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Abstract

Carl NILSSON NYMAN, Mattias EKLUND

Stable Communication Over a Wireless Network Under
Heavy Load

For our master’s thesis we have worked with a company called Uniti to help
them establish a system for communicating with their autonomous vehicle
during a public demonstration. This included handling a video feed from
the vehicle as well as assuring low latency for said feed. For the purposes of
this thesis the targeted latency was below 200ms.

In order to construct a solution which met our requirements we looked at
several combinations of wireless mediums and video encoding standards.
For our thesis work we considered Wi-Fi and LTE as network mediums as
well as JPEG and H.264 as video encoding standards.

We implemented several combinations of network mediums and video en-
coding standards to see whether or not they would perform well within the
latency criteria. We then tested these solutions in a wireless environment
with a moderate amount of load on it. During the tests we took sample data
which we later analyzed. This data was in turn used to determine whether
or not a certain solution was within margins for our project as well as reliable
enough.

We found that a Wi-Fi connection yielded results within the required bound-
aries when using both JPEG and H.264 as the video coding standards, with
varying but yet acceptable results. On the other hand LTE was found to de-
liver less desirable results although LTE could provide certain other benefits
such as being functional at longer ranges.
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Chapter 1

Introduction

This chapter will provide an introduction to this work through supplying
motivation and background. This is divided into the following parts:

Background This section describes the background to the project.

Related Work This part describes works and concepts which are related to
our work.

Motivation Describes the basis and motivation for this project.

Problem Definition Provides a formal definition of the goal of this project.

Method This section describes the approach used to pursue the goal of this
project.

Disposition Breaks down the report into different parts and explains each
part.
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1.1 Background

Automobile connectivity has become a more and more popular concept. In
modern society there has been an increasing amount of functionality in vehi-
cles which would have been impossible to perform just a decade ago. These
functions range from improvements in handling a vehicle, to more easily in-
tegrated entertainment into your vehicle, to overall safety in vehicles. For
safety there is an obviously apparent interest since it can help prevent acci-
dents and possibly save people’s lives.

Modern safety enhancements for vehicles include everything from equip-
ping extra cameras on your rear for safer reversing, to installing range sen-
sors which stop the vehicle when outside objects get in close proximity. An-
other modern enhancement in automobiles which is on the rise is the capa-
bilities of vehicles to drive themselves. This does however come with a load
of requirements, for a vehicle to be able to handle itself properly it needs to
be able to properly observe its surroundings. It needs to be able to detect
other vehicles, pedestrians, road signs (both permanent and temporary) as
well as process the information it gathers in a reasonable amount of time.
For self-driving vehicles to be seen as reliable all of the systems that the vehi-
cle builds upon must work with high reliability in of themselves with a low
computation time.

A sizable component in working with smart automobiles is the fact that most
vehicles operate without wires attached and therefore have to handle com-
munication with the outside with the help of wireless communications. Cars
have used wireless transmission for a long time for capturing radio signals
to supply drivers with entertainment and important operational information
for roads and traffic. FM/AM Radio transmission does however not carry
a lot of information, which is why a more competent method for communi-
cating data must be used. This solution must be able to compensate for the
amount of data needed to transmit as well as the speeds at which the data
must be transmitted.

In modern society wireless communication is becoming an increasingly pop-
ular solution for communication between different devices. There is still
however a lingering distrust in wireless communication as a means for send-
ing and/or receiving data, since wireless communication is thought to bring
about higher latencies and more frequent packet-loss. In the past wireless
solutions were also seen as a way to degrade the bit-rate of your Internet
connection. However with the use of modern routers it is possible to achieve
speeds that eliminate this problem [15]. The possible shortcomings do how-
ever still to this day cause both people and companies to connect systems by
wire when it isn’t too inconvenient to do so. Furthermore, looking at modern
wireless solutions there are several possibilities, but the most common ones
are LTE and Wi-Fi. LTE stands for Long-Term Evolution and is the family of
wireless solutions which rely on large radio towers which connect to devices
in a radius of up to several kilometers. Wi-Fi is a different solution which
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uses a smaller router to transmit wireless communication within a smaller
radius of up to several meters. It is however in most cases difficult to say
whether LTE or Wi-Fi is more reliable.

Streaming data to and from a device is an increasing trend for modern elec-
tronic purposes i.e. Video streaming, on-line video games, or surveillance.
In a vehicle it is desirable for modules such as cameras and range sensors to
be able to manage these tasks over a wireless connection as it might be ei-
ther impossible or really expensive to connect them by wire. A lot of devices
today work through the use of wireless mediums, but most of them are evo-
lutions of earlier concepts. For example in modern times almost all television
monitors use IR remotes but a couple of decades ago most of them had wired
remotes or buttons on the unit itself.

The increasing use of wireless devices does however also burden the tech-
nology. With the increased number of wireless devices the networks become
more loaded which increased latency, the possibility of collisions, and packet
loss which can in extension lead to the quality of the connection being com-
promised. If you allow for buffering, the problem of unstable connections is
lessened since the stream gets to get ahead of the output which lets it com-
pensate for sudden delays. As the allowance for buffering is removed and
frames are displayed as they are received certain stuttering may occur.

1.2 Related Work

The road maps that we have today are simple and made for humans that
can understand simple instructions when navigating, in other word, these
are not meant for use in autonomous vehicles. Autonomous vehicles need
more detailed maps of the roads to be able to safely navigate. There are a
couple of different sources to get a hold of such maps from today, for in-
stance OpenStreetMap or DeepMap. These maps however are not flawless
and needs to be constantly updated to provide accurate information. This is
where cameras in road vehicles come in. Each vehicle in traffic could supply
mapmakers with up-to-date information close to real time by uploading the
video recorded during a trip to a server for processing. This could be done in
real time through the use of LTE network or when the vehicle is within range
of a Wi-Fi which might be preferable as the amount of data that needs to be
transmitted might be quite high.

For quite a few years now, automobile manufacturers have shipped their
products with an increasing amount of advanced driver assistance systems
(ADAS) to improve the safety on the roads. These include, but are not lim-
ited to adaptive cruise control, automatic parking, collision avoidance sys-
tem, lane change assistance, night vision pedestrian protection system, and
vehicular communication systems.
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The development of autonomous vehicles have taken off in the last few years
with Google’s subsidiary Waymo starting their work in 2009 [24], Tesla launch-
ing their model S with autonomy level1 2 [21, 14], and Renault currently
testing their level 4 autonomous car [17]. Recently Volvo was given per-
mission to try their autonomous vehicles in the city of Gothenburg [4], to
be able to achieve their goal of a completely autonomous vehicle on the road
by the year 2021. Autonomous vehicles use computer vision based on ma-
chine learning algorithms to detect objects around the vehicle. This requires
a large amount of data during the training of the object detection algorithms.
Vehicles with cameras could capture footage while the vehicle is in use, and
later upload it to a server for further processing and tagging.

Real time traffic information systems are used in statically installed places
along some highways and other places. These use cameras connected to a
server that updates static signs along the highway to inform drivers of con-
ditions up ahead [2]. Vehicles that are connected to the Internet can share
traffic information with other vehicles, this allows for navigation systems to
take the current traffic into consideration when planning a route. Sugges-
tions or alterations to the route can be made as new information is received
by the navigation system, this is to avoid congestions that were not present
when the route was initially planned. This can alleviate heavily congested
roads of traffic and allows for normal flow to be resumed quicker. It also
saves the driver the anguish of getting stuck in traffic for hours on end and
will in the end collectively save a lot of time during daily commutes.

The infotainment system that is shipped with an automobile today will most
likely not be updated during the lifespan of the automobile. This means that
auto manufacturers have to put considerable effort into testing the software
before launch, adding much time to the development cycle, and any issues
that are discovered after the vehicles release will subsequently not be fixed on
models in use, unless it is critical for the vehicle to operate safely. Equipping
vehicles with wireless Internet accessibility enables vehicle manufacturers to
roll out over the air updates to the software running on the systems in the
vehicle.

1.3 Motivation

In our master thesis we have worked for a company called Uniti to help them
create a wireless solution to be able to monitor video feed from a vehicle in
motion. This was constructed for a demo where they were going to display
their vehicle, driving autonomously in front of a crowd. For Uniti it was
important to be able to monitor the vehicle’s progress through the vehicle’s

1The level of autonomy indicates to which degree the vehicle is autonomous. Level 0 has
no autonomous features, 1-3 have some, and 4-5 are autonomous enough to allow for no
driver interaction during operation.
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cameras, which the vehicle in itself was to use for adapting to its surround-
ings. With the help of our implementation this was supposed to help them to
be able to manage things like emergency stops or remote control if needed.

For our purposes we worked with studying and analyzing video streams.
Real time streaming of video has a wide range of applications and it also has
a range of requirements on different metrics. If a real time video stream does
not have proper responsiveness and stability then it is definitely noticeable.
In the case of the Uniti demo this is especially important since noticeable
delay can be quite problematic and responsiveness is key.

This was however the intended use of our implementation at the inception
of our thesis. Due to delays and restructuring of the work for the demo our
cooperation on the demo was eventually scrapped. The focus for the project
however remained on how to effectively monitor a vehicle for the purpose of
the demo.

1.4 Problem Definition

Area Requirement Comment
Hardware nVidia Drive PX2

OS Linux Ubuntu 14.04 OS supported on the PX2
Latency 100ms Average

ROS Solution should be
ROS compatible

Wireless Should work
over LTE or Wi-Fi Congested network2

TABLE 1.1: Uniti Requirements

Uniti wanted a robust solution to monitor their vehicle during autonomous
operation, that would allow for remote emergency stopping of the vehicle
if deemed necessary based on real time video being streamed to the remote
control device. The video stream was justified as the person monitoring the
vehicle might not have line of sight of the vehicle.

From earlier implementations done at Uniti, a video stream had been set up,
however the latency of the stream was to high (in the area of 300ms) for the
vehicle to be monitored remotely and required the person monitoring the
vehicle to have line of sight of the vehicle to be deemed safe. Uniti wanted
the latency to be reduced below 200ms, but stated that that was the higher
end of their range and would be more comfortable with a latency around
100ms.

2During the event, a large number of people will attend and they will very likely use their
mobile phones to record and upload or stream the event. The solution needs to be robust
enough to handle networks under severe loads.
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Seeing as latency was an important point for Uniti, fast video encoders were
to be investigated, for this purpose JPEG and H.264 were chosen.

The solution should work without the operator having line of sight of the
vehicle and with no cables attached. For this purpose either LTE or Wi-Fi
were to be used. These were both tested to deduce which one would supply
the most stable connection and also the connection with the lowest latency.

The implementation should also be able to run on Linux as the Operating
system that was supported on Uniti:s platform was Ubuntu 14.04 LTS, and it
should also be able to be implemented into a ROS node for easy integration
with their system. ROS, or Robot Operating System, is an open-source oper-
ating system for robots. It provides hardware abstraction, message-passing,
and package management, as well as tools and libraries for building and run-
ning code across multiple computers.

1.5 Method

The method which we have employed for our Master’s thesis project can be
abstracted into three general parts.

1.5.1 Implementation

To be able to gather data for our project and perform tests we needed a soft-
ware implementation where we could with the help of different settings set
up different test environments. This implementation was constructed with
the help of several different 3rd party frameworks and was created to use
our different pieces of hardware such as cameras and routers.

1.5.2 Data gathering

In this step we visited two different locations to gather data, this was because
we wanted to find networks under relevant load. To generate our data we
set up a video stream through a sending, and a receiving computer paired
with either a Wi-Fi or LTE router. In Lund at Ideon we performed our Wi-Fi
tests during work hours. In Malmö at Malmö Arena we set up our LTE tests
during an almost sold out hockey game. In both cases the video streams were
monitored using Wireshark as well as tapped into to extract our data.

1.5.3 Data analysis

After all of the necessary data was collected we used our Wireshark data to
both extract the video from our capture data, and to dump our capture data
into a database. We collected the capture data from both the sending and the
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receiving ends which is why we employed a database to compare the data
from both ends. This comparison together with the video footage is then
used to extract the different video streams latency, packet-loss rate as well as
standard deviation.

1.6 Disposition

This report is divided into 6 parts.

Chapter 2: Theory Explains the theory behind and the concepts needed to
understand this project.

Chapter 3: Method Gives a description of the method and approach taken
in this project.

Chapter 4: Implementation Discusses the implementation and how it was
constructed

Chapter 5: Results Presents the results and findings from this project.

Chapter 6: Discussion Provides a discussion on the findings in this project
as well as a discussion about future work.
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Chapter 2

Theory

This chapter will provide all the necessary information and theory needed to
understand this report and is divided into the following parts:

Metrics This section covers the metrics that were identified as important for
this project.

Codecs This section covers the codecs investigated in this project.

Wireless transmission medias This section covers different wireless trans-
mission medias

Packet analyzer This section covers packet analyzers and what they do.
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2.1 Metrics

When measuring a network connection certain metrics are measured to be
able to distinguish networks with certain qualities. These metrics include
latency and packet-loss.

2.1.1 Latency

A key component in this project has been to look at and minimize the dif-
ferent sources of latency of a video transmission. For the sake of this report
latency refers to the time between the time when a frame is captured by a
camera until the time when it is ultimately displayed on the receiving end.
The different activities that can introduce significant latency when handling
a frame are:

Capturing The time it takes for the camera to capture one frame of a video.

Encoding The time it takes for the transmitting computer to encode the frame.

Sending The time it takes for the transmitting computer to pack the frame
into and send the resulting packets.

Transmission The time it takes for the network to transmit the packets, end
to end.

Receiving The time it takes for the receiving computer to unpack the frame.

Decoding The time it takes for the receiving computer to decode the frame.

Displaying The time it takes for the receiving computer to display the frame.

These sources all introduce latency in different ways and all of them have
different options and solutions to them. Since this project only studies differ-
ent encoding schemes and wireless mediums, this project focuses mostly on
the encoding/decoding and transmission optimizations. However the cap-
turing and displaying sections are affected by the specification of frame rate
and resolution.

The frame rate will introduce a native latency, for example, a video stream
running at 30 frames per second (fps), there will be at least 33.333. . . milliseconds
between each frame, thus introducing a native 33.333. . .ms delay. Increasing
the frame rate will reduce this delay, for instance, 60 fps gives a native delay
of 16,66 ms delay, however this will also increase the amount of data needed
to be encoded, sent, and decoded.

The resolution of the video transferred will also affect the latency however
not natively. The resolution of the frames can affect the encoding, but can sig-
nificantly reduce the amount of data that needs to be transmitted. If you cap-
ture an image in raw RGB format, four (4) bytes will often be used per pixel,
where only three (3) bytes holds actual data. That means that for a video
with a resolution of 640x480, each frame will need 1,228,800 bytes (1,228.8
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kB) which results in 36,864 kB (36.864 MB) per second. When using codecs
you can reduce this amount of data by for instance only sending the differ-
ences between frame images which would mean that, for example, only a
quarter of the image would need to be sent again.

Latency can be calculated in two ways, however both ways include recording
the end screen on which the stream is being displayed [5].

The first way is to insert a timer into the stream, and then calculate the differ-
ence between the displayed timestamps in the video. This gives that latency
can be calculated as such:

l = t2 − t1 (2.1)

where l is the latency and t1 and t2 are timestamps.

The other way is to place something that can change state visibly on demand
and count the number of frames until the embedded frames update. This
gives that the latency can be calculated as:

l = nframes ∗
φ

f
(2.2)

where nf is the number of frames, f is the frame rate in frames per second,
and φ is one second given in the desired magnitude, for instance, if the result
should be given in milliseconds, then φ = 1000 as one (1) second is 1000ms.

As the approach used in this project used an injected timer in the video
stream, both approaches can be utilized.

Calculating the latency of the stream is one part but when considering the
entire video stream which is measured it is not only important to be able
to see what the average latency is, but also what the variance and standard
deviation from the latency is. Variance tells how far from the mean value
measured values be expected to stray. The variance is unknown and needs
to be approximated. The approximation of the variance is given by

s2 =
1

N − 1

N∑
i=1

(xi − µ)2 (2.3)

and the standard deviation is given by

s =

√√√√ 1

N − 1

N∑
i=1

(xi − µ)2 (2.4)

Where xi is a data point in the data set, µ is the mean of the values in the data
set, and N is the number of elements in the set.
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The use of variance as a metric for the spread of the data points is easily
justified as if the measured points do not deviate much from the mean, σ will
become small, and if the values are spread, σ will be large.

From the gathered data an interval for the distribution of the values can be
estimated using the following formula;

Iµ = (x− λα/2d, x+ λα/2d) if σ is unknown (d = s/
√
n, f = n− 1) (2.5)

Where Iµ is the interval, µ expected value of the distribution,x is the mean of
the measurements, λα/2 is the lambda quantile for a given value of α, α is the
targeted accuracy, s is the estimated standard deviation (square root of the
variance), and n is the number of samples or data points used.

As more or less all values of the equation above are approximated from mea-
surements, there will be some uncertainty in the result.

2.1.2 Buffer

A buffer is a frequently used concept in computing and communication,
which helps with handling work loads which arrive at random intervals in
variable amounts. A buffer generally works by having an amount of data
stored in queue before the processing unit, as to make sure that the process-
ing unit is always processing something. Buffers almost always work in a
FIFO (First-In-First-Out) manner and therefore the data to first arrive will
also be the first data that gets processed. On occasion the rate at which the
buffer fills up may not out-match the rate at which data is processed, which
can lead to the buffer getting empty and in turn stalling the processing unit,
this is known as buffer underrun. [6].

In the context of this project there is a buffer on the receiving end of the
video stream, which is intended to give the stream margins in case the net-
work would be unstable for a short while. This buffer is made to be a few
image frames deep so that a few frames can be lost before the video stream
starts buffering. This does however have a clear downside, it brings about an
inherent latency which is as long as the frame amount in the buffer. For dif-
ferent encoding standards it is however critical to avoid stalls when buffering
as much as possible, as it may degrade the quality of the video transmitted.

2.1.3 Packet Loss

When a network connection is established and packets are being transmitted,
there is always a risk that a packet may get lost along the way from the host
to the receiver. This can be caused by a packet taking a bad route through the
network or by a faulty access point in the network. It can however also be
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caused by a network being unstable or flooded. A network is unstable when
it is unable to operate optimally because of disturbances, this can for example
be caused by a Wi-Fi router being slightly out of reach of a transmitting unit
and therefore not receiving all the packets sent to it. A flooded network on
the other hand is caused by an access point being unable to handle all the
packet sent to it and this causes it to drop packets which are unable to fit
into its queue. An example of this could be when there are a lot of people
at a convention or festival which all use their mobile phones simultaneously,
which causes the nearby access point to get flooded.

It isn’t always a problem with packet loss in network connectivity as pack-
ets which follow the Transmission Control Protocol (TCP) contains measure-
ments to prevent packet loss from becoming an issue. This is solved by using
packet resends to acknowledge that a packet has arrived, which makes it
easy for the sender to resend a packet in the case that it does not receive a
confirmation of the packet’s arrival[18].

However in modern network communication it is common to use "User Data-
gram Protocol" (UDP) instead of TCP as it is better suited for certain tasks.
UDP is often used in connections where the overall time it takes for a packet
to arrive is more important than the guarantee that all packets arrive. This
protocol does however not have any measurements in place to cover for
packet loss, which is both of a positive and negative impact. Since no packet
resending is applied, the sender wont have to wait for any kind of confirma-
tion before sending the next packet in a sequence, which is useful for higher
level protocols such as the Real-time Transport Protocol (RTP). RTP is a pro-
tocol which is a higher level encapsulated in UDP which is commonly used
for data streams which require as short of a transmission time as possible for
example video streams or voice chat[16, 10].

Calculating the rate of packet loss of a video stream is pretty straightforward,
taking the amount of packets received by the receiving end and dividing it by
the amount of packets which were sent by the sender yields the percentage
of packets which arrive.

2.2 Codecs

Video compression is the process of taking a video file or stream and mini-
mizing the amount of data from the file or stream which is required to store
or send. In modern computers this is done by applying an algorithm known
as a video codec which takes the video and encodes it, this converts it to a
smaller file which is then transmitted or stored. When the file later is trans-
mitted or used, an inverse decoding algorithm is used which restores the file
to the original video file or as close as possible. The time spent encoding,
sending, receiving and decoding are factors which may increase latency.

A video codec in this context is the combination of the algorithms used for
encoding and decoding. It is important to note that the algorithms used for
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coding and decoding must match as different video codecs cannot encode
and decode each others compressed formats. For the purpose of this report
video codec will be referred to as codec.

Different codecs have different priorities that affect their area of use, since
codecs use large algorithms to encode and decode data, they might require a
significant amount of processing power. Some codecs might rely on a lot of
processing power in encoding and decoding to be compatible with a lower
bit-rate. On the other hand another codec might rely on high bit-rates to
compensate for a low processing power. This does however illuminate how
different codecs might use different methods to optimize for latency, quality,
and bit-rate. It is also important to note that a codec only employs a collection
of standards for the encoded data to follow and for the decoder to be able
to handle it, this is why different implementations of the same codec might
yield different results. A codec must not be to restrictive in its standards as it
might compromise the flexibility of the codec. This is because a codec used
for video streaming has different priorities than a codec for storing video on
a disc. With modern codecs and their flexibility the same codec can be used
to store data on a medium as well as streaming video.

To minimize the time between taking and displaying an image in a video
transmitted from one device to another, a time efficient codec should be used.

2.2.1 MJPEG

Motion JPEG (MJPEG) encodes each frame in a digital video separately as a
series of JPEG images. The encoding algorithm employed by MJPEG han-
dles each frame independently, thus making this an intra-frame encoding
algorithm as opposed to H.264 which uses an inter-frame encoding algo-
rithm. However, this also means that the hardware requirements are lower
for MJPEG as it is not as computationally heavy as inter-frame based com-
pression schemes, and allows it to be more tolerable towards rapid motion
changes in the image.

The major drawback of MJPEG is that in its basic form, it has no document
that defines a single exact format that is universally recognized as a complete
specification for use in all contexts, e.g. Microsoft documents that MJPEG
files are stored in AVI file format, whilst Apple documents how MJPEG is
stored in QuickTime files, and RFC 2435 [3] describes how MJPEG is imple-
mented in an RTP stream.

JPEG

JPEG is a lossy encoding standard which is used to encode single frames or
images. It is a collection of different lossy and lossless compression algo-
rithms. In JPEG a picture is divided into blocks of 8x8 pixels for each color
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space (Red, Green and Blue). The encoding and decoding parts of this algo-
rithm both contain the same components.

The first part of JPEG is transformation, this is a lossless step. In this step
a discrete cosine transform (DCT) is applied to a 8x8 matrix of pixels. This
helps to reduce the potential size tremendously as a matrix of similar val-
ues will post-transform contain a significant amount of zeroes which can be
removed further on.

The second part of the scheme is Quantization, this is a lossy step in the
encoding since rounding is performed. The general action taken in this step
is creating a new matrix by taking the transformed matrix from the last step
and dividing it with a quantization matrix. Since real numbers require a
potentially endless amount of bits to represent all numbers are rounded to
the nearest integer. Rounding in JPEG is performed by adding 0.5 to the real
value and then truncating the result. In this step high frequencies are also
changed to zero as high frequencies represent sudden changes in the value of
pixels. These sudden changes are not recognizable by human vision and are
therefore redundant for image quality. JPEG has 100 quantization matrices,
these range from Q1 which offers poor image quality but a high compression
ratio, to Q100 which offers the best quality but worst level of compression.

The third part of the process is encoding, which entails converting the matrix
from the earlier step to a transmittable line of numbers. In JPEG this is done
by working through the matrix in a zigzag pattern from index (0,0) to index
(n,n), and appending the numbers to the result. Since the DCT concentrates
higher values around lower indexes this results in the higher and most prob-
ably non-zero numbers to be located earlier in the sequence. This process is
fully reversible and therefore lossless.

When decoding the JPEG sequence every of the mentioned step is performed
in reverse, which means that the encoding is used to recreate the matrix.
After the matrix has been reconstructed a dequantizing step is performed.
Finally an inverse DCT is performed and the 8x8 grid of pixels is restored.
This reconstructed pixel matrix may however have certain errors pertaining
to the irreversible rounding or choice of quantization matrix.[7]

2.2.2 H.264

H.264, also known as MPEG-4 Part 10 or Advanced Video Coding (AVC),
is a commonly used video encoding which superseded H.263. It was de-
veloped in a joint partnership between ITU-T (International Telecommuni-
cation Union Telecommunication Standardization Sector) and MPEG (Movie
Picture Experts Group). ITU-T named the codec H.264 while MPEG called
it MPEG-4 part 10 as it was a new part in their MPEG-4 development [22].
H.264 is one of the most widely used video codings with it being used to,
for example, store video on storage mediums, streaming video from online
services etc.
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H.264 employs an algorithm for encoding and decoding video which is highly
efficient, which is one of the many reasons that it is widely used for both
streaming and storage purposes. Outside of its efficiency it is also very flex-
ible with the required bit-rate for its use, being able to work well with rates
from 10Mbit/s to sub 1Mbit/s.

The H.264 encoding scheme does not handle frames independently like MJPEG
but rather lets the encoding of a frame depend on other frames in the stream.
H.264 encodes frames by designating 3 different type of frames:

I-Frame - Inter Frame This is a reference frame for the algorithm which con-
tains all the image data for the frame

P-Frame - Prediction Frame This is a predicted frame derived from the last
I-Frame which contains partial image data

B-Frame - Bidirectional Prediction Frame This is a predicted frame which
is derived from the closest I-Frame and P-Frame, this frame contains
the interpolated difference between those frames.

The encoding algorithm works by constructing a sequence of frames which
creates sections delimited by I-Frames which contain a P-Frame and a vari-
able amount of B-Frames between the I-Frames and P-Frames. An example
with a B-Frame length of 2 can be seen in figure 2.1.

I B B P B B II B B P B B I

FIGURE 2.1: Interframe Predictions

The standard for H.264 defines a number of different levels which specify
requirements upon the minimum decoding performance. This is helpful
when designing a video stream environment, as the receiving end won’t be
required to decode anything beyond its processing capabilities [13].

2.3 Wireless Transmission Mediums

Every day wireless connectivity becomes more and more integral to busi-
nesses and everyday life. Wireless connectivity requires some kind of medium
to route and transmit data without wires. There are a lot of different solutions
to this problem, for example radio frequencies or infrared lasers.

Different wireless mediums are more suited to different types of tasks, for
instance, Wi-Fi is well suited for usage in office and home networks, while
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LTE is well suited for usage where network infrastructure is not as well im-
plemented, such as outdoors or in the countryside. Even though the range of
LTE is not an exact figure as it depends on the cell type [9], it far outreaches
the range of Wi-Fi networks, however, this range comes with decreased trans-
fer speeds.

To compare these some key parameters were identified. For LTE and Wi-Fi
the specifications for the parameters are presented in table 2.1.

LTE 802.11n 802.11ac
Nominal Data rate1 150Mbps 433Mbps

Aggregate Nominal Data rate2 600Mbps 1.73Gbps
Average Data rate 24.68Mbps

Coverage3 83.92% 12-70m 12-35m

TABLE 2.1: Wireless Communication Comparison

Latency was also identified to be a key parameter for this project, however as
finding the latency for each communication method during video streaming
is part of the work in this thesis this will be presented later.

2.3.1 IEEE 802.11

IEEE 802.11 is a set of media access control and physical layer specifica-
tions for implementing wireless local area network computer communica-
tion in the 900 MHZ and 2.4, 3.6, 5.8, and 60GHz frequency bands. It has
its origins in a 1985 ruling by the U.S. Federal Communications Commis-
sion that released the ISM band for unlicensed use. NCR Corporation/AT&T
(now Nokia Labs and LSI Corp.) invented a predecessor to 802.11 in 1991 in
Nieuwegien (the Netherlands) which was brought to the market under the
name WaveLAN with data rates of 1-2 Mbit/s.

For any given variation of 802.11, maximum achievable throughputs are given
in the layer-2 data rates or are based on measurements done under ideal con-
ditions, in other words, the highest achievable speeds possible for the imple-
mentation.

This technology is most commonly realized in Wi-Fi routers which is a wire-
less communication solution often found in households or business offices.
The standard has evolved over the years resulting in a number of versions
allowing for progressively increased bit rates. Some common versions used
for Wi-Fi routers are 802.11b/g, 802.11n, and 802.11ac.

1Single stream, 1x1, 40MHz for 802.11[12]
2Multiple streams, 4x4, 40MHz for 802.11[12]
3Denotes coverage percentage as of November 2017 in Sweden for LTE[19], and indoor

range for 802.11
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MCS

Modulation and coding scheme (MCS) value describes every possible com-
bination of number of spatial streams, modulation type, and coding rate.

By using multiple-input and multiple-output (MIMO) it is possible to run up
to 4 spatial streams in 802.11n. Effectively, it allows for the use of the same
area of frequency space to transmit and receive multiple data streams, thus
increasing the possible bit rate. With later revisions of 802.11ac, the number
of possible spatial streams is increased to 8 [1].

To communicate data through the air, the data stream needs to be modulated.
For higher bit rates, more complex modulation is used. The more complex
modulations are however more susceptible to interference and may suffer
performance degradation if line of sight to the access point is obstructed. If
there are a lot of Wi-Fi traffic in the area the modulation can be shifted to a
less efficient but more robust modulation to handle the interference.

Coding rate describes how much of the data stream that is actually usable
data, that is, how much of the information sent is data packets. This is ex-
pressed in fractions with the most efficient rate being 5/6 (or 83.3%).

Guard intervals provide protection against propagation delays, echoes, and
reflections to which digital data is normally sensitive to. In 802.11 a guard in-
terval of 0.8µs is used. Optional support for a 0.4µs was introduced in 802.11n
for increased data rates. This does however come with a cost and results in
a higher packet error rate when the delay spread of the channel exceeds the
guard interval or if the timing synchronization between the transmitter and
receiver is not precise.

Channel width specifies the amount of bandwidth that is used in the avail-
able spectrum. It is possible to speed up wireless networks by using more
bandwidth, however it can also cause a higher amount of interference for
other access points in the area. The typical channel width for 2.4GHz Wi-Fi is
20MHz, and it is not uncommon to use 40MHz on 5GHz Wi-Fi.

All of this determines the available bit rate of the connection, and thus the
maximum possible throughput of data. Depending on the usage of the spec-
trum in the area, only certain channels may be available.

2.3.2 LTE

Long-Term Evolution (LTE) is a high-speed wireless access standard and reg-
istered trademark owned by the European Telecommunications Standard
Institute (ETSI) in use in telecommunications. The technology is based on
preexisting Global System for Mobile communications (GSM) and Enhanced
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Data Rates for GSM Evolution (EDGE), as well as Universal Mobile Telecom-
munications System (UMTS) and High Speed Packet Access (HSPA) technol-
ogy. However the capacity and speed is increased by using a different radio
interface in conjunction with core network improvements.

The 3rd Generation Partnership Project (3GPP) is behind the development of
the LTE standard which is specified in the Release 8 document series. Minor
enhancements were made in Release 9.

LTE is commonly marketed as 4G LTE & Advance 4G, even though LTE does
not meet the technical criteria of a 4G wireless service as specified in the 3GPP
Release 8 and 9 document series. Originally the requirements were set forth
by the ITU-R organization in the IMT Advanced specification. However, due
to pressure from marketing agencies, and the significant improvements that
Evolved High Speed Packet Access (HSPA+), WiMAX, and LTE brings to
the existing 3G technologies, ITU later decided that LTE together with the
aforementioned technologies can be called 4G technologies. On the other
hand, the LTE Advanced standard formally fulfills the ITU-R requirements to
be considered IMT-Advanced. To differentiate LTE Advanced and WiMAX-
Advanced from the current 4G technologies, ITU has defined them as "True
4G".

2.4 Packet Analyzer

Packet analyzers are programs or hardware that can intercept and log traffic
that passes over a digital network. The act of intercepting and logging traffic
is called packet capture. These have a wide variety of usages, for instance
they can be used to monitor specific metrics of a connection, or it can be used
to extract the data that is being transmitted. There are a lot of packet analyzer
software available, some of them are made with specific goals in mind, for
example they might be made to capture a specific protocol. There are how-
ever programs such as WireShark or TCPDump which are open-ended, these
allow you to capture all IP packets from specific connections.

TCPDump runs on command line and displays TCP/IP and other packets
being transmitted over a network device [20]. It supports capture filters, al-
lowing the user to filter the captured traffic to specific protocols or port. As
the captured data is written to standard output as plain text the data needs
to be handled manually by the user after the data has been captured.

WireShark works in a similar manner but runs with its own graphical user
interface. It too supports capture filters, and come with the added feature
of display filters which allows for filtering post data capturing , and packet
decoders which allows for decoding of captured packets and data streams
[8].
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Chapter 3

Method

This chapter explains the the method used in this project. The chapter is
divided into the following parts:

Design Describes the information gathering and alignment to the restric-
tions of the project.

Data gathering Describes the approach taken to gather data which could
later be analyzed.

Data analysis Describes the approach taken to analyze and handle the data
gathered during the previous phase.
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3.1 Design

This section covers the information gathering for, and the design, of the sys-
tem.

3.1.1 Software Considerations

There are plenty of video streaming software readily available already, so it
was decided that a solution that would fit the requirements that Uniti had
for the project should be pursued before resolving to building an in-house
solution.

OpenCV An open source library containing computer vision and machine
learning software libraries.

Nginx A server hosting solution, with plenty of built in streaming libraries.

gstreamer An open source media framework.

Initially OpenCV was considered as it was already being used for other pur-
poses at Uniti and thus the library was readily available on the system. How-
ever this library is not really built for video streaming, but rather for image
manipulation and computer vision. Thus this solution needed to be bundled
with a library for handling encoding, packaging, and transmitting the video
stream. It worked, to some extent, but the end to end latency did not meet
the requirements.

More complete solutions were also considered, such as the readily imple-
mented Nginx web server. It showed promise as it came with load balancing,
Video on Demand (VOD), and could supply MP4 or FLV over HTTP. How-
ever during testing of the system, latencies were so high (in the range of 5-10
seconds) that this solution was quickly deemed unfit for the purpose.

Gstreamer is an open source media framework that allows for fast command
line prototyping, and has an comprehensive core library, is compact, has
lightweight data passing, and gave access to an API for various program-
ming languages. During some lightweight testing Gstreamer was found to
yield low inherent latency. The low inherent latency and ease of use led to
the conclusion that Gstreamer was the best choice for the project out of the
tested frameworks.

A prototype was implemented using the command line tools and over a con-
trolled environment the latency were well within the requirements. This pro-
totype was used later during the data gathering phase as it would provide
accurate emulation of the finished system.
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3.1.2 Hardware Considerations

As the platform on which the system would run would not be available to us
at all times, the need for a test platform was obvious. This was constructed
in the way described below so that parts of the test platform could later be
transfered to the Uniti car.

Aspects considered were:

Cameras The specifications of the test camera needed to be close to the cam-
eras used in the actual vehicle to simulate accurate loads for the en-
coder.

Underlying system The computer that would manage the encoding of the
video stream needed lesser than or equal computational power to the
computer that would go in the vehicle to provide a good base for eval-
uation.

The project required a camera for the test setup, and for this a rather basic
USB camera module was selected. It was not much more than a PCB with a
lens on it. But it came with a range of modes of operation and could deliver
1080p/720p at 30fps and lower resolutions at 60fps, and as it was a USB
connected device, it would work with more or less any system that had a
USB port.

As for the underlying system a raspberry pi 3 B+ was considered, however,
as a USB camera was chosen instead of a Raspberry pi camera, the GPU of
the Raspberry could not be utilized in the encoding. This resulted in very low
frame rates, roughly 10 fps. As this would not emulate the actual system, the
Raspberry was dropped in favor of a more powerful computer.

3.2 Data Gathering

The goal of this project was to calculate and conclude the best parameters for
operating a system as described in 1.1. The scope of our tests was limited to
focusing on four major cases, using either Wi-Fi or LTE as a network medium
and H.264 or JPEG as encoder. The main focus of the tests was to deduce the
amount of inherent latency in any of these four cases, as well as standard
deviation and average packet loss.

3.2.1 Setup

The major problem of performing the experiments are the usage of RTP for
streaming video. Since there is no process to assure that packets are deliv-
ered, the end-to-end latency becomes harder to calculate [10]. Even with a
capture of the network traffic from both units it is difficult to discern the end-
to-end latency as two real-time clocks may differ by a significant amount of
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milliseconds [11]. It is therefore not possible to calculate the transmission
time over a network by comparing the system timestamps for each packet
sent and received.

Although transmission time over the network would have been interesting
to observe, this is not of importance to this project, as the interest lies in the
end to end latency, that is, the time from when an image is captured by the
camera to the time when it is displayed on the receiving end.

To observe this latency a timer was added to the video stream, and then the
receiving computers monitor was recorded to create a loop, and by doing
so creating an "infinity mirror" effect with several frames each containing a
timestamp where the timestamp in each consecutive infinity mirror frame is
incremented by the latency for each step (see figure 3.1).

0:15:211

0:15:111

0:15:011

0:14:914

FIGURE 3.1: Infinity Mirror

Unfortunately, each iteration of the infinity mirror loses some image quality
as it is recaptured over and over again. Therefore, most of the time only
the first one or two timestamps were readable, this is however enough to
calculate the end to end latency of the system with high enough precision.

Since this method relies on the displaying monitors refresh rate there is a
margin of error that needs to be taken into account. The monitors refresh
rate is important here as the timestamps captured only can increase in 1/f
increments, where f is the refresh rate of the monitor. This means that there
is always a possible margin of error at 1/f seconds.

Wireshark was used to monitor and log the traffic between the two stations.
From these logs the packet loss could easily be determined. The captured
data was also used to recreate the video from the stream so that it could be
analyzed frame by frame.

3.2.2 Wi-Fi

For testing the system over Wi-Fi, an area with high amounts of activity over
Wi-Fi needed to be found. Ideon Science Park in Lund hosts over 100 dif-
ferent companies in its business park and they allowed for measurements



3.2. Data Gathering 25

FIGURE 3.2: Wi-Fi Test Setup

to be taken during busy hours. They did however not allow measurements
in some areas as they were already somewhat overloaded and they did not
want additional interference in those areas.

The setup for the Wi-Fi tests consisted of two computers with Wi-Fi modules,
a camera, and a Wi-Fi router. The camera was pointed at the receiving com-
puters monitor and images were captured by the transmitting computer (see
figure 3.2).

Quick experiments showed that for stationary computers within the range of
the Wi-Fi. the MCS levels were fairly stable as long as they were in line of
sight from the access point, at around 13-15 for 802.11n at roughly 2m. When
the computer was not in line of sight but at the same distance the MCS levels
decreased to between 6-12.

For moving computers within the Wi-Fi range (2-10m), the MCS was a bit
more unstable. With line of sight the MCS wandered in the 6-14 range, and
without line of sight the MCS dropped down to the 3-7 range.

The signal strength during the measurements where line of sight was al-
lowed was roughly at -43dBm, and the signal strength for the measurements
where line of sight was not allowed resulted in a signal strength of -50dBm

For MCS level 3 at 20MHz with regular guard intervals the resulting bit rate
would be 26Mbit/s. In comparison, the average data rate for LTE in Sweden
was 24.68Mbit/s in November of 2017 [19].

The router was placed with one wall in between it self and the transmitting
and receiving computers. This to remove line of sight between the devices as
this would most likely not be possible during the demo event.

Both computers ran Wireshark to capture the traffic to and from the Wi-Fi
modules.

This test was done over a couple of days (not consecutive). The first experi-
ment focused on getting data on packet loss over Wi-Fi when there was high
activity over the Wi-Fi. Later measurements focused on end to end latency
as well as control data to verify the system clock drift.
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FIGURE 3.3: LTE Test Setup

3.2.3 LTE

LTE tests required a venue where there would be high enough activity over
the network as well as similar distance to a base station. The base station at
the demo event was located within 300m. Finding a venue that both hosts a
high amount of activity and allows a setup of the equipment for this project
proved difficult, but it was eventually found at a large arena.

Malmö Arena in Malmö hosts a range of entertainment and sports events
which can host more than 10000 attendants. There is a base station located on
top of Malmö arena, placing it somewhat closer than what would be optimal,
at roughly 50m. Studying maps however, it was determined that roughly the
same amount of walls would be between the test site and the base station as
there would be at the demo event. Malmö Arena helped out with tests for
this project and provided a room during one of their events. It was important
that cellphones would be allowed to be used during the event.

Setup for this experiment was a little different as the computer that the stream
was sent to would not be in the same room. The receiving end was setup at
a remote location and controlled remotely through a program called noma-
chine. This extra link in the system introduces some extra latency but it can
easily be accounted for.

The receiving computer was connected to the fixed network, while the trans-
mitting computer was connected to the LTE network. The laptop controlling
the receiving computer was also connected through the LTE network.

The receiving computer was controlled from a laptop at the test location,
which the camera recorded, the captured frames were encoded on a separate
computer and transmitted via LTE over the Internet to the receiving com-
puter, thus completing the loop.

On the test site only traffic from the transmitting computer was analyzed
with Wireshark as the returned traffic to the laptop was not of interest. The
traffic was also analyzed on the receiving computer.
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3.3 Data Analysis

This section covers the analysis of the data gathered in the previous section.

3.3.1 Latency

The latency is measured in milliseconds, from the time the image is captured
by the camera to the time when it is displayed on the remote screen, i.e. the
time it takes to capture, encode, package, transmit, receive, unpack, decode
and display each frame. From each frame in the stream where the timer is
visible and readable, the difference is recorded and subsequently collected
in a data set that is used to determine the average latency over time. The
standard deviation is then calculated from the same data set.

3.3.2 Packet Loss

From the logs of a packet analyzer the packet loss can be deducted quite
easily as this feature is often supplied with the packet analyzer. Given the
data capture of the sending and receiving ends of the UDP connection it is
possible to determine the number of packets sent and received. The packet
loss rate is then discernible by the following formula:

Pl = 1− Pr
Ps

Where Pl is the packet loss rate, Pr is the amount of packets received and Ps
is the amount of packets sent.

To verify the results from the packet analyzer, the timestamps and sequence
numbers of the captured traffic were exported to a comma separated values
(csv) file for each captured stream. The csv files were then segmented into
parts of 65536 entries each. This is due to the fact that the sequence num-
bers go to 65535 and then wrap to 0. Each segment is paired in transmitter
receiver pairs, and subsequently joined on sequence numbers. The sequence
numbers that do not appear in both files are assumed to have been lost dur-
ing transmission and tallied towards a total number of lost packets.
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Chapter 4

Implementation

This chapter explains the method used in this project. The chapter is divided
into the following parts:

Overview An overview of the implementation

Hardware A deep dive into the hardware oriented parts of the implementa-
tion.

Software Describes the software aspect of the implementation.
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4.1 Overview

During our project we have implemented a platform as a solution which pro-
vides low latency video streaming. This was constructed to be able to work
with different network mediums and coding standards. It was an important
to be able to gather measurements from the platform that would make it pos-
sible to compare different solutions. It was also important to make sure that
this implementation could be used in the car for the demo presentation.

This implementation is constructed using several hardware and software
components. These different components interact and work with each other
in different ways and have different dependencies.

Originally our intentions were to implement our platform to work with the
demo setup. This was constructed with additional features which were not
fulfilled as a different solution was later found to be easier to apply. The
original implementation setup is presented in figure 4.2.

In an earlier step in our project we developed a test setup which was sup-
posed to be used to test the different codecs and wireless mediums. This was
ultimately the model we finished with as it was close enough to the intended
implementation. This implementation was also used to execute tests with the
different codec and medium combinations.

In both of these setups the routers and coders/decoders are intended to rep-
resent the component used in the specific test case, like for example the router
used is a WiFi router in the WiFi test and the codec is JPEG in the JPEG test
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FIGURE 4.1: Test Setup
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4.2 Hardware

To implement this project in the car, the following hardware was required.

Control computer This computer is responsible for receiving a video feed
from the vehicle, decoding it and displaying it. This computer would
also during a real life demo be responsible for sending stop signals to
the vehicle.

Vehicle computer During the demo this computer is supposed to be a Nvidia
Drive PX2, as it was supposed to serve as the vehicles main computer.
However during the tests as this computer was not as readily available
we used a custom made stationary computer running an AMD Ryzen
5 and a Nvidia GTX 1060. This computer serves the same purpose in
both of the scenarios, it is intended to capture video footage with the
help of the camera and then encode and transmit it.

Router For Wi-Fi a router implementing IEEE 802.11n was utilized as this
supported up to 288.8Mbit/s. For LTE we used a LTE router supplied
by Tele2 IoT. The router serves the same purpose in all scenarios, it
relays data between the vehicle and control computer.

Camera The camera used in this implementation was a USB camera from
ELP which is pretty bare-bone as to provide as low latency as possible.
In the demo this would have been replaced by an Nvidia camera which
accompanied the PX2. During the demo the camera’s purpose was to
capture the vehicles surroundings and during the testing scenario its
purpose was to measure latency.

Monitor Used to display video feed from the vehicle during the demo. Used
to measure latency during latency testing.
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4.3 Software

For the software part of the implementation, different solutions were exam-
ined. The final solution needed to incorporate a way to fetch image data from
the camera, be able to encode the video stream, package the encoded video
in packets, and to transmit the resulting packets. Likewise, the receiving end
needed to be able to receive, unpack the packets, decode, and play back the
video stream.

Although several solutions were examined at the start, our implementation
eventually ended up relying most heavily on the Gstreamer framework. This
framework incorporates modules that easily lets you encode, decode, pack,
and unpack a video stream. Gstreamer also turned out to be one of the more
latency efficient solutions we would investigate, which is why we chose to
work with it.

Since Gstreamer works out to do most of our work for us our software im-
plementation is mostly about using scripts to set up Gstreamer to establish
the connection properly.

As the setup of Gstreamer can be a bit tricky, the setup was automated with
a script that set up the entire process depending on a few input parameters.
This made it easy to set up different encoders and IP addresses during test-
ing. The test scripts can be found in appendix A.1 and A.2.

For the implementation on the vehicle Gstreamer was setup to run on startup
on the vehicle computer. This script connects to the camera and sets up the
video streaming to a specified IP. The startup script was similar to the test
scripts, but with more error handling to ensure that the script could be started
correctly.
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Chapter 5

Results

This chapter will summarize the results from our tests developed for the goal
of this project. This chapter is divided into four sections.

Metrics This section describes the different metrics used in the test results.

LTE Tests This section displays the LTE test results

Wi-Fi Tests This section displays the Wi-Fi test results

Distributions This sections displays and compares the different distribu-
tions
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5.1 Presentation

From the requirements for this project a set of metrics were identified to be of
significance to be able to objectively determine the suitability of the solutions
tested. The metrics selected for this were latency, standard deviation and
packet-loss.

The measurements for all test cases are presented in a few different ways.
Packet loss and standard deviation are presented in tables, while latency
is displayed in different forms of graphs. Latency is presented in discrete
graphs as well as histograms, further on distributions of the latency for the
different test cases are also displayed.

For our latency measurements the aim was to provide a visual representation
of 1000 data points for each test case, this was chosen as it seemed as an ample
amount to display. A data point in this case represents a chain of frames that
could be observed at a single moment according to the description in 3.2.1.
The difficulty in procuring each data point is that a chain of frames often
can make it hard to read the timestamps between frames, this results in a
large amount of unusable frames. The nature of the testing methodology
also makes it so that all data points measured have random time intervals
between them. With all these things in mind it was decided that 1000 data
points which were taken at semi-random intervals from each test case would
be adequate as this would both give a large number of data points to observe
as well as a bit of an overhead of trends in latency, since all data points in the
discrete graphs are ordered by sequence.

5.2 LTE Tests

This section provides the results from each of the measurements done over
LTE.

5.2.1 Latency

Protocol Mean Std. Dev. Min Max
H.264 300.694ms 109.766ms 132ms 808ms
JPEG 254.568ms 68.903ms 100ms 636ms

TABLE 5.1: LTE Results

A table that presents the standard deviation as well as mean, min- and max
values is presented in 5.1. The mean for both encodings seem to not differ by
too much, but there is quite a difference in standard deviation.
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A graph comparing 1000 data points of latency for H.264 is presented in fig-
ure 5.1. However for JPEG there wasn’t enough data to process 1000 clean
data points, which is why there is only 760 data points for JPEG, the latency
for JPEG is shown in figure 5.3.

Both graphs show values that can be considered unstable with some visible
trends. Overall JPEG does seem to be a bit more stable which is the same
conclusion that can be drawn from table 5.1. A histogram is also presented
for both H.264 and JPEG in figure 5.2 and 5.4 to give a picture of the frequency
of specific values. These graphs both seem to suggest similar distributions for
the two encodings, although lower values seem more frequent for JPEG.
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FIGURE 5.1: Latency of the H.264-LTE Stream

FIGURE 5.2: Distribution of Data Points for H.264 over LTE

5.2.2 Packet Loss

The result from analyzing the sent and received packets are presented in table
5.2. It is worth noting that the amount of packets sent during the JPEG mea-
surement is significantly lower, however this has nothing to do with the effi-
ciency of the encoding, but rather that the measurement was shorter. During
the data gathering for JPEG over LTE the first stream capture got corrupted
and no useful data could be produced from it. The corruption was not noted
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FIGURE 5.3: Latency of the JPEG-LTE Stream

FIGURE 5.4: Distribution of Data Points for JPEG over LTE

until after when the data was being analyzed. During the gathering incon-
sistent behavior was identified in the stream, odd freezes and inconsistent
latencies, and thus another capture was done to serve as a verification of the
first stream. The second stream was significantly shorter as it was only meant
to serve as validation of the first stream, however as no useful data could be
produced from the original capture, the second was used instead.

Protocol Packets
sent

Packets
received Packets lost % dropped

H.264 739833 739496 337 0.05
JPEG 194751 194572 179 0.09

TABLE 5.2: LTE Packet Loss

5.3 Wi-Fi Tests

This sections provides the results from each of the measurements done over
Wi-Fi.
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5.3.1 Latency

The results from the latency measurements are summarized in table 5.3, and
covers the mean, standard deviation, min and max values.

The latency measured for H.264 over Wi-Fi is depicted in figure 5.5 while the
measured latency for JPEG is depicted in figure 5.7. The distribution of the
measurements for H.264 and JPEG over Wi-Fi are depicted in figure 5.6 and
5.8 respectively. Here each data set consists of 1000 data points.

By looking at the histograms for both H.264 and JPEG, the measurements
show a rather stable video stream, with some occasional latency spikes. How-
ever most of the measurements are located at 100ms for both H.264 and JPEG.

By looking only at the graphs not much can be discerned from them, however
by looking at the table 5.3 it is apparent that both the mean and standard
deviation for JPEG are lower than that of H.264 by 4.559ms and 17.126ms
respectively.

Protocol Mean Std.Dev. Min Max
H.264 110.091ms 37.080ms 64ms 472ms
JPEG 105.532ms 19.954ms 32ms 304ms

TABLE 5.3: Wi-Fi Results
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FIGURE 5.5: Latency of the H.264-Wi-Fi Stream

5.3.2 Packet Loss

The result from analyzing the sent and received packets are presented in table
5.4. It covers the amount of packets sent, packets received, packets dropped,
and drop percentage.
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FIGURE 5.6: Distribution of Data Points for H.264 over Wi-Fi
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FIGURE 5.7: Latency of the JPEG-Wi-Fi Stream

FIGURE 5.8: Distribution of Data Points for JPEG over Wi-Fi

Protocol Packets
sent

Packets
received Packets lost % dropped

H.264 1281697 1281689 8 6.24× 10−4

JPEG 4380275 4379886 389 8.88× 10−3

TABLE 5.4: Wi-Fi Packet Loss
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5.4 Distribution

This section covers the distribution and the visualization of the distribution
of the data, as well as the confidence intervals for each of the distributions.

5.4.1 Cumulative Distributions
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FIGURE 5.9: ECDF Comparison

In figure 5.10,5.11,5.12, and 5.13, the empirical cumulative distribution func-
tions (ECDF) for each test case is visualized (the red line) with a generated
cumulative distribution function (CDF) for a normal distribution given the
calculated µ and s for each data set (the blue line). Examining the figures
it is safe to say that the distribution is close enough to normal distribution,
such that normal approximation can be utilized in the approximation of the
confidence intervals.

5.4.2 Confidence Intervals

The confidence intervals indicate with a given accuracy, within which range
the measurements are expected to appear. For this experiment, an accuracy
of 99.9% was selected. This means that λα/2 = 3.2905. The mean was calcu-
lated as the arithmetic mean value of the measured data, and the standard
deviation (s) was calculated as the square root of the sum of the squared dif-
ferences divided by the number of elements. These results are presented in
table 5.5.
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FIGURE 5.10: ECDF LTE H264
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FIGURE 5.11: ECDF LTE JPEG

Medium Protocol Iθ
LTE H.264 (289.2623267ms, 312.1156733ms)

JPEG (246.3438082ms, 262.7921918ms)
Wi-Fi H.264 (106.23265ms, 113.94935ms)

JPEG (103.4556916ms, 107.6083084ms)

TABLE 5.5: Confidence Intervals
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FIGURE 5.12: ECDF Wi-Fi H264
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FIGURE 5.13: ECDF Wi-Fi JPEG
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Chapter 6

Conclusion

6.1 Evaluation of Results

6.1.1 Transmission Method

Looking at the results in chapter 5 in regards to the different metrics there
is a clear correlation between performance and the choice of transmission
medium. Looking at LTE the mean value of H.264 is 300.694ms as well as the
mean value of JPEG is 253.568. This is interesting in contrast to Wi-Fi where
the mean for H.264 is 110.091ms and 105.532 for JPEG. This shows a clear
favor in latency for Wi-Fi.

When looking at packet loss LTE performed worse than Wi-Fi. LTE dropped
0.05-0.09% of the packets while Wi-Fi dropped 0.000624-0.00888%. There
was no significant difference between the encodings in terms of packet loss,
which is to be expected as they should not affect this metric.

Looking at figure 5.9 you can distinguish the two different mediums as their
cumulative probability function curves follow similar patterns. In this con-
text Wi-Fi performs quite a bit better then LTE. Looking at a 95% case for
both Wi-Fi cases you can see that neither of these cases have a latency of
above 200ms. However looking at LTE the same analysis yields results of up
to 400-500ms. This also gives Wi-Fi a clear advantage.

Generally speaking this makes Wi-Fi seem like the clear cut choice as a medium,
however this is probably affected by the setup of the two testing environ-
ments. In the Wi-Fi setup the entire system is constructed in a closed net-
work, in the LTE setup however the network is connected to the internet
and data is relayed through a remote host outside. This is however a real-
istic setup since we would need to build our own base station to transmit
our own LTE transmission to keep everything in a closed network. In the
Uniti demo we wouldn’t build our own base station either as it would make
this network solution far too expensive to be viable. Since we can’t keep the
LTE solution in a closed network it will introduce the latency of sending our
network traffic through the internet. This will always give Wi-Fi a certain
advantage when comparing latency.
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Another thing to discuss is the stability of the different mediums and looking
at figure 5.9 again it can easily be spotted that around 70% of the probability
is on the exact same value for Wi-Fi. LTE on the other hand varies a bit more.

6.1.2 Encoder

When comparing the time efficiency of the H.264 and JPEG encoder there is
an overlap in the confidence intervals when measured over Wi-Fi, so we can’t
say with certainty that one is better than the other. For LTE however, the con-
fidence intervals are completely separated even at a 99.9% percentile. This is
somewhat counter intuitive as JPEG in general is less efficiently encoded in
terms of bit usage. The MJPEG encoding is however faster than H.264 in the
general case. There are some exceptions to this, however, for instance if you
only allow for intraframe encoding using H.264 it could possibly be faster.
This does somewhat defeats the purpose of the encoder.

The bit rate needed to transmit either a H.264 or a JPEG video stream are
quite different as H.264 is quite a bit more efficient in terms of bit rate. On
average a low resolution (704x480) video stream running at 30fps would re-
quire roughly 1.4Mbit/s to be transmitted, while a MJPEG with the same
specification would require roughly 7.2Mbit/s. If we increase the resolution,
the requirements on the bit rate increases as well. For instance for H.264 at
720p resolution at 30fps a bit rate of roughly 3.8Mbit/s is required while for
MJPEG it would be 19.2Mbit/s. This is definitely worth taking into account
when deciding on which solution to use.

Depending on which MCS index is available the bit rate might be an issue.
For instance, if the MCS index is zero for IEEE 802.11n and the channel width
is 20MHz, then available bit rate would be 6.5Mbits/s. This means that for a
low resolution video, the bit rate is sufficient for H.264, but might not be for
JPEG. With a moving unit the MCS might change quite a bit and therefore
affect the quality of the connection. LTE doesn’t seem to suffer as much when
the unit is moved, the conditions for whether the LTE connection is stable or
not are more dependent on general range to the nearest base station as well
as the overall number of units connected to it.

The standard deviation for JPEG is consistently lower than the standard vari-
ation for H.264, suggesting a more stable video stream for JPEG under the
conditions of this project.

6.2 Suggested Solution

Motivation of Solution

Looking back at the problem description, we were asked to look for a solu-
tion that could supply a video stream with a latency of at most 200ms and
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preferably around 100ms. We did after a while feel like these limits were
perhaps unreasonable for any kind of wireless connectivity as we in the ear-
lier stages had around 200ms when working between two computers on a
wired network, however finding some better software and the use of better
hardware easily reduced this time to within limits which could be handled.

Looking at the results of our different tests does give some interesting in-
sights. If 200ms is to be considered a hard limit then both of the LTE solu-
tions are nonviable, even if you account for certain delays with relaying data
through external hosts. It would perhaps be possible to make LTE work with
the JPEG encoding with some tweaks but even then it would rely heavily on
the connection being stable.

Wi-Fi on the other hand has acceptable results with both coding standards.
Even with the standard deviations the results seem well within limits. When
looking at the optimal limit for the solution of 100ms it looks like both JPEG
and H.264 are fairly close and both could therefore be suitable solutions.
Since JPEG transmits compressed whole images in its stream it requires a
higher bit rate to work, however H.264 can work with substantially lower
bit rate which would be desirable with the application in mind. There are
however other problems which Wi-Fi bring to the solution, which is mainly
limited range. In general a vehicle is used to move large distances and this
would take you out of range from an access point rather quickly. This is why
LTE would be desirable if it could work in acceptable ranges of latency for
remote controlled steering over a video stream. For the purpose of the demo
event, the vehicle will not move much, at most 20m on a stage and thus Wi-Fi
is still a suitable solution.

The standard deviation of the latency gives an indication of the stability of
the connection. Most values will be within the range from the expected value.
From the measurements of the standard deviation we find that for both LTE
and Wi-Fi, the deviation is lower for JPEG. This suggests that the time to
encode each frame with JPEG is less variable than the time to encode each
frame using H.264.

Further insight can be derived from the ECDF of each measurement. For Wi-
Fi the results are heavily weighted towards 100ms, while for LTE the distri-
bution is wider and thus would suggest higher instability in the connection.

Another aspect which we haven’t investigated as much in this project is the
effect that different bit rates have on the different kinds of connections. The
most important concept which wasn’t tested in this project is throttling the
bit rate of connections to see how much it compromised the connections. In
the LTE case this could complicate things a bit as our bit rate with our LTE
solution both have to depend on our 4G router as well as our 4G Internet
service provider. However in our Wi-Fi tests the only access point between
the test computers was a single Wi-Fi router which provides the highest bit-
rate it supports. This may cause the LTE to be a far less viable solution than
it may seem, but we do however doubt that it actually is, seeing as the res-
olution we choose was 480x640 at 30fps it would not require that high of a
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bit rate to work, in comparison with modern streaming services which can
deliver up to 1080x1920 resolution over a megabit connection. Furthermore
we do not really believe the bit rate to influence the results that much seeing
as H.264 in the LTE case has a way higher latency than JPEG, which kind of
contradicts the facts. Since the H.264 coding standard is implemented to re-
duce the required bit rate of the connection it feels weird that it should have
more than 15% higher average latency than JPEG if bit rate was the problem.

When using both LTE and Wi-Fi there is a varying degree of packet-loss,
this metric is however highly volatile and is very prone to being affected by
external interference. Looking at table 5.2 and 5.4 it is easy to see that the
packet-loss rate in the LTE cases is noticeably higher. This could be because
the LTE connection goes through more network nodes and therefore has that
many more occasions where a packet can be lost. As LTE could not guaran-
tee that at least 99.9% of the packets sent were received it is fair to assume
that it could affect key frames and thus create artifacts in the stream. This
is undesirable behavior for the application during a demo event with a high
number of people near by. It could however be used for monitoring the ve-
hicles positioning during testing on a test track where Wi-Fi would not be a
suitable solution.

Suggestion

With all this in mind, the solution proposed for the Uniti demo would be to
utilize Wi-Fi. This would allow flexibility in the choice of encoder as there is
inconclusiveness for which is definitely better in terms of latency. This would
be a suitable solution for the event as it gives more control over the situation.
For instance, a quick measurement to see which channels are heavily popu-
lated and make sure to avoid these. The monitoring computer can be set up
such that the Wi-Fi receiver always is within range of the vehicle.

It could also be a factor that a lot of people are present at the demo, which
could load the network on which the system operates. This is however not
a big problem as all the tests have been constructed in environments under
varying loads.

Considering other factors, for the demo we would suggest using MJPEG due
to the characteristics of encodings that were taken into consideration. If when
using H.264, an I-frame were to be dropped or otherwise lost, artifacts would
be introduced to the video stream, thus making it difficult to discern the state
of the area ahead of the vehicle. This could make the decision whether or
not to stop the vehicle more difficult. In comparison if a frame were to be
lost in an MJPEG stream, a slight stutter might be visible, but the next frame
would quickly mend that. This is also a cause for concern, as a stutter at 30fps
adds roughly 33ms of latency. Consecutively dropped frames could add to
the latency. This seems unlikely however, based on the measurements taken
during testing of the system.
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This solution is however intended for the demo and might not be a viable
solution when used in a vehicle under regular traffic conditions, that is when
the vehicle is actually out on the road. This is because this would require
coverage over a large area, which LTE might provide, but when creating our
solution the priority was to make it work for the Uniti demo. This solution
assumes that the vehicle would drive in a confined and controlled environ-
ment.

6.3 Future Work

In this project, only software codecs have been considered, so for further
improvements hardware encoders could be used if possible. There are also
a lot of other coding standards which could be used as well to expand on
the tests, for example there are newer versions of H.264 which compresses
frames further.

Another part that would have been of interest to look further into would
be the visual fidelity that different encoders yield in different environments,
it is something that could have a large impact on the feasibility of different
encoders for the application of this project.

Quick tests with a camera providing MPEG video yielded a resulting latency
of around 58ms, and this solution was thusly selected for cameras streaming
internally in the vehicle to the infotainment system.

It would have been interesting to have a section in the project about bit rate
and what effect throttling the bit rate could have on the quality and perfor-
mance of a video stream.

As 5G networking is approaching and is being discussed to become the stan-
dard for vehicle-to-everything (V2X) communication [23], the viability of us-
ing 5G as a transmission medium for the purpose of remote monitoring of
vehicles could be an interesting way to take this project further.
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Chapter A

Test Script

A.1 Camera Side Test Script

#!/bin/bash

HOST=192.168.1.12
PORT=5004

if [ "$1" == "" ];
then

echo "usage: $0 [options]";
exit 1;

fi;

WIDTH=640;
HEIGHT=480;
ENCOPT="";
ENC="jpegenc";
PAYLOADER="rtpjpegpay";
IFRAMES="";

while getopts w:h:e:d:p:i: option
do

case "${option}"
in
h) HEIGHT=${OPTARG};;
w) WIDTH=${OPTARG};;
e) ENCOPT=${OPTARG};;
d) HOST=${OPTARG};;
p) PORT=${OPTARG};;
i) IFRAMES="key-int-max=${OPTARG}";;
esac

done

if [ "$ENCOPT" == "jpeg" ];
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then
ENC="jpegenc";
PAYLOADER="rtpjpegpay";

elif [ "$ENCOPT" == "h264" ];
then

ENC="x264enc
pass=qual
bitrate=8192
$IFRAMES
tune=zerolatency"

PAYLOADER="rtph264pay";
else

echo "Unsupported encoder option: $ENCOPT";
echo "Supported options are:";
echo -e " * jpeg";
echo -e " * h264";
exit 1;

fi

echo "starting camera stream with enc $ENCOPT";
echo "Target host: $HOST";
echo "Target port: $PORT";
echo "Encoder: $ENC";
echo "";

gst-launch-1.0 v4l2src ! \
video/x-raw,width=$WIDTH,height=$HEIGHT ! \
timeoverlay ! \
videoconvert ! \
$ENC ! \
$PAYLOADER ! \
udpsink host=$HOST port=$PORT

exit 0;

A.2 Monitor Side Test Script

#!/bin/bash

PORT=5004

while getopts e:p: option
do

case "${option}"
in
e) ENC=${OPTARG};;
p) PORT=${OPTARG};;
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esac
done

if [ "$ENC" == "jpeg" ];
then

gst-launch-1.0 udpsrc port=$PORT ! \
"application/x-rtp, payload=26" ! \
rtpjpegdepay ! \
jpegdec ! \
videoconvert ! \
xvimagesink

elif [ "$ENC" == "h264" ];
then

gst-launch-1.0 udpsrc port=$PORT ! \
"application/x-rtp, payload=127" ! \
rtph264depay ! \
avdec_h264 ! \
videoconvert ! \
xvimagesink #sync=true -v

else
echo "Unsupported decoder...";

fi

exit 0;





53

Bibliography

[1] 802.11ac: The Fifth Generation of Wi-Fi - Accessed 2018-07-23. Technical
White Paper. Jan. 2018. URL: https://www.cisco.com/c/dam/
en/us/products/collateral/wireless/aironet- 3600-
series/white-paper-c11-713103.pdf.

[2] Zohreh Azimifar Amir Sodagaran Narjes Zarei. “Intelligent Traffic In-
formation System a Real-Time Traffic Information System on the Shiraz
Bypass - Accessed 2018-07-23”. In: (July 2016). URL: https://www.
matec-conferences.org/articles/matecconf/pdf/2016/
44/matecconf_ictte2016_04003.pdf.

[3] L. Berc et al. “RTP Payload Format for JPEG-compressed Video - Ac-
cessed 2018-07-23”. In: (Aug. 1998). URL: https://tools.ietf.
org/html/rfc2435.

[4] Fredrik Björkman. Efter vändorna: Volvo får grönt ljus för tester av självkörande
bilar - Accessed 2018-12-17. URL: https://digital.di.se/artikel/
efter-vandorna-volvo-far-gront-ljus-for-tester-av-
sjalvkorande-bilar.

[5] Axis Communications. “Latency in live network video surveillance -
Accessed 2018-07-23”. In: (2015).

[6] Behrouz A. Forouzan. Data Communications and Networking. Fifth Edi-
tion, p. 699. ISBN: 978-0-07-131586-9.

[7] Behrouz A. Forouzan. Data Communications and Networking. Fifth Edi-
tion, pp. 979–981. ISBN: 978-0-07-131586-9.

[8] Wireshark Foundation. Wireshark Features - Accessed 2018-07-23. URL:
https://www.wireshark.org/about.html.

[9] Mobile Network Guide. What is a Mobile Base Station? - Accessed 2018-
07-23. URL: http://mobilenetworkguide.com.au/mobile_
base_stations.html.

[10] R. Frederick V. Jacobson H. Schulzrinne S. Casner. “RTP: A Transport
Protocol for Real-Time Applications - Accessed 2018-07-23”. In: (July
2003). URL: https://tools.ietf.org/html/rfc3550.

[11] Wilhelm Ochsenreiter Hermann Kopetz. “Clock Synchronization in Dis-
tributed Real-Time Systems - Accessed 2018-07-23”. In: (Aug. 1987)).
URL: https://ieeexplore.ieee.org/abstract/document/
5009516/.

[12] “IEEE 802.11ac: What Does it Mean for Test? - Accessed 2018-12-17”.
In: (2013). URL: http://litepoint.com/whitepaper/80211ac_
Whitepaper.pdf.

[13] Telecommunication Standardization Sector of ITU. “H.264 standard -
Accessed 2018-07-23”. In: (Apr. 2017)). URL: https://www.itu.

https://www.cisco.com/c/dam/en/us/products/collateral/wireless/aironet-3600-series/white-paper-c11-713103.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/wireless/aironet-3600-series/white-paper-c11-713103.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/wireless/aironet-3600-series/white-paper-c11-713103.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2016/44/matecconf_ictte2016_04003.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2016/44/matecconf_ictte2016_04003.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2016/44/matecconf_ictte2016_04003.pdf
https://tools.ietf.org/html/rfc2435
https://tools.ietf.org/html/rfc2435
https://digital.di.se/artikel/efter-vandorna-volvo-far-gront-ljus-for-tester-av-sjalvkorande-bilar
https://digital.di.se/artikel/efter-vandorna-volvo-far-gront-ljus-for-tester-av-sjalvkorande-bilar
https://digital.di.se/artikel/efter-vandorna-volvo-far-gront-ljus-for-tester-av-sjalvkorande-bilar
https://www.wireshark.org/about.html
http://mobilenetworkguide.com.au/mobile_base_stations.html
http://mobilenetworkguide.com.au/mobile_base_stations.html
https://tools.ietf.org/html/rfc3550
https://ieeexplore.ieee.org/abstract/document/5009516/
https://ieeexplore.ieee.org/abstract/document/5009516/
http://litepoint.com/whitepaper/80211ac_Whitepaper.pdf
http://litepoint.com/whitepaper/80211ac_Whitepaper.pdf
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201704-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201704-I!!PDF-E&type=items


54 BIBLIOGRAPHY

int/rec/dologin_pub.asp?lang=e&id=T- REC- H.264-
201704-I!!PDF-E&type=items.

[14] Chris Paukert Kyle Hyatt. Self-driving cars: A level-by-level explainer of
autonomous vehicles - Accessed 2018-07-23. URL: https://www.cnet.
com/roadshow/news/self-driving-car-guide-autonomous-
explanation/.

[15] Pearson IT Certification Mike Harwood. 802.11 Wireless Standards - Ac-
cessed 2018-07-23. URL: http://www.pearsonitcertification.
com/articles/article.aspxp=1329709&seqNum=4.

[16] J. Postel. “User Datagram Protocol RFC - Accessed 2018-07-23”. In:
(Aug. 1980). URL: https://tools.ietf.org/html/rfc768.

[17] Renault SYMBIOZ Concept - Accessed 2018-12-17. URL: https://www.
renault.co.uk/vehicles/concept-cars/symbioz-concept.
html.

[18] Information Sciences Institute University of Southern California. “Trans-
mission Control Protocol RFC - Accessed 2018-07-23”. In: (Sept. 1981).
URL: https://tools.ietf.org/html/rfc793.

[19] State of LTE - Accessed 2018-07-23. URL: https://opensignal.com/
reports/2018/02/state-of-lte.

[20] The Tcpdump team. URL: http://www.tcpdump.org/manpages/
tcpdump.1.html.

[21] Tesla Model S Owner’s Manual - Accessed 2018-07-23. Aug. 2018. URL:
https://www.tesla.com/sites/default/files/model_s_
owners_manual_north_america_en_us.pdf.

[22] Gisle Bjøntegaard Ajay Luthra Thomas Wiegard Gary J. Sullivan. “Overview
of the H.264/AVC Video Coding Standard - Accessed 2018-07-23”. In:
(July 2003). URL: http://ip.hhi.de/imagecom_G1/assets/
pdfs/csvt_overview_0305.pdf.

[23] Hugues-Antoine Lacour Andrew Killeen David McClure Alain Dunoyer
Tom Rebbeck Janette Stewart. 5GAA Study | The cost-benefit analysis on
cellular vehicle-to-everything (C-V2X) technology and its evolution to 5G-
V2X - Accessed 2018-12-17, Url = http://5gaa.org/news/5gaa-study-the-cost-
benefit-analysis-on-cellular-vehicle-to-everything-c-v2x-technology-and-its-evolution-
to-5g-v2x/.

[24] Waymo Journey - Accessed 2018-07-23. URL: https://waymo.com/
journey/.

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201704-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201704-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201704-I!!PDF-E&type=items
https://www.cnet.com/roadshow/news/self-driving-car-guide-autonomous-explanation/
https://www.cnet.com/roadshow/news/self-driving-car-guide-autonomous-explanation/
https://www.cnet.com/roadshow/news/self-driving-car-guide-autonomous-explanation/
http://www.pearsonitcertification.com/articles/article.aspxp=1329709&seqNum=4
http://www.pearsonitcertification.com/articles/article.aspxp=1329709&seqNum=4
https://tools.ietf.org/html/rfc768
https://www.renault.co.uk/vehicles/concept-cars/symbioz-concept.html
https://www.renault.co.uk/vehicles/concept-cars/symbioz-concept.html
https://www.renault.co.uk/vehicles/concept-cars/symbioz-concept.html
https://tools.ietf.org/html/rfc793
https://opensignal.com/reports/2018/02/state-of-lte
https://opensignal.com/reports/2018/02/state-of-lte
http://www.tcpdump.org/manpages/tcpdump.1.html
http://www.tcpdump.org/manpages/tcpdump.1.html
https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf
https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_overview_0305.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_overview_0305.pdf
https://waymo.com/journey/
https://waymo.com/journey/

	Abstract
	Acknowledgements
	Introduction
	Background
	Related Work
	Motivation
	Problem Definition
	Method
	Implementation
	Data gathering
	Data analysis

	Disposition

	Theory
	Metrics
	Latency
	Buffer
	Packet Loss

	Codecs
	MJPEG
	JPEG

	H.264

	Wireless Transmission Mediums
	IEEE 802.11
	MCS

	LTE

	Packet Analyzer

	Method
	Design
	Software Considerations
	Hardware Considerations

	Data Gathering
	Setup
	Wi-Fi
	LTE

	Data Analysis
	Latency
	Packet Loss


	Implementation
	Overview
	Hardware
	Software

	Results
	Presentation
	LTE Tests
	Latency
	Packet Loss

	Wi-Fi Tests
	Latency
	Packet Loss

	Distribution
	Cumulative Distributions
	Confidence Intervals


	Conclusion
	Evaluation of Results
	Transmission Method
	Encoder

	Suggested Solution
	Future Work

	Test Script
	Camera Side Test Script
	Monitor Side Test Script

	Bibliography

