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Abstract

The reaction–diffusion equation (RDE) is a natural way of describing a system
where there is not only diffusion but also interaction with its surroundings. The
RDE has been the topic of interest in previous papers for its usefulness of explaining
pattern formations in nature. The static RDE has, in one dimension, the form of a
Newton equation. We study a discretized version of this equation, with applications
in biology (where a cell can be seen a natural discretization), economics, and com-
puter simulations. In particular we consider a class of discretized Newton equations
that allows for a conserved quantity. Using this we manage to find a conservative
discretization of the Φ4 system.

Popular Abstract

Almost anywhere you look in nature, you will see some sort of pattern. In the artichokes
from your local supermarkets vegetable aisle, in the horns of wild deer or in the snowflakes
falling on your face during winter, patterns arise everywhere. But what exactly is a pat-
tern? Most humans have an instinctual affinity for patterns, we find them beautiful. But
disregarding aesthetics, why do physicists find patterns so useful?
Patterns are a discernible regularities. These regularity can be very complex and to this
day scientists and mathematicians haven’t been able to explain exactly how patterns arise
in nature. It was as late as the 80’s when we understood how snowflakes pattern get their
shapes, even though they had been a topic of interest for several hundred years.
The formation of a pattern is just one small step away from total chaos. When working
with patterns, it feels like a small miracle that they even form in nature, considering how
hard they are to reproduce mathematically. The difficulty of describing patterns in nature
can be overcome by using so-called discrete time, since computers must use discrete time.
What is meant by this, is that time is not continuous and you jump from one ”time box”
to the other, like you do when playing hopscotch. To illustrate this point let us look at
how populations are studied. Populations, of course, change all the time but you can only
measure them discretely. So it’s only natural to describe population using a discrete time
model. It can also be used in economics where the same situation as population applies.
Finding and understanding patterns in models like this can be the difference between a
recession and a economic boom, or how growth regulators for plants diffuses in cells.

One would believe that for patterns to arise there should be some sort of conserved quantity.
Usually in physics the energy or momentum is conserved. And the conserved quantity for
the discrete time case could be used to approximate the continuous time case, and therefore
bridging the discrete time case of the computer to the continuous time world that we live
in.
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1 Introduction

Conservation laws and hence conserved quantities have a deeply rooted place in physics.
Such quantities could also be useful e.g. in the dynamics for pattern formation in plants,
involving the plant growth hormone auxin. Such dynamics can be modeled by the so called
reaction–diffusion equation (RDE). The RDE is a normal diffusion equation with a extra
term that depends on the current variable value. This term is very useful e.g. for describing
chemicals that react with each other on a local level. By requiring stationary solutions, the
one-dimensional RDE becomes equivalent to Newtons equation, so we expect a conserved
quantity.

To be able to use a computer’s full potential it is particularly useful to have your math-
ematical model discretized. This has natural applications in biology[6] and economics[3].
We consider a stationary RDE, which fortunately can be discretized. The properties of
this system was studied by Nils H. Truedsson in 2014 in particular a set of special cases
allowing for a conserved quantity. Being free from chaos, these systems form a reasonable
starting points for approximating classical Newtonian systems.[1]

2 The mathematical background

The mathematical background is outlined in N. H. Truedsson bachelor’s thesis (2014)[1].
We consider the function u(x, t), which represents the concentration of some pattern-

forming substance as a function of position x and time t. The RDE is a normal diffusion
equation with an extra u(x, t)-dependent term.

∂u

∂t
=
∂2u

∂x2
+ F (u), (2.1)

where F (u) is some function representing the local interactions.
We seek stationery patterns, u(x, t)→ u(x). Then we can rewrite equation (2.1) as

0 =
∂2u

∂x2
+ F (u). (2.2)

This analogous to Newton equation with an acceleration term, ∂2u
∂x2

, and a force term F (u).
In a discrete space the second derivative at a point can be approximated to be propor-

tional to the sum of differences to neighbouring points, i.e. the sum of the two neighbour
values minus twice the current value.[7] Hence, we can approximate equation (2.2) by∑

j∈N(i)

u(xj) = f(ui), (2.3)

where N(i) is the set of nearest neighbours to the the point i and f(ui) is related to F (u),
and has the form (as a consequence of approximating the second derivative to a discrete
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case) f(ui) = 2ui + δ2F (ui), where δ is the spatial separation between two points and for
any F (ui).

In one dimension, equation (2.3) becomes 0 = ui+1 + ui−1 − f(ui), or more compactly,

u+ + u− = f(u), (2.4)

where u is the value at a point on a one dimensional lattice and u± are the neighbouring
values. We note that this equation is translation and reflection symmetric.

Equation (2.4) corresponds to a map T in the phase space (u, v) = (u, u−). It can be
seen as representing a discrete Hamilton dynamics.

T :

{
u+ = f(u)− v,
v+ = u.

(2.5)

Trajectories in this phase space represent static patterns, and in order to display a con-
served quantity, H, this must fulfill the requirement H(u+, u) = H(u, u−) = H(u−, u),
where the last equality reflects the assumed reflection symmetry of H. Using this criterion
on H it was found that the function f(u) in equation (2.4) must have the form[1]

f(u) =
Bu2 −Du+ E

Au2 −Bu+ C
, (2.6)

where A, B, C, D and E are real parameters, and A, B, and C cannot be zero simultane-
ously.

The conserved quantity then looks like

H(u, v) = Au2v2 −Buv(u+ v) + C(u2 + v2) +Duv − E(u+ v). (2.7)

3 Theoretical analysis

The näıve discretization of Newton’s equation,

u′′ = −V ′(u)
naive

===⇒ u+ + u− = 2u− V ′(u), (3.1)

has been considered for a Φ4 system,[2] where the potential V (u) is given by V (u) =
−au2 + bu4, with a and b real positive constants.

Näıvely discretized, its equation of motion (EoM) showed chaotic behavior, indicating
the absence of a conserved quantity. A more careful approach, based on the form in equa-
tion (2.6), could yield a discrete conservative system that well approximates the continuous
Φ4-system, at least in some parts of parameter space.
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3.1 Choosing a f(u)

The EoM for Φ4 has three stationary solutions, which are equidistant, which means that
our equation (2.4) must have three so called fixpoints u∗, i.e when equation (2.6) becomes
u+ = u− = u = u∗. Equation (2.6) gives

2u∗ =
Bu∗2 −Du∗ + E

Au∗2 −Bu∗ + C
, (3.2)

This equation indeed has three fixpoints, assuming A 6= 0.
Since the Φ4-potential is antisymmetric, we require that f(u) be an odd function, which

can only be the case if B = E = 0. Equation (3.2), after rewriting, becomes

u∗(2Au∗2 + 2C +D) = 0. (3.3)

By rescaling our variable (see Appendix A), u, we can put 2C +D = −2A, and we end up
with the simple expression

u∗(u∗2 − 1) = 0, (3.4)

which has the solutions u∗ = 0,±1, and this is where our fixpoints will be located.
Our f(u) now contains a single independent parameter, D/C, which we can replace by

−2µ. The final expression for f will be

f(u) =
2µu

(µ− 1)u2 + 1
, (3.5)

where µ is the only remaining parameter. We observe that for µ→ 1 we have f(u)→ 2u
which is consistent with the continuum limit.

3.2 Linearizing f(u)

To determine the behavior of f(u) near a fixpoint, we analyze the map T (2.5). Finding
the eigenvalues, λ, of its Jacobian will give us the characteristics of the fixpoints. The
Jacobian is

J =

[
∂f(u)−v

∂u
∂f(u)−v

∂v
∂u
∂u

∂u
∂v

]∣∣∣∣
(u∗,v∗)

=

[
f ′(u∗) −1

1 0

]
. (3.6)

The determinant is indeed 1, reflecting the area preservation, and the trace is f ′(u∗).[3]
Thus, a fixpoint u∗ can be characterized by a stability parameter η = 1

2
f ′(u∗), that defines

the eigenvalues by

λ2 − 2ηλ+ 1 = 0. (3.7)

Depending on the value of η there will be three different scenarios, with different be-
haviors,
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• η > 1, with λ1,2 = e±θ,

• η < −1, with λ1,2 = −e±θ,

• −1 < η < 1, with λ1,2 = e±iφ,

for some parameters θ and φ related to η, and where i is the imaginary unit.[4]
Since the sum of the eigenvalues is the trace of the matrix, η must be a cosφ for |η| < 1

and ± cosh θ for |η| > 1.
Thus from f ′(u∗) one can readily determine if the fixpoint u∗ is elliptic, i.e |η| < 1, or

hyperbolic, i.e |η| > 1.

3.3 Behavior of f(u)

3.3.1 one-cycle (i.e. fixpoint)

For our chosen f(u), we have fixpoints at u = 0 and at u = ±1, with the respective stability
parameters η0, η±. For u∗ = 0, we have η0 = µ, and for u∗ = ±1 the value η± = −1 + 2

µ
.

We plot these to see when they are smaller or larger than one.

Figure 1: Plot of η0(µ) and η±(µ). The dotted lines mark the boundaries between the
hyperbolic and elliptic cases.

From figure 1 we can easily see how the three different fixpoints will behave for different
µ. Thus, when µ < −1, the fixpoints will all be unstable and hyperbolic. In the range
µ ∈ (−1, 1), the fixpoint at u∗ = 0 will be stable and elliptic and the other two will be
unstable and hyperbolic. For µ > 1 the fixpoint at u∗ = 0 will be unstable and hyperbolic
and the other two will be stable and elliptic. The boundary cases are (i) when µ = 0,
resulting in a trivial situation f(u) = 0, and (ii) µ = 1, yielding a straight line trajectory.
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We are interested in a scenario where the fixpoint at u = 0 is unstable and the other
two are stable. Looking at figure 1 we see that that is the case when µ > 1.

3.3.2 two-cycle

Another interesting feature is the two-cycle, that is to say when the system oscillates
between two points.

To have a two-cycle, equation (2.4) yields{
2x = f(y),

2y = f(x).
(3.8)

where x and y are the two points between which the variable u should be oscillating. To
have a two-cycle we require x 6= y, which implies x = −y and the relation (See appendix
B)

xy =
1 + µ

µ− 1
⇒ x = ±

√
−1− µ
µ− 1

. (3.9)

This means that we will have a two-cycle at (x,−x) and (−x, x), where x =
√
−1−µ
µ−1 will

be real only for −1 < µ < 1.
To get the behavior near this two-cycle we need the Jacobian after a complete cycle

which is the matrix (3.6) evaluated at one of the point multiplied with the same matrix but
evaluated at the other point. The trace of this Jacobian, 2η2c, will give us the characteristics
of this two-cycle, similar to the one-cycle scenario, and yields η2c = µ2+8µ+8

µ2
. Plotting η2c

as function of µ we get figure 2. (See appendix C)

Figure 2: Plot of η2c(µ). The dotted lines are µ = −1, 1, between which the two-cycle is
real. The straight black line is η2c(µ) = 1.
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As we can see in the region were η2c is real, the value of η2c will always be greater than
one, which means that when we have a two-cycle it will always be hyperbolic, except for
η2c = −1 where no conclusions can be drawn, from a linear analysis.

3.4 Φ4 and the continuum limit

It is convenient to change our phase space coordinates as follows. We define a pseudo-
position, q, as the average of u and v, and a pseudo-momentum, p, proportional to their
difference. To get a proper continuum limit we define{

q = u+v
2
,

p = u−v
δ
.

(3.10)

where δ > 0 is the lattice distance, where we must have δ → 0 in the continuum limit.
This implies for the next step {

q+ = u++u
2
,

p+ = u+−u
δ
.

(3.11)

We get that the map T in terms of q, p becomes

T :

q+ =
f( δp2 +q)+δp

2
,

p+ =
f( δp2 +q)−2q

δ
.

(3.12)

In the continuum limit, we also must have µ → 1 in order to approach a continuous time
Hamilton system with a Φ4-potential. (See Appendix D)

To that end we rewrite µ as µ = 1 + ε, where ε is some small positive number coupled
to δ. Our f(u) then becomes

f(u) =
2u+ 2uε

εu2 + 1
. (3.13)

Plugging this into equation (3.12) we have the mapq+ = δp
2

+ 1
2

[
( δp

2
+q)+( δp

2
+q)ε

ε( δp
2
+q)2+1

]
,

p+ = −2q
δ

+ 2
δ

[
( δp

2
+q)+( δp

2
+q)ε

ε( δp
2
+q)2+1

]
.

(3.14)

Simplifying and neglecting higher order terms, we see that to get a reasonable continuum
limit we must set ε ∝ δ2 (which means that ε� δ). Setting ε = αδ2, we get{

q+ = q + δp+ ε(q − q3) ≈ q + δp,

p+ = p+ 2ε
δ

(q − q3) = p+ 2αδ (q − q3) .
(3.15)
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This can be seen as an approximation of the continuous time Hamilton system{
q̇ = p,

ṗ = 2α (q − q3) .
(3.16)

where the dot is the derivative with respect to time. The corresponding Hamiltonian is
H = p2

2
− αq2 + α

2
q4, with the Φ4-potential V (q) = −αq2 + α

2
q4.

4 Plotting and results

Combining equations (2.5) and (3.5), we plot some resulting trajectories in phase space for
different µ. The fixpoints will lie on the line u = v, which will be plotted as a dotted line.
The initial values will be randomized in a box called initbox. The box is centered at the
origin and will have side lengths equal to the value of initbox.

The number of trajectories will be 100 and the number of iterations, for each trajectory,
will be 10000 for all figures in this section, unless otherwise stated.

The trivial cases µ = 0, 1 are not plotted.

4.1 Trajectory portraits

4.1.1 µ < −1

Figure 3: Trajectory for µ = −2 as an example of µ < −1.
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In figure 3 it is easy to distinguish the fixpoints which lie, in agreement with theory, on
−1, 0 and 1 and are all hyperbolic since µ < −1. Another consequence of µ < −1 is that
there is no sign of a two-cycle.

4.1.2 µ = −1

Figure 4: Trajectory for µ = −1 is an interesting boundary case since neither our fixpoint
at the origin, nor the two-cycle will behave predictably from a linear analysis.

In figure 4 the fixpoints at −1 and 1 are still hyperbolic, in agreement with theory. The
fixpoint at the origin looks hyperbolic, which is something we could not predict without
including higher order terms. The two-cycle should be at the origin, which is why we
cannot see any trace of it.
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4.1.3 µ ∈ (−1, 1)

Figure 5: Trajectory plot for µ = −0.5, as an example of a number in the range µ ∈ (−1, 1).

In figure 5 we again see that the fixpoints are all in agreement with theory. The two-cycle
now appears at roughly (-0.5,0.5) and (0.5,-0.5) which is in perfect agreement with theory
which says that they should appear at ±1/

√
3 ≈ ±0.577.
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4.1.4 µ > 1

Figure 6: Trajectory plot for µ = 2.

In figure 6 all the fixpoints are again in agreement with theory. The fixpoints at µ = −1, 1
are now elliptic and our fixpoint at µ = 0 is hyperbolic. There is no sign of a two-cycle
since µ is not in the range µ ∈ (−1, 1).
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4.1.5 Approaching Φ4: µ = 1 + ε

Figure 7: Trajectory plot in the (q, p)-space. The initial values are in a box of size 2, with
α = 1, δ = 0.01, ε = 0.0001 and µ = 1.0001.

In figure 7 this is plotted using the map (3.15). Visually, the trajectories show strong
similarity to those of a continuous time Hamiltonian with Φ4-potential. Since figure 7 is in
q, p-space our fixpoints are no longer on the diagonal line u = v but instead on the q-axis.
The number of trajectories is 500 and the number of iterations is 50000 for each.

5 Summary

The topic of this report was to investigate the behavior of a certain subclass of area-
preserving maps with a conserved quantity, related to the discrete RDE. In particular we
studied a symmetric special case with three equidistant fixpoints, necessary for approx-
imating the dynamics in a Hamiltonian system with a Φ4-potential, as used e.g. in the
Higgs mechanics[5]. We analyze the system with respect to the properties of the fixpoints
and two-cycles, confirmed by comparing to trajectory plots from computer simulations.

In suitable phase space coordinates the symmetric case above was shown to possess a
continuum limit in terms of a continuous time Hamiltonian system with a Φ4-potential,
which was also confirmed by simulations.

Possible extensions of this project could be i) To investigate higher cycles to see if more
are analytically attainable. ii) To find other classical systems that could be approximated
using this method. iii) The Φ4-potential is used in the Higgs mechanism.
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A Appendix A

We have the function (from equation (3.2))

f(u) =
−Du

Au2 + C
. (A.1)

(A.2)

Rewriting this we have

f(u) =
−D
C
u

Au2

C
+ 1

=

/
µ ≡ − D

2C

/
=

2µu
u2

C
+ 1

(A.3)

By rescaling u with some rescaling factor λ, u→ λu′, we have

λ(u′+ + u′−) =
2µu′λ

Au2λ2

C
+ 1
⇔ (u′+ + u′−) =

2µu′

Au′2λ2

C
+ 1

(A.4)

We can now choose λ > 0 freely. By relating it to the value µ as Aλ2

C
= µ− 1, we get

f(u) =
2µu

(µ− 1)u2 + 1
(A.5)
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B Appendix B

For a two-cycle, (a, b)↔ (b, a) we must have that{
2a = f(b) = 2µb

(µ−1)b2+1

2b = f(a) = 2µa
(µ−1)a2+1

(B.1)

Subtract the LHS from both sides of both equations and then put the expressions on a
common denominator:{

0 = −ab2 + aµb2 − µb+ a

0 = −ba2 + bµa2 − µa+ b
⇔

{
µ(ab2 − b) = a(b2 − 1)

µ(a2b− a) = b(a2 − 1)
⇔

{
µ = a(b2−1)

ab2−b
µ = b(a2−1)

ba2−a
(B.2)

By taking the difference between these two expressions we end up with

(b− a)(a+ b)

ab(ab− 1)
= 0 (B.3)

We must have a 6= b since we want a two-cycle, yielding a = −b.
Plugging this into our previous relations we get{

0 = −a(−a)2 + aµ(−a)2 − µ(−a) + a

0 = −(−a)a2 + (−a)µa2 − µa+ (−a)
(B.4)

This gives the equation

(µ− 1)a2 + µ+ 1 = 0⇔ a2 =
−µ− 1

µ− 1
(B.5)

Taking the square root we get

a = ±
√
−µ− 1

µ− 1
(B.6)
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C Appendix C

To determine the stability of the two-cycle we first need to have the Jacobi matrix of our
map (2.5).

The Jacobi matrix is as follows[
∂f(u)−v

∂u
∂f(u)−v

∂v
∂u
∂u

∂u
∂v

]
=

[
f ′(u) −1

1 0

]
(C.7)

The stability will of course be determined after one complete cycle in the two-cycle. This
means that we will have to matrix multiply, one Jacobian at one of the points on the
two-cycle and one from the other remaining point.[

f ′(x) −1
1 0

] [
f ′(y) −1

1 0

]
=

[
f ′(x)f ′(y)− 1 −f ′(x)

f ′(y) −1

]
(C.8)

The determinant is of course 1 and trace is f ′(x)f ′(y)− 2. Defining the characteristic η2c
by 2η2c = f ′(x)f ′(y)−2, or in terms of the parameter µ, η2c = µ2+8µ+8

µ2
≥ −1. We can write

the characteristic polynomial λ2 − 2η2cλ + 1, where λ is the eigenvalues of the matrix. If
|η2c| < 1, η2c must be cosφ, where φ is some parameter, and we have elliptic two-cycle. If
η2c > 1, η2c must be cosh θ, where θ is some parameter, and we have hyperbolic two-cycle.
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D Appendix D

We have the relation f(u) = 2u+ δ2F (u). F (u) can be seen as the force which means that
we can write it as −V ′(u) = F (u) where V (u) is a potential. In our case the potential
V (u) = −u2 + u4 will be used. Another way to write f(u) is f(u) = 2µu

(µ−1)u2+1
. For a good

approximation of a potential like V (u) = −u2 + u4, we need these two expressions of f(u)
to be approximately equal to each other. We get

2u+ δ2(u− u3) ≈ 2µu

(µ− 1)u2 + 1
(D.1)

δ2(u− u3) ≈ 2(µ− 1)(u− u3)
(µ− 1)u2 + 1

(D.2)

It’s quite clear that in order for both sides to be approximately the same µ must be near
1, that is µ = 1 + ε, where ε is a small positive number.

We get

δ2(u− u3) ≈ 2ε(u− u3)
εu2 + 1

(D.3)

Taylor expanding ε around we get

δ2(u− u3) ≈ 2ε(u− u3) +O(ε2) (D.4)

We see that for µ = 1+ε we get a good approximation and we also get the relation ε ∝ δ2.
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