 [33][34]. YOLOv2 added a few concepts to the
system to make it even more fast and accurate than the earlier iteration. It removed
the fully connected layers and it was now possible to train on several di�erent input
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image resolutions and it could now also predict many more bounding boxes than
its predecessor. YOLOv3 added some changes which improved its ability to detect
small objects, with the trade o� of having a bit worse performance when finding
larger sized objects.

6.2 Mean Average Precision
There is quite a di�erence when it comes to evaluating a model that does object
detection, compared to normal image classification. When doing the latter, accuracy
tells you how often the model makes the correct prediction. However, with object
detection it is done di�erently. The common metric is mean Average Precision
(mAP). This metric makes use of the previously discussed IoU (Intersection over
Union). The IoU and the classification determines if the prediction is deemed
correct. The classification obviously has to be the same as the ground truth, and
the IoU has to be over a set threshold, these are known as true positives. A
predicted box that does not pass the threshold is known as a false positive. If there
are more than one prediction that passes the threshold, only one will get seen as a
true positive, and the other as false positive. When a prediction was not made for
a ground truth box, it is called a false negative [38].

From the false positives, true positives, and the false negatives, one can calculate
recall as well as precision scores [36]. Precision is how good the model is to identify
only the relevant data, and can be written as

precision = True Positives
True Positives + False positives

Recall is how good the model is to find all the relevant data, and is written as

recall = True Positives
True Positives +False Negatives

When a classification is made you also get a confidence value. One only calls it
a prediction if the predictions confidence passes a set threshold. However, if one
calculates the recall and precision for all possible thresholds, a Recall x Precision
curve can be made. From this curve, one gets the mAP by taking the area under
the curve.

There are di�erent standards when calculating the mAP. The PASCAL VOC
Challenge uses a mean average precision with a static threshold of 50% [35]. This
is commonly called mean_average_precision_50. Another common standard is the
one used by COCO [37]. This one calculates the mAP at IoU threshold from 50%
to 95%, with increments of 5% every iteration, and averages them all together. This
is quite strangely known as just mean_average_precision. The latter mentioned
method is the one this report will use for evaluation, since it puts more value on
localization than the PASCAL VOC method.
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6.3 Turi Create
Apple has a licenced toolkit for development of custom machine learning models
called Turi Create [39]. This was created to help developers easily implement their
own ideas into an app. It includes a methods object detection.

In this project, the object detection method included in Turi Create was tested.
First, one has to create ground truth data for every image that was trained and
tested on. This was done using Simple Image Annotator [40], where one has to
draw bounding boxes for the objects in the images and label them; the data output
is in the .csv format. Turi Create uses a di�erent format for annotations called
.sframe, however, they provide a simple Python script which automatically does
the conversion.

Turi then trains a model using a re-implementation of the TinyYOLO network.
It also utilizes transfer learning by starting with an image classifier that has been
trained on the imageNet dataset and then does end-to-end finetuning to change
the network to a one-stage detector.

Several models were trained, with di�erent amount of training data, to evaluate
how many were needed to get a decent result. The Turi website states that at least
30 samples of each class is needed to generate a good enough model. Hence, we
tested for even lower samples, as well as much more. Lowest amount of training
images were around 50, and highest were around 1000. The mean average precision
was measured for each model using 200 testing images, and then plotted to create
a graph showing how it changed, depending on the amount of training data was
used. The results can be seen in section 6.4. The best performing model was then
to be used in the application.

The code in appendix D.1. shows how the model was created using Turi in
python.

The results could also be further inspected by drawing the newly predicted
bounding boxes on top of the original image, from this one can visualize how the
model actually performed. This was done using code in appendix D.2. Some of the
resulting images from di�erent models can be seen in section 6.4.

6.3.1 Importing model to application
After training and evaluating that the model lives up to a standard worth including
in this project, it was converted to the .mlmodel format used in Swift. When
inputting a frame from the application into the model, the model outputs a multi
array containing an array for each object found. These predictions have not been
non-max suppressed, since that functionality is lost during the conversion from the
model used in python, to the .mlmodel format. Thus, it has to be reimplemented
in the application itself. A non-max supression threshold of 0.5 was used as it
is considered a traditional standard [41]. The code in appendix D.3. shows how
non-max suppression was implemented.
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6.4 Results from doing object detection with Turi
Because of the vast amount of possible use cases it was decided to scale the objective
down. The model was trained only on a few floor backgrounds.

The mean average precision from the di�erent models that were trained were
observed and can be read in table 6.1. These values were plotted, resulting in the
graph shown in figure 6.2.

Amount of training images Percentage of total amount mean_average_precision
¥ 50 5% 0.17064
¥ 100 10% 0.30188
¥ 140 15% 0.30342
¥ 185 20% 0.39269
¥ 280 30% 0.41588
¥ 370 40% 0.40595
¥ 415 45% 0.49917
¥ 450 50% 0.47397
¥ 570 60% 0.50454
¥ 700 75% 0.54433
926 100% 0.57618

Table 6.1: Mean average precision depending on the amount of training data used.

When training on di�erent amount of data it can appear as if more data gives a
worse result sometimes. That can be explained in two ways. The first explanation
is that when training the models the data was randomly split from the full training
data set. That means that sometimes there can be more "good" data and sometimes
less in the set. Some images have lots of objects in them and others have fewer.
Thus, if you have a data set with images with lots of objects in them it will likely
give better results. An important thing to mention however is that for the model
to perform well it also needs areas in the image of no object.

The other explanation is that when training, the most optimal model for that
data set is not always, if ever, returned. Take into account early stopping for
example. Sometimes the early stopping can happen on a good place and sometimes
it could have given a better result if the training session would have kept going for
a little bit. We did not have a way to use an evaluation set during training, and as
such, could not receive training and validation curves. Hence, we can not know
how if we trained for too long or too little.

The curve from the tests, fig. 6.2, shows no sign of saturation yet, thus even
more data would surely improve the performance. The reason for not testing with
more data is because of the di�culty of gathering more data (taking photos in
di�erent environments and adding ground truth data) and the time it took for
training. As of now, the time for training with 926 images on a MacBook Pro 15
inch 2017 with a 2,8 GHz Intel Core i7 processor is over 24 hours. With half the
amount it takes about 17 hours. We would have trained with a GPU, however, it
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Figure 6.2: Mean Average Precision from table 6.1 plotted against the amount of
training data used. 100% corresponds to 926 images.

was at the time of training not supported on our hardware.

From the graph there is a small plateau between 185 to 370 images. Around
that performance (0.4 mAP) is a sort of minimum for the model to perform well.
For our 6 classes that would correlate to needing around 30-60 images per class.

From the plot in figure 6.2 one can see a sharp ascension up until around 20%
of the training set, or 185 images, were used to train the model. This corresponds
to roughly 30 images per class. Afterwards, it starts to even out. Hence, the
claim that at least 30 images are need to train a somewhat decent model is correct.
However, as seen, more data usually generates even better result.
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Figure 6.3: Images showing how the same three images were classified di�erently
using di�erent models. The top row is classified using the model that was trained
on all of the training set. The bottom row shows the images that were trained on
only 15% of the training set.
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Chapter 7

Object Tracking

To improve the user experience, object tracking was tried. This infers that the
application would keep track on where certain objects are on the screen. The
thought behind this idea was that the application would not have to constantly run
the current frame through YOLO model in order to keep track of where objects
were, which could lead to a choppy user experience.

This chapter will describe the concept of object tracking, how it was implemented
and tested, as well as our reasoning for not keeping this functionality in the final
application.

7.1 Testing Object Tracking with Vision package
Vision is a package from Apple which contains a lot of di�erent methods for images
and video. It contains still image analysis, image sequence analysis, object tracking,
face detection etc.

On their website, Apple has a project that lets any user try out the object
tracking on a video [42]. When trying this on one of the furniture we are going to
assemble, the result was very promising. While the parts were laying on the floor
and simultaneously moving the camera around, the objects were tracked fairly well.
It was only when the camera was moved in such a way that made the pieces rotate
in the picture that it started having a hard time tracking it.

For solving this, object detection can be performed in a reasonable time interval
and be tracked until object detection is performed once again etc.

The di�erence for this project and Apple’s test project is that object tracking
is going to be performed in real-time. This puts a limit on how many frames per
second we can perform object tracking, since in a video playback you can just
choose how fast you want to feed the new images. In real-time, the world doesn’t
stop moving.

After the system was implemented into our application di�erent frame rates
were tested. The optimal value was somewhere in-between 10-30 fps. If you went
higher than that the application would become very choppy and eventually shut
down.
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Going lower than 10 fps the user will start to experience that the objects are
hard to track in rapid movements.

For this application, however, the user is not going to encounter any scenarios
where objects are flying around rapidly. Therefore we will settle for 20 fps as the
optimal value for performance since any higher amounts don’t really contribute to
a better experience.

The code presented in appendix E.1. show how the object tracking was set up.
One important thing to realize when setting this up is that the heavy calculations
are run on a di�erent thread than the main thread (in this case the work thread).

That is why they can be executed in a while true loop. Later though, when
drawing on the GUI wants to be made, they must be done on the main thread.

7.2 Combining Object detection with Object Track-
ing

The purpose of having the object tracker is to be able to avoid performing object
detection and object recognition 30 frames per second or so. Also, doing this with
YOLO nets have shown choppy results where an object can be identified in one
frame, not identified in the next and then again identified. There is no real issue
with this since both solutions perform really well overall. There is however concerns
for the end user to have a good experience.

One way to solve this is to perform the detection and recognition once, to later
continue to track the position of those items with a cheaper algorithm. Object
detection and recognition will then be repeated, but only update the state of the
rectangles if the correct objects are identified. In this application, an arrow was
drawn between the objects with an instructional text for the user. Doing this
created a rather big issue though.

In this project, ARKit by Apple has been utilized. As previously stated,
when working with ARKit, a frame from the camera is fetched by either calling
the function snapshot() on the ARSCNView object or getting the currentFrame
attribute from the ARSession. However, both of these images contain both the
image from the camera as well as all the virtual items rendered in the ARScene.
We did not find a way to capture just the image from the camera.

This whole scenario created a kind of positive feedback loop because the virtual
arrow that was rendered between the objects was usually contained within either
one of the tracking rectangles. Thus, the arrow’s position was determined by the
tracking rectangle and the tracking rectangle was tracking the position of the arrow.
Just the tiniest change in the picture made the arrow jump up and down until it
finally got out of frame.

The takeaway from this was to skip object tracking and solve the problem in
another way.

An assumption was made that just as talked about before, the furniture parts
are laying still on the ground while the user is using the application. That means
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Figure 7.1: The image shows an early stage of the application were two pieces
have been recognized by the network and an outline around them has been drawn.
Between them, an arrow is rendered on the floor, showing how to put together the
two pieces. The objects are continuously being tracked within the frame and the
arrow is also updated.
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that we can rely on ARKit to keep track of where the object is for us instead.
Switching gear to that solution made the whole application much better and

easier to code. A takeaway from that is that adding more technology to a project
does not always equal a better product. Sometimes it is better to use the components
the way they are meant to be used and try not to make it more complicated than
it needs to be.
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Chapter 8

The Finished Application

This chapter will round o� the work process of the report. It goes through how
the final application was designed and implemented in 8.1. The chapter then ends
with section 8.2, detailing the evaluation process of the application, which was the
by having users test the finished application.

8.1 The iOS Application
The application is build for iOS using Xcode and Swift 4.0. The app has been
developed specifically for iPhone X. It has also only been tested on iPhone X.
However, the app should work on other iPhone models that support ARKit 2.0 as
well.

8.1.1 Class diagrams
Below are some class diagrams for the reader to better understand what di�erent
parts there are, how they fit together and how the application works as a whole.
The diagrams are divided into three parts to be readable in the paper.

The application follows the Model View Controller design pattern as well as
the Delegate design pattern. This decision was made since many tools and features
in iOS and Swift are implemented that way, so we are just following the standard
procedure.

AssemblerViewController is the controller for the view that holds the AR-
SCNView. It is responsible for what happens when the user taps on a button in
that view and displaying the correct information to the user at the right times. It
also holds the Instruction Executioner which holds a set of instructions that it
gets at initialisation. The instruction executioner executes the current instruction
and therefore decides what will happen when it executes. Every instruction is
executed on a worker queue thread to avoid the video feedback to freeze during
execution.
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Figure 8.1: A class diagram of the assembler view part of the application. The
Furniture class in the lower right is incomplete and is shown in the next diagram.

48



The InstructionExecutioner holds the ObjectDetector which finds specific
objects in a trained model from a pixel bu�er. The found objects are passed back
as ObjectRectangles through the delegate. The object rectangles are bounding
boxes of the objects on screen. They are represented as CGRect’s and can be stored
and fetched as either regular or normalized rectangles. The normalized variants
are needed in all kinds of machine learning purposes and the regular form are used
in all GUI purposes, such as in the OverlayView. (Normalized rectangles have
values of 0-1 for widths, heights, x-, and y-position. The origin is in the lower left
corner.)

The AssemblerModel is the model in the AssemblerViewController, but is
also used in the InstructionExecutioner since they are highly dependent on each
other. The most important attributes it holds are the ObjectParts that have
been spotted by the app during the execution of the current instruction. That
way, all the parts needed for the current instruction do not need to be in the same
image together but instead can be spotted separately.

Figure 8.2: A class diagram of the furniture selection views part of the application.
The Furniture class.

The furniture that the user wants to put together is selected in a collection view
FurnitureSelectionViewController which conforms to the UICollectionViewDelegate-
and UICollectionViewDataSource protocol for the collection view functionality.
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The data to be viewed in the controller is fetched from the Database class. The
return data from the class are hardcoded from the start but can easily be changed
to fetch data from a server.

The Furniture holds all the information about a specific furniture as well
as the instruction set of how to put it together. The instruction set consists of
Instruction’s that can be of the kind ScanInstruction, AssembleInstruction
or CompleteInstruction. A regular Instruction is usually just text instructions
to the user, while the scan instructions tell the instruction executioner to look for
specific parts during that step. The assemble instruction is run when the user is
in the process of assembling two parts. Finally the complete instruction is given
which tells the executioner that the furniture has been fully assembled.

For scanning barcodes, the BarcodeScannerViewController is used, which
inherits all the photo capture functionality from the ImageViewController.

Figure 8.3: A class diagram of the utilities part of the application. These are some
classes that make the rest of the code in the application easier to understand and
use.

In the utilities folder there are some classes that simplifies the rest of the
application by holding code that removes a lot of redundancy.

The GeometryFactory creates all the 3D geometry for the ARScene and
return the nodes containing this geometry. An example is that it can create all the
furniture parts as virtual object nodes to be placed in the scene.

A lot of conversion between pixel bu�ers and UIImage’s are made and the
ImageConverter eases the pain of having to do that in many places.
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Finally the Prediction class helps the object detector when getting results
from the VNCoreMLRequest.

8.1.2 Connecting two pieces in AR
After finding the specific pieces that are supposed to be connected they are created
as virtual objects in the scene on their respective locations. The location is
determined using hit tests of the screen positions to the detected plane from the
ARScene.

The virtual objects are rendered in the scene using SCNNode’s as talked about
in 3.4 and the node position is the origin of the 3D model. The origin has been
chosen to be at a location that is touching the floor when it is standing. That way
they can easily be placed to look like they are standing right on the floor. When
both pieces are placed in the scene they are to be moved with an animation in a
way so that they become connected.

Each virtual object node can embed another node called the "anchor point".
The position of this node within the parent node is where the other object is to
be connected. To connect them, either the object without the anchor point moves
to the anchor point position, or the two object move so that each of their anchor
points are at the same position. This is accomplished using the algorithm descibed
in code in appendix F.1.

Afterwards, the items in ’action’ are performed on the respective node.

8.1.3 The finished GUI
The finished GUI is similar to the prototype but some details are di�erent. The
resulting screen shots can be seen in figure 8.4 and 8.5.

8.2 User Testing
Evaluating the AR experience is possible on a technical level, to research if the
combination of AR with object recognition is feasible. This can be done by, for
instance, making sure the application is running at an acceptable frame rate. How-
ever, as this report also wants to research into the desirability of this combination
of technology, the same approach is not as appropriate. What was done was to
test the application ourselves, as well as get outside evaluations through user tests.

When setting up the user testing we decided to use mainly observation and
task demonstration as elicitation techniques, as well as a questionnaire. These
methods are recommended in Soren Lauesen’s book ’Software requirements, Styles
and techniques’ [45].

The user tests were set up by having people from the o�ce sign up online to come
test our application. This was done since lots of users have problems describing
why they do a certain thing. The users were also asked to answer a questionnaire
afterwards where they answered several questions. The questionnaire was for the
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Figure 8.4: Images from the use of the application when selecting a furniture and
right before starting the assembler view.

Figure 8.5: Images from the application when having started the ARScene, finding
objects and showing animations when putting them together. The green rectangle
on the floor is an indication that the part has been recognized by the application.
We call these markings.
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user to give opinions and suggestions about the app. While the users were doing
the tests, they were observed and comments were written down, reporting on how
they behaved. We also used screen recording on the phone, so to be able to replay
the scenario afterwards.

The form asked the participants the following questions:

• Did you know that you could skip instructions?

• How easy was it to understand how to get to the next step?

• How easy was it to understand how the pieces fit together?

• How easy did you feel the app was to use?

• Compared to using paper instructions, did the app make it easier to under-
stand how to put together the furniture? ? If not, then why?

• What potential do you see in this app?

• General feedback

• Suggestions of improvement

• What is your role at Jayway?

A user survey was done in order to evaluate the performance of the application.
By having a multitude of interested people booking time slots for a ten minute
testing period, a decent amount of sample data could be gathered and evaluated.
Figures 8.6 to 8.11 show bar charts and pie charts representing the answers gathered
from the participants to some of the questions they were asked.

Figure 8.6: Results from when users were asked "How easy was it to understand
how to get to the next step?". X axis is their rating from 1-5 and y axis is how
many.

By collecting the data from the forms, the recorded videos and our own obser-
vations we could find some general trends and reach a few conclusions.
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Figure 8.7: Results from when users were asked "How easy was it to understand
how the pieces fit together?". X axis is their rating from 1-5 and y axis is how
many

Figure 8.8: Results from when users were asked "Did you know that you could skip
instructions?"

Figure 8.9: Results from when users were asked "How easy was it to understand
how to get to the next step? X axis is their rating from 1-5 and y axis is how many"
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Figure 8.10: Results from when users were asked "Compared to using paper
instructions, did the app make it easier to understand how to put together the
furniture?"

Figure 8.11: Results from when users were asked "What potential do you see in
this app? X axis is their rating from 1-5 and y axis is how many"
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What we found was that half of the participants thought it was easier to use
our application to assemble the furniture than using a traditional paper instruction,
and no-one thought it was definitively more di�cult, as seen in figure 8.10. This
could be due to the fact that the piece of furniture we chose to train on were quite
simple to assemble, relative to other possible furniture. It would be interesting to
perform the same task but on a more complicated piece of furniture.

Every participant thought that the application had good or great potential,
see figure 8.11, if it were to be improved. This result shows that the use of this
technology is mostly desirable, if done in a more proper way.

The answers show that most people could understand how to use the application
and could intuitively start up the application and start the assembly process without
outside help, shown in figure 8.6, 8.7 & 8.9. In some cases we noticed that people
were a bit confused with the augmented reality interface. Several participants had
a hard time understanding the purpose of the green rectangles that were rendered
around a found object in the scene. Mostly because the rectangles were significantly
larger than the object itself, hence, it often overlaps with other objects on the floor.

The hassle of having to put the phone down in between looking at the animation
and actually assembling the furniture parts was also brought up. Some of the
participants had to pick up the phone several times during certain steps to make
sure they were executing the task in the correct manner.

At times, some participants were getting confused because the application could
not find the correct parts. This happened because of several reasons. One being
that they had accidentally skipped an instruction, thus the application were looking
for model parts that had not yet been assembled. Another reason being that the
machine learning model were inconsistent at times and could not identify certain
in the orientation it was currently in. It also happened when the users did not
perform the first task given by the application, being that they had to make sure
that the parts were laying on the floor and not overlapping each other. A solution
to these problems could be to give the users a more clarified and more intuitive set
of instructions such that the user don’t accidentally skip an important instruction.
Another solution is to retrain the machine learning model to be able to identify
the parts in more orientations.

The user test was performed in the Jayway o�ces on people with background
in technology, where most participants were developers or designers. Due to this,
the result could be skewed, since people with similar background have a tendency
to understand each others intent. The same test would have to be performed on
actual end users with a more varied background to see if it would match the results
we’ve gathered.
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Chapter 9

Conclusion

The main goal for this project was to investigate whether it was possible to use
object detection and object recognition together with augmented reality, both with
respect to if it is technically possible and if it creates value for the customer.

From a technical perspective it is surely possible to combine the two in a single
product. In the report we have shown that a neural network like YOLO can be
used for object detection, while at the same time having an AR session active to
keep awareness of the surrounding space and where the device is located in it. The
main challenge is to collect large amounts of relevant data and training a neural
network to give a good generalisation of that data. This can partly be eased by
using transfer learning, but for a full scale product there are still much data needed.
Apart from that, there are a lot of frameworks (for AR, maching learning, object
detection etc.) to be used to avoid developing from scratch.

From a customer value perspective there is also potential but not as much
interest with the current hardware. From our user tests we got some interesting
results. Although the users liked our solution to a paperless assemble manual in
AR, they were not so keen to holding a phone while watching the instructions to
then put the phone down when putting together a piece of furniture. Apart from
that they all saw big potential with using this type of technology together, but a
pair of glasses would be really great. However, using other hardware was outside
the scope of this project.

A fully working prototype for combining object detection with augmented reality
was finally developed for iPhone X.

9.1 Future Work
Because of the rapid development in the fields discussed in this report, much of
what we’ve gone through could be improved in the future. With new Augmented
Reality and Mixed Reality hardware being developed by big franchises, such as
Facebook [43], the performance will increase ever so rapidly.

Underneath, we describe a few ways not only our application could be improved,
but also the combination of used technologies in general.
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9.1.1 Wearable
One improvement of our application would be to port it to, not only hand-held
devices, but also the headgear, thus allowing the user to building with both hands
and never have to pause during the assembly process.

9.1.2 Detecting smaller objects
Another issue with our model is that we are unable to detect screws and bolts
because of their comparatively small size, instead, we just inform the user that
screws should be used during a particular step using animations. This issue could
possibly be fixed by adapting our model into taking account to smaller objects.
Some future work could be to investigate whether this would be possible.

9.1.3 Mask R-CNN
Since there was a lot of confusion around the green markings from the user tests,
it would be an improvement to only mark the exact position of the part and not
the surrounding floor. For this application only the bounding box of the 2D image
is known, not the floor where it lays.

A possible solution to this in the future could be to implement a Mask R-CNN
network. However, the problem with this type right now is that it does not work
in real time applications (definitely not on mobile devices). If this would get better
it could be implemented in the app for a much nicer user experience.

9.1.4 Starting the app in the ARScene
When comparing to other AR Applications in the App Store, a lot of them starts
right in the AR scene. This seems to be somewhat of a convention in the AR
community.

We chose to have the user select the furniture before entering the AR scene to
make the GUI implementation easier. However, it could be changed so that the
furniture could be selected either from an overlay or a bottom card design over the
AR scene view.

9.1.5 Shared AR experience
Ever since ARKit 2.0 was released, it is possible to share an AR experience with
another user. Since the app already utilizes ARKit 2.0 it would be relatively simple
to implement a shared experience. The shared experience could make it easier for
multiple people to work together to assemble a furniture. Big furnitures are rarely
assembled by just one person.
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9.1.6 Voiced instructions
Reading instructions on the screen while viewing a video preview is not the most
intuitive in an AR environment. The eyes are mostly focused on what is going on
in the environment and text instructions given on an overlay can easily be missed
if they are subtle.

Furthermore, people with hard of seeing could have a hard time with both
reading the instructions and seeing the 3D models. This problem can be solved by
introducing voiced instructions in the app.

9.1.7 Finding the anchor points with object detection
Since screws were to small to detect, so are the anchor points on the furniture
parts that connect each other. An improvement in the future could be to try to
detect the exact anchor points on the real furniture parts and rendering the virtual
object right on that location. This would require more work on training the neural
net to detect those small parts and probably higher resolution on the images.

9.1.8 Make it scalable
The application only supports one furniture. For a full scale application it would
need to support many more furnitures. For a complete catalogue there could exist
hundreds of furnitures.

To add support for a new furniture in the app the following steps are needed:

1. Take at least 30 pictures of every furniture part, however, more is recom-
mended for more complex objects and more backgrounds

2. Train a neural net to recognize those parts and import the model into Xcode

3. Add an instruction set on how to put the furniture together

4. Add 3D models of all the parts and the fully assembled model

5. Add anchor points and screw points to the models

The problem of making the app scalable is the size of the ML-model. For many
furnitures it could easily be the size of 1 GB or more. A way to solve this is to
have an downloadable ML-model for each furniture. These could be fetched from a
database before starting the assembly session.

All the other instructions, geometry, anchor- and screw points could also be
fetched from a database.
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Figure 9.1: Book shelf rendered in a corner. To the left no objects in front so it
looks realistic.On the right, the book shelf has a lamp in front of it.

9.1.9 Occlusion problem in AR
One of the current problems with Augmented Reality for us is that the models are
rendered on top of the real world. When there are no other object in the scene and
we just have a simple plane to render one, the result can look decently realistic.
However, when other objects are in the scene, the illusion of realism is easily lost.
Example of this can be seen in figure 9.1.

A way to solve this problem would be to create a 3D model of the real world,
to be able to find foreground objects and thus, add a transparency mask on the
object we wish to render in the real world to increase the e�ect of illusion that it is
actually there.

As of now it is not possible with ARKit to do this in a real time fashion.
However, there are scholars working on solutions for the occlusion problem in
augmented reality, such as Shah, Niyati [44].
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Appendix A

Code from chapter Augmented
Reality

A.1
1 func loadWorldTrackingConfiguration ()
2 {
3 let configuration = ARWorldTrackingConfiguration ()
4 configuration . planeDetection = [. horizontal ]
5
6 // All the objects that are tracked is contained in the

Objects folder
7 guard let detectingObjects =

ARReferenceObject . referenceObjects ( inGroupNamed : " Objects ",
bundle : nil) else { return }

8 configuration . detectionObjects = detectingObjects
9

10 // Setting up tracking of images
11 for imageURL in trackingImageURLs
12 {
13 guard let image: CGImage = UIImage (named:

imageURL )?. cgImage else { return }
14 let referenceImage = ARReferenceImage (image ,

orientation : CGImagePropertyOrientation .up , physicalWidth : 0.3)
15 configuration . detectionImages . insert ( referenceImage )
16 }
17
18 configuration . maximumNumberOfTrackedImages =

trackingImageURLs .count
19
20 // Running the sessoin with the configuration
21 sceneView . session .run( configuration )
22 }

A.2
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1 // Load the scene
2 let scene = SCNScene (named: "art. scnassets /world.scn")!
3 sceneView . scene = scene

A.3
1 func renderer (_ renderer : SCNSceneRenderer , didAdd node: SCNNode ,

for anchor : ARAnchor )
2 {
3 // If detected an object
4 if let objectAnchor = anchor as? ARObjectAnchor
5 {
6 // Add some 3D text to the scene
7 let objectName = objectAnchor . referenceObject .name!
8 let textNode = GeometryFactory . makeText (text:

objectName )
9 node. addChildNode ( textNode )

10 }
11 // If detected a plane
12 else if let planeAnchor = anchor as? ARPlaneAnchor
13 {
14 // Add a plane geometry of the detected floor to the scene
15

node. addChildNode ( GeometryFactory . createPlane ( planeAnchor :
planeAnchor , metalDevice : metalDevice !))

16 model. numberOfPlanesDetected += 1
17 }
18 }

If nodes need to be rendered outside of this function it can be done by accessing
the scenes root node.

1 sceneView . scene . rootNode . addChildNode (node)
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Appendix B

Code from chapter Neural
Networks

B.1

1 # Python script from training
2 # Project path:
3 master - thesis / Training / trainer .py
4 import tensorflow as tf
5 from tensorflow import keras
6 import numpy as np
7 import matplotlib . pyplot as plt
8 from PIL import Image
9 from sklearn .utils import shuffle

10
11 train_images = []
12 train_labels = []
13 loadImages ( train_images , train_labels , "Train", 200)
14 train_images = reshapeArray ( train_images )
15
16 test_images = []
17 test_labels = []
18 loadImages ( test_images , test_labels , "Test", 39)
19 test_images = reshapeArray ( test_images )
20
21 # Create the neural network
22 model = keras. Sequential ([
23 keras. layers . Conv2D (4, kernel_size =(5, 5),

strides =(2, 2), input_shape =( image_height , image_width ,
number_of_color_channels )),

24
25 ["The code for the hidden layers "]
26
27 keras. layers .Dense (4, activation =tf.nn. softmax )
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28 ])
29
30 model. compile ( optimizer =keras. optimizers .Adam (),
31 loss=’sparse_categorical_crossentropy ’,
32 metrics =[ ’accuracy ’])
33
34 train_data , train_labels = shuffle (train_data , train_labels )
35
36 early_stopping =

keras. callbacks . EarlyStopping ( monitor =’val_acc ’,
patience =5, verbose =1)

37 checkpoint =
keras. callbacks . ModelCheckpoint ("./ Models / Nolmyra .h5",
monitor =’val_acc ’,

38 verbose =1, save_best_only =True , save_weights_only =False ,
mode=’auto ’, period =1)

39
40 history = model.fit(train_data , train_labels , epochs =40 ,

batch_size =10, validation_data =( test_images ,
test_labels ), callbacks =[ early_stopping , checkpoint ] ,
verbose =1)

41
42 model.save("./ Models / recognizer .h5")

B.2

1 Conv2D (4, kernel_size =(5, 5), strides =(2, 2),
input_shape =( image_height , image_width ,
number_of_color_channels )),

2 Conv2D (4, kernel_size =(3, 3), strides =(1, 1),
input_shape =( image_height , image_width ,
number_of_color_channels )),

3 MaxPool2D ( pool_size =(2, 2), padding =" valid"),
4 BatchNormalization () ,
5 LeakyReLU (),
6 Conv2D (8, kernel_size =(3, 3), strides =(1, 1)),
7 Conv2D (8, kernel_size =(3, 3), strides =(1, 1)),
8 Conv2D (8, kernel_size =(3, 3), strides =(1, 1)),
9 MaxPool2D ( pool_size =(2, 2), padding =" valid"),

10 BatchNormalization () ,
11 LeakyReLU (),
12 Conv2D (16, kernel_size =(3, 3), strides =(1, 1)),
13 Conv2D (16, kernel_size =(3, 3), strides =(1, 1)),
14 Conv2D (16, kernel_size =(3, 3), strides =(1, 1)),
15 MaxPool2D ( pool_size =(2, 2), padding =" valid"),
16 BatchNormalization () ,
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17 LeakyReLU (),
18 Flatten (),
19 Dropout (0.5) ,
20 Dense (64, kernel_regularizer =keras. regularizers .l2 (0.003) ,

activation =tf.nn.relu),
21 GaussianNoise (0.2) ,
22 Dense (64, kernel_regularizer =keras. regularizers .l2 (0.003) ,

activation =tf.nn.relu),
23 Dropout (0.25) ,
24 Dense (4, activation =tf.nn. softmax )

B.3

1 # Project path:
master - thesis / FeatureTraining / transferLearning .py

2 from keras import applications
3 from keras . preprocessing .image import ImageDataGenerator
4 from keras import optimizers
5 from keras . models import Sequential , Model
6 from keras . layers import Dropout , Flatten , Dense ,

GlobalAveragePooling2D , Input , Conv2D , MaxPool2D
7 from keras import backend as k
8 from keras . callbacks import ModelCheckpoint ,

LearningRateScheduler , TensorBoard , EarlyStopping
9

10 #Load data and pretrained model
11 img_width , img_height = 256, 256
12 train_data_dir = "data/ train"
13 validation_data_dir = "data/val"
14 nb_train_samples = 129
15 nb_validation_samples = 21
16 batch_size = 16
17 epochs = 50
18 input_layer = Input(shape =(256 ,256 ,3))
19 model = applications .VGG16( include_top =False ,

weights =’imagenet ’, input_tensor = input_layer ,
pooling =None)

20
21 #Cut network and add own layers
22 x = model. get_layer (’block5_pool ’). output
23 x = Flatten ()(x)
24 x = Dense (512 , activation ="relu")(x)
25 predictions = Dense (4, activation =" softmax ")(x)
26
27 # creating the composed model
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28 model_final = Model( inputs = model .input , outputs =
predictions )

29 for layer in model_final . layers [: -2]:
30 layer. trainable = False
31
32 # compile the model
33 model_final . compile (loss = " categorical_crossentropy ",

optimizer = optimizers .SGD(lr = 0.0001 , momentum = 0.9) ,
metrics =[" accuracy "])

34
35 # Hidden lines of code
36 .........
37
38 #Train the model
39 hist = model_final . fit_generator (
40 train_generator ,
41 epochs = epochs ,
42 validation_data = validation_generator ,
43 callbacks = [checkpoint , early ])

71



Appendix C

Code from chapter Object
Detection

C.1
1 let configuration = ARWorldTrackingConfiguration ()
2 guard let detectingObjects =

ARReferenceObject . referenceObjects ( inGroupNamed : " Objects ",
bundle : nil) else { return }

3 configuration . detectionObjects = detectingObjects

72



Appendix D

Code from chapter One Stage
Detector

D.1

1 import turicreate as tc
2 tc. config . set_num_gpus (0)
3
4 # Load the data
5 train_data = tc. SFrame (" Train_Data . sframe ")
6
7 # Random split train data to get specific training size
8 train_data , unused_data = train_data . random_split (0.3)
9

10 test_data = tc. SFrame (" Test_Data . sframe ")
11
12 # Create a model
13 model = tc. object_detector . create ( train_data )
14
15 # Evaluate the model and save the results into a dictionary
16 metrics =

model. evaluate (test_data , metric =’mean_average_precision ’)
17 print( metrics )
18
19 # Save the model for later use in Turi Create
20 model.save(’Nolmyra030 . model ’)
21
22 # Export for use in Core ML
23 model. export_coreml (’Nolmyra030 . mlmodel ’,

include_non_maximum_suppression =False)

D.2
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1 #Load test data
2 test_data = tc. SFrame (" Test_Data . sframe ")
3
4 #Load created model
5 model = tc. load_model (’Nolmyra .model ’)
6
7 # Save predictions to an SArray and draw predicted bounding

boxes
8 predictions = model. predict ( test_data )
9 predictions_stacked =

tc. object_detector .util. stack_annotations ( predictions )
10 image_prediction =

tc. object_detector .util. draw_bounding_boxes ( test_data [’image ’],
predictions )

11
12 #Look through the predicted bounding boxes
13 image_prediction . explore ()

D.3
1 private func

filterOverlappingPredictions ( unorderedPredictions :
[ Prediction ], nmsThreshold : Float) -> [ Prediction ]

2 {
3 var predictions = [ Prediction ]()
4 let orderedPredictions = unorderedPredictions . sorted {

$0. confidence > $1. confidence }
5 var keep = [Bool ]( repeating : true , count:

orderedPredictions .count)
6 for i in 0.. < orderedPredictions .count {
7 if keep[i] {
8 predictions . append ( orderedPredictions [i])
9 let bbox1 = orderedPredictions [i]. boundingBox

10 for j in (i+1) ..< orderedPredictions .count {
11 if keep[j] {
12 let bbox2 =

orderedPredictions [j]. boundingBox
13 if bbox1.IoU(other: bbox2) > nmsThreshold

{
14 keep[j] = false
15 }
16 }
17 }
18 }
19 }
20 return predictions
21 }
22
23 extension CGRect
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24 {
25 func IoU(other: CGRect ) -> Float
26 {
27 let intersection = self. intersection (other)
28 let union = self.union(other)
29 return Float (( intersection .width * intersection . height ) /

(union.width * union. height ))
30 }
31 }
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Appendix E

Code from chapter Object
Tracking

E.1
1 // Project path:
2 //

master - thesis / Application / ObjectDetectionInAR / Assembler / ObjectTracker .swift
3
4 func track ()
5 {
6 // Init all variables
7 cancelTracking = false
8 var trackingObservations = [UUID:

VNDetectedObjectObservation ]()
9 var trackedObjects = [UUID: ObjectRectangle ]()

10 let requestHandler = VNSequenceRequestHandler ()
11 let boundingFrame = delegate ?. getBoundingFrame ()
12
13 // Add the objects to track to the created lists above
14 for object in objectsToTrack
15 {
16 let observation =

VNDetectedObjectObservation ( boundingBox :
object . getNormalizedRect (frame: viewFrame ))

17 trackingObservations [ observation .uuid] = observation
18 trackedObjects [ observation .uuid] = object
19 }
20
21 // Loop over until a cancel tracking request is made
22 while true
23 {
24 if cancelTracking { break }
25
26 var rects = [ ObjectRectangle ]()
27 var trackingRequests = [ VNRequest ]()
28
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29 guard let frame = delegate ?. getFrame () else {
30 usleep ( useconds_t ( millisecondsPerFrame * 1000))
31 continue
32 }
33
34 for trackingObservation in trackingObservations
35 {
36 // Create the requests
37 let request =

VNTrackObjectRequest ( detectedObjectObservation :
trackingObservation .value)

38 request . trackingLevel = .fast
39 trackingRequests . append ( request )
40 }
41
42 // Perform the requests
43 try? requestHandler . perform ( trackingRequests , on:

frame , orientation : CGImagePropertyOrientation .up)
44
45 for processedRequest in trackingRequests
46 {
47 // Handle the results from the requests
48 guard let observation =

processedRequest . results ?. first as?
VNDetectedObjectObservation else { continue }

49
50 if observation . confidence > confidenceThreshold
51 {
52 guard let object =

trackedObjects [ observation .uuid] else { continue }
53 // Set new bounding box
54 object . setNewBoundingBox ( newBoundingBox :

observation . boundingBox , frame: boundingFrame )
55 trackedObjects [ observation .uuid] = object
56 trackingObservations [ observation .uuid] =

observation
57
58 rects. append ( object )
59 }
60 }
61
62 DispatchQueue .main.async {
63 rects = rects. sorted { $0.name! < $1.name! }
64 self. delegate ?. trackedRects (rects: rects)
65 }
66
67 // The tracking will stop if no observation has a

high confidence value
68 if rects. isEmpty
69 {
70 DispatchQueue .main.async {
71 self. requestCancelTracking ()
72 self. delegate ?. trackingLost ()
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73 }
74 }
75
76 usleep ( useconds_t ( millisecondsPerFrame * 1000))
77 }
78
79 DispatchQueue .main.async {
80 self. delegate ?. trackingDidStop ()
81 }
82 }
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Appendix F

Code from chapter The Finished
Application

F.1
1 var furniturePartNodes = [ SCNNode ]()
2
3 for object in model. foundObjects
4 {
5 guard object .name != nil else { return }
6 guard object . position != nil else { return }
7
8 let furnitureNode = addFurniture (part: object .name!,

position : object . position !)
9 furniturePartNodes . append ( furnitureNode )

10 }
11
12 var previousNode : SCNNode ? = nil
13 var previousAnchorPoint : SCNNode ? = nil
14
15 var nodeActions = [( SCNNode , [ SCNAction ]) ]() // A list

for storing animations to run on a node later
16
17 for node in furniturePartNodes
18 {
19 var actions : [ SCNAction ] = []
20 actions . append ( SCNAction . rotate (by: -CGFloat .pi / 2,

around : SCNVector3 (0, 0, 1), duration : 1))
21
22 let anchorPoint = node. childNode ( withName :

ANCHOR_POINT , recursively : true)
23
24 if anchorPoint == nil
25 {
26 if previousAnchorPoint != nil
27 {
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28 actions . append ( SCNAction .move(to:
previousAnchorPoint !. worldPosition , duration : 2))

29 }
30
31 previousNode = node
32 }
33 else
34 {
35 previousNode ?. runAction ( SCNAction .move(to:

anchorPoint !. worldPosition , duration : 2))
36 if previousAnchorPoint != nil
37 {
38 actions . append ( SCNAction .move(to:

previousAnchorPoint !. worldPosition , duration : 2))
39 actions . append ( SCNAction .move(by:

node. worldPosition . substract (other:
anchorPoint !. worldPosition ), duration : 2))

40 }
41
42 previousAnchorPoint = anchorPoint
43 }
44
45 // HACK: Adds an extra action with no content at the

end to make completion handler wait until the last action is
done

46 actions . append ( SCNAction .move(by: SCNVector3Zero ,
duration : 1))

47
48 nodeActions . append ((node , actions ))
49 }
50 }
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