
MOTION EVENT

RECOGNITION USING USER

FEEDBACK

HANNES JÖNSSON

Examensarbete
2018:E79

Matematikcentrum
Matematik

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Master’s Theses in Mathematical Sciences 2018:E79
ISSN 1404-6342

LUTFMA-3372-2018

Matematik
Matematikcentrum
Lunds universitet

Box 118, 221 00 Lund

http://www.maths.lth.se/

Motion Event Recognition Using User Feedback

Hannes Jönsson
stv10hjo@student.lu.se

Advisors: Anders Heyden, Jakob Grundström, Mikael Pendse, Umut Tezduyar Lindskog

Examiner: Kalle Åström

December 20, 2018

1

Abstract

With high associated costs, both in terms of time and economics, false alarms are a ubiquitous
problem in camera surveillance. There exists many methods of lowering the rate of false alarms
from motion detection, most of which are based around using static rules and filters such as
area of interest, cross-line detection and filtering of swaying objects. This thesis explores the
possibilities of using feedback from a user in the form of examples to filter new video sequences
with detected motion, enabling the suppression of motion alarms that are of no interest to a user.
Two approaches to achieve this are presented, a frame-by-frame method employing a one-class
support vector machine and a sequence based recurrent relational network which aims to learn to
recognize similar and dissimilar video sequences. Both approaches aim to fulfill the requirement
of both being able to work with only positive data, and a limited amount of it at that. The report
discusses the difficulties and challenges with working with data from only a single class, and the
limitations that a limited amount of training data pus on such systems. Both approaches employ
transfer learning in that a pre-trained network is used to extract high level abstract features from
video frames. The results of experiments run show a surprising level of accuracy with even basic
methods under the right circumstances, while also revealing problems with unexpected behavior
when encountering some new, unseen data. The report further discusses the problems of estab-
lishing how predictable such a system can be, and how communication with a user can be done so
as to properly convey how the system can be expected to act. The report makes the conclusions
that technically there are indeed possibilities to recognize events in video sequences and enabling
the filtering thereof upon example videos, but the problem of understanding what exactly it is
in a sequence that a user may want to ignore and to communicate what exactly it is a system
has learned to recognize is a very difficult one. The report concludes with suggesting a couple
of avenues of future work, both when it comes to the general problem of using feedback from a
user, and when it comes to the more technical aspects.

Keywords: One-Class Classification, Relation Network, OSCVM, Motion Detection, Siamese
Network, Distance Metric

2

Acknowledgements

I would like to thank my advisors for their input and support during the thesis work. I am
especially thankful for the large amount of help and support I got from Jakob Grundström
and Mikael Pendse. They continually took the time to discuss various topics and problems
surrounding the thesis, and continually provided me with feedback, recommended interesting
articles surrounding my topic and more. I would also like to thank Axis communications for
providing the opportunity and the resources required for this thesis.

3

Contents

1 Introduction 5
1.1 Background . 5
1.2 Problem formulation . 5
1.3 Scope of the thesis . 5

2 Related work 6
2.1 Sensor fusion . 6
2.2 Object classification . 7

3 Theory 8
3.1 The One-Class problem . 8
3.2 One-Class Support Vector Machines . 8
3.3 Artificial Neural Networks . 9
3.4 Transfer Learning . 10
3.5 Relation Net . 11
3.6 Metrics . 12

4 Implementation Details 14
4.1 Frameworks . 14
4.2 Datasets . 14

4.2.1 MNIST . 14
4.2.2 UCF101 . 14
4.2.3 Other data . 15

4.3 Representations - Feature extraction . 15
4.4 One-Class Support Vector Machines . 15
4.5 Relational Network . 16

5 Results and Evaluation 19
5.1 Experiment setup . 19

5.1.1 Model validation . 19
5.1.2 OCSVM . 19
5.1.3 Relation network . 19
5.1.4 Use case evaluation . 20

5.2 Experiment results . 20
5.2.1 OCSVM . 20
5.2.2 Relation network . 29

6 Discussion & Conclusions 33
6.1 Conclusions . 35
6.2 Summary . 36
6.3 Future work . 37

4

1 Introduction

1.1 Background

The presence of motion detection capabilities in cameras today is ubiquitous. By alerting a user,
such as a surveillance operator, or triggering an event, such as the recording of video or activating
some external system, motion detection can greatly reduce the resources needed to monitor an area.
As the use of motion detection strives to increase the effectiveness of a surveillance system by only
using resources when something of interest occurs, the accuracy of the motion detection and the
way detected motion is handled is crucial to the overall performance of the surveillance system. The
occurrences of false positives, detected motion when there is none or detection of motion that isn’t of
interest, can inhibit the ability to provide the benefits a motion detection system is capable of. False
positives can lead to an increased use of the various resources which a surveillance system requires,
including storage space and user attention. Especially the latter may lead to alarm fatigue, where a
user after being exposed to a large number of false alarms becomes less attentive to the alarms and
may fail to act in an appropriate manner when a true positive is encountered.

The reduction of false positives in the motion detection and the handling thereof is of great im-
port when an effective surveillance system is to be achieved. There are several approaches to solving
this problem existing today, with many of them already implemented in products on the market.
In Axis cameras, which have been used in this thesis, several types of software aiming to solve this
problem are available. This includes the filtering of small and short lived objects, the detection of
swaying objects such as flags or foliage, cross line detection triggering when a moving object crosses
a certain line, areas of inclusion/exclusion and more. The main characteristic of all these approaches
is that they let a user select certain static parameters, such as tolerances and thresholds for when a
motion alarm should be triggered or designating a certain area as off-limits and triggering an alarm
when motion is detected in such an area, and filtering detected motion based upon these parameters.

This thesis aims to explore a different approach to solving the problem of reducing unwanted motion
detection alarms, based upon the idea of letting a user present an example of a motion event which
might trigger a motion detection alarm, and having the system automatically adjust to the needs of
the user.

1.2 Problem formulation

The main goal of this thesis is the investigation of approaches to minimizing false positives from
the motion detection system based on user feedback. False positives in the context of this thesis
are defined as any motion event a user is uninterested in. It is thus not limited to the detection of
non-existent motion, such as that which a shadow or a reflection moving through the surveillance
scene might give rise to, but also actual motion events that for some reason are uninteresting to the
user. User feedback is defined as consisting of an example video, or image sequence, representing the
unwanted motion event.

The problem to be solved can be formulated as: Is it possible to devise a system such that it
can recognize any event based upon an example, or possibly a few examples, provided by a user as
feedback, and thus make it possible to avoid triggering a motion alarm should a new motion event
be considered being of the same type as that which the user deems uninteresting? In answering this
question, several other questions have to be addressed, for example; How can the amount of examples
a user needs to provide be minimized? How should the relation between several concurrent events be
viewed? What does an event really encompass?

1.3 Scope of the thesis

The focus of this thesis project will be answering the questions described in the problem formulation.
It will not dwell on the details of the actual motion detection mechanics, nor will it include the gen-
eral infrastructure for presenting motion events to a user and letting the user select such events as

5

examples. In the interest of time and resource constraints, these matters will be considered outside
the scope of the project. In keeping with this definition of the scope as well as to improve the repro-
ducibility of any results produced during the project, pre-recorded video will be used as a basis for
experiments conducted, rather than real time streamed video. A detailed description of the datasets
used for experiments is provided in the relevant sections of the report.

What is meant by the term motion event should also be defined. Without further clarification, such a
term is ambiguous at best. For example, if a user wants to exclude the occurrence of a garbage truck
passing through an area that is under surveillance, what exactly does this mean? If the garbage truck
first passes one way and then returns in the other direction, are these two distinct events? Should
the event be considered as consisting of a garbage truck passing through the field of view, or is a
garbage truck driving from left to right in the scene a separate event compared to a garbage truck
driving from right to left in the scene? It is easy to transfer a discussion of such terminology into
a more philosophical domain, and thus some hard definitions need to be set up. In the interest of
avoiding making the basis of this thesis dependent on such definitions, what constitutes a motion
event is defined as per the experiment setup. A detailed explanation of what exactly is meant by a
motion event and the correct recognition thereof in the context of an experiment is provided in the
description of each experiment setup. Further discussion of this topic and its implications can be
found in the conclusions section of this report.

The data used during the experiment mainly consists of publicly available datasets. Purpose-made
datasets constructed for this thesis are also used in order to provide data for performance on test
setups more closely resembling real world use-cases, compared to pre-made datasets.

The scope of this thesis includes the presentation of two different approaches to solving the problem
at hand. For each of these approaches, an explanation of the theory behind it, a motivation in the
selection of the approach and a discussion of the implementation details is provided. These discus-
sions will not include low-level implementation details, but rather focus on the broader, architectural
choices.

The scope thus includes the answering of questions such as:

• What are the challenges in basing a motion event filtering system around feedback from a user?

• Is it possible to recognize events in sequences based upon example sequences of such events?

• Can a network pre-trained on static images be used in a transfer learning scheme for use on
video sequences?

• Can a distance metric learning network be implemented in a recurrent manner for use on
sequences?

• How well does a basic support vector machine approach deal with sequences of data?

• How does a support vector machine based system compare with a distance learning one when
it comes to distinguishing between sequences?

2 Related work

There are several works relating to this area, though not with the same approach as that presented
here. Some of these works are presented in this section.

2.1 Sensor fusion

In a previous master’s thesis conducted at Axis, Bilski investigated the use of sensor fusion in order
to reduce the frequency of false motion detections[1]. The approach presented in that thesis focuses
on the addition of data gathered from a radar unit in order to validate motion detection alarms. The
idea here is to use data from a radar in combination with motion data from a video stream in order

6

to filter out detected motions caused by artifacts other than actual moving objects.

The results presented in the thesis show that the use of radar data for validation can lower the fre-
quency of false positives, as a radar is unable to detect artifacts such as shadows and reflections and
needs an actual object in the scene which can reflect the electromagnetic waves. The capabilities of
a radar unit is also invariant with respect to the lighting conditions of the surveilled scene, enabling
the detection performance to be consistent irregardless of time of day and other aspects affecting the
lighting. Indeed, the results suggest that with only detection of actual moving objects as a measure
of performance, a radar can in itself perform as good as, if not better than, motion detection con-
ducted solely on a video stream. Of course, using only the radar data not much else can be said
about the detected motion other than the approximate size of the reflecting side of the object, its
distance and velocity. Any specific visual characteristics need to be gathered from the video stream [1].

The focus of this approach is the minimization of false alarms by filtering for real, physical objects.
As such, it seems an effective method, but it does not lend itself to adapting to a specific users
requirements, which might include the filtering of specific physical objects which actually does move.

2.2 Object classification

Another master’s thesis conducted recently at Axis investigates the use of an image classifier to help
with the reduction of false positives in the motion detection [2]. The idea is to select only relevant
classes, which the thesis group into a category described as human activities, and only report detected
motion if it should stem from such a human activities. Motion from objects classified as not belonging
to one of the classes in this group, such as foliage swaying in the wind, a cast shadow moving through
the scene or a reflection off of a windscreen of a car are thus ignored.

The thesis presents a method of doing this which leverages a pre-made, unspecified program, which
given JPEG images as input outputs predicted labels for the content of the image. Input images were
cropped in order the have them contain only the moving objects which should be analyzed and avoid
the inclusion of background objects that could affect the classification of the object in the image.
Each image was then assigned a class membership, and this class was then checked against the set of
classes of objects defined as being human activities, which consisted of the following classes: Person,
Bicycle, motorbike, Car and Bus.

The performance of the approach is measured by how good a job the classifier does at classifying such
cropped images representing the moving objects. The report states that ∼85% of all objects were
classified correctly. This figure held true between both objects defined as part of the human activities
set and as part of the non-human activities set. 92.6 % of human activities were correctly classified
as such and would then give raise to a correct alarm. The remaining 7.4 % where incorrectly filtered
as uninteresting, non-human activities. Among the moving objects that should have been ignored as
non-human activities, 93.2 % were correctly identified as such and thus filtered, while 6.8 % resulted
in false positives. The report also states that while 7.4 % of moving objects with a true class belong-
ing to human activities were mistakenly filtered, this does not mean that the true false positive rate
in the alarms would be 7.4 %, since this number is partly a result of the way in which the moving
objects are tracked and the images containing them are cropped.

The method presented in this thesis shows a lot of promise with regard to lowering the frequency of
false positives. It does also lend itself somewhat to customization to a users requirements, in way of
letting a user choose which object classes are to be ignored. This approach covers many scenarios,
but it does not let the user select an arbitrary event, which might not be able to be represented
as a single class in the classifier, for exclusion. For example, an event such as a vehicle traveling
in one direction could be seen as a distinct event when compared to the same vehicle traveling in
the opposite direction, but both scenarios would result in the same object classification, making it
impossible to distinguish between them just from the classification.

7

3 Theory

3.1 The One-Class problem

The general classification problem is a problem that has been studied thoroughly throughout the his-
tory of machine learning. Most who have encountered machine learning in some form have probably
heard about the Iris flower dataset, originally presented by Ronald Fisher in 1936[3], which through
many a blogpost and YouTube video serves as something of a hello world of machine learning. The
dataset records five attributes each from 150 flowers, belonging to three different species with 50
examples each. This is a very typical multi-class classification setup, where the objective is to learn a
method of classifying a flower, based upon its attributes, as one of the given set of species. In contrast
to this multi-class classification problem, one might instead ask not ’to which species (class) does this
flower belong?’, but instead ’is this a flower or not?’. This is a vastly different problem. In the case of
having different classes, each consisting of a different flower, defined by a set number of measurable
attributes, it is feasible that a dataset of reasonable size can cover most of the possible cases. In
the case of defining a class such as ’not a flower’, this encompasses every conceivable entity that is
not a flower, and creating a dataset that would cover such a vast space of possibilities is impossible.
A more reasonable approach would be to view the data for the class ’not a flower’ as absent, and
instead see what can be done with the data that is there, for example descriptions of flowers. With
data from only one of the classes (’flower’) and none from the other (’not a flower’), the problem is
now a one-class classification problem.

With a one-class classification problem, the goal has switched from the creation of boundaries between
different classes based upon examples belonging to each class, to deciding if an example is part of
a the target class or not. This can be achieved in a couple of different ways, two of which will be
discussed here.

The first approach is to create a decision boundary around a single class, aiming to contain as many
examples of this class as possible while keeping the probability of including examples outside of this
class as low as possible. This is not as easy as constructing a decision boundary for the multi-class
classification problem, and the requirements on the dataset and the methods employed can be ex-
pected to be higher[4]. An example of this approach is one-class support vector machines[5], which
will be discussed further in section 3.2.

The second approach is to make comparisons between different examples. This would, in the case of
the flower-or-not example problem mean comparing any given data with a known flower, and assign-
ing a value describing the similarity between the target class, in this case the flower, and the data for
which class belonging is inferred. This would mean creating a system which can learn to distinguish
between similar and dissimilar pairs of data. Examples of this approach can be found in the form of
siamese networks[6] and relational networks[7]. This approach will be discussed more thoroughly in
section 3.5.

3.2 One-Class Support Vector Machines

In their most basic form, Support Vector Machines (SVMs) can be described as machine learning
tools that can be used for solving classification or regression problems. A basic setup would be that
given a dataset {(xi, yi), .., (xn, yn)} where xi is a data point and yi is a label corresponding to this
data point which describes its class, a SVM would strive to create a boundary in the space which the
data points occupy such that data points sharing the same label are grouped together. This would
then let the SVM predict which label belongs to a new, previously unseen data point. The SVM is
also able to separate otherwise inseparable data points by project them into a higher dimensionality
space using a non-linear function, enabling it to create a boundary, a hyperplane, separating data
points which it could otherwise not. This hyperplane is adjusted so that the margin, the shortest
distance between a data point on each side of the hyperplane and the plane itself, is maximized.

This basic approach can be adapted to the one-class classification problem, in which data may or

8

may not be associated with a known label, but there is only access to training data belonging to
the known label at training time, making it impossible to create a boundary between examples of
different classes. Instead the similarity between data points known to belong to the known label is
described, for example in the form of a spherical area around the data points, to which the distance
of new data points can be calculated and thus their label inferred. Tax and Duin describes this as
given a training dataset {xi, .., xn}, a hypersphere with a center a and a radius R is created around
it[5]. The construction of this hypersphere involves a minimization problem in which the volume of
the sphere is reduced my decreasing R2 so it is as small as possible while still containing all of the
training set. This can be described by the error function to minimize:

F (R,a) = R2 (1)

with the constraints that:
||xi − a||2 ≤ R2 for i = 1, .., n (2)

Allowance can be given to outliers, so that some data points can be excluded from the sphere in order
to avoid making it too large. This can be described by a margin ξi and an associated penalty variable
C, which controls the trade-off between the volume of the hypersphere and the errors encountered
when excluding positive samples as the sphere is reduced in volume. With the inclusion of this margin
for outliers, the error function can be described as:

F (R,a) = R2 + C

n∑
i=1

ξi (3)

with the constraints that:
||xi − a||2 ≤ R2 + ξi for i = 1, .., n (4)

that is to say, the squared absolute distance between a given data point xi and the center of the
sphere a must be less than the squared radius of the sphere plus the tolerance margin ξi. A new data
point can then be classified in regard to its position, with it either being within the hypersphere, thus
deemed as positive and part of the target class, or outside it. There are also alternatives to a strict
spherical volume, such as polynomial kernels or radial basis function kernels, which serve to enable
the creation of more flexible separation functions[5]. The radial basis function kernel (RBF) is what
is used in this thesis and is defined as:

K(x, x′) = exp

(
− ||x− x

′||2

2σ2

)
(5)

The choice of this kernel for the particular problems faced in this thesis is based on studying the
performance using different available kernels, with RFB resulting in the best performance.

The use of One-class support vector machines is a straight forward approach which can give great
results with a low computational performance cost. The main challenge is to find a format for the
data such that a decision boundary actually can be formed around it, separating it from data points
not belonging to the class to be identified. As the complexity of the data grows, the ability to
group examples of data deemed to belong to the same class together tightly as well as the ability to
separate examples of data belonging to different classes diminishes. This is known as the curse of
dimensionality. A 3-channel color image with the dimensions 224 by 224 pixels (a typical input size
for InceptionV3[8]) can be described with 150528 different values. It can thus be represented with
a 150528 dimension vector, a large number indeed. While a clustering approach may work well on
a smaller toy example, such as MNIST images in gray-scale with dimensions of 28 by 28 pixels thus
having only 784 dimensions, it quickly breaks down when the number of dimensions reaches higher
numbers. In the results section, we will see the ramifications of this in detail.

3.3 Artificial Neural Networks

Many of the techniques used in this thesis are based on the capabilities of artificial neural networks.
They are both used in order to extract high level abstract features from images in a video stream, as
well as a basis for the relation net module which learns to compare different feature representations.
This section will present a brief overview of the workings of artificial neural networks in order to
facilitate easier explanations of the respective system.

9

Figure 1: Illustration of a basic ANN.

The term artificial neural network, ANN, comes from the
fact that such networks are loosely inspired by what we
know about the workings of organic brains such as our
own. Our brains consist of large, complex interconnected
networks of neurons, which is, at least on the surface, simi-
lar to the artificial neural network which consists of several
interconnected computational nodes. At the most basic
level, an ANN strives to approximate a function mapping
an input to an output in a certain manner [9]. This map-
ping of input to output can cover a large variety of tasks,
including classifying a given input as belonging to one of a
set of classes, giving a control signal to a system (such as
learning to play computer games [10]), or even transform-
ing an image, for example reducing noise in a noisy image.
This mapping of input to output is conducted by sending
signals from node to node in the network, with the signal

being controlled by the characteristics of the input and by the parameters of the nodes it passes
through. An ANN learns the input to output mapping by tuning these parameters associated with
its nodes in a process called training. Training is generally conducted with the use of data similar
to the actual problem to solve. In most cases, this training data consists of examples of input as
well as the desired output, and the network will then adjust its parameters until the inferred output
of the network matches the desired output. An explanation of the actual workings of the tuning of
the parameters of the network during this training is outside the scope of this report, but a curious
reader will find a thorough explanation in Goodfellow et al.’s Deep Learning book[9], or in Grant
Sanderson’s excellent video series on his YouTube channel 3Blue1Brown[11].

Artificial neural networks come in several different flavors. The most basic form are known as feed-
forward networks, in which data flows from the input nodes to the output nodes, being operated on in
accordance to the parameters of the network. The nodes are often organized into layers, with layers
in between the input and output layers being known as hidden layers. In addition to the feed-forward
type of network, two other more specialized forms of artificial neural networks are employed in this
thesis, namely convolutional neural networks and recurrent neural networks. Convolutional neural
networks use a mathematic operation known as a convolution as it operates on the data that flows
through it, and is suited for data that takes on a grid like form, such as images and time-series data[9].
In a practical sense, the use of convolutional neural networks can be easily motivated with a simple
example. If we consider an image as the input for an artificial neural network, the complexity at the
input layer increases rapidly with the size of the image. An image of size 224 by 224 pixels with 3
color channels (a standard input for networks such as InceptionV3) fed into a layer of 1024 nodes will
result in more than 150 million parameters to tune during training, and that is just for one layer.
With the use of convolutions, the size of the data can be reduced while retaining information, as the
convolutional network learns to extract abstractions from the input. A convolutional network can
achieve this with just a few parameters, often ranging in the thousands for a single layer.

Recurrent neural networks are networks specialized for operating on sequences. This includes se-
quences of words, such as might be the case in classifying text or image sequences such as might be
the case when operating on video. The use of the term recurrent comes from the fact that the result
of an operation on one part of a sequence affects the operation conducted on the following parts of the
sequence. In such a way, the way in which a recurrent neural network handles a word in a sentence
is affected not only by the networks parameters and the word itself, but also which word or words
came before it in the sentence. Thus a recurrent neural network can take the temporal aspect of data
into account [9]. In the methods described in this thesis report, variations and combinations of these
types of artificial neural networks are employed.

3.4 Transfer Learning

Convolutional neural networks are well suited to operate on data consisting of images, which is ex-
actly what this thesis requires, but they do however require large amounts data to train, and the

10

training is time consuming. To get around these constraints, a scheme called transfer learning can
be employed. The basic idea is to leverage a network which has been rigorously trained on a large,
diverse dataset which hopefully encompasses the domains which are of interest for this thesis, so that
the training of a complex network does not have to be done from scratch. Using such a method has
been shown to produce astoundingly good results on tasks such as image classification, even in areas
differing from the ones on which the network has originally been trained[12].

In the scope of this thesis, transfer learning is used by employing InceptionV3[8] and MobileNet[13]
with weights pre-trained on the ImageNet dataset[14]. These networks are trained for the task of
image classification with a thousand classes for a long duration of time. For the purposes of transfer
learning, the output of an intermediate, hidden, layer is used with the hope that this output represents
learned high level abstractions of the input images. These high level abstractions will enable the
images to be represented with a lower dimensionality when compared to the raw pixel values, while
still retaining useful information about the contents of the image.

3.5 Relation Net

As discussed in section 3.1, one a approach to solving the one-class classification problem is to
compare data and assign a value describing its similarity or dissimilarity to known reference data.
Thus previously unseen data can be recognized as either, if it’s similar to an example of the target
class, part of the target class, or not. This can be seen as a problem of learning a distance metric
with which to compare different data points. One method for conducting such recognition is the use
of a Relation Net. A Relation Net represents an approach to few-shot learning, where a classifier
must learn to recognize new classes with the use of only a few examples of each class. A Relation
Net, as described by Sung et al. in [7] works by using two modules, an embedding module fφ and an
relation module gθ. The embedding module’s purpose is to encode input data into feature mappings,
while the relation module’s purpose is to produce a similarity score between 0 and 1 for any pair of
features representing two data objects. This can be expressed as

ri,j = gθ(fφ(oi), fφ(oj)) (6)

where ri,j is the similarity score between the two objects oi and oj .

As training data a set of N classes, with each class being represented by KN examples, containing
data with a corresponding label map of which data points are similar to which is used. From this set
of N classes and N by N similarity scores, C classes are selected to make out a sample set, while N -
C classes are selected as a query set. To set the problem up as a one-shot problem rather than a few
shot problem, the feature mappings can be pooled if a class is represented by more than one example.
These feature sets S = {(xi, yi)}, i = {1..K ·C} and Q = (xj , yj), j = {1..K ·(N−C)} called the sample
set and query set respectively, simulates the overall setup where the system at test time uses a support
set and a test set occupying the same label space. The training is conducted by selecting pairs from
the two sets and using the labels to determine if they are similar or not. Similarity is labeled as 1 and
dissimilarity is labeled as 0, and the system is trained with mean squared error as a loss function. This
is motivated by the problem not actually being a binary classification problem with the two classes
similar and dissimilar, but instead being a regression problem with possible values in the range {0, 1}.

The approach presented in [7] uses a end-to-end training regime, which allows the encoding module
to learn representations which are suited for use by the relation module, rather than, for example,
learning representations suited for reconstructing the input as is the case in an autoencoder. It is not
difficult to argue that learning to encode a given input in such a way that the encoding best suits the
problem at hand is preferable, but such an approach does come with a few drawbacks. The main draw-
back with training an encoder with a loss functions centered on the final relation score is the require-
ment of labeled data. For any input pair {xi, yi}, a ground truth relation score needs to be assigned in
order for a loss value to be calculated in regard to the inferred relation score. This can severely limit
the available selection of training data. Even with a dataset suited for such a task, the fact that we
need the dataset to be somewhat balanced puts further constraints on the approach. For example, if
we produce a toy dataset containing the numbers in the range [0..9] and select pairs {xi, yi} from this
set such that they receive a relation score r({xi, yi}) = 1 if xi == yi and r({xi, yi}) = 0 if xi 6= yi,

11

only 9 out of the 81 possible pairs would be labeled with a relation score of 1, while the remaining
72 pairs would be labeled with a relation score of 0. This would severely imbalance the dataset,
something which would inhibit the training of the model. In order to balance the dataset, only 18
out of the possible pairs could be selected. This will apply to any dataset containing more than
two types of examples. A solution for this is to instead train the encoding module separately on as
large a dataset as possible, and not caring about the relation between the training examples. This
makes it possible to train on an (with regard to relational scores) unlabeled dataset, increasing the
amount of data suitable for training. By using a pre-trained network geared towards image-analyzing
in a transfer learning scheme (see section 3.4) as a primary embedding module, this effect can also
be achieved. The same trade-off is true in this case, namely that while the embeddings themselves
are optimized for another problem than the one we want to solve, they are still trained on a vastly
larger dataset, thus their increased ability to describe an input in a meaningful way should enable
the extracted features to be used to great effect none the less, as shown in [12].

This approach is very much similar to a siamese network [6]. A main difference with a siamese network
is that it instead of concatenating two separate inputs and inserting them into a net as one input, it
handles two inputs separately in two parallel but identical networks. Having two paths with identical
weights enables the network to not over-fit in such a way that the output of the network is dependent
on which of two inputs goes through which path, rather than the make up of the input data itself. In
[6] such a network is used to learn a distance metric, which in principle is the same thing as learning
a similarity metric.

3.6 Metrics

An extremely important factor when evaluating different approaches to solve any problem is the
metrics that are employed. Both what is measured and how it is measured is of critical import, if
reasonable conclusions are to be drawn from conducted experiments. The different approaches pre-
sented in this thesis are not always directly comparable using a simple measure of performance that
can be applied to all experiment setups. Because of this, this section will present the different metrics
used during training and testing of the models used to evaluate the approaches.

When measuring the performance of a classifier which can make a binary choice, as is the case for a
one class classifier such as a OCSVM which classifies examples presented to it as either a member of
the positive target class or not, it is possible to measure the performance in several ways. Performance
can be measured by way of accuracy as in the total number of correct classifications relative to the
total number of examples tested on:

Accuracy =
Number of correct classifications

Total number of classifications
(7)

This metric suffers when used to evaluate a classifier classifying a dataset with a severe class imbalance,
as is the case with the datasets used in this thesis. If, as is the case here, a large portion of the dataset
belongs to the negative class, that is, is not of the target class, the classifier can still achieve high
accuracy by solving the classification problem trivially and simply classifying all test examples as
negative, non-members of the target class. The same problem holds true for the precision metric,
which calculates the rate of false positives:

Precision =
True positives among the examples classified as positive

All examples classified as positive
(8)

By being extremely discriminatory, a classifier can achieve a very low false positive rate, which will
result in a high precision even if very few true positive examples are correctly identified.

Another metric which suffers with an imbalanced dataset is recall. Recall measures the rate at
which a model can detect positives with respect to the number of existing true positives. If recall
is to be maximized the opposite problem can occur, compared to accuracy or precision; the model
might choose to classify all examples as positive, thus classifying all the true positives as such.

Recall =
Examples classified as positive

All true positives
(9)

12

Figure 2: Illustration of the relation between true & false negatives and precision and recall.

To balance these metrics a metric called F1 score can be employed. F1 score is defined as:

F1 = 2 · precision · recall

precision + recall
(10)

By including both recall and precision in a single metric, a balance between detecting true positives as
such while still avoiding false positives can be achieved. This makes this metric suitable for measuring
the performance of a classifier such as OCSVM.

The selection of which metric to use as a loss function when training a neural network is very
important. There exists a large array of pre-defined loss functions in the Keras[15] and TensorFlow[16]
frameworks, suitable for different types of problems. In the case of a network producing a score for
a given input, a loss function which uses a measure of how far from the desired score the predicted
score is would be suitable. One such loss function uses the mean squared error, which is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (11)

that is, the average difference between the predicted score and the true score for a given test set. In
the case of inferring relational scores for a set of sequence pairs, this loss function would result in the
average squared difference between the ground truth relation score (1 or 0 for similar and dissimilar
respectively) and the inferred relation score. The calculation of accuracy for the relational network
is based upon rounding the inferred relation score to the closest integer (0 or 1), and comparing with
the ground truth value. The difference can then be averaged over the test set to gauge the accuracy.
This can be expressed more formally as:

Accuracy =
1

n

n∑
i=1

(1− |yi − [ŷi]|) (12)

where [ŷi] is the predicted relation score, rounded to the closest integer. This is in contrast to the
OCSVM based approaches, which infer class membership on a frame-by-frame basis after which a
decision has to be made for the video as a whole.

13

4 Implementation Details

4.1 Frameworks

Various machine learning frameworks and tools have been used in this thesis. Most code was writ-
ten in the Python programming language[17]. For image and video processing, scikit-image[18] and
scikit-video[19] have been used. For clustering approaches such as OCSVM, the scikit-learn frame-
work was used[20]. For setting up a feature extraction network based on InceptionV3 and mobile
net with weights pre-trained on ImageNet, Keras[15] was used as a front end with TensorFlow[16] as
back end. Keras was also used to construct the relational network based models.

Scikit-learn is a machine learning library for the python programming language, which provides easy
to use features such as different clustering methods, tools for solving various regression problems
etc. For the purposes of this thesis, it is mainly the various clustering methods that were employed,
primarily one-class support vector machines, OCSVMs.

Keras is a wrapper that works with various different backends such as Theano and TensorFlow. For
the purposes of this thesis, TensorFlow was used as a back end. The purpose of using a wrapper such
as Keras was to speed up and streamline the development of different neural network structures. The
selection of TensorFlow as back end was due to its large developer community, which makes it easier
to find valuable tips, tricks and help with solving various problems that arise during development.

4.2 Datasets

During testing, training, validation and testing of the two approaches described in this thesis, a few
different datasets where used. These datasets are described in this section.

4.2.1 MNIST

During the initial proof-of-concept phase, the MNIST dataset of handwritten digits[21] were used,
both in its original and in a modified form. The MNIST dataset consists of 60,000 training images
and 10,000 testing images, depicting handwritten digits in the range of 0 to 9. A dataset based
on a modified form of the MNIST dataset, called moving MNIST was also used. This dataset was
generated as per [22], and consists of sequences of images, with each sequence depicting two digits
moving about in a random manner. The parameters of the generation of the sequences were selected
so that 120 images, each being a gray-scale 64 by 64 pixel image containing two digits, were produced.

Figure 3: Example frames from two sequences, one containing a 0 and a 2, the other containing a 4
and a 5.

4.2.2 UCF101

The main dataset used in this thesis was the UCF101 action recognition dataset. This is a dataset
consisting of 13320 video clips depicting 101 different types of human actions, gathered from YouTube
[23]. The clips are MPEG-4 encoded with a resolution of 320 by 240 pixels. The per frame image

14

quality is quite low, but it has been shown that image compression has a limited effect on the per-
formance of an image recognition system, at least in the context of face recognition[24]. The 101
actions are divided into 25 groups each, with each group being represented by 4 to 7 video clips. The
clips representing each group all share something in common, for example the action portrayed in a
group might be conducted by the same actor or actors. The main purpose of the dataset is to enable
training and validation of action recognition systems, with recognition of an action being defined as
classifying the category to which a video clip belongs correctly. For the purposes of this thesis, the
UCF101 dataset is used in a slightly different manner. The division of the action categories into
subgroups, each being represented by clips sharing attributes, is the main reason for the use of this
dataset, as it enables a labeling scheme where video clips belonging to the same action category and
group can be labeled as being similar, while clips belonging to different groups or action categories
can be labeled as dissimilar. It is thus possible to instead of aiming to classifying a video clip as
belonging to a certain action category, aim to infer whether a video clip belongs to a certain such
subgroup. This is a way of translating motion event recognition into a domain where the performance
of such a motion event recognition system can be trained and tested on a large, pre-existing dataset.
The use of such a large, public dataset should also allow for reproducible results.

4.2.3 Other data

Further data was gathered with the use of Axis cameras set up in a bike storage room. This data
was not extensive enough to be used as training data or to make larger validation data sets, but can
instead serve as more realistic examples of real world use cases. As the the different approaches can
not be directly compared by a metric such as the validation accuracy during training time, or by a
loss function value (which is not present in the case of OCSVM), this dataset also serves the purpose
of enabling a more direct comparison of performance between approaches. The videos recorded in
this dataset consists of various actions in the bike storage room, such as the entry and exit of one
or several actors, actors carrying objects like boxes or bags, actors entering or exiting with bikes etc.
The exact setup for what constitutes a similar and dissimilar event in this dataset is discussed in the
discussion of specific test setups.

4.3 Representations - Feature extraction

In order to make use of the transfer learning scheme described in section 3.4, high-level features are
abstracted from the images that make up the video sequences. Features are extracted on a frame
by frame basis with the use of two different neural networks with pre-trained weights. The two
networks are MobileNet[13] and InceptionV3[8], both of which are used without the fully connected
top layers, and with an added layer of max pooling. This results in a feature vector per image frame,
with a length of 1024 for MobileNet and 2048 for InceptionV3. A larger feature vector can hold more
information, but is not necessarily better, as it increases the dimensionality of the data, which can lead
in an increase in the requirements of training data in order to achieve good performance[24]. These
per-frame representations are used both on a frame-by-frame basis by the OCSVM approach, and fed
together as a sequence in the case of the relation net based on extracted features. As the lower number
of features in the MobileNet produced features did not seem to adversely affect the performance of
the models tested, these features were the ones mainly used due to their lower dimensionality and
decreased use of space.

4.4 One-Class Support Vector Machines

The One-Class Support Vector Machines, OCSVM, model is based upon the idea of working with fea-
tures extracted on a frame-by-frame basis from the video sequences. The point of using a One-Class
SVM approach is to solve the problem of only having access to positive examples to train on, and
thus the training of the OCVSM model is done on hand-picked video sequences representing positive
examples of a motion event. In order to keep the clusters tight each type of motion event, here
defined in the manner described in section 4.2, is assigned to its own model. While this introduces an
upper limit to the amount of different classes of motion events that can be represented by a system,
as the number of models grows, the models are quite small and not very computationally expensive

15

to run, making it possible to facilitate the running of a decent number of simultaneous models and
thus types of motion events. Examining how the performance of an OCSVM based system scales
with the number of included classes has been left outside the scope of this thesis, and the focus has
instead been on examining the behavior of the models when exposed to different type of motion events.

The actual implementation was done with the use of scikit-learn[20], which includes an OCSVM mod-
ule with several options enabling a user to tweak it for the problem at hand. The options available
include the type of kernel used, where the choice in this thesis fell on the rbf-kernel, and the two
parameters gamma and nu. The nu parameter is an upper bound on the tolerated amount of training
errors, and has the practical effect of ’shrinking’ the decision boundary as it increases in magnitude.
The gamma parameter is the kernel coefficient, which also adjusts the decision boundary such that
it becomes tighter as the parameter increases in magnitude.

Several models were trained, based upon several different classes of video sequences. Different num-
bers of training examples for the single class were tested. A rudimentary grid-search was implemented
in order to conduct parameter tuning of the model. The tuning was conducted with F1-score as the
metric for which to optimize. The parameters tuned were ’nu’ and ’gamma’. Training was conducted
in such a way that for a given positive class, a model was constructed with the use of the given
examples of the class and two values for the parameters to be tuned. Evaluation was then done on
a randomly sampled set of frames from a test set of video sequences containing both videos of the
positive class and videos of other, negative classes. The recall-, precision- and F1-score were then
calculated based upon the inferred classification made on these test sets of frames. The process was
repeated for each possible parameter value within the given range, and only the models which gave
the best F1-score on the test set were saved.

The output of the model given an input frame is a classification value signifying whether the model
deems the frame to be part of the set of frames it has seen, representing the class the model is to
recognize, or not. As such, performance can be measured in two ways; either by counting the number
of correctly and incorrectly classified frames, or by defining a different selection method where a
sequence of frames as a whole is classified as either part of the class trained on or not. In the case of
making a decision on the sequence as a whole, this can be achieved with the use of a threshold, set
up in such a way that if a certain number of consecutive frames in a sequence presented to the model
is deemed not to be of the class trained on, the sequence as a whole is classified as negative. This
threshold can itself be seen as a parameter that can be tuned in order to achieve a certain balance
between the risk of including false positives and ability to detect true positives. A threshold of 40
consecutive frames was tested to give an idea of how such a method would perform.

4.5 Relational Network

The relational network model is based on the idea discussed in section 3.5, but the implementation
used here differs in several key factors when compared to what is described in [7] as well as com-
pared to a siamese network such as that described in [6]. First and foremost, the objects between
which the relation score is to be calculated in this thesis are video sequences, not still images. This
has two major implications; Each sequence consists of several images, making it difficult to create a
straight forward embedding module consisting of convolutional layers as described in the paper. Each
sequence also has a temporal aspect, that is, how the content of the images in the sequence change
over the sequence is an important factor in what the sequence actually portrays. To take these two
implications into consideration, the relation net based idea is implemented using recurrent neural
networks [9].

Using a relational or siamese approach to constructing a network which at the same time takes the
temporal aspect into account requires some thorough design work. In the end, the sequential nature
of the input should be transformed into a single output, being the measure of similarity between
the two input sequences. This is what is known as a many-to-one network, and requires a recurrent
layer to handle all the elements in a sequence and produce a single output. This leads to the need to
decide where this transformation from sequence to a single element takes place. It could for example
be handled by each of the two identical parts in the relational network, and merging the output

16

from these, no longer being of a sequential nature. It could also be done at a stage further into the
network. Placing the many-to-one part of the network after the output of the two identical nets are
merged means that the merging of the output from the two arms of the network will be done at
each time step in a sequence, meaning that the result of such a merge will take effect at the time
step level. Placing the many-to-one part before the merging of the two arms will instead mean that
the merging will affect a single element, into which the temporal aspects of a sequence has been
embedded. During the implementation of such a system, both approaches were tested, and putting
the recurrent many-to-one part before the two arms are merged seemed to perform better. This can
possibly be explained intuitively as the identical recurrent networks being responsible for learning an
embedding, such that sequences deemed similar are embedded in a similar manner while dissimilar
sequences are embedded in a dissimilar manner, while the latter part of the network is responsible for
interpreting the resulting embeddings and producing a similarity score for them. The merging can
be conducted in several different ways. In [7], it consist of a simple concatenation of the embedded
features, resulting in a feature vector of twice the length of the features for the individual sequences.
In [6], the element wise difference of the two embeddings is calculated and given as input to the latter
part of the network. In the implementation presented here, the merging is conducted as follows:

{1− |xi − yi|} where xi ∈ left tensor and yi ∈ right tensor (13)

This should mean that the network is forced to learn embeddings such that two similar sequences
produce a merged tensor of values close to 1, while dissimilar sequences produce a merged tensor of
values, all of which are not close to 1. As the loss function, MSE was used. To evaluate the network,
both a test split of the data used for training (moving MNIST and UCF101) is used, as well as other
data gathered for this thesis as described in the datasets section of the report is used. The training
was monitored with the help of TensorBoard[25].

17

Figure 4: Schematic of the relational network architecture.

18

5 Results and Evaluation

Experiments were conducted with a few goals in mind. Initial experiments were conducted in order
to evaluate the feasibility of the chosen approaches. These initial experiments were conducted on a
smaller scale and on datasets not necessarily representing the whole domain of the problem. After
the feasibility of the approaches was established, further experiments where run on larger datasets
in order to evaluate the methods. This section of the report describes the specifics of each of the
experiments in regard to what data was used, and how the metrics were defined, as well as presents
the results from the experiments. The section is subdivided with subsections assigned to each of the
approaches examined, discussing the particularities of the experiment setups for each of them.

5.1 Experiment setup

5.1.1 Model validation

Validation of the different models was primarily conducted with the use of validation data from the
same domain as the training data. The reason for this is the availability of reasonable amounts of
validation data in the public datasets used. Performance on validation data taken from the same
dataset as the training data can be a good indicator of the performance of the system, but it does
not guarantee the performance level in a more realistic use case scenario. Because of this, further
evaluation was conducted with the use of datasets gathered for this express purpose.

5.1.2 OCSVM

During training, the OCSVM model is tuned with regard to the F1 score, as described in section 3.6.
In the case of experiments being run on non-video based data, such as MNIST images, the score is
measured per in-class or target class, that is, per digit being considered as the class to be identified.
Precision, recall and accuracy are also measured. In the case of experiments run on data from video
sequences, the score is measured on a frame-by-frame basis, where a positive is defined as a frame
belonging to a video sequences in the set of positive test examples and a negative being a frame
belonging to any other video sequence. Frames are selected at random during the validation phase
of the parameter tuning. When measuring the number of consecutive frames classified as in or out
of the target class, the frames are handled in a sequential, ordered manner. In the discussion, the
ramifications of the frame-by-frame approach and ways to deal with them is discussed.

5.1.3 Relation network

The setup used for the relational network is very different to the setup used for the OCSVM. Since
the model does not strive to create a decision boundary in order to be able to distinguish between
a positive target class and a negative class, but instead to be able to correctly score similar video
sequences with a high relation score and dissimilar video sequences with a low relation score, the
training is no longer conducted with the use of examples of a single class, used to construct a model
per class. Instead, sequences are paired and based on their scene given a ground truth relation score
based on the scene to which they belong. In order to avoid creating a trivially easy training and
validation set, as well as avoid creating an impossible one, the correct hardness of the similar and
dissimilar pairs has to be achieved. This is very much similar to the reasoning used when selecting
good triplets for example in the case of face recognition[24]. The definition of too easy and too hard
is done in a straight forward way: A dissimilar pair is considered too easy if the constituent sequences
belong not only to different scenes, but also to different action categories. Similar sequences, which
are defined as being of the same category and the same scene, are not allowed to actually be the
same sequence either. Instead, only sequences portraying the same scene of the same category but
not being the same example is allowed to be paired as similar, while only sequences from the same
category but not the same scene are allowed to be paired as dissimilar. Example image frames from
such sequences can be seen in figure 5.

The relational network is trained and tested in to phases; first on moving MNIST sequences generated
for this purpose, and thereafter on video sequences from the UCF101 dataset. The purpose of this is
to establish the methods viability on a more controlled dataset before evaluating it on real life video

19

Figure 5: Frames from four different videos. In respect to the top left image, the top right is considered
similar, bottom left a good choice of a dissimilar video and bottom right a too easy dissimilar video.

data. The training of the network is done with respect to the validation loss, as defined by equation
10 in section 3.7.

5.1.4 Use case evaluation

To evaluate the performance of the systems in regard to a more realistic use case scenario, the dataset
gathered from the bike room at the Axis offices was used. For each possible setup, evaluation was
done on the performance of the systems. The setups differentiated in that for the relation net ap-
proaches, the performance was measured as how well two given sequence could be recognized as either
being of the same type or not, while for the OCSVM approach the measurement was simply on how
well a model constructed for a single such motion event could differentiate between other instances
of the same event and other events. In the case of the OCSVM approach, several such models were
produced in order to cover a larger amount of possible cases.

5.2 Experiment results

5.2.1 OCSVM

5.2.1.1 MNIST feasibility study

In order to validate a proof of concept for the OCSVM approach, a test was run on the MNIST
dataset with a one-class configuration. In this test, a 100 training images of a single type of digit was
presented to the system, which then learned to distinguish between images depicting this digit and
images depicting another number. Parameter tuning was conducted for the gamma and nu parame-
ters.

20

The validation of the proof-of-concept setup of a one-class SVM system on the MNIST dataset gave
promising results, given the test setup. The performance varied widely depending on which digit was
designated as the target class, as can be seen for example in the case of training on images of the
digits 2, 7, 4 and 9. In all of these cases, the models displayed a tendency to mis-classify certain digits
as being of the target class. In the cases of models trained on 7s 4s and 9s, the problem was mutual.
In all cases, the models had a tendency to think that any of these numbers were of the target class.
This is not that surprising as handwritten 7s, 4s and 9s do share a lot in common. A somewhat more
surprising problem was encountered by the model trained on images of 2s, which miss-classified the
majority of 1s.

As for what can be said for the general performance of these models, it is important to consider
that each of them are trained only on images of a single digit, and only on a fraction of the amount
of training images at that. This makes it very difficult to compare it with most classifiers run on
the MNIST dataset, which generally are multi-class classifiers trained on the whole training dataset,
comprised of 60000 images rather then the 100 used here. The state-of-the-art error rate for such a
classifier is 0.21%[26], while the average error rate for the 10 models presented here is 13.42%. Another
factor to take into consideration when evaluating these numbers is the fact that the models are working
with raw pixel data from 32 by 32 pixel images, rather than some form of feature representation
extracted with convolutional layers. The reason for this is the low amount of information contained
in a grays scale 32 by 32 pixel image, which can be held by a 784 dimensional array of the color
intensity values. Extracting features with the help of an InceptionV3 network produces features with
a dimensionality of 2048. Such an increase in dimensionality worsens the performance of an OCSVM
model, and any other SVM model. Working with such extracted feature representations of the images
is worthwhile first after the amount of information contained in an image grows beyond the size of
the feature representation, as is the case when working on image frames from the UCF101 dataset,
for example.

Figure 6: Results of one class classification validation tests run on the MNIST dataset. The accuracy
represents the rate at which each model classified images of digits as being of the target class or not
correctly.

21

Trained on Precision Recall F1 score

Digit: 0 0.742 0.875 0.673
Digit: 1 0.847 0.936 0.885
Digit: 2 0.297 0.708 0.412
Digit: 3 0.368 0.768 0.498
Digit: 4 0.495 0.850 0.625
Digit: 5 0.268 0.705 0.389
Digit: 6 0.551 0.796 0.651
Digit: 7 0.286 0.863 0.430
Digit: 8 0.337 0.786 0.472
Digit: 9 0.353 0.877 0.503

Figure 7: Precision, Recall and F1 score for the models trained on the MNIST dataset.

5.2.1.2 Moving MNIST

To evaluate the OCSVM model with regard to sequential data, the moving MNIST [22] dataset was
generated and used according to the description in section 4.2.1 and 5.1.2. For each pair of digits,
only four sequences of 120 frames each were used as training data. The F1 score as well as the
AUROC score can be seen to vary quite a bit depending on which type of sequence was selected
as the positive target class. There can be several potential explanations for this; for example, the
number of negative example sequences containing one of the digits used in the positive test sequences,
the similarity between different digits used as well as the way digits overlap with each other during
the sequences. When using sequences with a 1 and a 5 as the target class, the score is quite low and
the accuracy of the model is not much better than what could be expected were the frames in the
sequences classified at random. When using sequences with pairs of 3 and 8 or 6 and 0 the result
is much better. It that these digits simply appear more distinct to the model. The differences in
precision, recall and F1 score can be seen in the table below. Another metric which can be studied
for the classification of sequences is the number of consecutive frames classified as being not of the
positive target class. The average number of consecutive frames being classified as true and false
positives can also be seen in the table.

(a) Metrics

Trained on Precision Recall F1

1 & 5 0.574 0.810 0.672
3 & 8 0.756 0.723 0.740
6 & 0 0.885 0.867 0.876

(b) Consecutive frames

Trained on: true pos: true neg:

1 & 5 4 12
3 & 8 8 34
6 & 3 3 49

Table 1:
(a): Precision, Recall and F1 score for models trained on different types of sequences from the moving
MNIST dataset.
(b): Number of consecutive frames classified as negative, averaged over the number of sequences.

22

(a) Model trained on sequences
of 1’s and 5’s.

(b) Model trained on sequences
of 3’s and 8’s.

(c) Model trained on sequences
of 6’s and 0’s.

Figure 8: The ROC curve for models trained on examples from three different classes of sequences.

5.2.1.3 UCF101

As for the experiments run on the UCF101 dataset, the OCSVM model was once again trained with
parameter tuning of the gamma and nu parameters, with regard to F1 score. As target class, a
number of training scenes were selected from the UCF dataset on random, all being of the same scene
as described in section 4.2, and a number of examples from these scenes were then selected as positive
training examples. Since the models are trained specifically for each set of positive examples, there is
not much that can be said of how generalizable the results are, as they vary widely from test case to
test case. To be able to ascertain more exact and interesting information about the different models
with their different setups of training data, a selection of models with the corresponding positive
training and validation data were made. This selection included both models that performed well
and models that performed poorly.

General performance measurements for models trained on different videos:

Model trained on: Precision Recall F1score
Guitar 16 0.96 0.98 0.97
Nunchucks 25 1.00 0.90 0.95
Golf Swing 4 1.00 0.82 0.90
Salsa Spin 1 1.00 0.74 0.85
Pole Vault 2 1.00 0.92 0.96
Band Marching 19 1.00 0.00 0.01
Diving 23 0.25 0.00 0.02
Jumping Jack 15 1.00 0.96 0.98

Figure 9: Precision, recall and F1 metrics for the various models trained on different classes of scenes
selected from the UCF101 dataset.

When examining the performance figures for the models, it is important to remember that the num-
bers can’t be compared directly to other systems running tests on the UCF101 dataset. Just as is
the case with the MNIST dataset, the UCF101 dataset is mainly used for multi-class classification
problems, more specifically for the classification of different human actions. What is of interest here
is instead the recognition of similarity between different scenes, enabling the classification of them
as either part of the target class or not. This problem is harder partly since the total number of
classes available in the dataset is higher, by a factor of 25, which in many cases reduces the inter-class
differences, and because the training data available is smaller in size. The difficulty is also higher in
accordance with the general reasoning about one class classification problems, in that the absence of
training examples from the negative class increases the requirements on the training data[4]. Another
consideration that has to be made is that all the metrics are measured on a frame-by-frame basis.
While this may be the most consistent way of measuring performance, it is not necessarily the best
way to infer the class membership of an entire video sequence. Such a decision might be better to

23

base on the inferred class membership of a group of consecutive frames. By counting the number of
consecutive frames inferred to be a member of a certain class, the class of the whole video can be
decided and the performance measured in this way. If such a decision is to be based on a certain
number of consecutive frames, that number will greatly affect the behavior of the system. For the
purposes of this thesis, intensive testing to find an optimal number for such a threshold will be omit-
ted, and as an example the choice has been made to set that limit to 40 frames, which seem to give
a decent performance on most tested sequences. Scenes where more than 40 consecutive frames are
considered not part of the target class, and thus being of a negative class membership, are classified
as not part of the target class. The inferred class of the video as a whole is then compared to the
ground truth, which is based upon the scene which the model has been trained on. The performance
of a sample of 8 models trained on different scenes can be seen in figure 10.

Figure 10: The Accuracy, precision and recall for eight different models, trained on different scenes.
The numbers are for videos classified as a whole, using a threshold of 40 consecutive frames before
classifying a video as not of the target class.

Figure 11: Precision for 8 different models, trained on different scenes.

By plotting the precision, recall and F1 scores individually for a group of different models trained on
different sequences, a better picture of how different models trained on different scenes perform can
be achieved. As can be seen in these plots, achieving high precision, that is, a low number of false
positives, is trivial when looking at frames individually. This can especially be seen in the case of the
model trained on the scene bandmarching 19, where the model achieves a high precision score, but it
fails almost completely at the recall score. At the frame level, the only thing needed is for the model

24

Figure 12: Recall for 8 different models, trained on different scenes.

Figure 13: F1 scores for 8 different models, trained on different scenes.

Figure 14: Number of consecutive frames classified as being negative. Averages for truly positive and
truly negative examples per model, each trained on a different scene.

to be highly discriminatory as for which frames to classify as being members of the positive target
class. When using consecutive frames to classify video sequences as a whole, a low threshold for the
number of frames needed to be classified as negative before the video as a whole is classified as such

25

will also achieve a low number of false positives. The problem is that this does not guarantee that
the model will be able to correctly classify truly positive examples at a satisfactory rate, or even any
at all. This is reflected by the relatively low recall score, as recall is a measure of the rate at which
true positives are classified as such. Of course, a dataset of this structure, being constituted of more
negative than positive examples, will naturally gravitate toward a tendency to prioritize avoiding false
positives as this is easier given the structure of the data. Because of the abundance of negative exam-
ples in the test data and the limited amount of positive test examples, the test data easily becomes
skewed as well. This is the reasoning for limiting the number of negative test examples used per
model when evaluating them, as well the use of F1 score when training the model, as it represents a
more balanced metric in which the ability to correctly classify true positives is also taken into account.

When looking at the number of frames classified as negative in positive respectively negative sequences
for the different models, it is possible to see a clear tendency to correctly classify more consecutive
frames as negative in the case of a negative sequence, than in the case of a positive sequence. This
makes it possible to, at least in the case of some of the scenes, use the model to with a high de-
gree of certainty distinguish between scenes of the same type and scenes of different types. In many
cases though, the performance leaves much to be desired. Some models even tend to classify more
consecutive frames as negative for the truly positive sequences, when compared to the negative ones.
A look at what type of scenes that produce this behavior can give some insight to why this is. A
breakdown of number of consecutive frames classified as negative, on average, for the previously used
eight models can be seen in figure 14. From this figure, it is clear that is the same two models which
have shown performance issues earlier, that still lack in performance.

Figure 15: Two leftmost images: Classified as the same scene in the UCF101 dataset, resulting in
very poor performance. Two rightmost images: Classified as the same scene in the CUF101 dataset,
resulting model has a high performance.

When studying a scene from which a high performing model can be trained and comparing it with a
scene on which it seems hard to train a well performing model, some things become apparent. In the
case of models that fail in regard to the recall rate, that is, they have a hard time recognizing frames
from the same class of scene, it is clear that at the way similar and dissimilar scenes are defined in
respect to how the data looks is to blame. For example, if different examples of the same scene are
filmed from different angles, the UCF101 dataset will sometimes still group them together as one
scene. The different angle will however make the scene appear as something completely different to
the OCSVM model, and it will thus not be able to recognize two examples of the same scene filmed
from two different angles as similar. In some cases, scenes that are dissimilar in many more ways still
are also grouped together. An example of this can be seen in figure 15.

5.2.1.4 Use Case Evaluation

With a new model being created for each positive class to be discovered, the ability to function across
multiple domains is not a requirement on the model as such. Nevertheless the format of the data
itself, in this case the format of the video sequences that make up the UCF101 dataset, can have
an effect on the performance of the system. Because of this, a smaller test with the video sequences
recorded for the purposes of this thesis was conducted. Sample frames from this dataset can be seen
in figure 16, and results from training on a sequence from this dataset can be seen in figure 17

26

Figure 16: Upper left: Frame from target class video example. Upper right: Frame from positive
example. Lower left: Frame from negative example. Lower right: Frame from negative example.

Figure 17: Left: ROC curve and confusion matrix for the model, trained on four example videos.
Right: Confusion matrix for the predicted class belonging

As can be seen from the confusion matrix in figure 17, a lot of the frames from examples from the
target class were correctly classified as such. However, the amount of false positives on a frame-by-
frame basis is very high. This is not very strange, when one considers that most of the scene remains
the same between the sequences, and the sequences do have a few frames in the beginning with only
the background, making a number of falsely classified frames unavoidable. A look at the number
of consecutively classified frames gives a better picture of the performance. Though the dataset is
very small, the confusion matrix in figure 18 shows that the number of false negatives shown in

27

figure 17 need not be a problem. Rather, the number of false positives is the main problem with
this particular model for this particular threshold of consecutive frames. Changing the threshold of
consecutive frames needed for a sequence to be classified as outside of the target class could result in
better performance. For example, lowering it from 40 to 30 frames would eliminate almost all false
positives without increasing the number of false negatives.

Figure 18: Confusion matrix for per-video classification, using a threshold of 40 consecutive frames,
using three different models.

28

5.2.2 Relation network

The first step in evaluating the relational network model is to monitor the validation metrics dur-
ing training of the model, namely validation accuracy and validation loss. This is not the same as
evaluating on a test set completely disjunct from the training set, but it does give a measure of the
performance one can expect from the model. This was done both for the case of encoding video
frames with the use of a pre-trained net, as well as encoding them with an autoencoder.

5.2.2.1 Evaluation on Moving MNIST

As the setup for the experiments run on the moving MNIST dataset using the relational network
approach when compared to the OCSVM, the results have to be considered carefully when making
any comparisons. In order to avoid creating overly long sequences containing mostly redundant in-
formation, not every consecutive frame in the sequences was used. Instead, every third frame was
selected from a sequence and put together as time steps to be fed into the recurrent network. With
the sequences being generated for the purposes of this experiment, the number of frames in each
generated video where the same, leading to the avoidance of having to omit short videos, cut long
videos off, or introduce some sort of time step padding.

As can be seen from figure 20, the accuracy with which the model could distinguish between similar
and dissimilar sequences was slightly above 90%. This is a bit worse than what one could hope for,
especially when having in mind the performance of the OCSVM model, in particular its performance
using the UCF101 dataset. The reason for the performance not being higher than this might be
explained by the data itself. In all of the moving MNIST sequences, there are a number of frames
where the digits overlap. In many of these frames, it is difficult even for a human to distinguish
between them. An example of such frames can be seen in 21.

Figure 19: Validation accuracy for the relational net model, trained on the moving MNIST dataset.

Figure 20: Validation loss for the relational net model, trained on the moving MNIST dataset.

When looking at the performance of the model when testing it on a random sample of moving MNIST
sequences, it becomes apparent that the model has a tendency to over fit. Perhaps this is not that
surprising, considering the data which make up the dataset. When taking into account the number
of frames with overlapping digits and contemplating the performance displayed by the model, it is

29

clear that the viability of the tested method can not be established by tests on this synthetic dataset
alone, and further testing is needed.

Figure 21: Images from three different sequences, one with a 1 and a 9, one with a 7 and a 9 and one
with a 3 and a 5, all with overlapping digits, making it difficult to distinguish between them.

5.2.2.2 Evaluation on UCF101 sequences

Just as is the case with data for the moving MNIST dataset, the results from training the relational
network on UCF101 data have to be carefully considered when comparing them with other results,
such as those of the OCSVM approach. The reasoning is the same; the accuracy here is not measured
on a frame-by-frame basis, but rather for sequences in their entirety. Or to be specific, in the entirety
that was selected using the frame skipping method mentioned in section 5.2.2.1.

In addition to the frame skipping method, the maximum number of time steps was also set, in the
interest of not having to train the model in several different stages adapted to different sequence
lengths. This resulted in the omission of sequences shorter than a certain number of frames, in this
case 90. Longer sequences were simply cut off after the appropriate number of frames were extracted.
The results of the training can be seen in figure 24 and 25.

Further testing was done on a random sample of a 1000 pairs of video sequences from the UCF101
dataset, with the results as seen in figure 23.The dataset used for evaluation is by no means exhaustive,
and the results of evaluation done with this data should not be interpreted as the capabilities of a state-
of-the-art system. Rather, it servers the purpose of giving an idea of the feasibility of the approach.
It is also important to note that the dataset hasn’t been subject to manual pruning in order to remove
unfit pairs of sequences like those discovered during the testing of the OCSVM approach. It is also
important to consider what exactly is used as correct and incorrect when calculating the performance
metrics. Since the model assigns a score in the range of 0 to 1, signifying the similarity between two
sequences, a correctly inferred sequence pair is a pair which is similar and receives a score of ≥ 0.5
or a sequence pair that is dissimilar and receives a score of < 0.5.
During testing, the model made some interesting mistakes, image frame examples from which can be
seen in figure 26.

5.2.2.3 Use case evaluation

When considering results from doing the smaller scale use case evaluation on footage from the bike
room, it should be noted that the model isn’t retrained for this purpose. Instead, what is actually
evaluated is the performance relative to the performance on the test set from the UCF101 dataset
on which the model was trained. This serves the purpose of examining how well the idea of pre-
training a distance metric learning network could act on a new type of scene. The tests show that
the scenes recorded in the bike room are all much more similar to each other when compared to the
UCF101 datasets dissimilar scenes, even from the same category. This results in a clear bias towards
classifying such scenes as similar when they are in fact dissimilar. This bias is so extreme that the
model classifies every video recorded in the bike room as being similar to all other videos, giving all
possible pairs very high similarity scores ??.

30

Figure 22: Confusion matrix of 1000 pairs of videos with equal amounts of similar and dissimilar
pairs.

Precision: 0.734
Recall: 0.824
F1 score: 0.776

Figure 23: Precision, recall and F1 metrics for the relation net model on pairs of videos from the
UCF101 dataset.

Figure 24: Validation accuracy for the relational net model, trained on the UCF101 dataset.

Figure 25: Validation loss for the relational net model, trained on the UCF101 dataset.

31

(a) Videos from the same scene, receiving
a low similarity score. This could be based
on the fact that the examples contain dif-
ferent gymnasts, in red and white clothing
respectively.

(b) Videos from the different scenes, receiv-
ing a high similarity score. Possibly because
what the scenes depict is similar.

Figure 26: Interesting errors on test sequences with the relational network.

Figure 27: The relational network deems all pairs of video sequences from the bikeroom to be more
similar than dissimilar. A clear case of the measure of similarity learned from the large dataset not
translating well to this new domain.

32

6 Discussion & Conclusions

There are two main lines of reasoning regarding the results, namely, questions regarding the general
problem, such as what challenges are encountered when using feedback from a user as the basis for
filtering video sequences, and more technical aspects of the problem such as the use of transfer learn-
ing and using features extracted with a network trained on still images on video sequences. This
section will first discuss the more technical aspects, before discussing the challenges around the gen-
eral problem formulation.

The technicalities regarding the solving of a one-class classification problem are rather involved and
lacking a clear-cut, general approach beside the use of more traditional tools such as support vector
machines, like the OCSVM classifier used in this thesis. This thesis has discussed the problems of
trying to solve a one-class problem with a traditional neural network approach, as a network geared
towards classification will learn a trivial solution if presented with only examples from a single class.
The use of a multi-class classifier and studying the output distributions in order to infer the mem-
bership of a target class of a sample in a one-class classification context was discussed, and while it
may produce promising results given some specific setups, it does not generalize very well. What was
seen in the results from the use of an OCSVM on features extracted frame-by-frame was somewhat
surprising. In many cases the performance was very high, especially when allowing for a number of
misclassified frames before classifying a video as a whole. It does however become clear that there
are some real limitations with such a solution, something which could be seen on the small test set of
recordings from the bike room, where a larger proportion of frames were misclassified when compared
to the UCF101 dataset. From the experiment results, both on the moving MNIST dataset as well
as the UCF101 dataset, the effects of the quality of the data used for evaluation also was apparent.
In the case of the UCF101 dataset, examples were given showing how dissimilar scenes which, based
upon their names, should be similar actually were. The examples showing how digits in the moving
MNIST dataset overlap in many of the frames also point out a problem with using that particular
generated dataset as anything more than a very general indication of performance of a system. The
low amount of information in the moving MNIST dataset is probably responsible for the fact that
the OCSVM model actually performed better on the UCF101 dataset, which should intuitively be
more complex and more difficult to learn a tight enough decision boundary for.

As for the use of transfer learning, which has been employed heavily in this thesis, the results are in
line with what has been discussed and shown in previous work, such as [12]. When it comes to the
question of how well this method translates to the domain of video, wherein the features are extracted
from a single frame at a time, much like the traditional use on still images, a lot of promise has been
shown here. The results are especially striking when considering the performance of the OCSVM
method on a frame-by-frame basis, which often manages to classify a high proportion of truly posi-
tive frames as such, while generally keeping the rate of false positives low. This would suggest that
the temporal nature of the sequences is less important for distinguishing between sequences, than
what would seem to be the case at first glance.

In an effort to find a way to solve the problem of recognizing video sequences from only positive
examples, a distance metric learning relational network was tested. As for the results from these
tests, a lot of interesting conclusions can be drawn. The performance of such a network is not only
dependent on the quantity and quality of the data, but also on the design of the network itself, as
well as the parameters selected during training such as the learning rate. To find an optimal design
of the network is extremely complicated, as there is no real established methodology for this. An
increase in capacity of the network is closely correlated to the maximum accuracy and minimum loss
on the training data, but does not generally lead to better performance on the validation dataset.
This is a symptom of over-fitting, and follows the reasoning in [9], where it is stated that over-fitting
can occur when some hyperparameter has a large value, in this case the number of nodes. According
to the universal approximation theorem, it should be possible to achieve any accuracy required, given
that a network is designed large enough[9]. This tendency to over-fit and thus perform worse on the
validation data limits the improvement that can be made by increasing the capacity of the network.
This tendency to over-fit could clearly be seen when training the model on pairs of videos from the
UCF101 dataset and then testing it on pairs of videos recorded in the bikeroom at the Axis offices,

33

where the model deemed all pairs as similar. This limitation is especially crucial when the model is
to be used in a new setting, where performance on validation data from the dataset used to train the
model might not be indicative of performance in the new setting. The clear way in which the model
produces an inferred relation score can however be used to, if not increase performance, clearly show
for two sequences if they are deemed similar and not. Overall, considering the limited amount of
fine tuning the details of the network architecture and the lack of filtering out unsuitable data, the
relational network performs quite well in many cases. Just as is the case with the OCSVM though,
there are some sequence pairs which causes the model to behave unpredictably, and it is not always
clear exactly why this is the case. This leads to the same problem as for the OCSVM, where it is
hard to know to what degree a user can trust such a system to behave in the expected manner.

It is not obvious that one method is clearly superior, but there are a few things which speak in
the favor of the relation net approach, even though the performance was terrible when using videos
from a completely different dataset than what the model was trained on. The main advantage is the
ability to train on an arbitrarily large dataset in advance, hopefully resulting in a learned distance
metric that is meaningful in as wide a range of use cases as possible. This could possible make the
system less dependent on the quality of the data a user provides it with, and also enable clearer
communication with the user of what the system does. For example, for a given video sequence
provided from a user, the system could give a similarity score for new sequences immediately, pro-
viding the user with information about how the system will act. Tests on pairs of videos completely
disjunct from the training dataset does however show that the approach of training in advance on
other data is a double edged sword, and the dataset selected for training would need to be carefully
examined for problems such as those described in this report, with videos from the UCF101 dataset
being labeled in a way so as to suggest them being similar, while in reality this was not always the case.

As for the general question of the viability of using user feedback in the form of examples to have a
system recognize similar sequences, it is still an open question. The ambiguities inherent in such an
approach might make it unsuitable in many cases. This report has previously touched upon the issue
of what is really meant by an motion event, and that question is key to this problem. It must be
possible for a user to know with a high degree of certainty what exactly the system thinks it should
exclude, given a certain user feedback. As this is hard to know before the system is tested on a
wide variety of scenarios for each possible use case, not much can be said about how something along
those terms would be achieved. In a surveillance system this poses a major problem, since such a
system needs to act in a predictable and expected manner. An example that previously was given is a
scenario in which a garbage truck passing through the surveilled area is to be recognized and excluded
from events that are to raise a motion alarm. The reasoning that was presented was that there are a
lot of ways to interpret such a scenario. Should the same truck driving through the scene in different
directions be seen as the same or different events? How similar does another garbage truck have to
be to be considered as the same type of event? What about the relationship with other entities in the
scene? All of these questions, and more, would have to answered in a clear and consistent manner in
order to correctly define what a system should and should not recognize. And even with answers in
place for those questions, still more arise when the problem is observed in further detail. How can a
user of such a system know what the system actually has learned to recognize? The same would be
the case even with the use of a human operator. The reader might once again consider the garbage
truck scenario, and imagine that a human operator should be given instructions of ignoring such an
event, not raising an alarm should it occur. What information would the operator need to accomplish
this task? If the operator is presented with a video sequence containing said garbage truck, will the
operator truly recognize the event of the garbage truck driving through the scene as what is to be
ignored? It could just as well be that the operator interprets this as vehicles in general should be
ignored, or it might be something completely different taking place in the scene. The human operator
has one great advantage: the ability to ask for further clarification, as well as being asked what has
been understood about the scene. In the case of a system being trained using example data, the
way what the system has understood about the scene can only manifest itself in the reaction of the
system upon encountering another scene. Thus the only way to figure out what the system will do
in a given scenario, is to present it with that scenario. This limits the ability to trust the system to
act in accordance the the users wishes in new, previously not encountered scenarios. These scenarios
might very well be when a surveillance systems operating characteristics are most critical, but it will

34

also be when they are the least reliable.

There is a famous, and probably untrue, story of a machine learning project commissioned by the
US army which had the goal of being able to automatically detect tanks among trees in images. A
system based on a neural network was designed and trained on images of tanks among trees and
tress without tanks among them. On the test set taken from the same dataset the system performed
admirably, but as soon as the performance was evaluated in another setting, it performed no better
than chance. It turned out that the dataset was such that all the images containing tanks were taken
on a cloudy day, and all images of just trees were taken on a sunny day, and thus the system had
learned to classify cloudy versus sunny weather. While the veracity of this story is questionable at
best, its morals still hold true. It is very important that training of a system is done on data that
really represents the problem to be solved. In the case of using as little data as possible, and at that,
data supplied by a user as feedback to the system, it is hardly certain that this data will be of the
quality required for the system to learn the appropriate things. And just as in the case of the story
of the tanks in the trees, a system may very well exhibit good performance on a test set of the same
type as the training data, tricking a user into the false belief that the system is doing what the user
expects it to do, for it to fail completely given another testing environment.

6.1 Conclusions

This report has thoroughly established the challenges with the problem of using feedback from a user
to create a system for filtering motion events in video, both in terms of the general problem and the
more technical aspects. From the experiment results presented here, it is clear that working with a
low amount of data from a single class is challenging indeed, and especially so in the case of that data
being made up of video sequences. Even with the challenges and problems inherit in the problem,
a surprisingly good performance was shown with the use of transfer learning for extracting features
from individual video frames and using a standard OCSVM model to train on these features. There
were however some clear limitations to this approach. Some of these limitations include an erratic
behavior under certain circumstances, which can be hard to predict in advance, as shown by the very
low performance in some tests. The use of an extra mechanism for classifying a video sequence as
a whole based upon a threshold number of consecutive frames classified as either part of the target
class or not shows that the pretty basic approach of using a support vector machine actually can deal
with sequential data.

As for the transfer learning itself, it proved very successful together with the OCSVM model, and the
results from the distance metric learning relation net strengthen the notion that a network pre-trained
in another domain can provide meaningful abstractions even in a sequential setting. If another en-
coding could produce even better representations of the data is still an open question, however.

With the use of a distance metric learning approach, the hope was to avoid the problem of only being
able to train on the few positive examples available for a given target class, and instead learn to com-
pare sequences. The hope was that the increased amount of possible training data, combined with
the fact that such a model also took the temporal nature of the data into account, being implemented
in a recurrent manner, would increase the performance. It was shown that this was not as easy as
first thought, mainly because of the data available. In the case of the generated moving MNIST
dataset, many sequences deemed dissimilar were in fact very similar to the human eye, a result of the
digits which make up the sequences overlapping in many of the frames. In the case of the UCF101
dataset, many sequences deemed similar based upon the naming conventions of the dataset were in
fact dissimilar to the human eye, as could be seen in the example given in figure 15. There also seem
to be a large difference in what becomes the learned definition of similar in dissimilar on both the
UCF101 and the moving MNIST dataset, when comparing the results on these datasets with results
on videos recorded in the bike room, where all videos are classified as similar. This complete failure
to identify dissimilar sequences is not that strange when considering the data that the system has
been trained on. It is however interesting to consider the fact that the more basic OCSVM model
is less susceptible to this problem of training data being too different from an actual use case, as it
is trained anew for every scenario. Since the OCSVM approach and relation network work in such

35

different ways, it is in the end hard to give a definitive answer as to which performs more favorably.

Many of the challenges of the general problem are not related to technical aspects, but rather to
more soft aspects, such as how exactly terms are defined, and how concepts are communicated with
a user. In the introduction and the discussion sections these problems were discussed and though
many interesting things can be said about them, clear answers are still missing. Further studies will
be needed to find a suitable way of defining terms like motion event in a way such that both a user
and a developer understand exactly what is meant. Exactly how a system would communicate its
understanding of a users requests also needs further exploration. What is certain is the importance
of these problems, and it is clear that without clear definitions it is impossible to implement a system
of this type that will work in satisfactory manner, no matter the performance of a system.

6.2 Summary

In this report the problem of basing the filtering of motion detection alarms on static filters has been
presented, and the need for a more adaptive way to suppress unwanted alarms has been discussed.
The approach for solving such a problem that has been discussed is the use of feedback from a user
in the form of video sequence examples. The report has discussed two different ways to use video
sequence examples to recognize new, previously unseen video sequences and classify them as either
similar or dissimilar to the provided examples. The use of transfer learning was discussed and imple-
mented using a neural network pre-trained on the ImageNet dataset, which extracted features from
image frames from the video sequences. Both methods were tested on a generated dataset, made up
sequences of moving digits from the MNIST dataset, as well as videos from the UCF101 dataset and
additionally on a small dataset of videos recorded for the purposes of this thesis. The results showed
that a basic system using OCSVM can perform quite well when working on features extracted with a
pre trained network, even though the dimensionality of such features were quite large. It also became
apparent when studying the performance of a OCSVM model on the standard MNIST dataset that
feature extraction is not always beneficial, which was the case with images from the MNIST dataset
being made up of only 28 · 28 pixel images.

The effects of the quality of a dataset has also been explored, and the report showed the detrimental
effects of relying solely on the conventions used for naming different scenes in the UCF101 dataset,
as this was not always a good basis for the distinction between similar and dissimilar sequences. The
negative effects of the problems with the dataset were especially apparent in the case of the relational
network, as it relied on being able to train on a large number of video sequence pairs in a semi-
supervised manner, where the label of the pair, being either similar or dissimilar, was dependent on
the naming of the video sequences. The effects of this could also be seen in the case of the OCSVM
approach, though to a lesser extent as the problems were naturally limited to models trained on
scenes with a high intraclass variance.

The OCSVM methods reliance on a new model for each scenario has both benefits and drawbacks. As
discussed before, this could help make it less susceptible to limitations in the data for a given scene,
as the effects would be limited to the model trained on that scene. At the same time, the requirement
to train a new model for each possible scenario does not scale very well. Each time a user would like
to exclude a new type of motion event, a new model would have to be trained. While the training of
a OCSVM model is far less computationally expensive than a neural network, it is still a step that
needs to be taken, and the models though lightweight still require some storage space. There is also
the problem of scale when it is time to infer the class of a new video sequence, since every model
would need to be run with the sequence as input before a definitive decision on the class affiliation
of the sequence.

The use of a relational network solves many of the shortcomings of the OCSVM approach, in that it
could be trained on a large, well-crafted dataset before it is used by a user. The user would then need
only to supply example videos, with which new video sequences would be paired and their similarity
calculated. This does however introduce new problems, mainly regarding the time and resources
needed to ensure a large and representative enough dataset is used. The UCF101 dataset used in

36

this report seemed unfit for this task, as the relation network model performed well on a test set
from this dataset, but could not distinguish between the sequences recorded in the bike room at the
Axis offices. The discussion section included a discussion of the problem of knowing what the model
actually has learned, which is a very difficult problem, and puts a limit on the reliability of the system.

The discussion section also discussed the problems with the general idea of using examples of events
as a basis for filtering new events, classifying them based on the idea that they are either similar or
dissimilar to events that a user want to ignore, and suppress motion alarms from. The challenges
around this discussed mainly revolve around the problem of defining exactly what makes up an event,
and communicating between the system and the user in a way such that confusion around this can
be avoided.

6.3 Future work

Though this thesis has shown that there are numerous problems with a feedback based recognition
system, there are several interesting avenues for future work. One such promising approach is the
combination of a neural network with a support vector machine for one class classification. By train-
ing a recurring network with the goal of minimizing an enclosing hypersphere, and using this as the
loss function, a one-class decision boundary can be established [27]. A similar approach is discussed in
[28], where the authors use a feed-forward network to achieve the same goal, rather than a recurrent
network. By incorporating the use of a OC-SVM into the training of the network, the network can be
able to learn a better embedding when compared to just using a OC-SVM on features extracted with
a pre-trained network, as descriptive as such features might very well be. Learning representations
that are expressly tailored to the use case at hand has been discussed in various papers, such as [29],
and has shown great promise when it comes to solving the problem of working with very limited data.
Possibly such an approach may work even in the recurrent, sequence based case, forcing a network
to learn a representation that is meaningful in the sense that it enables the intra-class distances to
become small for an entire video sequence and not just still images. This way, it could be possible
to learn a representation that is good in the sense discussed in [9], that is, enabling the separation of
underlying causal factors.

Another possibility to enhance the performance of a system aiming to learn video sequence similarity
and dissimilarity would be to improve the data available, both in quality and quantity. This could
help alleviate some of the problems with sequences that according to the naming convention of the
UCF101 should be similar, but in reality are very dissimilar. To exclude scenes with a lot of variance
between examples that based on their name should be similar could benefit the model performance
wise. A problem with this is that manual pruning of unfit data is very time consuming, as it requires
manually inspecting each video sequence, and in the case of UCF101 they number 13320, making for
a very ambitious task. It is also hard to imagine a way to automate such a process, as this would
require a system to be able to do what the system the data is needed for is supposed to do. Another
possible area of experimentation related to the dataset could be the use of generated or synthetically
augmented datasets to increase the coverage of available data.

During this thesis, the whole frame of the video sequences has been used. A possible future area
of experimentation would be to use cropped video sequences, which only display what gave rise to
detected motion, for example by putting a bounding box around a moving object and cropping the
image frames to this bounding box. With such an approach, it would be possible to distinguish
between multiple concurrent moving objects. This would also limit the possibility that a system
learns the wrong thing, as exclusion of all objects not being the one causing the motion the user
wants recognized lets the system focus on only that, and lets the user be sure of what it is the system
is actually learning from.

37

References

[1] Henrik Lindelöf Bilski. Heterogeneous sensor fusion: Verification and optimization, 2017. Student
Paper.

[2] Jonathan Lundholm, Bibby Steneram, Paul Maxwell. False alarm filtering within camera surveil-
lance using an external object classification service, 2017. Student Paper.

[3] Ronald Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7(2):179–188.

[4] Shehroz S. Khan and Michael G. Madden. A survey of recent trends in one class classification.
July 2017.

[5] David MJ Tax, Robert PW Duin. Support vector data description. Machine Learning, pages
45–66, 2004.

[6] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and Shah R. Signature verification using a
”siamese” time delay neural network. 1994.

[7] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales. Learning to
Compare: Relation Network for Few-Shot Learning. ArXiv e-prints, November 2017.

[8] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception Archi-
tecture for Computer Vision. ArXiv e-prints, December 2015.

[9] Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[10] Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves. Playing atari with deep reinforcement learning. 2013.
https://arxiv.org/pdf/1312.5602v1.pdf.

[11] Grant Sanderson. 3blue1brown. Available at https://www.youtube.com/watch?v=

aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi.

[12] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, Stefan Carlsson. Cnn features off-
the-shelf: an astounding baseline for recognition. 2014. https://arxiv.org/pdf/1403.6382.pdf.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
ArXiv e-prints, April 2017.

[14] Imagenet image dataset. available at http://image-net.org/.

[15] Keras. Available at https://keras.io/.

[16] Tensorflow. Available at https://www.tensorflow.org/.

[17] Python programming language.

[18] van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E,
Yu T. scikit-image: image processing in python, 2014. Available at http://scikit-image.org/.

[19] scikit video. Available at http://www.scikit-video.org/stable/io.html.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[21] Y. Bengio Y. LeCun, L. Bottou and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.

38

[22] moving mnist. Available at https://gist.github.com/tencia/afb129122a64bde3bd0c.

[23] Khurram Soomro, Amir Roshan Zamir, Mubarak Shah. UCF101: A Dataset of 101 Human
Actions Classes From Videos in The Wild. Center for Research in Computer Vision, Orlando,
FL 32816, USA, 2012.

[24] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A Unified Embedding for Face Recognition
and Clustering. ArXiv e-prints, March 2015.

[25] Tensorboard. see https://www.tensorflow.org/programmers_guide/summaries_and_

tensorboard.

[26] Sixin Zhang Yann LeCun Rob Fergus Li Wan, Matthew Zeiler. Regularization of Neural Network
using DropConnect. 2013.

[27] A. F. Agarap. A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and
Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data. ArXiv e-prints,
September 2017.

[28] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui,
Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 4393–4402, Stock-
holmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[29] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, S. Pankanti, R. Feris, A. Kumar,
R. Giryes, and A. M. Bronstein. RepMet: Representative-based metric learning for classification
and one-shot object detection. ArXiv e-prints, June 2018.

39

