
Lund University

Lunds Tekniska Högskola

Computer Science Engineering

Audio representation for environmental sound
classification using convolutional neural

networks

Linus Lexfors and Malte Johansson

Submitted in part fulfilment of the requirements for the degree of
Engineer of Computer Science of Lunds University, December 17, 2018

Abstract

A convolutional neural network (CNN) training framework is described and implemented. The

framework is used to train and evaluate an audio classification system, focused on evaluating

differences in audio representation. The dataset used is ESC-50, containing 50 different classes

of audio. We used SBCNN, a promising architecture suited for embedded systems because of

its relatively small size. Several models are trained and evaluated. Linear spectrograms ver-

sus mel-scaled spectrograms are compared. Differences in FFT window size and overlap when

constructing these spectrograms are evaluated. In addition, models trained on downsampled

training data are compared to the models using the original sample rate. In our models, mel-

scaled spectrograms outperformed linear spectrograms. The top performing model achieved a

top-1 mean accuracy of 74.70%, using mel-scaled spectrograms and a 2048 sample FFT win-

dow with 75% overlap, compared linear spectrogram, which achieved a top-1 mean accuracy

of 63.35%. The top model was further subjected to two different inference experiments; in-

creasingly noisy data and mixed signals. We show that the model is relatively robust against

wind-noise, the accuracy remains above 60% until the SNR between signal and wind-noise

approaches 9 dB. The mixed signals test is hard to draw any strong conclusions from.

i

Acknowledgements

We would like to thank our supervisors at LTH, Prof. Kalle Åström and Mikael Nilsson. We

would also like to thank our deputy supervisor at Axis, Willie Betschart and our assistant

supervisor, Andreas Irest̊al, for their input and ideas. Lastly, we are grateful to have spent our

time during the thesis with the people at Axis Core Technologies Media/Graphics, who have

given us great input and support.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Problem description . 2

1.1.1 Data representation challenges . 2

1.1.2 Distance to event in audio . 2

1.2 Motivation and objectives . 4

1.2.1 Thesis questions . 5

1.3 Related work . 6

2 Theory 7

2.1 Machine learning . 7

2.1.1 What is learning? . 7

2.1.2 Supervised classification . 8

2.1.3 The importance of representation . 8

iii

CONTENTS iv

2.1.4 Handcrafted vs. learned features . 9

2.1.5 Convolutional neural networks . 10

2.1.5.1 The convolutional layer . 11

2.1.5.2 The receptive field . 13

2.1.5.3 The pooling layer . 13

2.1.5.4 The fully connected layer . 14

2.1.6 Rectified Linear Units . 15

2.1.7 Parameter initialization . 16

2.1.8 Optimization . 16

2.1.8.1 Cross Entropy Loss . 17

2.1.8.2 Stochastic gradient descent . 17

2.1.9 Regularization . 18

2.1.9.1 Dropout . 19

2.2 Audio representation . 20

2.2.1 The waveform . 20

2.2.2 The spectrogram . 21

2.2.3 Window functions and spectral leakage 23

2.2.3.1 Choosing tapering function . 25

2.2.4 Specifics of STFT . 28

2.2.5 Mel-scaled spectrogram . 29

2.2.5.1 Mel filterbank . 31

CONTENTS v

2.3 Dataset . 33

2.3.1 ESC-50 . 33

3 Implementation and methodology 34

3.1 Tools and implementation . 34

3.1.1 Tensorflow . 34

3.1.2 Training and input framework . 36

3.1.2.1 Evaluation step . 36

3.1.3 Evaluation strategy . 37

3.1.4 Network architecture . 38

3.1.4.1 SB-CNN . 38

3.1.5 Pre-processing of input data . 40

4 Evaluation 43

4.1 Data representation comparisons on SB-CNN 43

4.1.1 Downsampled data . 44

4.2 Further evaluation of the top performing model 45

4.2.1 Confusion matrix . 45

4.2.2 Evaluation of data with added noise . 49

4.2.3 Mixed signals . 51

4.3 Mel-scaled spectrograms compared to linear spectrograms 56

5 Conclusion 58

5.1 Summary of Thesis Achievements . 58

5.1.1 Answers to thesis questions . 58

5.2 Sources of error . 60

5.2.1 Parameter changes affect the epoch size when using TF-patches 60

5.2.2 ESC-50 dataset is small . 60

5.3 Future Work . 61

Bibliography 62

vi

List of Tables

2.1 Guideline for choosing window function . 25

2.2 Tapering function metrics . 26

2.3 Frequency resolution for different segment lengths and sampling rates 29

4.1 Results table . 44

4.2 Results table for downsampled audio . 45

vii

List of Figures

1.1 Welch’s power spectral density estimation class average 3

2.1 Scatterplots example . 9

2.2 CNN structure, courtesy of wiki-user Aphex34. 11

2.3 Conv2d without padding and strides . 12

2.4 Conv2d with padding and strides . 12

2.5 max pooling example . 13

2.6 Fully connected, courtesy of wiki-user JokerXtreme 14

2.7 Rectified linear unit plot . 15

2.8 Gradient descent illustration. 18

2.9 Overfitting illustration. Courtesy of Wiki-user Ghiles. 19

2.10 Waveform of footsteps . 21

2.11 Uncompressed spectrogram of a car horn . 22

2.12 Spectrogram of a car horn . 23

2.13 Window functions and their Fourier transform 24

2.14 Spectrogram comparison of different tapering functions 27

viii

2.15 Gabor limit illustration . 28

2.16 Mel-scale . 30

2.17 Mel-scaled spectrogram of a car horn . 31

2.18 Mel filter . 32

3.1 Graph example with TensorBoard . 35

3.2 K-fold cross-validation, courtesy of wiki-user Joan.domenech91 38

3.3 Model: SB-CNN . 39

3.4 Model: SB-CNN . 40

3.5 Lanczos resampling . 42

4.1 Confusion Matrix . 46

4.2 Distinct classes . 48

4.3 Noisy classes . 48

4.4 Wind SNR accuracy . 50

4.5 Wind noise . 50

4.6 Wind and siren mix . 52

4.7 Footsteps and wind mix . 53

4.8 Glass breaking and siren mix . 54

4.9 Glass breaking and wind mix . 55

4.10 Mel vs Linear . 57

ix

Chapter 1

Introduction

Neural networks have become increasingly popular for use in commercial applications utilizing

machine learning [16, p. 365–366], and a lot of research is being done in the field. Convolutional

neural networks (CNN’s) in particular have played a key role in the history of deep learning and

gained a lot of momentum when Alex Krizhevsky et al. [20] won the ImageNet challenge in 2012

[25]. As embedded systems get specialized hardware, such as GPU’s, and both computational

power and memory size increases, neural networks increasingly become a viable and versatile

tool for many different applications.

In the surveillance industry, specialized hardware and increased computational power is utilized

in different machine learning applications such as face recognition and scene description. While

large amounts of machine learning research is devoted to images and video for these purposes,

research on audio classification outside of speech recognition has not been as prevalent. A

robust audio classifying system has many applications, ranging from diagnosing illness via

coughing analysis [12], to detecting important events in a surveillance system. In a real world

surveillance context, robustness and sensitivity to noise would be especially important factors,

as false positives would make using analytics of this kind unusable legally or too untrustworthy

as aid to security firms.

1

1.1. Problem description 2

1.1 Problem description

The goal of a audio classifier system is to be able to distinguish between different sources

of audio. The system receives some representation of audio data, and outputs a likelihood

distribution over all the classes it has been trained to classify. While the requirements on such

a system could vary with the specific application, accuracy is always of utmost importance. In

a surveillance application for example, the system needs to be robust enough so as to reduce

the likelihood of incorrect detection or a false alarm to a minimum.

1.1.1 Data representation challenges

Contrasting image classification with audio classification, there are challenges that overlap

between the two. One of them is the case of similar classes. If two classes are similar in the

data representation used, any system would have more difficulty distinguishing them, compared

to two classes that are dissimilar. Figure 1.1 illustrates the frequency content for a subset of

the ESC-50 dataset, where it can be seen that many classes have quite similar content.

1.1.2 Distance to event in audio

One major difference between image and audio data is the effect that distance to the recorded

event has. High frequency components of sound attenuate with distance at a higher rate than

lower frequency components. This effect can alter the sound severely. Extra care needs to be

taken when constructing datasets for audio, in order to encompass the scenarios of interest. It

might be that an algorithm trained on indoor sounds close to the microphone performs badly

on sounds recorded at longer ranges outdoors.

1.1. Problem description 3

102 103 104

40

20

101 - Dog

102 103 104

40

20

102 - Rooster

102 103 104
40

20

103 - Pig

102 103 104
40

20

104 - Cow

102 103 104

40

20

105 - Frog

102 103 104

40

20

106 - Cat

102 103 104

40

20

107 - Hen

102 103 104

40

20

108 - Insects

102 103 104

40

20

109 - Sheep

102 103 104

40

20

110 - Crow

102 103 104

40

20

201 - Rain

102 103 104

40

20

202 - Sea waves

102 103 104

40

20

203 - Crackling fire

102 103 104

40

20
204 - Crickets

102 103 104

40

20
205 - Chirping birds

102 103 104
60

40

20
206 - Water drops

102 103 104
40

20

0
207 - Wind

102 103 104

40

20
208 - Pouring water

102 103 104

40

20

209 - Toilet flush

102 103 104
40

20

0
210 - Thunderstorm

102 103 104

40

20

301 - Crying baby

102 103 104

40

20
302 - Sneezing

102 103 104
40

20

303 - Clapping

102 103 104

40

20

304 - Breathing

102 103 104

40

20

305 - Coughing

102 103 104

40

20

306 - Footsteps

102 103 104

40

20

307 - Laughing

Log Frequency [Hz]

Am
pl

itu
de

 [d
BF

S]

Figure 1.1: Class average spectral density estimation using Welch’s method.
27 of the 50 classes in the ESC-50 dataset are featured. Many classes have
similar frequency content, making separation with a simple method such as
bandpass filtering unfeasible.

1.2. Motivation and objectives 4

1.2 Motivation and objectives

This thesis will focus on evaluating convolutional neural networks as a method for audio clas-

sification. In particular, the thesis will have embedded platforms in mind when considering

different architectures. We aim to implement our own training framework in Python, complete

with input pipeline to support different data representations. In order have full control over

design and implementation choices, the models we evaluate will be initialized and trained from

the beginning, as opposed to using pretrained neural networks. Inventing our own network

architectures is not in the scope of this thesis.

After our initial pre-study phase, more detailed thesis questions arose. As CNN’s had their

initial large scale success on image data [20], data representations such as spectrograms is

our primary focus, as they resemble two dimensional images. In this representation, ordering

matters, and stronger correlation between nearby data points is assumed, making it plausible

as a fitting representation for a CNN.

We investigate choices in frame length and frame overlap in spectrogram construction, as well as

normalization and choice of frequency scale. As will be discussed further in the theory section,

the inherent trade-off between temporal resolution and frequency resolution is the motivating

factor behind comparing various frame length and frame overlap setups. This serves as input

to anyone considering embedded implementations of CNN’s, as there may be limits in memory

and computation resources, restricting the available choices. Another limiting factor is the

sample rate of the audio input. Audio codecs in embedded systems might have restrictions

in available sample rates, which affects the bandwidth directly. For this reason, we evaluate

different sample rate cases and compare their performance.

1.2. Motivation and objectives 5

1.2.1 Thesis questions

1. What kind of data input construction provides the best performance to a CNN?

(a) How does linear frequency scaling compare to nonlinear frequency scaling in spec-

trograms?

(b) How much does the balance between frequency resolution and temporal resolution

affect performance?

(c) How much does downsampling audio data to lower sample rates affect performance?

2. The audio signal will probably be attenuated, how much gain boost and normalization is

possible to do before the classification performance is too poor?

3. Is it possible to separate two or more superimposed audio sources with sufficient perfor-

mance?

4. How much does noise from a camera and/or noise from wind affect the accuracy?

1.3. Related work 6

1.3 Related work

CNN’s have grown in popularity after AlexNet [20], won the ImageNet challange in 2012 [25],

and its usage is now widespread. Piczak [22] demonstrated the potential of using CNN’s for

classification of environmental sounds. Using spectrograms with their respective deltas, data

pitch-augmentation and dropout, the network’s accuracy measured 64.5%. Sigtia et al. [28]

showed that deep neural networks, compared to GMM and SVM, gives the best performance

to cost ratio, for a range computational costs in embedded systems.

Huzaifah [19], found that Mel-STFT spectrograms performed slightly better than constant-Q

transform, continuous wavelet transform, linear spectrogram and baseline MFCC. Mel-STFT

spectrograms performed consistently well through the tested variations in model depth, con-

volution filter size and segment length. Further, Salomon and Bello [27] proposed a deep,

high-capacity CNN which in conjunction with data augmentation gave, at the time, state-of-

the-art performance on a dataset with 10 classes [7].

Chapter 2

Theory

2.1 Machine learning

In this section, we go through basic machine learning concepts, and focus specifically on the

theory and techniques employed in convolutional neural networks for classification tasks. We

start with defining what is known as supervised classification, and how it is related to other

types of machine learning algorithms. We then move top-down into concepts specific to CNN’s.

In the last sections, we discuss optimization and regularization and introduce the most common

approaches used in state of the art neural networks.

2.1.1 What is learning?

There are many different types of machine learning approaches, but what they all have in

common is the notion of learning. Learning can be loosely defined as iteratively improving

performance on a task based on experience, or examples [16, p. 97]. This data driven way of

solving a problem stands in contrast to classical programming, where a set of rules is specified

by a programmer for the computer to follow and execute.

The most categorical division between learning algorithms that can be made, is one of super-

vised versus unsupervised algorithms. Supervised algorithms are provided with labeled data,

7

2.1. Machine learning 8

whereas unsupervised algorithms work with unlabeled data. Another important distinction con-

cerns what type of output the algorithm produces. Regression algorithms produce continuous

quantities, and classification algorithms produce discrete values.

2.1.2 Supervised classification

The goal of a classification algorithm is to learn to distinguish and categorize input into discrete

categories. The output of these algorithms are generally in the form of a score or probability

distribution, spanning the categories concerned. The output is usually referred to as class la-

bels. As mentioned, the distinction between supervised and unsupervised learning is important.

Unsupervised learning algorithms work with unlabeled data, generally attempting to cluster

or separate data based on the learned function. Supervised algorithms are provided with the

desired output, or class labels, in order to update the model and reduce the classification error,

continuing the learning process.

In summary, a supervised classification algorithm can be formally expressed as attempting to

infer the function

f(x,w) = ŷ (2.1)

Where x is the input to be classified, w are the learned parameters of the function, and ŷ is

the predicted class label. As stated above, the algorithm is additionally provided with the true

class label y, in order to update the parameters w. This happens in the optimization phase,

which we discuss further in subsection 2.1.8.

2.1.3 The importance of representation

Supervised classification approaches attempts to learn patterns from observed data. For non-

random data, we assume that there exists some underlying phenomena which could explain

the observations. The goal of a classification algorithm is to find the patterns which best ex-

plains the variation in the data. If the patterns the algorithm finds and employs to distinguish

between different categories generalize well, the model might be able to predict and explain

2.1. Machine learning 9

new, unobserved data. This is the main goal of classification algorithms, to reduce what is

known as the generalization error, the error on unseen data. How the data is represented is

therefore crucial to the performance of the algorithm. Finding the proper representation can

make or break the possibility of finding a good model. A good example of the importance of

representation would be in training a model to be able to linearly separate two types of data

points, see Figure 2.1 [16, p. 3–5].

Figure 2.1: Two scatter plot sketches illustrating the same data. In the left
plot, representing the data with cartesian coordinates, linearly separating
the blue points from the black ones is impossible. With polar coordinates
in the right plot, a vertical line can separate the data.

2.1.4 Handcrafted vs. learned features

A feature is any piece of information that the machine learning algorithm uses as part of the

representation of the data. In some cases so called handcrafted features, i.e., features chosen by

the system designer, can give good results. A commonly referenced dataset using handcrafted

features is the Iris flower dataset, where four different features have been measured in order to

distinguish between three types of Iris flower, one of them being the petal width [3]. In this

type of setting, the algorithm models a mapping from representation to output; the features

for it to use are already defined.

2.1. Machine learning 10

Although this approach can be effective for some tasks, where the space of possible observations

is relatively small, it can be very time consuming and difficult for complex tasks, such as

image or audio recognition. As an example, consider choosing a set of features that accurately

describe a face. In terms of pixel data, this requires capturing an immense amount of variation

of angles, shadows and light settings. A solution to this problem is to let the algorithm learn

the features as well, with what is known as representation learning [16, p. 4]. Deep neural

networks does this in a layered, hierarchical manner, which is one of the reasons why they

have proven so successful in image recognition. These networks are able to learn higher level,

abstract representations expressed as combinations of lower level representations. These layers

are chained together so that an initial, low level layer might learn to represent and find edges.

These edge representations gets fed to the next layer where they are combined to represent

corners and contours. At the end of several layers, features representing eyes and mouths

might emerge.

2.1.5 Convolutional neural networks

In this section, the most common layer types and operations that are applied in a convolutional

neural network will be defined and explained. We use the case of a two dimensional matrix

input when defining the different operations, but note that a third dimension can be introduced

to the input making it a 3D tensor (representing color channels in an RGB image, for example).

In the case of convolution this would imply that the filter kernel introduced in the next section

is a 3D tensor as well, spanning the extra dimension. See Figure 2.2 for a overview illustration

of a typical architecture.

2.1. Machine learning 11

Figure 2.2: A typical CNN structure. The output of one layer is used as
input to the next. Retrieved from https://commons.wikimedia.org/wiki/

File:Typical_cnn.png

2.1.5.1 The convolutional layer

A convolutional layer performs filtering of the input data, producing what is commonly referred

to as an activation (or feature) map. The filter itself, the filter kernel, is represented as a ma-

trix W of size w × h. The filter kernel is usually quadratic, so that w = h, but can also have

other dimensions depending on how the surrounding pixels correlate. Most machine-learning

systems implement cross-correlation instead of true convolution, the difference being that the

filter-kernel is not ”flipped” with respect to the input dimensions. This filter is swept across

the input, calculating the entry wise product sum W i,jxi,j for each window xi,j of the input,

where the input window is of the same size as the filter kernel. The scalar output of one such

operation is recorded in the activation map, the weighted sum of neighboring entries in the

input window xi,j.

A bias term is commonly added to the output as well, so that the final operation can be

summarized as:

y = W ∗ x+ b (2.2)

where (*) is the discrete convolution operation. Note that the bias is a learned parameter as

well, and commonly one bias per filter is employed.

The stride s defines how many columns the filter kernel is shifted in each step of the convolution,

https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png

2.1. Machine learning 12

as well as how many rows once the filter reaches the end of the first input dimension.

Padding of the input is sometimes employed in order to ensure a certain output size. This is

commonly done by adding zeros along the edges of the input in order to increase both the width

and height by p. See Figure 2.3 and Figure 2.4 for examples of different convolution settings

and their resulting outputs.

In summary, the following relationship (assuming a quadratic kernel so that k = w = h) defines

the output size of a 2D convolution [13]:

o =

⌊
i+ 2p− k

s

⌋
+ 1 (2.3)

Figure 2.3: Convolution with kernel size k = 3, input size i = 4, no padding
p = 0 and unit strides s = (1, 1). Blue pixels are input, green pixels are the
output feature map. Reproduced from Dumoulin and Visin under license
[13].

Figure 2.4: Strided convolution with s = (2, 2). The input has been padded
with p = 1. Reproduced from Dumoulin and Visin under license [13].

In practice, several filters are used in one layer, is this case producing an activation/feature

volume of depth d, where d is the number of filters applied to the input.

The convolutional approach assumes that data points in the input, that are closer together,

are more strongly correlated, and vice versa. This is very important to consider when choosing

how to construct the input to a CNN.

2.1. Machine learning 13

2.1.5.2 The receptive field

An output pixel’s receptive field is the number of input pixels its value depends on. In Figure 2.3,

each of the green pixels see a 3 × 3 area, which is the receptive field for that output. Adding

another convolution layer using the green pixels as input would linearly increase the receptive

field of that layers output. Because an output pixel is unaffected by changes done outside its

receptive field, it’s a useful concept helping to understand what patterns are possible for a CNN

model to learn [21].

2.1.5.3 The pooling layer

Figure 2.5: Max pooling the dark region in the blue input, results in the
dark pixel in the green output. Reproduced from Dumoulin and Visin under
license [13].

Pooling layers perform subsampling on the input data, replacing a region of activations from

the previous layer with a summary statistic of those outputs [16, p. 335–337]. This is useful

for computational efficiency, but in addition it has another property which can improve a

convolutional networks robustness; the output of the pooling operation is invariant to small

translations of the input data. In other words, if a convolution layer is followed by a pooling

layer, a learned feature will still get picked up by the network even if it is slightly translated in

the input. Since the exact location of a feature is not commonly as important as the presence

of the feature in the first place, pooling is widely used in CNN architectures. A common

type of pooling is max-pooling, where the maximum value in a window is taken as the output

representing that region. As in the convolution case, a window of size w × h is swept over the

input, producing the output. See Figure 2.5 for an illustration of max pooling.

2.1. Machine learning 14

2.1.5.4 The fully connected layer

The last layers in a convolutional network are commonly referred to as fully connected layers.

They provide the network with the capability to learn non-linear combinations of the features

learned earlier in the network. They are fully connected or dense, in the sense that no parameter

sharing takes place. Every parameter in the fully connected layer interacts with its own part of

the input, in contrast with convolutional layers, where a parameter in one kernel filter interacts

with many different data points in the input. They also usually serve to condense the output

of the network into a final vector of the same size as the number of classes the model can

distinguish between. This operation can be expressed as:

y = WX + b (2.4)

As in the convolution layer, a learned bias term is added to the result of the matrix multipli-

cation. The so called hidden layer represents one matrix multiplication, and yet another one is

employed to compute the final output. See Figure 2.6 for an illustration of the structure.

Output

Hidden

Input

Figure 2.6: Illustration of the fully connected structure. Edges represent
learned parameters which are multiplied with the input and summed to-
gether at the nodes. Retrieved from https://commons.wikimedia.org/

wiki/File:Artificial_neural_network.svg

https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg

2.1. Machine learning 15

2.1.6 Rectified Linear Units

In order to be able to model complex relationships, it is not enough to simply composite several

linear transformations on top of each other, since they then collapse into a single layer. Since

convolution is a linear operation, and the matrix multiplication in a fully connected layer is also

linear (the bias terms can also be included by adding a bias dimension of ones to the input), we

need to add nonlinearities to our models. By applying an activation function to each output

of a layer, we avoid collapsing the model and hence make it much more powerful.

As of spring 2018, the most widely used activation function is the rectified linear unit (ReLU)

[24]. See Figure 2.7 for an illustration. It is defined as:

f(x) = max(0, x) (2.5)

ReLU’s have some advantageous properties, such as efficient computation and efficient gradient

propagation.

4 3 2 1 0 1 2 3 4
x

0

1

2

3

4

(x
)

ReLU

Figure 2.7: Plot of a rectified linear unit.

2.1. Machine learning 16

2.1.7 Parameter initialization

All trainable parameters need to be initialized in some manner. Bias variables are commonly ini-

tialized to zero, since they express shifting of a function this means an initial shift of zero. Glorot

& Bengio [15], suggests the following distribution for initialization of other layer-parameters

Wij:

Wi,j ∼ U [− 1√
n
,

1√
n

] (2.6)

where n is the number of columns/rows in W and U is the uniform distribution.

2.1.8 Optimization

Finding the optimal parameter settings for a given model, requires a quantitative definition of

the error of each predicted class during training. This is achieved by defining a loss function

L(x, y), where x is the input to be classified, and y is the correct class label. Optimization

is then done in terms of minimizing this function by adjusting the parameters of the model.

There are many loss functions to choose from. We have used cross entropy loss since it is the

most common and intuitive one for classification tasks.

As mentioned, the final output of a classifier network is a vector of size K, where K is the

number of categories to classify. The values in the output vector are referred to as logits, or

unscaled log probabilities, and can be interpreted as class scores. A common approach is to

normalize these values in some manner. The softmax function takes a vector x of arbitrary

values and squashes them to a vector of values in the range [0,1] that sums to 1.

It is defined as such:

σ(x)j =
exj∑K
k=1 e

xk

for j = 1, ..., K (2.7)

The values can now represent a probability distribution over K different outcomes.

2.1. Machine learning 17

2.1.8.1 Cross Entropy Loss

Cross entropy can be used to measure the distance between two probability vectors:

D(S, L) = −
K∑
j=1

Lj log(Sj) (2.8)

where S is the softmax normalized output vector of the model, and L is a one-hot encoded vector

representing the true class of the current input. Both vectors are of size K, the total number

of classes. One hot encoded means that the vector representing the true class distribution has

exactly one entry with the value 1, the rest being zero. The vector indices j correspond to the

class labels.

2.1.8.2 Stochastic gradient descent

Gradient descent, or steepest descent, is the bread and butter of most neural network opti-

mization. After a loss value has been computed from input flowing through the network, the

parameters of the network need to be updated properly so as to minimize the loss value. Since

the number of parameters in a network can be in the order of millions [20], an exhaustive, brute

force approach is intractable. This is commonly referred to as the curse of dimensionality.

Stochastic gradient descent works by numerically approximating the gradient of the loss func-

tion with respect to the model parameters, and then taking a small step in the negative direction

of the gradient [16, p. 83–84]:

x′ = x− ε5x f(x) (2.9)

where ε is commonly referred to as the learning rate, a hyper parameter that the designer of

the network chooses.

In training CNN models, stochastic gradient descent is commonly done with batches of training

examples. This simply means that a gradient approximation is done using an average of the

gradient from several examples. This approach tends to speed up computation and provide a

less varying gradient between iterations, making the training more consistent [16, p. 274–276].

2.1. Machine learning 18

Figure 2.8: An illustration of the gradient descent algorithm. The red lines
represent an update step of the parameters in the model.

2.1.9 Regularization

Overfitting occurs when the gap between the training error, i.e., the performance on training

data, and the generalization error (the performance on unseen test data) is too large. If

the hypothesis space of available functions is unrestricted, the algorithm could possibly keep

reducing the training error towards zero, while the generalization error increases. Regularization

is a technique employed to express a preference against certain types of functions [16, p. 116–

117]. Parameter regularization is done by adding a regularization term to the loss function:

L(x, y,w) = L(x, y) + λR(w) (2.10)

where L(x, y) is any loss function as defined earlier in this chapter, w are the weights of the

model (or the weights in a certain layer) and λ is a scaling penalty term chosen by the designer.

A λ of 0 imposes no regularization.

The most commonly used weight regularizer is the L2-norm (euclidian norm):

R(w) =
√
w2

1 + ...+ w2
n (2.11)

2.1. Machine learning 19

Another possible weight regularizer is the L1-norm (”taxicab norm”):

R(w) = |w1 + ...+ wn| (2.12)

Both of these regularizers penalize large weights, with slightly different trends. The L-2 norm

tends towards dispersing the total weight mass across all the weights, while L-1 favors sparsity.

In Figure 2.9 we see an example of overfitting, the line does not perfectly fit all the data, still

it models the general trend in the data better than the more complex function.

Figure 2.9: A typical example of overfitting. The simpler linear model
generalize better than the more complex function that perfectly fits the
points. Retrieved from https://commons.wikimedia.org/wiki/File:

Overfitted_Data.png

2.1.9.1 Dropout

In 2012, a regularization technique known as dropout [18], was introduced, which yielded general

improvements in benchmark tests and was used in Alexnet [20], to great success. Since then

it has become a staple in neural network architectures. The idea is to randomly omit neurons

in the network (generally 50% of them) for every batch or training case, during training. This

has shown to reduce overfitting [18], by preventing neurons from becoming too dependent on

neighboring neurons.

https://commons.wikimedia.org/wiki/File:Overfitted_Data.png
https://commons.wikimedia.org/wiki/File:Overfitted_Data.png

2.2. Audio representation 20

2.2 Audio representation

In subsection 2.1.3, the concept of data representation was introduced in general. An example

was shown, illustrating how two different representations of the same data points could impact

the results of an algorithm. In this section, we discuss various ways of representing audio

data in particular. After a brief description of the perhaps most intuitive audio representation,

the waveform, we shift to frequency domain representations. We focus on the spectrogram,

which combines both time and frequency information. Different options and their trade offs in

spectrogram creation are illustrated and discussed. We end with introducing the mel-scale, a

way to re-scale frequencies that uses a model of human hearing.

2.2.1 The waveform

The waveform representation depicts how the amplitude of sample values vary over time. Rep-

resenting audio as a waveform is not very complex nor computational expensive. However, it

only contains two dimensions: amplitude and time. The general shape of the audio loudness

can be observed in the waveform and some sound event periodicity of the sound. Waveform is

a valuable representation in order to locate where sound events starts and ends, particularly

how the sample values are distributed over time. However, trying to imaging what the audio

sounds like from a waveform, such as in Figure 2.10, let alone to deduce what kind of event the

audio represents is not trivial since its frequency contents is not explicit in this form.

2.2. Audio representation 21

0 1 2 3 4 5
Time [s]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sa
m

pl
e

va
lu

e

Figure 2.10: Waveform of a car horn. The sound event begins just before
the first second and ends around 4.5 s. A pause of approximately 0.5 s can
also be seen around 2 s. The leading and trailing parts are noise from the
recording.

2.2.2 The spectrogram

The Fourier transform is a useful tool for spectral analysis of audio. It converts signals from the

time-domain to the frequency domain, such that the magnitude and phase of each frequency

component can be obtained. Fast Fourier Transform(FFT) is an optimized implementation

of the Discrete Fourier Transform(DFT)1 which can effectively be used for real-time analy-

sis on discrete sequences, such as sample values in audio. In short, FFT correlates frequencies

contained in the signal and bins them together in discrete steps. Since environmental audio con-

tains momentary as well as stationary frequencies, the Short-Time Fourier Transform (STFT)

is preferred as it depicts the spectrum changing over time. STFT uses a sliding FFT window to

obtain a spectra for each segment in time of the original signal. The squared magnitude of each

spectra is then stacked together to form a power spectrogram estimate. The result is a spectra

1http://www.nti-audio.com/en/functions/fast-fourier-transform-fft.aspx

2.2. Audio representation 22

changing over time, with frequency on one axis and time on the other. The values contained in

this spectra describe the intensity of a certain frequency at a certain point in time. Logarithmic

compression, namely decibels, of these values is common practice to balance regions of low and

high energy, compare Figure 2.11 with Figure 2.12. Decibel is a relative scale and as such a

reference value is needed, e.g. maximum loudness that can be encoded.

A spectrogram reveals interesting information about the audio. Harmonics (frequencies that

are multiples of a fundamental frequency, the 1st harmonic), time variant events, periodic

events and temporal localization of events can easily be identified from a spectrogram, some of

which can be seen in Figure 2.12. As mentioned in subsection 2.1.5, convolutions assume tighter

correlation between data points that are closer together in the input. This makes spectrograms

especially apt as input to a CNN, since the convolutional filters can find patterns both in time

and in frequency.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y
[H

z]

Figure 2.11: Uncompressed spectrogram of a car horn. 1024 Nfft, 0 overlap
and 44.1 kHz sampling rate.

2.2. Audio representation 23

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y
[H

z]

50

40

30

20

10

0

10

20

De
cib

el
 [d

B]

Figure 2.12: Spectrogram of a car horn. Decibels are calculated using the
mean value of the spectrogram as reference. 1024 Nfft, 0 overlap and 44.1
kHz sampling rate. Location of events in time and frequency content are
clearly visible, compared to Figure 2.10.

2.2.3 Window functions and spectral leakage

Frequencies that are not periodic within a selection of a finite set of samples, a segment, exhibits

projection onto other frequencies in the basis set (the frequency bins) of the FFT. This occurs

due to discontinuities of the signal’s period at the boundaries of the segment in the periodic

extension of that segment. This effect is called spectral leakage and appears in a spectrogram

as blurring, i.e., leakage, around frequencies with high energy or as vertical lines. This is not

to be confused with aliasing, which is caused by the nature of discrete sampling of continuous

signals. Aliasing becomes apparent when the sampling rate is too low and new frequencies

emerge, so called aliases. The amount of spectral leakage is affected by the sampling period, it

is not, however, provoked by the sampling itself [17].

Tapering functions, also called window functions, are multiplicatively applied over a segment in

the time-domain in order to minimize spectral leakage. There is a trade-off between frequency

2.2. Audio representation 24

resolution and amplitude accuracy when using tapering functions. As the width of the window’s

main lobe narrows the ability to distinguish two closely spaced frequencies of similar strength

increases. However, a narrower main lobe results in larger side lobes which increases the amount

of spectral leakage. With a wider main lobe the ability to separate closely spaced frequencies

decreases but less energy is leaked into other frequency bins. This relationship between the

width of the main lobe and the height of the sidelobes can be seen in Figure 2.13.

Figure 2.13: Window functions and their Fourier transform2. The Hamming
window has a more narrow main lobe compared to Hann which correlates
to the height and rolloff rate of the sidelobes.

2Created by Olli Niemitalo, taken from https://commons.wikimedia.org/wiki/File:Window_function_

and_frequency_response_-_Hamming_(alpha_%3D_0.53836).svg and https://commons.wikimedia.org/

wiki/File:Window_function_and_frequency_response_-_Hann.svg respectively.

https://commons.wikimedia.org/wiki/File:Window_function_and_frequency_response_-_Hamming_(alpha_%3D_0.53836).svg
https://commons.wikimedia.org/wiki/File:Window_function_and_frequency_response_-_Hamming_(alpha_%3D_0.53836).svg
https://commons.wikimedia.org/wiki/File:Window_function_and_frequency_response_-_Hann.svg
https://commons.wikimedia.org/wiki/File:Window_function_and_frequency_response_-_Hann.svg

2.2. Audio representation 25

2.2.3.1 Choosing tapering function

Determining a good tapering function for the STFT always depends on the given signal and

there is no right answer. However, there are some general guidelines for choosing a suitable

window depending on the category of the signal. Because of the trade-offs discussed above, each

tapering function has its advantages and disadvantages. Environmental sounds are composed of

droning sounds, harmonics, momentary and non-stationary signals. Using Table 2.1 as a rough

guideline, the Hann window is favorable in this case since it is good for unknown content,

combinations of sine waves and narrowband random signals.

Table 2.1: Different types of signals and appropriate windows in order to
distinguish the contents of a signal [10].

Signal Content Window

Sine wave or combination of sine waves Hann

Sine wave (amplitude accuracy is important) Flat Top

Narrowband random signal (vibration data) Hann

Broadband random (white noise) Uniform

Closely spaced sine waves Uniform, Hamming

Excitation signals (Hammer blow) Force

Response signals Exponential

Unknown content Hann

As seen in the Table 2.2, the Hann window have the highest side lobe level compared to both

Hamming and Blackman-Harris, however it also has a higher side lobe falloff rate. This implies

that the Hann window has more spectral leakage projecting onto frequencies close to the desired

basis vector, but its leakage diminishes quickly further away from that basis. Comparing the

Hamming window in the same fashion, it also has high side lobe levels but a much slower

side lobe falloff rate, meaning that the spectral leakage continues its projection onto distant

frequencies throughout the basis set. This is undesirable in the context of environmental sounds.

These sounds can contain a range of interesting frequencies which spectral leakage will obscure.

2.2. Audio representation 26

Table 2.2: Comparison of window functions and their characteristics. Taken
from [17], cross-validated with [2].

Window
-3 dB Main

lobe width

-6 dB Main

lobe width

Highest

sidelobe level

Sidelobe

rolloff

(bins) (bins) (dB) (dB/OCT)

Hanning (α = 2.0) 1.44 2.00 -32 -18

Hamming 1.30 1.81 -43 -6

Blackman 1.68 2.35 -58 -18

Minimum 4-term

Blackman-Harris

1.90 2.72 -92 -6

4-sample Kaiser

Bessel (α = 3.0)

1.74 2.44 -69 -6

Blackman-Harris is also a common window function, the minimum 4-term variant in case of

Table 2.2, starts with a very low side lobe level hence compensating for the low falloff rate.

Despite these good metrics, it has one disadvantage when applied to environmental sounds,

which is the main lobe width. Compared to both Hann and Hamming, it has a much wider

main lobe. Not many windows compare to the Hann window in terms of frequency resolution

and limited spectral leakage range. This is probably why the Hann window is so commonly

used in spectral analysis, particularly with unknown audio content.

Figure 2.14 illustrates some of the effects of different window functions, where Hann and

Blackman-Harris have much less spectral leakage appearing as vertical lines and blurring. The

Hann window have slightly more concentrated lines which is best seen in the base frequency of

the harmonics. This correlates to the width of the main lobe.

2.2. Audio representation 27

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y
[H

z]

50

40

30

20

10

0

10

20

De
cib

el
 [d

B]

(a) Blackman-Harris window

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y
[H

z]

50

40

30

20

10

0

10

20

De
cib

el
 [d

B]

(b) Hann window

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y
[H

z]

50

40

30

20

10

0

10

20

De
cib

el
 [d

B]

(c) Hamming window

Figure 2.14: Spectrogram plots of a siren, using different tapering functions.
All the plots are made using 1024 FFT points with same sized windows,
no overlap, 44.1 kHz sampling rate. Decibels are calculated using the mean
value of the spectrogram as reference.

2.2. Audio representation 28

2.2.4 Specifics of STFT

In addition to choosing a tapering function, there are more parameters and trade-offs. One

trade-off is between frequency and time resolution. The Gabor limit states that a function and

its Fourier transform cannot be limited in both time and frequency. This limits the frequency

resolution of the FFT since the recorded signal is limited in time. Figure 2.15 illustrates this

trade-off.

Figure 2.15: Simple illustration of the Gabor limit showing the trade-off
between time and frequency resolution.

Segment length, also called FFT points or Nfft, plays an important role for the resolution of

the spectrogram due to the Gabor limit. The segment length is inverse proportional to the

frequency resolution of the FFT, as seen in Equation 2.13, and relates to the ability to resolve

closely spaced frequencies at a given sampling rate3. Time resolution is important for resolving

temporal spacing between different events. Table 2.3 shows frequency resolution corresponding

to some common numbers for Nfft, given a sampling rate. One way to increase the frequency

resolution is to increase the sample frequency. Another way is to keep Nfft constant, but

lowering the sample rate. This might be undesirable, since the Nyquist-Shannon sampling

theorem would impose a lower max frequency that can be resolved. Ultimately, the sampling

rate should be chosen to accommodate the maximum occurring frequency in accordance to the

Nyquist frequency, Equation 2.14, and any frequency resolution requirements.

∆Rfft =
fs
Nfft

(2.13)

3http://www.bitweenie.com/listings/fft-zero-padding/

2.2. Audio representation 29

fs ≥ 2f c (2.14)

Table 2.3: Common power of two values of Nfft and corresponding fre-
quency resolution for three different sampling rates. As expected from Equa-
tion 2.13, bigger segment length or lower sampling rate results in higher
frequency resolution

Nfft ∆RNfft
[Hz]

44.1 kHz 32 kHz 16 kHz

128 344.53 250.0 125

256 172.27 125 62.5

512 86.13 62.5 31.25

1024 43.07 31.25 15.63

2048 21.53 15.63 7.81

4096 10.77 7.81 3.91

Just as the Nyquist-Shannon sampling theorem limits the maximum frequency to be analyzed

without aliasing, there are limits to the smallest spacing between two frequencies that can

be resolved in a spectrogram when analyzing a finite sequence. This spacing depends on the

segment duration as per Equation 2.15, where t is the duration of segment. Overlapping the

segments increases the smoothness of the spectrogram. It also allows for separation of events

shorter than the segment length. With no overlap, events that are shorter than the duration

of the segment can appear to happen simultaneously [9].

∆Rw =
1

t
(2.15)

2.2.5 Mel-scaled spectrogram

Human hearing is not perfect and the perception of pitch is one of its imperfections. At higher

frequencies, progressively larger intervals are perceived to produce the same increment in pitch.

2.2. Audio representation 30

The mel-scale is a perceptual scale modeling this phenomena. Empirical measurements results

in different mel-scales which tends to be of a linear nature up to a certain breakpoint around

1000 Hz, after which the curve tends to a logarithmic nature. Each version may differ in where

the breakpoint is and the shape of the curve, see Figure 2.16 for an example of such a curve.

However, most mel-scales are defined such that 1000 mels is exactly 1000 Hz. See Equation 2.16

and Equation 2.17 for one example of how to compute mel values, and its inverse. Values of

Equation 2.16 is illustrated in Figure 2.16. Using the mel-scale for spectrograms increases the

area of lower frequency patterns in the figure while diminishing the area of higher frequencies,

as can be seen in Figure 2.17 compared with Figure 2.12.

M(f) = 2595 log10(1 + f/700) (2.16)

M−1(m) = 700(exp(
m

1125
)− 1)) (2.17)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Hertz

0

500

1000

1500

2000

2500

3000

M
el

Figure 2.16: Mel values as per Equation 2.16

2.2. Audio representation 31

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y
[m

el
]

50

40

30

20

10

0

10

20

De
cib

el
 [d

B]

Figure 2.17: Mel-scaled spectrogram of a car horn, using 1024 points Hann
window and a 1024 points FFT. Decibels are calculated using the mean value
of the spectrogram as reference. Lower band frequencies take up more area
and higher frequencies less, compare with 2.12

2.2.5.1 Mel filterbank

Filterbanks are used in signal processing for applying an array of band pass filters to a signal.

To generate a mel filterbank the sampling rate, Nfft, and the desired number of mel bins is

needed. First the minimum and maximum frequency is set, for example 0 Hz and fs/2 respec-

tively. These frequencies define the boundaries and are converted into mel using Equation 2.16.

Creating, for example, 10 mel bins require 12 points on the mel-scale, therefore another 10

points are taken linearly spaced between the lower and upper mel frequencies. These mel fre-

quencies are then converted back into Hertz using Equation 2.17 and rounded off to nearest

frequency bin, using Equation 2.18 below:

f(i) = floor

(
(Nfft + 1) ∗ h(i)

fs

)
(2.18)

2.2. Audio representation 32

Where h is the mel spaced frequencies in Hertz. The mel filterbank is then obtained using

Equation 2.19, where m is the number of filters. In short, the first filter starts at the first bin,

the lower boundary, reaches its max at the second bin and stop at zero again at third bin.

This is repeated for each filter, with the last filter ending at the last mel bin. Optionally, area

normalization by dividing each filter with the width of its mel band can be used. A simple

illustration of a normalized mel filterbank can be seen in 2.18.

Hm(k) =

0 , k < f(m− 1)

k−f(m+1)
f(m)−f(m−1) , f(m− 1) ≤ k ≤ f(m)

f(m01)−k
f(m+1)−f(m)

, f(m) ≤ k ≤)f(m+ 1)

0 , k > f(m+ 1)

(2.19)

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Am
pl

itu
de

Figure 2.18: Mel filterbank illustration using mel values as per Equa-
tion 2.16, sampling frequency of 16000, 512 Nfft to produce 10 mel bins.
The filterbank is area normalized by dividing each filter with the width of
the mel band.

2.3. Dataset 33

2.3 Dataset

One of the key components for good performance in machine learning is good training and

validation data. Deep neural networks, are generally more data hungry than other machine

learning algorithms. Large amounts of data is however not enough, in order for a model to

generalize well the data also needs to encompass some variance. One kind of variance in audio

is the presence of different acoustic effects such as sound interference, echo and reverberation.

These effects are likely present in datasets containing recordings from different scenes, as each

scene most likely has a unique acoustic setting. Another type of variance is the diversity of audio

sources. Capturing audio from multiple sources, each with their own characteristics, increases

the variance in the dataset. This is logical, since we know from real world experience that, for

example, different car engines have different sound. Although they have similar characteristics,

they still sound different.

2.3.1 ESC-50

Environmental Sound Classification [23] is a labeled dataset containing 2000 short sound clips

from 50 different classes. The classes roughly belong to five different categories: animals,

natural soundscapes, human, non-speech sounds, interior/domestic sounds and exterior/urban

sounds. The clips are circa 5 seconds long, and come arranged into 50 folders containing 40

clips each. The original recordings were gathered by the Freesound.org project [14]. The clips

are prearranged into 5 folds based on the original recordings they were extracted from. A

survey was conducted by crowd sourcing through CrowdFlower and tested human accuracy on

the dataset, which measured 81.3%.

Chapter 3

Implementation and methodology

There are many available frameworks for implementing neural networks; Caffe [1], Torch [6] and

Tensorflow [5] are commonly referenced in the machine learning literature. In this section, we go

through our implementation of a training framework, how the input pipeline is constructed and

the evaluation strategy used to compare different models. This is followed by a more detailed

explanation of the CNN architecture evaluated and how the training input was preprocessed.

3.1 Tools and implementation

3.1.1 Tensorflow

We implemented a CNN training framework in TensorFlow, using their Python frontend inside

a virtual environment known as virtualenv [8].

TensorFlow is a framework for implementing machine learning algorithms. The computation

model is based on directed graphs, consisting of nodes which specify a certain operation [11].

A node can have zero or more inputs, and zero or more outputs. Data flows through graphs in

the form of tensors. Tensors in TensorFlow are implemented as typed, multidimensional arrays

[11], the shape of which may not be known until run time. Operations may be performed on

CPU as well as GPU devices.

34

3.1. Tools and implementation 35

Design of a computation graph is done through defining operation nodes and connecting their

input to the previous nodes output. An operation node is only executed when its output is

required by any node it is connected to, deeper in the graph. See Figure 3.1 for an illustration of

such a graph. The loss function and gradient descent update rules are implemented as operation

nodes as well.

Figure 3.1: Excerpt from a computation graph, illustrated with Tensor-
Board, TensorFlow’s visualization tool. Data flows from an input pipeline
through the different layers. The first ”conv1” node will only compute an
output when the next node, ”pool1”, requires it.

3.1. Tools and implementation 36

3.1.2 Training and input framework

TensorFlow allows for operation nodes to be provided with data in a variety of ways [4]. For

training data, we have followed the convention of specifying special input operation nodes at

the beginning of the computation graph.

We preprocessed training data into TensorFlows proprietary format, TF-records, that are stored

on disk. These records contain three fields; a training example, the correct label, and a filepath

for debugging purposes. Only the first two fields are needed during training.

This allowed us to create various input pipelines depending on what type of input a specific

model’s architecture requires.

The input node points to a TF-record on disk, and describes a set of operations for reading

out the serialized data from it. These include reshaping the data into the correct number of

dimensions, buffering a number of training examples, shuffling and collecting a batch of the

chosen size. The input node is connected to the first computation node in the network.

A complete training step can be summarized as such:

1. A batch of training examples and ground truth labels is read from the input pipeline.

2. The training data forward-propagates through the network.

3. Loss is calculated between ground truth labels and network output.

4. This loss or error is propagated backwards through the network, updating the weights

via the chain-rule.

3.1.2.1 Evaluation step

Definition: one epoch is defined as one full iteration through the training data.

After every epoch of training, the computation graph is fed data from an evaluation set, kept

separate from the training set. It is crucial that the network only perform inference on this set,

the parameters of the model must not be updated, as this would corrupt the model.

3.1. Tools and implementation 37

A second method to provide input to a operation node is through so called feeding. This

method consists of providing a node with tensor input data directly though Python code. The

evaluation set is preloaded into memory at startup. In order to prevent training on evaluation

data, the evaluation routine is provided a handle to the softmax-node.

This node only depends on the network output; hence the loss node and gradient descent update

node are never executed during this step.

3.1.3 Evaluation strategy

Our main goal was to compare the relative performance of a chosen network, when varying

input construction and sample-rates. We use 5-fold cross validation to evaluate model perfor-

mance, as it is a relatively robust way of evaluation, considering the relatively small size of the

ESC-50 dataset. As mentioned before, the ESC-50 dataset is prearranged into 5 folds, making

it a fitting approach for the dataset.

See Figure 3.2 for an illustration of k-fold cross validation. This method consists of training a

model using 80%(four folds) of the data as training data, and the last 20%(one fold) as evalu-

ation data. This is repeated a total of 5 times, with a different fold as the evaluation set every

time. We then record the mean performance across all evaluation folds as representative for

that model.

This method, while increasing training time, ensures that all the data in the dataset is used

for evaluation exactly once, and avoids the risk of arbitrarily choosing a evaluation subset that

happens to be non-representative (i.e., lucky or unlucky).

The variance in fourier transform frame length and overlap between the different models,

changes the amount of TF-patches(explained in the following section) that comprise one exam-

ple. Due to this, the size of one epoch varies between our different models. We therefore chose

the number of epochs to train each model in beforehand, so as to ensure that the amount of

parameter-updating steps were approximately the same for each model.

3.1. Tools and implementation 38

Figure 3.2: Illustration of K-fold cross-validation. Each fold is used as
evaluation data exactly once, removing the chance of accidentally choos-
ing a particular evaluation subset that may misrepresent model perfor-
mance. Obtained from https://commons.wikimedia.org/wiki/File:

K-fold_cross_validation_EN.jpg

3.1.4 Network architecture

3.1.4.1 SB-CNN

The network proposed by Justin Salamon and Juan Pablo Bello, showed great results [27], on

a smaller dataset of 10 classes [7]. Their architecture consists of three convolutional layers,

interspersed with two max-pooling layers and two fully connected layers at the end, see Fig-

ure 3.3. Pooling more in time than in frequency in the max-pooling layers is an interesting

design choice, as it prioritizes sensitivity to frequency content over temporal location. Another

interesting aspect of this model is the input format which consists of slices excerpted from the

mel-scaled spectrograms, so called TF-patches(Time-Frequency patches). The dimensions of

these patches are 128 × 128, with 128 frequency bands and 128 steps in time. With a sam-

pling rate of 44.1 kHz and using 1024Nfft (the number of samples in one STFT window) with

no overlap, this corresponds to approximately 3s per patch, see Figure 3.4. TF-patches are

taken randomly in time from audio clips in the training set without repetition. It is a novel

way to augment the dataset and an attempt to make the network less sensitive to where in

a sound event a recording happens. Evaluation is done by taking all possible TF-patches for

each audio file and averaging all the resulting accuracy measurements. The number of trainable

https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.jpg
https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.jpg

3.1. Tools and implementation 39

parameters for SB-CNN is 244034. This is a small amount of parameters compared to many

architectures, where the number can often be in the millions, like the venerated AlexNet [20].

In Tensorflow, weights are 32 bit floating point numbers, which results in a model size on disk

of approximately 950 kilobytes.

Parameter initialization

All bias variables are initialized to zero. Other layer parameters are initialized from the distri-

bution suggested by Glorot & Bengio [15], as per Equation 2.6 in the Theory section.

Parameter regularization

The parameters in the fully connected layers have L2-regularization applied to them, as per

Equation 2.11 in the Theory section, with a penalty factor of 0.001 as in the original SB-CNN.

Learning rate

We use a static learning rate of 0.01, as in the original SB-CNN.

Figure 3.3: Overview of the layers in Salamon and Bellos network. The first
numbers in a layer are the size of the convolution or pooling kernel, which
is then followed by the stride in brackets. The last number is the amount of
filters in a convolution layer, or the how many hidden units there are in a
fully connected layer.

3.1. Tools and implementation 40

Figure 3.4: Illustration of a TF-patch. As the arrow indicates, all possible
TF-patches are used throughout training. They are extracted from each
member of the training set, shuffled and then stored in a TF-record. A
batch of 100 random TF-patches are used in every training step.

3.1.5 Pre-processing of input data

Before data is written into TF-records it needs to be processed and converted into the required

data representation and time-frequency dimensions. For these purposes, we wrote a Python

script that reads through the whole database and processes it.

We use the SoundFile1 library to read sample values from audio files. Soundfile utilize the

NumPy2 library which provides powerful N-dimensional array objects that we use throughout

the script whenever possible. Some files in the datasets are in stereo but for our purposes we

1https://pypi.python.org/pypi/SoundFile/0.8.1
2http://www.numpy.org/

https://pypi.python.org/pypi/SoundFile/0.8.1
http://www.numpy.org/

3.1. Tools and implementation 41

only need one audio channel. For those in stereo, we convert them to mono by taking the

average over the two channels. For some trainings we downsampled the audio using a wrap-

per3 for the AudioSegment class in Pydub4, which utilized an anti-aliasing filter implemented

in Sox5. The SciPy6 library provides a flexible implementation of spectrogram creation using

STFT, which we use to calculate all power spectrograms. We use Librosa for calculating the

mel-scaled spectrograms by using the spectrogram output from SciPy.

Librosa internally generate and use mel filterbanks, converting Hertz to mel, to compute the

mel-scaled spectrograms. By default these filterbanks are generated with Librosa’s own repli-

cation of the well-established Matlab Auditory Toolbox of Slaney7, not the HTK formula as

presented in subsection 2.2.5 and subsubsection 2.2.5.1. The difference being that in Slaney’s

implementation the frequency bins are linear-spaced up to 1000 Hz, after which it becomes

log-spaced. We use 128 frequency bins as specified in the work by Salamon and Bello [27].

Resizing is needed for the linear spectrograms when the frequency dimension is bigger than the

required dimensions, 128 as with mel-scaled spectrograms. We use Pillow’s8 implementation of

Lanczos resampling to resize the spectrograms. Figure 3.5 illustrates the Lanczos resampling

of a spectrogram along the frequency axis.

Logarithmic compression, i.e., decibel, is applied to both spectrograms and mel-scaled spectro-

grams using the power to db9 function in Librosa.

Each TF-patch is normalized individually with respect to its own mean power. This is done

so that the filter kernel of the CNN learns to distinguish and generalize patterns of relative

intensity rather than the absolute loudness in the spectrograms.

3https://github.com/jiaaro/pydub
4https://github.com/jiaaro/pydub
5http://sox.sourceforge.net/SoX/Resampling
6https://www.scipy.org/
7https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
8https://pillow.readthedocs.io/en/3.1.x/index.html
9https://librosa.github.io/librosa/generated/librosa.core.power_to_db.html

https://github.com/jiaaro/pydub
https://github.com/jiaaro/pydub
http://sox.sourceforge.net/SoX/Resampling
https://www.scipy.org/
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://pillow.readthedocs.io/en/3.1.x/index.html
https://librosa.github.io/librosa/generated/librosa.core.power_to_db.html

3.1. Tools and implementation 42

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y
[H

z]

40

30

20

10

0

10

20

30

De
cib

el
 [d

B]

(a) Original

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y
[H

z]

50

40

30

20

10

0

10

De
cib

el
 [d

B]

(b) Resampled with Lanczos

Figure 3.5: Spectrogram (a) of a car horn using 2048 Nfft and 75% overlap.
(b) shows Lanczos resampling along the frequency axis with 128 bins.

Chapter 4

Evaluation

4.1 Data representation comparisons on SB-CNN

Here, we present the results from our models. Data representation varies between the models,

but every model were trained and evaluated with 5-fold cross validation on the Salamon-Bello

CNN, defined in section 3.1.4.1.

As seen in Table 4.1, the best performing model uses mel-scaled spectrograms with 2048 Nfft

and 75% overlap. It achieved an accuracy of 74.70% and 88.35% in top-1 and top-3 respec-

tively. Comparing mel-scaled spectrograms with linear spectrograms, both with 2048 Nfft and

50% overlap at 44.1 kHz sampling rate, we see that the model using mel-scaled spectrograms

outperforms the model using spectrograms, with a top-1 accuracy of 71.85% against 63.35%.

This is a significant difference of 8.5 percentage points in top-1 accuracy. The model using mel-

scaled spectrograms with 2048 Nfft with 75% overlap perform better than the model with 50%

overlap, with an increase in accuracy of 2.85 percentage points. Comparing the mel spectro-

gram model with zero overlap with the one using 2048 Nfft and 50% overlap, we see a smaller

improvement of 1.65 percentage points.

43

4.1. Data representation comparisons on SB-CNN 44

Table 4.1: Results table for models trained on 44.1 kHz data. S and M in
the type column is for spectrogram and mel-scaled spectrogram respectively.
The top performer used mel-scaled spectrograms with 2048 Nfft and 75%
overlap. This shows that higher resolution and smoothness in frequency
compared to temporal resolution, gave the best results.

Type N fft Overlap Sampling

rate

Top-1 Top-3

(samples) (%) (kHz) (%) (%)

S 2048 50 44.1 63.35 81.25

M 1024 0 44.1 70.20 86.90

M 2048 50 44.1 71.85 87.10

M 2048 75 44.1 74.70 88.35

4.1.1 Downsampled data

To test how sampling rate impacts the neural network’s performance we resampled the dataset

into 16 and 32 kHz. The 5-fold cross-validation results are shown in Table 4.2. Here, again, the

model using mel-scaled spectrograms performs better than the model using spectrograms, with

66.04% vs. 63.43% in top-1 accuracy. All models trained and evaluated on downsampled data

performed equal or worse than their counterpart, shown in Table 4.1. This result is expected,

since information in the original data at higher frequencies is lost at these lower sampling rates.

In addition, lower sampling rate means that the STFT window covers a larger time span with

the same size of Nfft. The lower temporal resolution is a probable cause of the decreased

accuracy.

Comparing the model using mel-scaled spectrograms with 50% overlap with its downsampled

counterpart, we see a loss of in accuracy of 2.61 percentage points. However, the models using

linear spectrograms were not impacted by downsampling, where we see an increase of 0.08%

accuracy in the 50% overlap case, which we regard as insignificant.

4.2. Further evaluation of the top performing model 45

Table 4.2: Results table for downsampled audio. S and M in the type
column is for spectrogram and mel-scaled spectrogram respectively. Again
the mel-scaled spectrogram model outperformed linear spectrograms. The
model trained on 16 kHz data performed the worst. This was expected,
since a sample rate of 16 kHz implies a Nyquist frequency of 8 kHz, see
Equation 2.14. Our analysis of the ESC-50 data shows that there is the
frequency content in the data above 8 kHz, all this information is missed in
the downsampled data.

Type N fft Overlap Sampling

rate

Top-1 Top-3

(samples) (%) (kHz) (%) (%)

S 2048 75 16 62.43 80.79

S 2048 50 32 63.43 81.74

M 2048 50 32 66.04 84.19

4.2 Further evaluation of the top performing model

4.2.1 Confusion matrix

The confusion matrix serves as a further tool to analyze the results, in addition to the accuracy.

Figure 4.1 illustrates the predictions on the evaluation set from all five folds, superimposed into

one matrix. The rows correspond to the true class and the column to the prediction made by

the network. An accuracy of 100% would yield non-zero values along the diagonal only.

4.2. Further evaluation of the top performing model 46

Figure 4.1: Confusion matrix from the top performing model. This figure
shows the predictions on the evaluation set for every fold in one matrix.
A noticeable pattern is the confusion between the noisier classes such as
Helicopter, Wind, Thunderstorm and Airplane. Helicopter was the hardest
class to predict for the model, with only 13/40 correct predictions, as it
was mainly confused with other noisy classes like Washing machine and
Airplane. Pouring water was especially salient to the network, with every
example correctly classified.

4.2. Further evaluation of the top performing model 47

From the confusion matrix, we observe that many of the mispredictions highest in number are

between classes that resemble each other more closely than other classes to humans as well.

As mentioned in the Dataset section, a survey was performed to measure human performance

on the ESC-50 dataset[23]. These predictions had an overall accuracy of 81.3%, compared to

our top model with an accuracy of 74.7%. Common mispredictions in this survey have signif-

icant overlap with our results, such as predicting Helicopter to be Airplane. Other examples

of overlapping mispredictions include predicting Fireworks as Footsteps and Cat as Crying baby.

The classes most distinct to the network:

• Pouring water, 40/40 correct predictions

• Toilet flush, Crying baby, 38/40 correct predictions

• Door knock, Crow, Glass breaking, 37/40 correct predictions

The classes least distinct to the network:

• Helicopter, 13/40 correct predictions

• Water drops, 17/40 correct predictions

• Door - wood creaks, Wind, 18/40 correct predictions

Figure 4.2 shows two mel-scaled spectrogram examples of classes that the model were very good

at predicting, while Figure 4.3 shows examples of classes that were mispredicted as a variety

of noisy, droning sounds. Classes that the model predicted correctly contain unique temporal

patterns or patterns in frequency. Noisy classes, however, we believe are mispredicted due to

the fact that they share a wide band frequency content and a relatively continuous intensity

across the duration of the entire audio clip. This makes it harder to find patterns and learn

features for the convolutional filters.

4.2. Further evaluation of the top performing model 48

(a) Pouring water. (b) Crying baby.

Figure 4.2: A commonality among the top classes is that they contain unique
spectral lines and harmonics, such as in these two examples. Our theory is
that these spectral patterns are ’unique enough’ between classes so as to
provide the convolutional filters with room to learn discriminating features.

(a) Helicopter. (b) Washing machine.

Figure 4.3: Noisier classes were more often mispredicted as each other. Our
explanation is that because their frequency content is spread more evenly
from 0 Hz up to the Nyquist frequency, the convolutional filters have a harder
time finding discriminating features to separate these classes.

4.2. Further evaluation of the top performing model 49

4.2.2 Evaluation of data with added noise

Surveillance cameras are expected to be subjected to noise from different sources. Static noise

from circuits, noise generated from motors in the camera and wind are common sources of noise,

all of which influence the recorded audio. Testing the models tolerance to noise is essential when

considering real world applications since input data may be contaminated with noise.

To test this we performed inference with increasing proportions of wind noise added to the

evaluation data. The wind was scaled in power to a set SNR using Equation 4.1.

SNRdB = 10× log10
(
Psignal

Pnoise

)
(4.1)

Figure 4.4 shows the accuracy for different values of SNR. At 50 dB SNR there is virtually no

wind noise in the signal, at 0 dB SNR the wind and signal are equal in power. The accuracy

declines somewhat linearly until 22 dB SNR, after which the decline accelerates heavily. At 0

dB SNR the accuracy is reduced by circa 14 percentage points. At 0 dB SNR the accuracy is

down to about 45%, a reduction nearly 30 percentage points. From these results it is clear that

noise has a adverse effect on accuracy, while still retaining higher accuracy than expected, as

the training did not incorporate data augmented with noise. We expect that a model trained

on randomly denoised data would outperform this model in a test such as this.

4.2. Further evaluation of the top performing model 50

50
.0

40
.0

30
.0

25
.0

22
.0

18
.0

15
.0

12
.0

10
.0 9.0 8.0 7.0 5.0 3.0 1.5 1.5 3.0

SNR [dB]

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Figure 4.4: The mean accuracy on the evaluation set for all folds, as the signal to noise ratio
increases. The falloff in accuracy is linear until circa 25 dB SNR, where it starts rapidly
declining.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y
[m

el
]

50

40

30

20

10

0

10

20

De
cib

el
 [d

B]

(a) Wind

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y
[m

el
]

30

20

10

0

10

20

De
cib

el
 [d

B]

(b) Siren

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y
[m

el
]

50

40

30

20

10

0

10

20

De
cib

el
 [d

B]

(c) Siren and wind

Figure 4.5: Siren(a) and wind(b) mixed with 10 dB SNR, demonstrating
what a real world scenario could look like.

4.2. Further evaluation of the top performing model 51

4.2.3 Mixed signals

We subjected the best performing model to a mixed signals test. This test was performed on

one of the 5 folds, with specific clips chosen from the evaluation set of that fold. In each test,

two clips from different classes, which the model correctly identified on their own, were mixed

together at three different ratio levels. The clips mixed were not normalized before mixing,

they were simply attenuated at various ratios and then superimposed.

The mixed signal was then put through the same pre-processing pipeline as in regular evalua-

tion, which means that loudness normalization with the mean power as reference was applied

to the already mixed signal. The interest in the test was two-fold. We wanted to see whether

the less salient clip would disappear from top three predictions at equal ratios. We also wanted

to see if both clips, regardless of power level, showed up in the top three predictions at the two

other ratios, or if some other completely different class emerged at the top.

4.2. Further evaluation of the top performing model 52

Car horn Airplane Wind0.0

0.2

0.4

0.6

0.8

1.0

So
ftm

ax
 o

ut
pu

t

Wind

Cat Rooster Siren0.0

0.2

0.4

0.6

0.8

1.0 Siren

Car horn Airplane Siren0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.50, 0.50)

Cat Rooster Siren0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.25, 0.75)

Car horn Helicopter Airplane0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.75, 0.25)

Figure 4.6: In the top part: top 3 predictions for each clip, in the bottom
part: top 3 predictions for a signal mixing the two clips at different ratios.
The Wind class is absent from every mix, while the salient Siren class only
disappears in the 25/75 case.

4.2. Further evaluation of the top performing model 53

Clapping Fireworks Footsteps0.0

0.2

0.4

0.6

0.8

1.0

So
ftm

ax
 o

ut
pu

t

Footsteps

Helicopter Airplane Wind0.0

0.2

0.4

0.6

0.8

1.0 Wind

Clapping Fireworks Footsteps0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.50, 0.50)

Footsteps Car horn Airplane0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.25, 0.75)

Clapping Fireworks Footsteps0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.75, 0.25)

Figure 4.7: In the top part: top 3 predictions for each clip, in the bottom
part: top 3 predictions for a signal mixing the two clips at different ratios.
The Footsteps class remains in every mix, while the Wind disappears from
the top 3 predictions.

4.2. Further evaluation of the top performing model 54

Hand saw Footsteps Glass breaking0.0

0.2

0.4

0.6

0.8

1.0

So
ftm

ax
 o

ut
pu

t

Glass breaking

Cat Rooster Siren0.0

0.2

0.4

0.6

0.8

1.0 Siren

Pig Footsteps Siren0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.50, 0.50)

Hen Pig Siren0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.25, 0.75)

Footsteps Glass breaking Siren0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.75, 0.25)

Figure 4.8: In the top part: top 3 predictions for each clip, in the bottom
part: top 3 predictions for a signal mixing the two clips at different ratios.
As the Siren class is very salient, it remains the top predicted class regardless
of mixing ratio, while Glass breaking only remains when it is dominating the
mix.

4.2. Further evaluation of the top performing model 55

Hand saw Footsteps Glass breaking0.0

0.2

0.4

0.6

0.8

1.0

So
ftm

ax
 o

ut
pu

t

Glass breaking

Airplane Train Wind0.0

0.2

0.4

0.6

0.8

1.0 Wind

Helicopter Train Wind0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.50, 0.50)

Airplane Wind Train0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.25, 0.75)

Wind Footsteps Glass breaking0.0

0.2

0.4

0.6

0.8

1.0 Ratio = (0.75, 0.25)

Figure 4.9: In the top part: top 3 predictions for each clip, in the bottom
part: top 3 predictions for a signal mixing the two clips at different ratios.
In the 50/50 and 25/75 case, Glass breaking disappears from the top 3
predictions.

The softmax output shows that a correctly predicted class could vary a lot in confidence level.

As seen in Figure 4.6, even though both the Wind class and the Siren class were correctly

predicted, the softmax for Wind is much lower than the softmax for Siren. This could be

important when evaluating a system that is deployed, as one would want a system with a high

activation on only the true class preferably. We see that in cases such as in Figure 4.9, a

completely different class emerges to the top prediction when mixed at a 25/75 ratio and in

the 50/50 case the Glass breaking class has disappeared from the top 3 predictions. As this

test was performed on only 4 pairs of signals, we do not draw any strong conclusions from the

results, except that the model appears to not handle mixed signals well with any consistency.

4.3. Mel-scaled spectrograms compared to linear spectrograms 56

4.3 Mel-scaled spectrograms compared to linear spec-

trograms

As mentioned in subsection 2.1.3 in the Theory section, how data is represented can impact

performance a lot when training a machine learning model. If the representation of that data

accentuates any existing patterns more, it is reasonable to expect it to perform better. In our

models, mel-scaled spectrograms consistently outperformed linear spectrograms. We believe

that this is due to the fact that a majority of sounds in the ESC-50 dataset have their distinct

frequency content in the 0-10000 Hz range and much less content in the 10000-20000 Hz range.

Whenever this is the case, a representation that accentuates the lower bands of frequencies will

provide the filters in the neural network with more variation and detail to learn features from.

Figure 4.10 illustrates this with two examples of the same audio clip. The linear spectrograms

also consistently lack frequency content in the upper rows of the input data. Due to the nature

of the sounds in the dataset, many classes have similar content (zeroes) in the upper rows, and

space that doesn’t provide unique information is still trained on. The mel-scaled spectrograms

on the other hand, since they compress the higher frequencies, generally fill the entire input

matrix more fully. This spreads information more evenly in the input, making it easier for the

network filters to find features.

4.3. Mel-scaled spectrograms compared to linear spectrograms 57

(a) Linear spectrogram of pouring water. (b) Mel-scaled spectrogram of pouring water.

Figure 4.10: The same audio clip as a linear spectrogram (left hand picture)
and as a mel-scaled spectrogram (right hand picture). The mel-scaled spec-
trogram has higher resolution in the lower bands of frequencies, making any
patterns in that range more distinct to the network. The two spectral lines
at circa 1000 Hz in the linear spectrogram are much more distinct in the
mel-scaled spectrogram.

Chapter 5

Conclusion

5.1 Summary of Thesis Achievements

We implemented a training framework with Python and Tensorflow. We used SB-CNN[27] and

the ESC-50 dataset[23] to train and evaluate our models.

5.1.1 Answers to thesis questions

What kind of data input construction provides the best performance?

The mel-scaled spectrograms models yielded higher accuracy than the linear spectrograms.

The top performer using mel-scaled spectrograms had 74.7% accuracy compared to 63.35% for

the best model using linear spectrograms, beating it by 11.35 percentage points.

How does linear frequency scaling compare to nonlinear frequency scaling in spec-

trograms?

Our models trained on nonlinear data reached higher accuracy than those on linear data. The

nonlinear mel scaled spectrograms gives far more resolution in the lower band of frequencies,

where a lot of classes contain unique patterns.

58

5.1. Summary of Thesis Achievements 59

How much does the balance between frequency resolution and temporal resolution

affect performance?

Reduction in temporal resolution, in terms of downsampling, does not affect the accuracy in a

significant way for models using linear spectrograms. In case of mel-scaled spectrograms, it is

hard to draw any strong conclusions of how time-frequency resolution affect the performance

of the model. We observe that the model with the largest amount of overlap performed best in

the mel-scaled case.

How much does downsampling the audio data affect performance?

Accuracy was impacted by downsampling, but models with linear spectrograms were much less

impacted than those using mel scaled spectrograms. We get an accuracy drop of 7.32 percent-

age points when downsampling from 44.1 kHz to 32 kHz when using mel scaled spectrograms.

In the linear spectrogram case, the different is only 0.08 percentage points, which we regard as

insignificant.

The audio signal will probably be attenuated, how much gain boost and normal-

ization is possible to do before the classification performance is too poor?

We did not gather our own evaluation data, as this would have been too time consuming and

would make it harder to benchmark against existing results. Therefore this question remains

unanswered.

Is it possible to separate two or more superimposed audio sources with sufficient

performance?

With our top model, it was not possible to separate two superimposed audio sources with any

consistency. However, we note that any class with a high softmax output more often remained

in the top 3 prediction in the mixed signals.

How much does noise from a camera and/or noise from wind affect the accuracy?

When evaluating on data mixed with wind noise, we observe a steep drop in accuracy after

circa 25 dB SNR. The accuracy had dropped from 74.7% to circa 45% at 0 dB SNR, where the

noise is equal to the signal in power.

5.2. Sources of error 60

5.2 Sources of error

5.2.1 Parameter changes affect the epoch size when using TF-patches

One of the goals with our approach in this thesis, was to attempt to change as few parameters

as possible between the different models trained. This in order to make comparisons of model

performance easier to reason about and explore.

However, using the TF-patch approach described in the Implementation section, while varying

Nfft or the sampling rate, changes the number of TF-patches that one training example consists

of. One value of Nfft may for example yield 427 TF-patches per audio clip in one model, where

another value would yield 300 TF-patches per audio clip. This changes the size of one epoch,

and can be interpreted as a variation in data augmentation. This variation is then in addition

to changes in time resolution, frequency resolution and sampling rate.

As an attempt to make model comparisons as fair as possible still, we chose to train all the

models a number of epochs, so as to have approximately the same amount of update steps

before the final evaluation. This means that epoch size varies between models with varying

Nfft and overlap, which makes it harder to compare them to each other. Note that this does

not apply to the comparison of mel-scaled spectrogram and linear spectrogram models where

these parameters are equal.

5.2.2 ESC-50 dataset is small

The ESC-50 dataset contains only 2000 unique audio clips. In order to make stronger claims of

model performance and its chances of performing in a real world scenario, a lot more training

and evaluation data would be needed.

5.3. Future Work 61

5.3 Future Work

Dataset augmentation. In this paper we use the ESC-50 dataset, which is a relatively small

data set. Augmenting the training set could further improve the accuracy performance, such

as using:

• Dataset augmentation with noise such as wind. This can increase robustness against

noisy input data, as described by Salamon and Bello[27].

• Other augmentations such as varying pitch and attenuation increase performance and

generalization[27].

New, larger datasets There is no dataset for audio that compares to ImageNet[25], which

contains several million images, spanning thousands of categories. New collaborative efforts

to create larger datasets for audio would provide new challenges and better benchmarking. A

larger dataset would also have to contain data from more varied recording scenarios. Since

higher frequencies attenuate faster with distance than lower frequencies, this needs to be taken

into account when creating a varied dataset.

Data representation. There are several parameters that are not explored in this paper which

could impact the model’s accuracy. Some trade-offs between accuracy and computational costs

are unavoidable and for embedded systems these should be further investigated:

• The number of points in the filterbank for mel-scaled spectrograms.

• Non-normalized filterbanks or other types of normalization.

• Tapering functions. There are many variants and depending on what classes is to be

classified other tapering functions could improve the performance.

• Other scales. The mel-scale proved to increase performance compared to linear spectro-

grams and there might be other scales that aid the model to discriminate between classes

better.

5.3. Future Work 62

Raw audio and other architectures.

One team of researchers trained on raw audio data, providing an end-to-end solution[29]. Other

researchers successfully used a model for filterbank learning[26], which also uses raw audio.

These developments suggests that pre-processing of audio data could perhaps be avoided, but

the impact on overall computational costs is not stated.

Bibliography

[1] Caffe, deep learning framework. http://caffe.berkeleyvision.org.

[2] Characteristics of different smoothing windows. National Instruments. http:

//zone.ni.com/reference/en-XX/help/370051V-01/cvi/libref/analysisconcepts/

characteristics_of_different_smoothing_windows.

[3] The iris flower dataset. https://en.wikipedia.org/wiki/Iris_flower_data_set.

[4] Methods for reading data into tensorflow graphs. https://www.tensorflow.org/

versions/r1.1/programmers_guide/reading_data.

[5] Tensorflow, open source machine learning framework. https://www.tensorflow.org.

[6] Torch, scientific computing framework. http://torch.ch.

[7] Urban sound dataset. https://urbansounddataset.weebly.com.

[8] Virtualenv, a tool to create isolated python environments. https://virtualenv.pypa.

io/en/stable/.

[9] Understanding fft overlap processing. Primer, Tektronix,

January 15 2014. https://www.tek.com/document/primer/

understanding-fft-overlap-processing-fundamentals-0.

[10] Understanding ffts and windowing. National Instruments, December 30, 2016. http:

//www.ni.com/white-paper/4844/en/.

63

http://caffe.berkeleyvision.org
http://zone.ni.com/reference/en-XX/help/370051V-01/cvi/libref/analysisconcepts/characteristics_of_different_smoothing_windows
http://zone.ni.com/reference/en-XX/help/370051V-01/cvi/libref/analysisconcepts/characteristics_of_different_smoothing_windows
http://zone.ni.com/reference/en-XX/help/370051V-01/cvi/libref/analysisconcepts/characteristics_of_different_smoothing_windows
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://www.tensorflow.org/versions/r1.1/programmers_guide/reading_data
https://www.tensorflow.org/versions/r1.1/programmers_guide/reading_data
https://www.tensorflow.org
http://torch.ch
https://urbansounddataset.weebly.com
https://virtualenv.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/
https://www.tek.com/document/primer/understanding-fft-overlap-processing-fundamentals-0
https://www.tek.com/document/primer/understanding-fft-overlap-processing-fundamentals-0
http://www.ni.com/white-paper/4844/en/
http://www.ni.com/white-paper/4844/en/

BIBLIOGRAPHY 64

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. G.

Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker,

V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg,

M. Wicke, Y. Yu, and X. Zheng. Tensorflow: Large-scale machine learning on hetero-

geneous distributed systems. CoRR, abs/1603.04467, 2016.

[12] J. Amoh and K. Odame. Deepcough: A deep convolutional neural network in A wearable

cough detection system. CoRR, abs/1509.02512, 2015.

[13] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. ArXiv

e-prints, Mar. 2016.

[14] F. Font, G. Roma, and X. Serra. Freesound technical demo. In Proceedings of the 21st

ACM International Conference on Multimedia, MM ’13, pages 411–412, New York, NY,

USA, 2013. ACM.

[15] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neu-

ral networks. In Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings

of Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15

May 2010. PMLR.

[16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[17] F. J. Harris. On the use of windows for harmonic analysis with the discrete fourier trans-

form. Proceedings of the IEEE, 66(1):51–83, Jan 1978.

[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving

neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580,

2012.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 65

[19] M. Huzaifah. Comparison of time-frequency representations for environmental sound clas-

sification using convolutional neural networks. CoRR, abs/1706.07156, 2017.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-

tional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran

Associates, Inc., 2012.

[21] W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding the effective receptive field in

deep convolutional neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,

and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages

4898–4906. Curran Associates, Inc., 2016.

[22] K. J. Piczak. Environmental sound classification with convolutional neural networks.

In 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing

(MLSP), pages 1–6, Sept 2015.

[23] K. J. Piczak. Esc: Dataset for environmental sound classification. In Proceedings of the

23rd ACM International Conference on Multimedia, MM ’15, pages 1015–1018, New York,

NY, USA, 2015. ACM.

[24] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. CoRR,

abs/1710.05941, 2017.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recogni-

tion Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[26] H. Sailor, D. Agrawal, and H. Patil. Unsupervised filterbank learning using convolutional

restricted boltzmann machine for environmental sound classification. pages 3107–3111, 08

2017.

[27] J. Salamon and J. P. Bello. Deep convolutional neural networks and data augmentation

for environmental sound classification. CoRR, abs/1608.04363, 2016.

BIBLIOGRAPHY 66

[28] S. Sigtia, A. M. Stark, S. Krstulovi, and M. D. Plumbley. Automatic environmental sound

recognition: Performance versus computational cost. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 24(11):2096–2107, Nov 2016.

[29] B. Zhu, K. Xu, D. Wang, L. Zhang, B. Li, and Y. Peng. Environmental sound classification

based on multi-temporal resolution CNN network combining with multi-level features.

CoRR, abs/1805.09752, 2018.

	Abstract
	Acknowledgements
	Introduction
	Problem description
	Data representation challenges
	Distance to event in audio

	Motivation and objectives
	Thesis questions

	Related work

	Theory
	Machine learning
	What is learning?
	Supervised classification
	The importance of representation
	Handcrafted vs. learned features
	Convolutional neural networks
	The convolutional layer
	The receptive field
	The pooling layer
	The fully connected layer

	Rectified Linear Units
	Parameter initialization
	Optimization
	Cross Entropy Loss
	Stochastic gradient descent

	Regularization
	Dropout

	Audio representation
	The waveform
	The spectrogram
	Window functions and spectral leakage
	Choosing tapering function

	Specifics of STFT
	Mel-scaled spectrogram
	Mel filterbank

	Dataset
	ESC-50

	Implementation and methodology
	Tools and implementation
	Tensorflow
	Training and input framework
	Evaluation step

	Evaluation strategy
	Network architecture
	SB-CNN

	Pre-processing of input data

	Evaluation
	Data representation comparisons on SB-CNN
	Downsampled data

	Further evaluation of the top performing model
	Confusion matrix
	Evaluation of data with added noise
	Mixed signals

	Mel-scaled spectrograms compared to linear spectrograms

	Conclusion
	Summary of Thesis Achievements
	Answers to thesis questions

	Sources of error
	Parameter changes affect the epoch size when using TF-patches
	ESC-50 dataset is small

	Future Work

	Bibliography

