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Abstract

This thesis explores Artificial Neural Networks (ANNs) for predictive time
series classification for Predictive Maintenance (PdM). Time slicing and time
shifting are methods used, to enable the models to find features over time, and
to predict into the future, respectively. Architectures of increasing complex-
ity are explored for Feed Forward Neural Networks (FFNNs), Convolutional
Neural Networks (CNNs) & Long Short-Term Memory (LSTM) networks, of
which the best performing are compared. CNNs & LSTM are found to perform
better than FFNNSs since they are designed to handle sequences of data. This
research shows that a model with high accuracy might in fact be a bad model
for PdM, especially when the data set is imbalanced. Additional metrics such
as Confusion Matrices and Receiver Operating Characteristic (ROC)-curves
are needed to evaluate models. This thesis shows that consistent, representa-
tive and a lot of data of good quality is needed for a well performing ANN.
ANNS for PAM reduces the required domain knowledge, and perform well for
common/frequent classes, but less so for the less frequent classes.

Keywords: Predictive Maintenance, Time Series Classification, Machine Learning,
Artificial Neural Networks, FFNN, CNN, LSTM
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ANN Artificial Neural Network.
CNN Convolutional Neural Network.
FFNN Feed Forward Neural Network.
LSTM Long Short-Term Memory.
ML Machine Learning.

PdM Predictive Maintenance.

RNN Recurrent Neural Network.
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Chapter 1

Introduction

Machine Learning (ML) can be used to perform Predictive Maintenance (PdM) on ma-
chines. With the vast amount of time series data constantly being produced by machines
in factories and plants, such as sensor and control values, there is a lot of information
available to predict breakdowns of the machines.

This thesis will investigate how Artificial Neural Networks (ANN) can be used to
perform PdM. More specifically, Feed Forward Neural Networks (FFNN), Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks will be focused
on, to compare performance for predictive time series classification.

1.1 Background

Maintenance of industrial machines is important to maximize up-time and quality of pro-
duction. Lack of maintenance will result in a decrease in production or reduced quality.
Unnecessary maintenance leads to high maintenance costs which are both unnecessary
economic and environmental costs.

Internet of Things (IoT) is increasingly used and allows devices to connect to networks
and to send and exchange data. This technology is being spread to factories and industrial
plants, where the first step is connecting machines and gathering data. Machine-generated
data is collected and stored in the cloud to be utilized for visualization and analysis. Im-
portant aspects for the end-user is how this data can be utilized to improve functionality,
visualization, and analysis to improve maintenance and operability of industrial plants.
Industry 4.0 is the term used when referring to the digitalization of factories and plants,
of making them smarter and more autonomous.

Machine-generated data will generally look very different from factory to factory; there
is no industry standard for the format of the data. Additionally, the regularity, the amount
and the quality of the machine-generated data vary enormously. However, a common factor
is that the data is sequential, since factories and industrial plants often are in operation
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1. INTRODUCTION

24/7, constantly producing data. The benefit of time series data is that it is possible to see
changes in value over time.

Predictive Maintenance (PdM), a method for optimizing machine maintenance, is us-
ing time series machine data to predict the need for maintenance of connected machines.
By connecting machines and thereby being able to remotely monitor and control machines,
PdM can be performed. PdM has been discussed and researched for several years (e.g.
[Dekker, [1996]] and [Mobley, 2002]). The common idea is that by monitoring indicators
of the operating condition of the machines, the information will be available for ensuring
the maximum interval between repairs and minimize the number and cost of unscheduled
outages caused by machine failure [Mobley, [2002].

Machine Learning (ML), and more specifically Artificial Neural Networks (ANNs),
has seen a major upswing in popularity and usage across many industries. The break-
through has come with the increased computational power of modern computers, that can
handle massive amounts of data to construct advanced, and often efficient ANN’s that can
find relations in large data sets that otherwise have been hard to find. Since machine-
generated data sets are very large, it becomes interesting to use ANN’s to perform PdM.

The amount of available machine-generated data will continue to increase and is a
prerequisite for predictive maintenance. Research have been done in using ML for PAM
[Cline et al., 2017; |Wu et al.,|2018; Singhl 2017} | Xiaol 2015} Kim et al., 2015; Xie et al.,
2015]. This thesis will research how ANN can be used to implement PdM in the machine
industry.

1.2 Research Question

The main focus for this thesis is on how ANNSs can be used for predictive time series
classification to facilitate PdAM. Some alternatives to ANNs for PAM, that previously have
been investigated, is mentioned in section[I.3] More specifically a few questions are asked,
which this thesis aims to investigate.

* How can ANNs handle time series/continuous data, and how good are they at finding
features over time?

* How can ANN models for PAM be evaluated and compared?
* What are the benefits & limitations of using ANN models for PAM?

1.2.1 Data Set

The data set used for research in this thesis is a data set from the Data Challenge at the
Annual Conference of the Prognostics and Health Management Society 2015 [[Prognostics
and Health Management Society, [2015]]. The data set is divided into three parts containing
different kind of samples from a plant. Part one and two are the input data consisting of
sensor values from different parts of the plant at certain time stamps. The third part is the
target data and consists of time intervals with a specific error code. The data sets contain
different problems which can occur in machine-generated data sets. These problems in-
clude missing values when sensor values are missing for a timestamp and imbalanced data
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when one or more target classes (or error codes) are under-represented.

This data set is chosen because it contains many of the attributes that can be expected
when working with PdM. Previous research has been done on this data set using other
techniques than ANNs which makes this data set an even better choice. The purpose of
the ML model is to classify time sequences, where each class corresponds to a certain
error code or state.

1.3 Related Work

There is a lot of research that has been done on ML and ANNSs, especially in the recent
years. PdM has also been investigated, with different interpretations of what PdM is, as
well as how it can be done. However, the investigation of using ANN for predictive time
series classification for doing PdM is limited.

1.3.1 Machine Learning for Predictive Maintenance

[Cline et al., 2017]] cover machine learning for predictive maintenance. Cline et al. dis-
cuss how ML analysis can be used to improve maintenance by identifying failures and
improving preventive maintenance. A real-world use-case on a gas & oil drilling plant,
where historic data have been gathered for a long time, is used to conduct experiments.
In the paper, they were able to increase the failure detection from roughly 1% to 61%. It
is concluded that the presented model resulted in a major improvement compared to the
current system.

LSTM have been used in previous research when predicting Remaining Useful Life
(RUL) for turbofan engines [Wu et al.l, 2018]]. In this case, LSTM networks are applied
to a regression problem when calculating RUL. Although the method is applied only to
one type of use case, Wu et al shows that the model is general enough to be applied to dif-
ferent use cases which predict condition based on sensor values. Vanilla LSTM resulted
in increased performance compared to Recurrent Neural Networks (RNN) and Gated Re-
current Units [Wu et al., [2018]]. From the RNN architectures mentioned above, this thesis
will use LSTM.

1.3.2 LSTM for anomaly detection

[Singh, 2017] has used an unsupervised approach in using a Long Short-Term Memory
(LSTM) network for anomaly detection in sequential time series data. One approach is to
predict a sequence of data and compare the predicted sequence of data with a real sequence
of data. A LSTM model is trained and validated using normal data to be able to predict
a normal sequence g time steps ahead. After training on normal data, a different data set
containing anomalies is used and an anomaly score is calculated using a threshold on pre-
diction density on a maximum likelihood estimation. The threshold is set to minimize the
number of false positives. Keras with Tensorflow as backend was used for evaluation (see
section [3.2] for more about these tools). The author concluded that how hyperparameters
should be used and set in a network depends on the data set. Three different data sets with
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different characteristics were used and each used different hyperparameters and settings
in the LSTM layers. A simpler approach using less complex networks was used and the
author suggests researching simpler models before using LSTM nodes. The reason is that
it is hard to understand more complex networks and they are thereby harder to configure
and optimize. LSTM networks will only have an advantage if dependencies in the data set
are complex and long-term.

Initial research in this thesis will focus on simpler models and extend models to include
more complex nodes, e.g. LSTM. However, this thesis will not include unsupervised learn-
ing and will not train on a normal sequence to be able to recognize anomalies, since the
data set used in this thesis contains output values for each set of input signals. Instead, the
models will be trained to predict all kinds of states, i.e. normal and faulty states.

1.3.3 PHM 2015

The data set used in the thesis was part of a competition and efforts made in the competition
PHM 2015, Prognostics and Health Management Society [2015], is documented through
multiple papers [Xiaol 2015 Kim et al., 2015} Xie et al., [2015].

[Xiaol 2015]] investigates ML techniques to model each plant separately and predict
the start and end time of time intervals for error codes. The investigated ML techniques
include K-nearest neighbor, Naive Bayes, Logistic Regression, Random Forest and Gradi-
ent Boosting. The results were promising and demonstrated the usefulness of data-driven
ANN:Ss, such as Convolution Neural Networks. However, ANNs were left as future work
[Xiaol 2015].

[Kim et al., 2015]] suggest an approach to first construct a physical representation of
the data to be able to extract features from the input dimension. The features were used
to recover and predict fault logs using a Fisher Discriminant Analysis (FDA). The FDA
outperformed both Support Vector Machine and K-nearest neighbor.

[Xie et al.,[2015]] approach the problem by first cleansing the data and aligning the data
by time stamps, followed by conducting feature extraction combining different features into
feature vectors. The feature vectors are used with Random Forest and Gradient Boosting
to classify error codes. Random Forest performed better than Gradient Boosting in most
cases.

The three papers propose using ML to solve the PAM problem. Neural networks were
not an approach included in any of the papers, but it was suggested as future work.

1.3.4 Current Products and Services on the Market

At the writing of this thesis project, PAM is a very hot topic in the machine industry. Most
companies wish to be a part of the technological advancement, to embrace the Industry
4.0, and many companies have taken initial steps. The first steps include connecting ma-
chines and collecting data to cloud services (classic 10T ideas). However, there are a few
companies that currently offer concrete PAM solution

IThe following companies are just a selection of what is available on the market. The mentioned
companies were approached at Underhall (Europe’s 1. Maintenance Trade Fair and Conference, https:
//en.underhall.se/)on 13 March 2018.
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1.4 CONTRIBUTION

For instance Sigma IT Consulting offer a service which they call Asset by Sigma. It
is marketed as a PAM service, that has been implemented for a few customers in small-
scale scenarios [Sigma [T Consulting, 2018]. The implemented cases have so far been a
variant of PAM: by examining how much different sensor values deviate from the expected
normally distributed values, they provide a health status out of 100%. When the health
status is below a certain threshold level, operators are notified that maintenance is needed.
By definition this is not a real prediction, since a predicted time of break down (or similar)
is not provided, but rather a current health status. This is still very useful, and the tool is
also supposed to have support for prediction. The algorithms in Asset by Sigma are based
on ML.

Vikon offers a product to facilitate maintenance of machines - condition based moni-
toring [Vikon, 2018]]. By monitoring vibrations of different frequencies in different parts
of a machine, and comparing with expected values for respective component in data sets
which they have gathered over the past 20 years, they provide individual health statuses of
different components as well as the machine as a whole. This is quite similar to that of
Sigma, but the big difference is that Vikon has a more niche market focusing on vibration.
Unlike Sigma, Vikon successfully reuses data from other applications for new areas of
applications.

RS Production is a product by [Good Solutions, [2018]|] that helps to optimize the Over-
all Equipment Efficiency (OEE) for its customers. Good Solution’s tool facilitates the
gathering and visualization of data, and is an example of many companies that have taken
big steps towards Industry 4.0, but that have not implemented PdM solutions as of yet.

1.4 Contribution

ML, especially ANNS, is gaining popularity and usage in the industry as well as academi-
cally, and is hence experiencing a lot of development. Though there is research on applying
ML in many areas, there is a limited amount of research that has been done on how to apply
ANNSss for PAM. This thesis will help future research by showing that numerous evaluation
techniques are necessary to effectively evaluate the success of a model for PdM, as well as
by demonstrating techniques for finding features over time (time slicing) and for predicting
into the future (time shifting).

1.5 Structure

This report is structured as follows. In chapter[2]the underlying theory for this thesis project
is laid out. PdM and the data requirements needed for PdM is presented in this chapter fol-
lowed by theory covering Artificial Neural Networks. This chapter also discusses different
ways to evaluate the performance of ML models.

Chapter [3] explains the different parts of the method used in the thesis, covering the
steps that are taken for preprocessing the data set, the tools that are used in this thesis, fol-
lowed by a presentation of the custom framework constructed. This chapter also presents
the different specific architectures and hyper-parameters of ANNs that are evaluated.

In chapter [ the results are presented, followed by a discussion and a conclusion.
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Chapter 2
Theory

This chapter presents the concept of PAM in section [2.1) and present the type and format
of data applicable for PAM in section[2.2] Section [2.3|will explain ANNSs as well as some
essential ML theory, followed by a presentation of some ANN variants in section [2.4]
Finally different ways to evaluate the performance of ML models is covered in section[2.5]

2.1 Predictive Maintenance

The area of Predictive Maintenance (PdM) has been discussed and researched since the
90’s (e.g. [Dekker, |[1996] and [Mobley, 2002]]). The common idea is that by monitoring
indicators of the operating condition of the machines, the data will be available to ensure
the maximum interval between repairs and minimize the number and cost of unscheduled
outages caused by machine failure [Mobley, 2002]. However, Mobley claims that PAM is
more than that; it is a philosophy that uses the actual operating condition of plant equip-
ment and systems to optimize total plant operation.

Maintenance in the industry can be either preventive or corrective maintenance. Cor-
rective maintenance is performed to correct errors after breakdowns or wear. Preventive
maintenance is anything done preemptively to avoid failures, breakdowns and unneces-
sary wear. The simplest kind of preventive maintenance is time-based maintenance where
parts are replaced or repaired according to a predetermined schedule. This can result in
replacing and repairing parts and machines that are in fact not in need of replacement or re-
pair, which increases cost and environmental impact. A more advanced type of preventive
maintenance is state-based maintenance. State-based maintenance is conducted according
to the state of the machine instead of a predetermined schedule and can be divided into
two main parts; diagnostics and prognostics. In diagnostics, the sensor data is interpreted
and used to estimate the state of a machine, and in prognostics, the sensor data is used to
predict when a mechanical failure or breakdown will occur. One technique for prognostic
maintenance is Predictive Maintenance (see figure [2.1).

15



2. THEORY

™

State-based Time-based

Prognostics Diagnostics

Figure 2.1: A presentation of different aspects of maintenance

PdM can be model-based, where a model of a machine is constructed and used to
interpret sensor data and to predict the state of the machine. Different approaches can be
used for system modeling. Some approaches require a domain expert to construct digital
models for all processes in a system (examples of parameters derived from system models
can be seen in table [2.1)). ML for system modeling requires less domain knowledge since
the models are trained to simulate a certain system instead of needing domain experts to
define system models. In this thesis ML models will be trained to model a plant based on
control signals and sensor values and thereby predict future error codes.

The overall objective with PdM is to predict future break-downs and service needs
early enough for the problem to be fixed. For smaller issues that are easy to adjust, a short
prediction period is required. When the issue concerns bigger parts that might have to be
replaced, the prediction period needs to be longer. Depending on the data and application,
different period lengths might be applicable.

Vibration Monitoring || analyze the vibration energy in the range 1-30,000 Hz.

Thermography monitor the heat (IR) produced by the machines.
Tribology lubricating oil analysis and wear particle analysis.
Ultrasonics monitor noise frequencies above 30 kHz.

Visual Inspection

Table 2.1: Typical techniques for PdAM [Mobley, 2002]
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2.2 DATA TYPE & FORMAT

2.1.1 Benchmark

An easy approach to evaluating a PAM program’s success is to look at the cost and pro-
ductivity benefits compared to the previous maintenance program. Predicting 50% of all
failures with a PdM solution, compared to predicting 15% with a previous maintenance
program, is a massive improvement. However, even with an obvious increase in profitabil-
ity, the industry today is hard-convinced with a solution that doesn’t offer near to 100%
prediction. Therefore it is important to be able to benchmark models and compare their
performance to decide which is better. As of today, there is no official way to benchmark
the success of a PAM program or PdM algorithm.

Efforts are being made to construct an evaluation tool of maintenance, Smart Assess-
ment Maintenance (SMASh). SMASh is an initiative to define what Smart Maintenance is
and to construct an evaluation too [[Bokrantz et al., 2017]]. Smart Maintenance focuses on
the organizational structure of maintenance, from the competence of maintenance engi-
neers to the technical solutions of being able to perform Smart Maintenance. The technical
part is based on data-driven decisions and can be used to either augment human decision
making or automate parts of the maintenance workflow. Prerequisites for data-driven de-
cisions are the gathering of data, connecting of machines and gathering and storing of
control signals and sensor data. PdM is part of the data-driven decision making procedure
and is one step to augment or automate decisions.

2.2 Data Type & Format

In modern factories and plants, massive amounts of data is produced around the clock. In
a typical production line, there are multiple machines that are synchronized and working
together. Which data is logged and/or available in such a system (or a single machine)
varies greatly; sensor values, states, error codes, calculations, images etc. Additionally,
the format, size and consistency of the data is also very varied. However, an attribute the
data commonly shares is that it is sequential; the data is sampled at a regular time interval
(see section[2.2.2)). It is possible to see changes in data values over time.

2.2.1 Data for Predictive Maintenance

To successfully perform PdM (see section the data must contain certain information.
Ideally it should contain target values that represent machine wear and/or breakdown. Re-
alistically the machine-generated data will not contain this in plain sight, or not at all.
Often the data needs to be pre-processed; filtered and/or transformed.

A typical scenario at a factory/plant would be to have a large data set; sensor values
and other variables logged at a continuous interval. Hopefully some of this data represents
one, or several, of the following information which can be used for target values:

» Healthy state vs error state
¢ Error codes
¢ Machine and/or sensor errors

e Wear and tear

17
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Extensive domain knowledge is needed to successfully be able to interpret the data cor-
rectly, to extract the relevant target data. What information is best used for PdM, and how
it is to be extracted, will vary from data set to data set, hence specific domain knowledge
about the data is essential. Other issues that may arise with data sets include:

* Missing values; inconsistency in data
* Imbalanced data (certain outputs are over/under-represented)

* Lack of data for certain categories/situations

2.2.2 Time Series Data

All the data sets within the scope of this thesis are time sequential. In its simplest form,
a time series data set can be split up into input data, X, and output data, d. The output is
what a ML model is supposed to output for the corresponding input.

For instance, the input data can be in the form [Xg, - - - X;_1, X;, X;4+1, - - - Xy ] wWhere i €
[0, N], x; is an array of input values (of a constant length n + 1) at time i, and N + 1 is
the number of measurements in the time sequence (see figure[2.2)). This matches to output
data in the form [dy,---d;_;,d;,d;q, - -dy], where d; is an array of output values (of a
constant length m + 1) at time 7 (see figure[2.3). Sequential data can be processed in time
windows of size smaller than or equal to the time sequence.

N + 1 number of measurements in this time sequence

e

0 0 0 .
xg x? xg e Ko xl_O x,'o+1 | Xyl XNl XI(\), n + 1 number of input values
» time, |

Figure 2.2: Overview of the input data x; over time. The time
sequence is N + 1 long, and each x; has n + 1 values.

N + 1 number of measurements in this time sequence

I

do (dl w

s

d® | d°

0 d° d° m + 1 number of output values
i—1 i i+1 N=-2 N-1

N

» time, i

Figure 2.3: Overview of the output data d; over time. The time
sequence is N + 1 long, and each d; has m + 1 values.
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2.2 DATA TYPE & FORMAT

The length n + 1 of x;, corresponds to i.e. the number of logged sensor values at each
time /. Similarly, the length m + 1 of d; depends on how many classes there are if it is a
classification problem, or the number of values predicted if it is a regression problem.

A data set often contains multiple independent time sequences, of varying lengths
N + 1. This is fine, as long as n and m are constant.

The output for a classification problem is defined as a binary value: 1 if the input is a
positive match to that output class, or 0 if the input is not a positive match to the output
class. The output for a multi-class classification problem is defined as binary array of size
m + 1. For example if index 0 has the value 1 and the rest have O (i.e. [1, 0, 0]), the input
is a positive match to class 0. See section [2.3.2] for more about classification problems.

2.2.3 Data Set Chosen

To answer the research questions (see section |1.2)), a data set was needed that fulfilled
as many criteria as possible as explained in section [2.2.1] The data set chosen for this
thesis has a large number of input data, a fixed number of output data that represents
different states (one healthy state and several error states), and it is time sequential. Most
importantly, there over hundred-thousand data samples available in the data set, with a
very frequent, and generally consistent, amount of logging. Research has previously been
done on the PHM 2015 data set (see section[I.3.3), with a similar goal of performing PdAM
- it is possible to perform predictive time-series classification with this data set.

The domain knowledge for this data set is very limited. The first file describes sen-
sor values and control values from different components within a plant. The number of
components in a plant varies from 3 to 20 (see appendix [A.I). The second file describes
measurements from different zones in the plant and each zone has two measured values
(see appendix [A.2)). For both types of input files, the sampling frequency is 15 minutes,
but the samples from the different components and, zones within the same time group are
not sampled at the same timestamp. The last file contain the targets and represent error
codes for a given time interval (see appendix [A.3). In the description of the data set only
error codes 1-5 are considered of interest. It is stated that error codes are independent of
sensor data outside of three hours [Prognostics and Health Management Society, 2015].

The different files do not have the same start and end time. This is a problem because
all inputs are needed for each timestamp and each timestamp for the input data have to be
matched with targets. Also, not all timestamps within the interval are represented in each
file. Both of these problems are referred to as missing values and are common problems
within ML and is also expected for machine-generated data. The number of missing values
is small (< 1%), and some missing samples may be from the same timestamp. Figure[2.4]
shows the number of missing values of different error codes for one component. There are
many techniques how to handle missing values (see section [3.1.1|for more information).

Figure shows that the data set is heavily imbalanced; it is clear that error code 0 is
the dominating error code. This is because this is the "healthy" state, when there is no error
state of consequence. Error code 6 is the second most common error code, but according
to the description, this error code does not represent any faults of interest. Error 4 is almost
completely absent only occurring 0.076% of the time samples, which is normal for PAM.
This is a problem when training a network to detect these uncommon error classes.
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c2 missing values and corresponding error codes

400 A

300 1

200 1

Number of missing values

100 A

#0  #1  #2  #3  #4 #5  #6 #missing

Error code
Figure 2.4: Number of missing values for each corresponding er-
ror code (#0-#6) and total number of missing values for one com-
ponent (#missing). #0 represents number of missing timestamps
with error code 0. The sample is from plant 1, component 2.

Error code stats

80000 A

70000 A

60000 -

50000 4

40000 -

30000 +
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10000 H
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Figure 2.5: Distribution of the different error codes for plant 1.

2.3 Artificial Neural Networks - Overview

Artificial Neural Networks (ANNSs) is one of the most popular machine learning model
types used today, a model that initially took inspiration from the structure of neuron net-
works in the brain.

The ANN is a network of nodes, or artificial neurons, which can be compared to neu-
rons in the brain. The most basic node (also known as a perceptron) receives inputs, x,
that are multiplied with corresponding weights, w. A node will pass the weighted sum of
the inputs and a weighted bias through an activation function ¢ to convert the input into a
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2.3 ARTIFICIAL NEURAL NETWORKS - OVERVIEW

more useful output y (see fig. [2.6|and eq. [2.1)) [Goodfellow et al., [2016].

N
Vi = ¢(Z Wik Xy + Wjo) 2.1
=1

In other words, a neuron computes an output depending on the inputs, where the weights
express the importance of the respective inputs to the output.

The simplest version of a neural network is connecting the input node to the output
nodes. Usually this is not enough to model more complex problems and therefore a multi-
layer perceptron, with one or more hidden layers of nodes, can be used (see fig. [2.7). An
important aspect of a basic ANNSs is that the output from a node will be used as an input
for all the nodes in the next layer. By fully connecting all nodes, relations can be found
between all nodes.

Input Weights Sum  Activation
Function
X1
" 4)@\
' > »0) Yi
XN
L J
A
Node

Figure 2.6: A typical artificial neuron, or node, with multiple in-
puts (x;), weight values (w;;), where the weighted sum is passed
through an activation function ¢().

The output y is defined by a function f(x), where f(x) = f'(f*(...f*(x)...)) and f' is
the function in layer i, consisting of the weights w;. The training of ML models consists
of updating the models weights, w, by minimizing some cost function or loss function,
Ex, w).

The cost function is measured by measuring how much the output y and the targets d
disagree. This function will be minimized with respect to the weights, w, by updating w
according to an optimization method. The update of weights will be propagated backwards
in the network starting at the output layer, called back-propagation. One feed forward pass
and one back-propagation of all data is called one epoch. ANNs are usually trained for
hundreds of epochs before the optimizer algorithm finds a minimum in the loss function.
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Figure 2.7: A simple Multi-layer perceptron with one hidden
layer of three nodes. Each circle is a separate artificial neuron.

2.3.1 Supervised Learning

Learning problems for ML algorithms can be divided into two categories: supervised
learning and unsupervised learning. For supervised learning there are available targets d
for inputs x, and the learning problem is to construct a model that best maps x to d. Unsu-
pervised learning can be used when targets d are not available, and the learning problem
is to use techniques such as clustering to find targets d, followed by creating a model that
best maps x to d.

The learning problem for PAM can either be supervised or unsupervised, depending
on the available data. The potential targets d for PAM could be Remaining Useful Life,
machine break-downs, service reports or similar. If no targets d are available unsupervised
learning algorithms can be used to retrieve features and patterns from the data [Bishop,
2006]. In this thesis all data sets have available targets and only supervised learning
methods are investigated.

2.3.2 Classification & Regression

Regression and classification are two kinds of supervised learning. Models designed for
regression problems will generate one or more linear outputs, e.g. Remaining Useful Life,
and models designed for classification problems generate discrete values associated with
a class, e.g. error codes or broken parts.

Models for classification problems will generate a probability that the input belongs to
an output class. Using this probability, a decision must be taken whether the input is to be
mapped to that output class or not; a cut-off threshold. Often a cut-off threshold of 0.5 is
used, i.e. the input is classified to the output class only if the probability is higher than the
cut-off limit. For multi-class classification problems, generally the class with the highest
probability is picked as the output class.
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2.3.3 Data Splitting

When selecting and training a ML model, three data sets are needed: training, testing and
validation. The original data set is split into the three parts and usually the training set
is the largest since the model needs a lot of data to train. The training data set is used to
train the model. For each type of model architecture, multiple hyper-parameters (learning
rate [Bishop, 2006], max-pooling) can be optimized. The model is trained with different
hyper-parameters and afterwards all models are evaluated using the test data set. The
parameters of the model with best performance on the test set are chosen as the optimal
set of parameters. To compare different model architectures, each model architecture is
evaluated on the validation data set using the optimal parameters. It is important that
each data set is independent of each other and no samples occur in more than one set,
otherwise the performance measure will not be an unbiased performance measure. If the
performance measure is biased it might not be a good representation of the models ability
to generalize the underlying problem. Instead a good performance measure might depend
on characteristics of a specific data set [Bishop, 2006].

2.4 Artificial Neural Networks - Types

There are many different varieties of ANNs - many different techniques that can be used.
Each version boasts certain benefits and/or drawbacks.

This section will present the following ANNs: Feed Forward Neural Networks, Convo-
lutional Neural Networks and Long Short-Term Memory. These ANNs are chosen since
they are good representations of different kinds of ANNs as well as different levels of
complexity.

2.4.1 Feed Forward Neural Networks

The Feed Forward Neural Network (FFNN) is the most "basic" type of ANN and works
like the simplest networks explained in section The network consists of an input layer
with the same number of nodes as there is input data and an output layer with the same
number of nodes as there is output data. Between these layers there are a number of hidden
layers and these layers can have any amount of nodes. A key feature with a FFNN is that
all the nodes in a layer are connected with all the nodes in the previous and next layer.

2.4.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN), is a ANN with node connections between nodes in
the same layer or nodes at even lower levels (see fig. [2.8). This makes it possible for the
network to have a memory and let output depend on previous input. It is important to
be able to account for dependencies between instances in sequential input. An important
aspect of RNNss is the concept of weight sharing, since the same weights are used over the
entire sequence. Weight sharing will make it possible the generalize over the sequence,
which will make it possible to observe reoccurring sequences within a sequence in the
same way [Goodfellow et al., 2016]].
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Figure 2.8: A RNN with a hidden layer using the previous output,
weighted with U, as input to itself. x is the input, h is the hidden
layer and o is the output. W, U and V are weights between the
nodes.

To represent how the hidden output is passed forward in time, unfolding in time is used.
Figure [2.9|demonstrates how the weights W, U and V are shared through time.

Figure 2.9: The RNN in fig. 2.8 unfolded in time, 7. x, is the
input, A, is the hidden layer and o, is the output. W, U and V are
weights between the nodes.

Feed forward in a recurrent network is performed on the unfolded graph. Each state
is evaluated sequentially and saved, until used in back-propagation. The gradients of the
RNN is calculated the same way as for a feed forward network, through back-propagation.
Also called Back-Propagation through Time (BPTT).

A problem with BPTT is vanishing or exploding gradients, when gradients are calcu-
lated in many steps. Multiplying small weights (0 < w < 1) many times will result in
values close to or equal to zero. Because weights exponentially get smaller, it makes it
hard for RNNs to track long term dependencies,[Gers et al., 2000].

24



2.4 ARTIFICIAL NEURAL NETWORKS - TYPES

243 LSTM

Long Short-Term Memory (LSTM), is a special type of neural node. Each node contains
one or more memory cells, as well as gates controlling the flow of updates inside the node.
The internal state of the LSTM node is controlled by the Constant Error Carousel (CEC)
[Olah, [2015]]. The internal state is protected by the input and output gates which eliminate
the problem of vanishing gradients (see figure and equation [2.2). The gates in the
cell limits the update of states to only include relevant input and ignore irrelevant input
and noise. One important gate is the forget gate, which controls how much of previous
states the cell remembers. This will make the cell reset itself instead of becoming constant
[Gers et al., 2000]. LSTM can be seen as a more advanced type of RNN, as well as a
solution to vanishing/exploding gradients (see section [2.4.2).
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Figure 2.10: Schematic graph of an LSTM node at time ¢ [Olah,
2015[]. It contains three gates: forget gate F,, input gate I, and
output gate O,. Additionally it contains an intermediary gate ¢;,
which creates candidate values that could be added to the state c;.

Equations show that each gate (F}, I;, O;, ¢;) has separate weights (wr, w;, wo, Wz
respectively). Additionally each gate has a separate activation function; either a logistic
activation function, o, that outputs numbers between [0, 1], or a tanh activation function,
©, that outputs numbers between [—1, 1].

F; = o(wr - [h-1, ;] + bF)
I, = o(wy - [h-1, ] + by)
O, = o(wo - [h-1,x,] + bo)

¢ = o(we * hy—y, x;] + be) (2.2)
¢ =F-c1+1 -G

hi = Oy - p(c;)

o, = h;
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2.4.4 Convolution Neural Network

CNNs are named after the mathematical operation convolution (see equation 2.3)). In a
CNN at least one of the layers performs a convolution. They are used for data that can
be convolved over one or more dimensions, such as spatial convolution of images and
temporal convolution over time series.

(Fe9= [ fa-ngwar 2.3

Unlike FFNNs that are fully connected (all the nodes are connected with one another),
CNN s use multiple weight kernels of a fixed size that are used to perform convolution over
the input. Hence weights are shared between each convolution. For time sequential data
the input is convoluted over time and features are extracted in time steps. The length of a
kernel determines the size of the time window considered in the convolution. The number
of kernel filters affects the number of features that the convolution layer will be able to
find (see figure 2.11).

It is common to use a pooling layer after a convolution layer, e.g. max pooling, which
selects the maximum value within a window [[Goodfellow et al., [2016]].

Convolution can be performed in multiple layers. After all convolution layers the data
is flattened into a fully connected layer and can be connected to a FFNN [Goodfellow et al.,
2016].
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Figure 2.11: Convolution over time with two filters of kernel size
5 and input dimension of 5. Each one of the two filters convolve
over the input dimension of 5 and sequence length of 5 in strides
of one resulting in two output sequences of length N — 4, one for
each filter.
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2.5 ML Performance Evaluation

How well a machine learning model performs is very important to measure, but can also be
hard to quantify. For supervised machine learning models (see section [2.3.1) the learning
problem consists in finding a model that can produce an output y as close as possible to
the target d by minimizing the loss function E for a given model, providing a loss value
and an accuracy.

The loss value is used during training to follow the progress of training. The training
objective is to minimize the loss value. The accuracy will only tell to what degree the
output y and the targets d agree (or disagree) for that specific data set. There is no guarantee
that what the models has learned is true; the model was trained to perform optimally on the
training data. Therefore it is important to make an unbiased and independent measuring
of the performance. The sets of data have to be divided between training, testing and
validation in order to measure the performance on data the models have not seen before
[Japkowicz and Shah| 2011]] (see section[2.3.3)). For a fair comparison of the performance
of different models it is important that the models are trained, optimized and evaluated
using the same partitioning between training, testing and validation data sets.

Accuracy is a single value performance measure to which degree the model’s pre-
dicted values align with the expected/true value, and is especially effective for regression
problems and binary classification problems (see[2.3.2|for more about regression and clas-
sification problems). However, this value can be misleading and provide a false indication
of the actual performance of the model, especially for imbalanced multi-class classifica-
tion problems (see section[2.2.3). There are other evaluation metrics such as the confusion
matrix and the Receiver Operating Characteristic (ROC) curve that may provide a better
performance measure of the model.

2.5.1 Evaluation Metrics

It can be very interesting to look at how many times a model predicted the correct class,
as well as how many times it predicted the wrong class, and even more specifically which
class it predicted when it predicted incorrectly (for multi-class classification problems).
The number of times a model correctly predicts a certain class is called a true positive
(TP). Similarly, false positive (FP) is the number of times a certain class is predicted when
it was false, false negative (FN) is the number of times a certain class is not predicted when
it was in fact true, and true negative (TN) is when a class correctly was not predicted (see
figure 2.12]).

These values can be used for a class to look at the sensitivity and specificity (see equa-
tion @) Sensitivity, or true positive rate (TPR), is a measure of how well the model can
positively classify a class. Specificity, or true negative rate (TNR), is a measure of how
well the model can reject a class.

o TP
Sensitivity = TPR = TP EN
TN 2.4)
Specificity = TNR = ——
peetictty TN + FP
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Actual Positive Actual Negative

Predicted | True positive | False positive
Positive (TP) (FP)

Predicted | False negative | True negative
Negative (FN) (TN)

Figure 2.12: When evaluating the performance of a model it be-
comes interesting to look at the number of true positive (TP), false
positive (FP), false negative (FN) and true negative (TN).

Other useful evaluation metrics is precision & recall (see equation [2.5]). Precision is
the ratio of true positive prediction to the total number of positive predictions, whilst recall
is the same as sensitivity.

Precision TP
1S1 = —
TP + FP
TP (2.5)
Recall = Sensitivity = ———
TP + FN

2.5.2 Confusion Matrix

The confusion matrix can be used for multi-class classification problems, to get a better
understanding of how well the model is predicting. It shows which class the model has
predicted in relation to the actual class. Sometimes it can be helpful to see what class
the model is actually predicting instead of the true/real class, and can give insight to re-
lations and/or similarities between classes that were not previously obvious [Shengping
and Gilbert, [2017]. Figure [2.13|shows an example of how a confusion matrix can look
like. Usually it is more informative to normalize the values, especially if the distribution
between the classes is uneven.

It is also very easy to extract the previously mentioned evaluation metrics (see section
from the confusion matrix. Figure[2.14|shows how the TP, FP, FN & TN values are
extracted for class 4 (the data set in this picture is that which is later used in this thesis),
which for instance can be used to calculate sensitivity and specificity.

2.5.3 Receiver Operating Characteristic Curve

Especially when working with imbalanced data, plotting Receiver Operating Characteris-
tic (ROC) curves and calculating the area under the curve (AUC) of the ROC curve can
be a better measure, than simply using accuracy [Metz, |1978|]. For example, if 95% of a
data set has an output that maps to class 0, and the remaining three classes represent the
remaining 5%, the model would receive 95% accuracy even if it constantly predicted class
0 no matter the input. That is, a class that "stupidly" predicts the same output every time
could receive a high accuracy.
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Example: Confusion Matrix Example: Normalized Confusion Matrix
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(a) Not normalized (b) Normalized

Figure 2.13: Confusion matrix examples. The model has cor-
rectly guessed class 0 86% of the time, but class 1 only 37% of the
time.
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Figure 2.14: Demonstration of how the TP, FP, FN & TN values
can be extracted from a confusion matrix.

ROC curves (see the example in figure 2.13]) provide a better measure. By calculating
the sensitivity (or TPR) and 1—specificity (or false positive rate, FPR) when using different
cut-off thresholds (see section [2.3.2] for more about cut-off thresholds), a figure can be
drawn with TPR on the y-axis and FPR on the x-axis. The plots are binary, meaning that
each class-curve is completely independent. Each point in the curve can be seen as

(x,y) = (FPR(z), TPR(?)) (2.6)

where 7 is a cut-off threshold value.

The closer a curve is to the top left corner of the figure, the better the model has been at
predicting that specific class. The y = x line is added as a reference; any curve that is close
to this line means that the model is no better at predicting that class than if it was predicting
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Example: Receiver Operating Characteristic
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Figure 2.15: ROC curve example, with the same data used as in
figure [2.13] In this example the model does quite a good job at
predicting class 0, but class 1 less so.

at random. Any curve that is below the reference line is performing worse than random,
meaning that it is predicting the class wrong more than it is predicting it correctly. Hence,
the AUC value of this curve can be used as a reference for comparing the performance of
a model. The closer the AUC value is to 1, the better the model is at predicting that class,
and if it is below 0.5 it is worse than if it was predicting at random.
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Chapter 3
Method

The goal is to see how well a few different ANNs variants perform for predictive time-
series classification. The types of ANNs that will be examined are FFNN, CNN, and
LSTM, using the same data data set for a fair comparison.

This chapter will go through the steps taken to preprocess the data (section [3.1)), the
tools used (section [3.2), the framework that is constructed (section [3.3)), and finally the
different architectures and hyper-parameters that will be tested.

3.1 Data Preprocessing

The data contains data sets for different plants, with different number of components,
which results in different input dimensions (for more information about the data set, see
section [2.2.3)). A solution that can handle multiple input dimensions can be done by ad-
vanced convolution, or by creating separate models for each input dimensions. The lack of
domain knowledge of the data set (e.g. knowledge about the placement and type of sensors
and components) makes it hard to know what similarities and differences there are in the
data for each plant. Hence, within the scope of this thesis data from only one plant is used.
Plant 1 is chosen, at random.

The following preprocessing is done in this order on the data set. This cannot be done in
another order due to practical reasons and to facilitate the preprocessing, e.g. there cannot
be missing data when mapping input with output, and the standardization is done before
the data is reformatted because it is easier to do it in that order. The steps are explained
more in depth in the following sections:

1. Handle missing data

2. Map input with output

3. Standardize

4. Reformat data (time slicing & time shifting)
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5. Split data whilst ensuring that all classes are represented in all sub-sets
6. Compensate for imbalanced data

3.1.1 Handle Missing Data

Many techniques are available for handling missing values and some approaches suggest
using separate ML models to generate missing values [[Goodfellow et al., 2013]]. To fill
missing values two methods are used, mean and mean difference. The mean value is used
for most sensor values and it ensures that the missing value is within the range of the
present values. The mean was chosen after gathering statistics to rule out any dependency
between missing value and output error codes (see figure [2.4]for an example and compare
to[2.5). One type of sensor value, e/, should be continually growing and therefore the mean
difference is added to the previous value or subtracted from the next value, depending on
availability. In some cases many values were missing in the beginning, these samples are
set to 0.

3.1.2 Map Input to Output

To organize the data it is important to map each time sample in the input with the corre-
sponding error code. Start time and end time for error code time samples are determined
by the start and end time for the input files. All time samples were set to error code 0 and
then for each time interval in the error code file, the error code was changed to the correct
error code. Some error code intervals overlapped in time and since only error code 1-5
was of interest, error code 6 is only allowed to overwrite error code 0. The result is a seen
in[A.6] For all time intervals not included in the error code file, the error code is 0 and is
considered to be no error.

3.1.3 Standardization

In a standard control system there are many sensors involved, often with a large variation
in range. Many studies have shown that having data that is standardized will improve a
ML algorithm greatly, especially for neural networks [[Graves, 2012]. Strictly this is not
necessary, as the input weights can be re-scaled to fit inputs of different ranges, but in
practice it will make it easier to train the model.

Z-normalizing or standardization is the practice of ensuring that all input vectors have
a mean 0 and standard deviation 1. The mean is calculated

1
m; = EZJ@ 3.1)

1
o, = \/E > i —myy? (3.2)

for each component of the input vector, and is used to standardize the input vector X; using

X; —m;
Xi new = (33)

g
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This procedure does not alter the information in the data set, but it improves the perfor-
mance by putting the input values in a range more suitable for the standard deviation func-
tions. Itis important that both the training and testing/validating sets are standardized with
the same mean and standard deviation.

3.1.4 Reformatting Data

When working with time series data (see section [2.2.2), there are usually patterns and
relations that can be found over time. Considering this time slicing and time shiftingﬂ are
used in this thesis. Additionally, the data is reformatted to fit the different types of ANNs.

Time Slicing

With time series data, there is often relation in the data over time. It might be useful to
also look at the previous value(s) to predict the output, rather than just look at the current
value. Time slicing, or sometimes called "moving window" or "rolling window", is the
practice of using the current value, along with a fixed number of previous values, as input
data [Keras, [2018]].

In the example which can be found in figure [3.1] a time slice of size 5 is used. For
instance at time i the input values [X;_4, X;_3, X;_2, X;_1, X;] are used, and are mapped to the
output d;.

The data in this thesis is always preprocessed to use a time slice of 24, which us equal
to six hours. This is chosen since it is stated that errors are independent of sensor values
outside a three hour window (see section [2.2.3)) and six hours lets the model "remember"
twice as long as it is supposed to predict.

Time Shifting

The input data x; matches to output data d;, but sometimes it could be interesting to match
the input to another output. For instance it could be interesting to match the input data
X; to a future output d,,,, where n is the number of data outputs in the future/past. Time
shifting is used in this thesis as a suggested solution for prediction.

In figure [3.2]an example is demonstrated, using a time shift of 5. This means that for
time instance 7, the input data is x; and the output data is d;,s.

For the data set in this thesis the targets are always shifted 12 steps, which is equal to
three hours. A time shift of three hours is chosen since it is stated that errors are indepen-
dent of sensor values outside a three hour window (see section [2.2.3).

Reformat to Fit Respective ANN

The data is reformatted to fit the specific ML models. FFNNs do not have any support for
remembering backward in time and therefore the input dimension to a FFNN is one whole
time slice. E.g. if the time slice is 24 time steps and the input dimension of the data set
is 54, the input dimension of the FFNN is 24 - 54 = 1350. CNNs and LSTM models only

Not to be mixed with time stamp, which is simply data at one time instance
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Figure 3.1: Time slicing overview, showing which data is se-
lected. In this example, the five most previous X is the input data,
instead of just the current x. This corresponds to the current output
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Figure 3.2: Time shift overview, showing which data is select-
ed/predicted. In this example with a time shift of 5, for each input
data x;, the output data is d,s.

consider a limited number of time stamps at a time (< 24 time stamps for CNN and one
time stamp for LSTM), resulting in a smaller input dimension.

3.1.5 Data Splitting

Before running the ML models, the data is split into three parts: training, testing and
validation (see section [2.3.3)). Training set is assigned to the first part of the data set (the

34



3.2 TooL SELECTION

earliest samples). Test set is assigned to the second part and validation set is assigned to
the last part. Because of the imbalance between classes, testing and validation sub-sets
do not contain all classes. To be able to achieve an unbiased performance measure it is
important that all classes are represented in all subsets. Otherwise rare classes which are
harder to predict will not be a part of the performance measurement. Time slice and output
pairs are moved from the training subset to either the test or the validation subset, to ensure
that all classes are represented in the different subsets. No data samples are fabricated or
reused, since a data sample may not exist in more than one subset.

3.1.6 Compensate for Imbalanced Data

For plant 1 error code 0 is represented in 68% of all time samples. Imbalance between
classes can be handled in different ways, through over-sampling, under-sampling and cost-
sensitive learning [He and Garcia, 2009; [Huangl 2015; Wang et al., 2016]. Imbalance
is handled by applying different weights for different classes in the cost function when
training the model [Chollet et al., 2015]. This means that a faulty classification of a rare
class is penalized more heavily than a faulty classification of a more common class. This
is not handled in the preprocessing, but in the actual training step.

3.2 Tool Selection

To train a network, a ML framework is useful. This can either be built from scratch which
allows for a lot of customization, but can be tedious and time consuming. Alternatively an
already built and available framework can be used.

Keras with Tensorflow as back-end is chosen for construction of neural networks. The
framework is mature and widely used, which results in broad community and substantial
documentation. Keras provides an easy-to-use API for Tensorflow and allows for faster
development speed at lower rate of control, since less parameters within training can be
tweaked.

3.2.1 Keras

Keras is a high-level API building neural networks using Tensorflow and other libraries
for numerical computations as back-end [Keras, |[2018]]. Tensorflow is a library for numer-
ical computations using data flow graphs and is widely used for ML [Abadi et al., 2016;
Tensorflow, 2018]]. It is written in Python and allows for fast experimental iterations.
The core of Keras development is a model and the model is made-up by different layers.
The model used in this research is a sequential model, a model with a sequential stack of
layers. Keras also has support for more complex neural network graphs. A wide range of
layers is available with possibility to tweak variables associated with each type of layer.
Keras has support for the neural network architectures mentioned in section [2.4]
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3.3 Framework

To facilitate the testing of multiple ANNSs, an extensive and custom framework is iteratively
developed by the authors to allow for quick and easy parameter changes. This framework
consists of a data processing class that parses and prepares the data; a model factory to
construct different kinds of ANNs (models); and a model handler that trains, benchmarks
and evaluates the models. See figure [3.3|for an overview of the different components.

OUTPUT

INPUT PROCESS Standardize  Reformat

(b (3

@ { DataProcessor

training \( testing
data data

ModelFactory
Test Suite
Descriptor A\
@7 ModelHandler
Train Test Validate
Figure 3.3: Flowchart of the flow within the framework.
DataProcessor

The class DataProcessor is designed to parse different data sets, and to process it to
fit different models. Once the data is parsed, it is standardized (see section [3.1.3) as well
as reformatted to fit a certain time slice or a certain time shift (see section [2.2.2)). It also
splits the data into training, testing and validation sets, according to specified ratio. The
first part of the data set is considered the training set, the second part is considered the
testing set and the last part is considered the validation set. The data splitting is performed
in this way to keep the time-dependence and to make the split reproducible.

Model Classes

The class Mode1lFactory is used for creating model instances with Keras (see section
[3.2.1)), model instances which are wrapped into the custom class Mode 1. The class Mod-
elHandler facilitates the management of training, testing and displaying the results for
the different models.
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Input & Output

Since there are many possible test combinations to find the optimal ML settings, a flexible
but robust solution is needed to easily tweak certain parameters. The Test Suite Descriptor,
a JSON file of custom structure, is developed to ease testing of many combinations. This
easy to edit configuration file instructs the framework which data set to test on, how the
data set is to be pre-processed, which models are to be built, as well as the details to how the
models are to be built. The benefit of using the JSON format is that a Test Suite Descriptor
file can be reused, or tweaked and then reused.

When a test suite has finished (when the models have been built, trained and tested),
the results are presented in log files as well as in plots.

3.4 Type, Architecture & Parameters

The research in this thesis consists of setting up and training different ANN models and
comparing them by measuring their performance. Each type of ANN can have varying
architectures, by varying the number of hidden layers and number of nodes in each layer.
Additionally, for each architecture there are other parameters that affect the performance
of the model, eg. learning rate. This means that theoretically there are infinitely many
combinations of model types, architectures and parameters. It is not possible to try all
combinations.

Once a model is built, the same training data set, testing data set and validation data
set is used, for a fair comparison between all models. The performance of the model is
measured by looking at the loss of the training data set and the loss of the testing data set.
Additionally, several of the different evaluation metrics mentioned in section @ will be
used, such as confusion matrix and ROC curves.

3.4.1 Test Setup

Many of the combinations of architectural design and parameters chosen in this thesis
have logical motivations, such as zero or one hidden nodes. Other combinations have
been chosen based on previous research, common practice and with the guidance of our
supervisors. However, many combinations have iteratively been chosen based on previous
results within this thesis.

When deciding combinations of model type, architecture and parameters, there are a
few key things that are taken into consideration. These are presented in table [3.1]

3.4.2 Iterative Process

When constructing ML models, common practice is to start with a simple model and add
complexity to try to improve the performance.

For example, a first step is to construct simple models of type FFNN with no or only
one hidden layer. To test whether it is more effective with fewer or more nodes in the
hidden layer, three models are built with 1, 10 and 100 nodes respectively. For each of
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3. METHOD

Parameter Values

Type of ANN FFNN, CNN, LSTM

Nbr of Hidden Layers None, 1, 3

Nbr of Nodes in Hidden Layer None, 1, 10, 25, 50, 100

Architecture Decreasing/increasing/varied
number of nodes

Nbr of Convolutional Filters Few (8), many (128)

Nbr of Convolutional Kernels Few (3), many (24)

Max Pooling None, 3,5, 7

Table 3.1: Different types of parameters available when deciding
model combinations to test.

these models, different learning rates from 0.00001-0.01 are tested to find the optimal
learning rate. The performance on the test data set of these different models is compared.

A next step is to allow the FFNN model to find more connections, and thereby more
advanced patterns in the data, by increasing the number of hidden layers and nodes. For
example three hidden layers allowed for different model shapes, e.g. [10, 50, 10], [50, 10,
50] and [50, 25, 10]. In the two first examples the dimension is increased or decreased,
and then taken back to its previous dimension to let the model represent the data in fewer
or more dimensions. The third example gradually reduces the dimension to better fit the
output dimension of the data sef]

To better consider the time aspect of the data two techniques are examined: CNNs and
LSTM. The first approach is to use one or two convolution layers, which will convolve the
input over time for each time slice. Different kernel sizes and lengths are explored to find
settings with best performance.

The approach used for LSTM is the same as for FFNN, where different architectures
and different learning rates are tested to find the models with the best performance.

After testing the performance of each model, the performance is evaluated using the
validation data set. This is to achieve an unbiased performance measure and not let specific
attributes in one data set affect the performance measure. The results presented in section
4.1l are measured on the validation data set.

’The output dimension is 7.
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Chapter 4

Evaluation

4.1 Results

This section presents the results of training the ANN models. The validation performance
of the models will be presented along with the respective prediction accuracy, considering
metrics mentioned in [2.5.1] For each new model architecture, only the best performance
is presented.

Initially, models are trained with 300 epochs, but some are trained with 300 additional
epochs if the loss is clearly still decreasing; hence all models presented in this section
have been trained with either 300 or 600 epochs. Training an additional 300 epochs only
indicated minor performance gains. The training of models was not limited by time and
therefore the models were trained with the same amount of epochs to make a fair compar-
ison.

First the results are presented for each model type. Afterwards, the results are summa-
rized and the different model types are compared.

4.1.1 FFNN

When training FFNN models it quickly became apparent that a smaller learning rate is
necessary to be able to learn anything; the best performing models use a learning rate of
107*. Using learning rates bigger than this results in extremely volatile training and vali-
dation loss, whilst smaller learning rates never reach an optimum training and validation
losses, even after many epochs.

Table . T| presents the results for a few different architectures, gradually increasing in
complexity. For the first part, the model trained without compensating for the imbalanced
data is not considered. The model with the highest accuracy, with only one hidden layer,
has 100 hidden nodes whilst the model with the lowest loss has one hidden node. Figures
¥.1al 4.1b| 4.1c|and 4.1d| indicate that the single layered models have low accuracy for a
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4. EvALUATION

Table 4.1: Summary of results from the FFNN models

Nodes in Lay- | Validation | Validation . .

Precision | Recall
ers Loss Accuracy
None 4.3373 0.0783 0.0839 0.0569
1 2.3968 0.2541 0.0000 0.0000
10 3.0249 0.4377 0.4458 0.4192
100 2.8347 0.5049 0.5168 0.4849
10-50-10 2.7730 0.3628 0.3714 0.3539
50-10-50 3.4743 0.2824 0.3219 0.2204
50-25-10 2.5986 0.5617 0.5704 0.5464
50-25-10 1.6855 0.6366 0.6400 0.6291
(imbalanced)

TP = 299

TN = 20856

FP = 1474

FN =27 4.1

Sensitivity = Recall = 0.9172
Specificity = 0.9340
Precision = 0.1786

Equation 4.1: Class 3 performance of FFNN model with one layer
of 100 hidden nodes.

few classes. For the model with one layer of a 100 hidden nodes, class 2 and class 4 are
only predicted correct 9% and 4% respectively, of all true labels. Instead, class 2 and class
4 are miss-classified as class 3, 70% and 81% of all true labels respectively. Overall many
of the classes are miss-classified as class 3, e.g. for class 2 (70%), class 4 (81%) and class
5 (45%). Class 3 is predicted correctly with 87% accuracy, but the high number of false
positives result in a low precision (see equation 4.1).

The model with the lowest loss, and highest accuracy, precision and recall is the im-
balanced model, i.e. the model not applying different weights for the different classes in
training. However, figure and figure {4.Th| show that class O is over-represented in
prediction. When comparing sensitivity and specificity for the model with imbalanced
training, the sensitivity is almost 0 and specificity is almost 1 for all classes except for
class 0. For class O the specificity is almost 0 and the sensitivity is almost 1. For the
model with balanced training, sensitivity and specificity are closer to each other for most
classes, except for class 6 (see table 4.2).

The multi-layer FFNN model with the lowest loss and the highest accuracy is the model
with the architecture 50-25-10. The model has low accuracy for some classes (see figure
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4.1 RESULTS

Table 4.2: Sensitivity (Se) and Specificity (Sp) for the FFNN with
architecture 50-25-10, with balanced and imbalanced training

Class 0 1 2 3
Model Se Sp Se Sp Se Sp Se Sp
50-25-10 0.787 | 0.466 | 0.635 | 0.880 | 0.135 | 0.989 | 0.813 | 0.933
5.0_25_10 0.984 | 0.038 | 0 1 0.061 | 0.987 | 0.273 | 0.996
(imbalanced)

Class 4 5 6

Model Se Sp Se Sp Se Sp

50-25-10 0.333 1 0.997 | 0.283 | 0.940 | O 1

50-25-10

(imbalanced) 0 ! 0 ! 0 !

[.Teland A.11).
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Figure 4.1: The results for FFNN
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4. EvALUATION

4.1.2 CNN

By adding convolutional layers, the hope is to aid the models to find the patterns available
over time. Similarly as with FFNNSs, using a learning rate of 10~ resulted in the best
performance. The training time of ~15-20 minutes is similar to FFNNs.

Table 4.3: Summary of results from CNN models

Conv. Conv. Validation | Validation | Precision | Recall | Max
Filters | Kernels | Loss Accuracy Pool
8 3 2.2505 0.5616 0.5836 0.5167 | 5
16 3 2.3024 0.5997 0.6067 0.5703 | 5
32 3 2.2766 0.5780 0.5858 0.5557 | 3
64 3 2.3097 0.6081 0.6172 0.5922 | 7
128 3 2.0077 0.6224 0.6271 0.6125 | 3
8 12 2.0994 0.6005 0.5785 0.4086 | 7
16 12 1.9256 0.6210 0.6282 0.5932 |5
32 12 2.2603 0.5926 0.6010 0.5728 | 5
64 12 2.6001 0.6314 0.6339 0.6267 | 0
64 12 1.8788 0.6130 0.6224 0.5931 |3
128 12 2.3107 0.6088 0.6106 0.5922 |5
8 24 2.0190 0.5666 0.5822 0.5553 | 0O
16 24 2.3998 0.5450 0.5480 0.5358 | O
32 24 2.2713 0.5906 0.5980 0.5829 | O
64 24 2.4807 0.6068 0.6099 0.6024 | O
128 24 2.4300 0.6133 0.6148 0.6058 | O
32-16' | 12-6! 2.0849 0.5363 0.5702 0.4926 | 3

"Two convolutional layers. First layer with 32 filters and kernel size 12 and second layer with 16 filters
and kernel size 6.

Table[d.3|presents the results for a few different CNNs with different architectures. The
models presented do not contain any fully connected hidden layers, only convolutional
layers. The combination of convolutional layers and fully connected layers is omitted at
an early stage as initial tests do not indicate any performance benefits. Instead, varying
numbers of filters and kernels is tested, as well as different max pooling sizes.

The model with the lowest loss and highest accuracy has one layer of convolutional
nodes with 64 filters and a kernel size of 12. The model reached the highest accuracy with
no max pooling and the lowest accuracy with max pooling 3.

Overall, the performance of the different models is very similar. Initial research in this
thesis did not indicate increased performance for multi-layered CNNs and further research
is omitted.
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Figure 4.2: The results for CNN
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41.3 LSTM

Table 4.4: Summary of results from LSTM models

Nodes in Lay- | Validation | Validation | Precision | Recall
ers Loss Accuracy

1 2.0223 0.3730 0.0000 0.0000
10 2.2247 0.5374 0.0946 0.0401
25 1.8833 0.5750 0.5786 0.5648
50 1.9024 0.5890 0.5914 0.5846
100 1.7565 0.5978 0.5997 0.5878
25-25-25 1.8549 0.5918 0.5941 0.5793
100-100-100 1.9590 0.5957 0.5994 0.5882

The first observation made when training LSTM networks is the increased training
time. The training time is 7 to 14 times longer for LSTM compared to FFNNSs, increasing
from ~15-20 minutes to ~110-280 minutes.

For single layer LSTM model, 100 hidden nodes achieve the highest accuracy and
lowest loss and 50 hidden nodes achieve the second highest accuracy and the second low-
est loss. Adding more layers to three layers with 25 nodes each decreases the accuracy
slightly and increases the loss slightly. Three layers with 100 hidden nodes each have
slightly increased accuracy compared to three layers of 25 hidden nodes each (see table
A.4). Overall the training time increases from ~6500s to ~16500s, when the number of
layers is increased from one to three.
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Figure 4.3: The results for LSTM

The four LSTM models with the highest accuracy and lowest loss are the model with
one hidden layer of 100 nodes, the model with one hidden layer of 50 nodes, the model
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Figure 4.3: The results for LSTM

with three hidden layers of 25 nodes each and the model with three hidden layers of 100
nodes each. Looking at the confusion matrix and ROC-curve for each model it seems like
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4. EvALUATION

they achieve similar results and both have low accuracy for class 5 and 6 (see figures [4.3).

4.1.4 Summary

Table 4.5 summarizes the results of FFNN, CNN and LSTM. The models included are the
models with the lowest loss and highest accuracy for each model type.

When comparing the models they achieve similar performance. FFNN have slightly
lower accuracy and slightly higher loss compared to CNN and LSTM. LSTM has lower
loss, but lower accuracy than CNN.

Overall, all model types achieve an accuracy between 55-65% and a loss between 1.75-
2.60. Comparing confusion matrices, all models have a low number of true positives for
class 5 and class 6 and a high number of false positives for class 3 (see figure [2.14] for
information on confusion matrices). This indicates that class 5 and class 6 are hard to
classify and class 3 is often confused with other classes.

Table 4.5: Summary of results of the best performing models of
the different model types.

Model gisdden Lay- L’f\)lsisdation Xilci:::ic(;n Precision | Recall
FFNN 50-25-10 2.5986 0.5617 0.5704 0.5464
CNN f64-k12-mp0' | 2.6001 0.6314 0.6339 0.6267
CNN f64-k12-mp3' | 1.8788 0.6130 0.6224 0.5931
LSTM 100 1.7565 0.5978 0.5997 0.5878

If = filters, k = kernels and mp = max pooling.

4.2 Discussion

This section will go through the results that were presented in the results section (section
A.1). Sectiond.2.1] discusses the effects of different steps during the preprocessing. This
is followed by a discussion around choices during the training process, in section [4.2.2]
Section compares and discusses the observed performances of the different models.
Finally sectiond.2.4]discusses the performance of the models, considering the purpose of
PdM.

4.2.1 Data Preprocessing

During the data preprocessing, there are two steps taken that are of bigger interest. These
are the filling in of missing values, and the reformatting of data.
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Filling in Missing Values

All the ANNSs in this thesis require a constant input dimensions. This means that the input
vectors have to contain all input values for all time stamps, it is not possible to have missing
values.

The methods used to solve this in this thesis are using either the mean value for that
specific sensor, or using the mean difference (see section[3.1)), i.e. a constant value is added
in place of a missing value. The danger with these methods is that the models potentially
could find relations and patterns that do not actually exist, by introducing biases. So apart
from the obvious risk that these values are completely wrong compared to the real missing
value, there is a risk that "fake information" is introduced instead of finding the most
realistic substitution of the missing value.

Also, filling missing values with mean values might remove information if the missing
value is, or contributes to, a feature in the data set, i.e. a severe break down/error making
the machine unable to log that value. In that case adding a mean value could be entirely
faulty. Analysis of the data was done to rule out that missing values is a feature (see section
, but further research is necessary to understand what effect this method has on the
data set and how this might affect the results.

Reformatting Data

Two major reformatting steps are taken during the preprocessing; time slicing and time
shifting. These two are the key steps taken to be able to find features over time, as well as
predicting values in the future.

By using a time slice of 24, the models are always provided with logs from the previ-
ous 6 hours, instead of just the current logs. This allows for the model to learn and find
patterns/features that occur over time (see section [3.1.4). Naturally, the input dimension
becomes much larger when time slicing is used, which means that there is more data to
be processed for the models. This will take much longer time to train and could result in
a much more complicated ANN. For FFNNs, the time aspect within a time slice is lost,
since the whole time slice is presented to the network at once. Both CNNs and LSTMs
handles a time slice in a time steps. CNNs considers a time window smaller than or equal
to the time slice and moves the time window one time step at a time. LSTMs handles the
data within a time slice one sample at a time. When the last sample in a time slice has
been processed it makes a prediction for that time slice. However, more data also results
in more features that the models can find. Also worth keeping in mind is that if a model
is trained with a certain time slice, this is the time slice that always must be used for that
model.

Time slicing allows the model to find features over time, but it still does not solve the
goal of predicting. This is why time shifting is used (see section [3.1.4). By taking our
data, and shifting the output values 12 steps, each input will instead correspond to the
output which happens in 3 hours. When these input-output pairs are fed into the model
during training, the model is in effect learning to connect the features found in the input
with an output in the future. This means that the models trained in this thesis are static in
the sense that they only can predict 3 hours ahead, and cannot predict the current output
that corresponds to the current input. However, for the purpose of PdM, this is exactly
what is of interest.
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The danger of having a time shift that is too big is losing the true feature that binds
the input with the "real" output. For example, there is a very prominent feature for input
x; which results in the output d; = class 4 which happens to be a very serious error cod
But when this data is shifted 12 steps, x; is now matched with d;,;, = class O which is
the "healthy" error code and therefore quite uninteresting. The model will now learn to
connect a very prominent feature with a rather unimportant output, and similarly, it will
learn to connect perhaps a very non-prominent feature with the very important output d;.
However, this problem is hopefully avoided since a time slice is used that is twice the size
of the time shift, which should encompass all the features that could appear (it is stated
that errors are independent of sensor values outside a three-hour window).

4.2.2 Choices During Training

When preprocessing the data, designing the models and training the models, a number of
choices are made. These choices are discussed below.

Balancing Classes

One of the biggest difficulties encountered with the data set is the heavy imbalance of
output classes. To balance the training of the networks, the loss function is weighted. The
method was chosen after exploring other alternatives, primarily alternatives implemented
in Keras and Scikit Learn were explored. Attempts were made to over-sample less common
classes and under-sample over-represented classes. These attempts did not perform well,
but further research could be interesting.

In table 4.1|a comparison can be made between the two FFNNs with the hidden layers
[50-25-10]; one model with a weighted loss function and one without. When not compen-
sating for the imbalanced data during the training, a validation accuracy of almost 64% was
achieved, whilst only 56% was achieved when weighted loss functions were used. Weigh-
ing the loss function forces the model to learn to predict under-represented classes, but it
also results in a lower overall accuracy. Looking at the confusion matrices (figure
and the actual predictions are visualized and it is clear that the imbalanced model
performs bad when trying to predict other classes than class 0.

This is reinforced when looking at the individual sensitivity and specificity values
found in table @ For the imbalanced model, the sensitivity is O or very close to 0, and
the specificity is 1 or very close to 1, for all classes except class 0. However, class 0 has a
sensitivity close to 1 and a specificity close to 0. The large sensitivity for class 0 suggests
that the model is very good at predicting True Positives for class O but extremely bad at
picking True Negatives for class 0; it is almost exclusively guessing class 0 every time.
When compensating for the imbalanced data, these values are significantly better, but far
from great.

So why not pick the imbalanced model when it clearly has a better validation accuracy
and validation loss? This is when domain knowledge is of importance. As it turns out,
class O is the "healthy" error state, meaning that this is the output expected when all is
good. In other words, it is of much greater importance to positively predict the other
classes, error states of potentially severe consequences. These error states could lead to

Mn reality, it is unknown how critical the different error codes are.
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breakdowns, disruptions in the product line or even safety consequences. It is much more
preferable to compensate for the imbalanced data, to be able to predict the other classes.
When conducting PdM, the "non-healthy" error states are the most important predictions
and therefore it is more important for the model to be able to predict all other classes except
class 0. A model with high accuracy, but only predicting the same classes is useless for
PdM.

The next natural question is whether the method chosen in this thesis is the best way
to compensate for imbalanced data. Section [3.1.6) mentions a few alternatives that are
available. There is a possibility that another method is more effective, which would be
interesting to investigate.

Architectural Complexity

The architecture of ML models has a great effect on the models potential of learning them
from the data. The approach used in this thesis is starting simple and adding complexity
in iterations trying to find an optimal architecture. Starting with different single layered
architectures and moving towards multiple layered architectures.

For FFNN and LSTM models the number of nodes for the single-layered models is
increased by a factor of 10 and then complexity is added by adding more hidden layers.
Three types of three-layered FFNN architectures are researched, increasing dimension (10-
50-10), decreasing dimension (50-10-50) and triangular (50-25-10). The number of nodes
for the models is chosen to be almost equal. The triangular architecture has the highest
accuracy and slightly higher loss compared to the model with one hidden layer of one
node. Also, when comparing confusion matrices for FFNN (figure 4.1a} 4.1c|and |4.1¢e]),
the triangular architecture performs the best and shows signs of managing to predict class
5 and class 6. For LSTM more single layered set-ups are tried, since the LSTM nodes
are more complex as default. For the multi-layered LSTM, only models with same sized
layers are added since they perform better. The LSTM model with one hidden layer of 100
nodes has the highest accuracy and lowest loss and seems to be the model that performs
best. When comparing confusion matrices for the LSTM model with one hidden layer of
100 nodes and the LSTM model with three hidden layers of 25 nodes each (figure
and , the LSTM model with three hidden layers of 25 nodes each has a more even
distribution of true positives.

When designing the architecture for CNN models, the approach is different. The num-
ber of convolution filters (which limits how many features the convolution will be able to
extract from the input data) and the size of the convolution kernel (the size of the time win-
dow the kernel covers) are the parameters in focus. First attempts are made with a small
kernel size of three (45 minutes) and with 8-128 filters. In line with the description of the
data set, that error codes are independent of sensor data outside of three hours (see section
[2.2.3)), the kernel size is increased to 12 (three hours) and with 8-128 filters. The kernel
size is limited by the input time slice of 24 (see section [3.1.4)) since the kernel cannot look
outside the input time slice. The CNN model with best performance is 64 filters and 12
kernels (with different max pooling, see table {4.3)).

The architectural design of the ML models was done iteratively based on discussion
with supervisors and experience from testing. The iterative design process could definitely
be extended further to include more examples, but which architectures work best is highly
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dependent on the data and the complexity of the features in the data set.

4.2.3 Model Evaluation

When evaluating the models both accuracy and loss is considered as well as confusion
matrices and ROC-curves. Table shows that the best CNN and LSTM models are
slightly better than FFNN models. This is also reflected in the confusion matrices, where
especially the frequency of false positives for class 3 is lower for CNN and LSTM models
compared to FFNN models. One of the reasons for the improved performance is that
CNNs and LSTMs are designed to handle series of data and to be able to find feature and
patterns over multiple samples. Also, the input dimension for the FFNN models is huge
in comparison.

When considering training time there was a huge increase for LSTMs and especially
for multi-layered LSTM models. FFNNs and CNNs had similar training time and therefore
one could argue that CNNs are the best models. Training time might not be an issue, but
it depends on the data set, the environment where the models will be run and the available
resources.

In the comparison above only models trained with a weighted loss function are con-
sidered to keep the comparison fair. As mentioned in section §.2.2] the FFNN model
achieved the highest accuracy and lowest loss when not compensating for the imbalanced
data. From a PdM point of view, this model is almost useless since it only predicts one
class and will not be able to predict any errors. This suggests that loss and accuracy are
not good evaluation metrics for ML models used for PAM. Loss and accuracy will give
an indication of which models seem to perform better. Especially loss over epochs can
be used to get an indication whether the model is getting better or not and a low accuracy
indicates that a model is bad. To get a more extended evaluation of a model more metrics
are needed. Therefore confusion matrices and ROC-curves are considered, since they are
a representation of the actual classification made by the model.

There is an important difference between ROC-curves and confusion matrices. The
prediction of the network is always a vector of values between [0, 1], which can be seen
as probabilities for each class, e.g. [0.25, 0.0, 0.15, 0.05, 0.05, 0.1, 0.4]. When plot-
ting the confusion matrix, a decision is made to always choose the class with the highest
probability. However, the ROC-curve instead considers the probabilities and evaluates the
predictions using different cut-off thresholds (see section [2.5.3)). This may result in bad
performance for a class according to the confusion matrix, but good performance accord-
ing to the ROC-curve, if the class rarely achieves the highest probability. For example
prediction vector [0.51, 0.0, 0.0, 0.0, 0.49, 0.0, 0.0] will result in the confusion matrix
choosing class 0, even though the probability for class 0 and class 4 are very close. There
are other ways to choose the predicted class, for example choosing class 0 with a proba-
bility of 51% and choosing class 4 with a probability of 49%.

4.2.4 Performance Considering PdM

As explained in section [2.1] the goal of PdM is to predict breakdowns and/or error codes.
The data set used in this thesis contains error codes from the start, so no preprocessing
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was necessary to extract the information from raw data. Instead, it is more interesting to
examine how the ANNs cope with the predicting.

By using a time slice of 24, features can be found over the past 6 hours, and by using a
time shift of 12, the model will always predict 3 hours ahead (see sectiond.2.I|for more). A
prediction of 3 hours will only be helpful to avoid critical errors where a warning of 3 hours
is enough. Generally, predictions further in the future are wanted to provide the machine
maintainer with enough to time react to the error code. More time is needed to plan for
a delivery of parts to replace broken machines, to plan for the actual maintenance, to
temporarily divert production to another machine whilst maintenance is being performed
etc.

To predict further in the future, a bigger time shift is needed, and indirectly a bigger
time slice to avoid the potential problem of losing the true feature that binds the input with
the "real" output (explained in section d.2.1)). Having a big time shift is not problematic,
but it requires a larger time slice. Say for example that the model is supposed to learn to
predict 31 days into the future instead of 3 hours, a time shift = 297@ is needed. This
means that the time slice needs to be at least the same size to encompass the input bound
with that output, 2976 time steps in the future. Additionally, say that there are features in
time that will affect the output, that stretch as far back as 93 days (instead of 3 hours), a
time slice = 89215 needed. Using a time slice of 8928 will result in an input dimension
of 8928 - 54|Z_f] = 482112 for a FFNN. Clearly this is huge and could introduce issues that
are not found with the much smaller input dimensions used in this thesis.

An alternative to using a big time slice could be to use stateful LSTM. Stateful LSTM is
identical to the LSTM networks that are researched in this thesis, with one big difference:
the internal states inside the nodes (see figure[2.10) are not reset when training in-between
batches [Keras, 2018]]. At an early stage of this thesis work stateful LSTM is applied to
the data set, but with little success. The main problem was the size of the training batches
and how the data should be reformatted for stateful LSTM. However, it could be very
interesting as an alternative to big time slices when there are dependencies that stretch
over long periods of time.

2Since data is logged 4 times every hour (every 15 minutes): 4 - 24 - 31 = 2976
34.24.93 = 8928
“There are 54 input values for every time step.
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Chapter 5

Conclusion

This chapter summarizes the findings that are made in the thesis, as well as answering the
research questions (see section[I.2)).

How can ANNs handle time-series/continuous data, and how
good are they at finding features over time?

FFNNs, CNNs and LSTMs can only handle a limited time window, since they require a
limited input size. Since they all have the same requirement, a fair comparison of perfor-
mance can be made when the data is preprocessed the same way for all three ANNS.

The simplest approach to handle a time window is by feeding the whole time window
into a fully connected FFNN. The input dimension becomes very large and the time aspect
is lost since all samples within a time window are given the same importance; nothing
indicates for the model that there is a sequential relation between different inputs. This does
not stop the FFNN's from finding these features over time (especially if they are prominent),
but they are simply not optimized to do so.

The second approach is to utilize convolution in a CNN and let the network find features
over time through convolution. The length of the kernels determines the size of the time
window considered in the convolution, and indirectly the input dimension. The filters that
are used to extract features are "rolled" over the data, in the direction of the time. Without
extensive domain knowledge it becomes difficult to know the optimal number of kernels
and filters, a number linked to the number of features over time that can be expected in
the data. However, if the optimal number of filters and kernels are chosen, CNNs have the
potential to find features available over time.

The last approach is to introduce a memory state into the network by using LSTM. The
internal weights introduced in each node provide the model with another means to control
how long a feature should be remembered over time. Intuitively LSTM networks are the
most optimized for time series data, for finding features over time.

A drawback for all three types of ANNSs is that the models are not that flexible. Once
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a time slice has been chosen, the input dimension to the model is also chosen, but more
importantly it ultimately decides how much "historic" data is needed for the model to
produce an output. For example, if a time slice of 3 months is chosen, data stretching back
3 months in time is needed for the model to produce an output. It would be necessary to
wait three months before the model can be used on a new plant.

Applied on the data set in this thesis, the overall evaluation shows a small performance
improvement for CNN and LSTM, over FFNN. The performance of CNN and LSTM were
similar. LSTM networks have support for handling very long sequences and might have a
slight edge over CNN if features can be found over a longer time period, than the time slice
of 24 that is used in this thesis. While the results in this thesis claim that CNNs & LSTM
networks are better suited for time-series data than FFNNS, it is difficult to choose the best
ANN. Inevitably the best performance difference out of CNNs and LSTM will depend on
the applied data set and the characteristics of that data set.

How can ANN models for PdM be evaluated and compared?

When evaluating ANNs for PAM it is important to consider the application domain, the
domain where the ANN is to be used. The loss over training epochs is important to evaluate
whether a model is getting better, and the accuracy is a measure of how well the network
is classifying the samples. When considering the application domain and characteristics
of the data set used in this thesis, accuracy is not enough. The data set used in this thesis
is very imbalanced which results in a high accuracy, but extremely biased results with
potential severe consequences. A model with high accuracy might in fact be a very bad
model for PdM, especially if one class is over-represented.

Therefore, additional metrics are needed which represent the actual predictions. Con-
fusion matrices and ROC-curves are used to examine the actual output of the ANNSs.

Specifically for PAM the number of true positives and false negative for certain classes
are more important than for other classes. It is more important to accurately predict error
codes corresponding to severe errors. Therefore, it might be good to lower the accuracy
of the model to increase the number of true positives and decrease the number of false
negatives for specific classes. The overall goal for PAM is to minimize the number and
cost of unscheduled machine failures and the ANNs should be evaluated on their ability
to minimize these measures.

What are the benefits & limitations of using ANN models for
PdM?

ANNSs are versatile ML models, which can be applied to many different domains. Al-
though, there are a limitations to using ANNs for PdM.

As mentioned, the input size to an ANN has to be fixed and missing values have to be
filled with substitute values. Hence, it is hard to represent missing values as a feature of
the data set. To be able to train a machine learning model, a lot of data is needed. This
data should be representative for the whole domain, otherwise the model will not learn all
corner cases. Additionally the data has to be of good quality, otherwise it will be hard for
the model to generalize the underlying function. If the data set is imbalanced and certain
classes are over-represented in the training, the model will over-train for these specific
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classes. To solve for imbalanced data, the classes have to be balanced, e.g. by weighting
the loss function or by over-sampling. Another potential drawback of ANNs is that the
training requires a significant amount of computing resources, which also may take a lot
of time.

Multiple benefits are noticed during research within the thesis. Using ANNs for PAM
still requires domain knowledge, but greatly reduces the extent to which it is needed. In-
stead of the network architect having to extract features from the data, the network itself
will be trained to detect useful features. ANNSs perform very well for samples that are
frequent in the training set, i.e. the normal cases, which is connected to the networks po-
tential difficulty to classify unusual classes. There are types of ANNs that are designed to
handle sequences of data, e.g. CNN and LSTM. These models will be able to consider the
dependency between samples over time. By presenting additional training samples to the
ANN, the network will improve and therefore, it will be possible to improve the network
over time.

5.1 Future Work

Several extensions and different approaches can be researched as future work.

ANNS not included in this thesis are simple RNNs, stateful LSTMs and Clockwork
RNNs [Koutnik et al., 2014]]. RNNs refers to ANNs with simple connections backwards
in time (see section [2.4.2). Stateful LSTMs are mentioned in section [4.2.4] and refers to
LSTMs where the internal state are not reset, i.e. the LSTM nodes will be able to remember
arbitrarily long time backwards in time. Koutnik et al. mentions a network with recurrent
hidden layers processing the input at different clock rates. The clock rate of each layer
is also a trainable parameter. This node type is constructed as an extension to RNNs to
improve sequence prediction and classification [Koutnik et al., 2014].

One discussed approach, which is only briefly researched, is using different binary
classifiers to classify each class. Each classifier will be trained to make a binary classifi-
cation of whether it is the correct class or not. For predictions each classifier will make
a prediction and the predictions will be combined into one predicted class. How the pre-
dicted class is chosen depends on the data set and the application. This can be useful when
the data is imbalanced.

One method research briefly is predicting multiple time steps ahead, e.g. prediction
12 steps forward from ¢, to #;,. This makes the model more adaptable and the user can
more easily choose which time step of the prediction to use, instead of having to retrain
the model for a different time shift.
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Appendix A

File formats

[A.T} [A.2] and [A.3| give an example of what the the raw data looks like before it has been
parsed and pre-processed, and how the data is split up into these three different kinds of
formats. Similarly [A.4] [A.5|and [A.6 show what the same data looks like once it has been

parsed and processed.

A1

Input Part A

1,2009-08-18
5,2009-08-18
6,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
4,2009-08-18
2,2009-08-18
3,2009-08-18
4,2009-08-18
5,2009-08-18
6,2009-08-18
1,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
4,2009-08-18
5,2009-08-18
6,2009-08-18
1,2009-08-18

18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:

18

12:
14:
14:
14:
14:
14:
15:
29:
29:
29:
29:
29:
30:
44
44
44
44
44
44

00,711,630,69,600,689,20,40,1
27,725,460,101,705,689,20,40,1
31,711,505,69,678,689,20,40,1
43,705,630,69,600,689,20,40,1
47,734,516,101,671,689,20,40,1
51,743,637,69,595,689,20,40,1
00,730,577,101,633,689,20,40,1
33,721,511,101,674,689,20,40,1
37,747,563,101,642,689,20,40,1
45,716,572,101,636,689,20,40,1
49,718,455,101,708,689,20,40,1
54,712,613,5,610,689,20,40,1
00,705,624,69,604,689,20,40,1
31,703,621,69,606,689,20,40,1

:35,725,509,101,676,689,20,40,1
:39,743,559,101,644,689,20,40,1
:48,712,568,101,639,689,20,40,1
:52,720,451,101,710,689,20,40,1
:56,712,549,69,651,689,20,40,1

:59:

30,700,617,69,608,689,20,40,1
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A.2 Input Part B

2,2009-08-18
3,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18

18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
:59:
:59:
19:
19:
19:
19:
19:
19:
19:
19:

18
18

14:
14:
15:
29:
29:
29:
44
44
44
59:

14:
14:
14:
29:
29:
29:
44:
44:

56,233.
56,629.
02,863.
41,241.
42 .,641.
47 ,882.
44,249.
44.,653.
50,902.
43,257.
43,665.
49.,922.
45.,264.
46,677.
51,942.
53,272.
53,688.
59,960.
55,279.
56,698.

72,31

44,49,
16,80.
41
31,45.
75.,76.
47

44 .31

31,31

34,49.
66,80.
13,31.
50,48.
63,80.
88.,30.
47,48.
34.,79.
75,31.
00,43.
75,74.
.63
84 .,45.

69,21

52

20
72

38
78

02
50
14
94
08
94
69
63
17
15
32

73
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A.3 TARGETS

A.3 Targets

2009-08-31 21:44:47,2009-08-31 22:29:47,6
2009-08-31 13:59:36,2009-08-31 22:44:54,6
2009-09-01 07:44:53,2009-09-01 08:14:55,6
2009-09-01 08:44:55,2009-09-01 09:29:53,6
2009-09-01 09:44:56,2009-09-01 15:30:01,6
2009-09-01 15:44:59,2009-09-01 15:59:58.,6
2009-09-01 16:14:57,2009-09-01 16:29:56,6
2009-09-01 16:59:55,2009-09-01 17:30:00,6
2009-09-01 21:59:35,2009-09-01 22:14:38,6
2009-09-01 18:44:43,2009-09-01 22:44:49,6
2009-09-01 17:55:45,2009-09-02 00:00:57,6
2009-09-02 08:44:34,2009-09-02 13:44:37,6
2009-09-02 13:59:58,2009-09-02 14:44:59.,6
2009-09-02 15:59:36,2009-09-02 16:29:35,6
2009-09-02 21:44:43,2009-09-02 22:29:44,6
2009-09-02 16:59:34,2009-09-02 22:44:52,6
2009-09-03 08:45:02,2009-09-03 09:30:01,6
2009-09-03 09:44:32,2009-09-03 14:29:36,6
2009-09-03 14:44:36,2009-09-03 15:14:35,6
2009-09-03 15:44:33,2009-09-03 16:45:02,6
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A. FILE FORMATS

A.4 Parsed Input Part A

,time ,s11 ,s821
0,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
4,2009-08-18
5,2009-08-18
6,2009-08-18
7,2009-08-18
8,2009-08-18
9,2009-08-18
10,2009-08-18
11,2009-08-18
12,2009-08-18
13,2009-08-18
14,2009-08-18
15,2009-08-18
16,2009-08-18
17,2009-08-18
18,2009-08-18

,831,s41,r11,1r21
00,711

18
18:
18:
18
19:
19:
19:
19
20
20

20

20:

21
21

21:

21

22:
22:
22:

145,703

145,705
:00,705
015,705
:30,702.
45,702.
:00,702.

15,705
30,705

00,700.
15,698
30,702.

115,707
30,698
145,703
00,698

30,703

15,702.

.0,630.
.0,630.
.0,624.
0,621

0,617.

0,612.

0,633.

.0,729.
.0,727.
.0,675.

0,675.
0,624.
0,712.
.0,732.
.0,671.
.0,723.
.0,628.
0,714.
.0,720.

, 131
0,69.
0,69.
0,69.
.0,69.
0,69.
0,69.

0,69.
0,69.

0,5.
0,5.
0,6
0,5.
0,5.
0,5.
0,6
0,5.
0,5.

0,598.
0,537.

0,689.
0,689.
0,689.
0,689.
0,689.
0,689.

0,689.
0,689.

0,20.
0,20.
0,20.
0,20.
0,20.
0,20.
0,20.
0,20.
0,5.0,538.0,689.0,20.0,
0,5.0,571.0,689.0,20.0,

,rd41 ,s12,822 ,832,s42 ,
0,600.
0,600.
0,604.
0,606.
0,608.
0,612.

el elBeolBeolBeoleleNe)

-

0,572.0,689.0,20. O
0,604.0,689.0,20.0,

9. 0,548.0,689.0,20.0,”.
0,535.0,689.0,20.0,...
0,574.0,689.0,20.0,...
0,541.0,689.0,20.0,...
9.0,601.0,689.0,20.0,...

0,546.0,689.0,20.0,...
0

,543.0,689.0,20.0,...
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A.5 PARSED INPUT PART B

A.5 Parsed Input Part B

,time ,ell ,e21
0,2009-08-18
1,2009-08-18
2,2009-08-18
3,2009-08-18
4,2009-08-18
5,2009-08-18
6,2009-08-18
7,2009-08-18
8,2009-08-18
9,2009-08-18
10,2009-08-18
11,2009-08-18
12,2009-08-18
13,2009-08-18
14,2009-08-18
15,2009-08-18
16,2009-08-18
17,2009-08-18
18,2009-08-18

,el2.,e22,el13,e23

18:00,,,,,,
18:15,863.16,80.72,233.72,31.52,629.44,...
18:30,882.75,76.78,241.44,31.41,641.31,...
18:45,902.66,80.5,249.31,31.47,653.34,...
19:00,922.63,80.08,257.13,31.14,665.5,...
19:15,942.34,79.63,264.88,30.94,677.47,...
19:30,960.75,74.32,272.75,31.17,688.0,...
19:45,978.53,67.36,279.69,21.63,698.84,..
20:00,997.59,65.31,287.34,30.7,710.25,...
20:15,1014.97 ,68.8,295.03,30.62,720.19,...
20:30,1032.69,74.24,301.81,30.53,731.5,...
20:45,1050.03,61.2,308.56,21.25,742.03,...
21:00,1067.28,60.88,315.66,21.1,752.19,...
21:15,1084.31,55.66,322.34,20.77,761.97,...
21:30,1101.16,58.1,328.88,20.53,772.28,...
21:45,1119.16,60.4,335.53,20.38,783.63,...
22:00,1136.75,70.45,341.69,20.16,795.06,...
22:15,1154.09,71.73,347.59,28.59,806.5,...
22:30,1172.25,76.93,353.84,28.54,818.41,...

69




A. FILE FORMATS

A.6 Parsed Targets

,time ,err_code
0,2009-08-18 18:00,6
1,2009-08-18 18:15,6
2,2009-08-18 18:30,6
3,2009-08-18 18:45,6
4,2009-08-18 19:00,6
5,2009-08-18 19:15.,6
6,2009-08-18 19:30,6
7,2009-08-18 19:45.,6
8,2009-08-18 20:00,6
9,2009-08-18 20:15,6
10,2009-08-18 20:30,6
11,2009-08-18 20:45,6
12,2009-08-18 21:00,6
13,2009-08-18 21:15,6
14,2009-08-18 21:30,6
15,2009-08-18 21:45,6
16,2009-08-18 22:00,6
17,2009-08-18 22:15,6
18,2009-08-18 22:30,6
19,2009-08-18 22:45,6
20,2009-08-18 23:00,6
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Appendix B

The development process

The thesis and the systems developed in the thesis were written and developed by the
two authors. In the first step extensive research was conducted on ANNs, PdM and data
preprocessing. The research resulted in the development of a testing framework, which
was designed to preprocess data for ANNSs, train ANNs and evaluate the models.

Hugo researched data preprocessing specifically for PAM and designed and developed
the base for data preprocessing within the framework. Anders researched ANNs specif-
ically for time sequential data and developed the part of the framework constructing and
training of the models using Keras.

The evaluation metrics to complement accuracy and loss was researched by Hugo,
which was incorporated into the evaluation part of the framework. The development of the
testing suites and test setups were split between the authors, but most decisions considering
testing were thoroughly discussed by both authors. Anders developed test suites for FFNNs
and LSTMs and Hugo developed test suites for CNNss.

All parts of the thesis were written, changed, extended and corrected by both authors.
Changes were also made after feedback from supervisors. The discussion and conclusion
were by both authors and discussed by both the authors and supervisors.

Extensive discussions between the authors and supervisors were done continuously
throughout the thesis.
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Artificiella neuronnatverk for prediktivt

underhall

POPULARVETENSKAPLIG SAMMANFATTNING Anders Buhl, Hugo Hjertén

Prediktivt data-drivet underhdll kan bidra med besparingar och 6kad produktionsef-
fektivitet. Maskininlarning, och framforallt artificiella neuronnatverk, har visat goda
forutsattningar som hjalpmedel inom data-drivet underhall.

Maskinindustrin ~ producerar standigt stora
méngder data som ofta forblir outnyttjad. Data
som hade kunnat anvindas for att forbéttra
underhallsrutiner och ddrmed minska frekvensen
for maskinfel och oOka produktionskvaliteten.
Underhall idag kan delas upp i tva delar, at-
giardande underhall och férebyggande underhéll.
Atgirdande underhall utfors nir en maskin har
gatt sonder.  Forebyggande underhall utfors
innan en maskin gar sonder och det utférs for att
forebygga och undvika att maskinen gar sonder.
I stort kan forebyggande underhall delas upp
i tidsbestdmt underhdll och tillstandsbestdmt
underhall. Tidsbestdmt undrehall innebéar att alla
maskiner foljer samma underhallsschema, t.ex.
att de underhélls en gang i manaden.

Alternativet ar tillstandesbestdmt underhall,
dir maskinens hélsotillstaind Overvakas.  Det
mojliggor for individuellt underhallsschema for
varje maskin, vilket minskar frekvensen av service
av maskiner som inte ar i behov av service och ser
till att service istéllet sdtts in i ratt tid. Predik-
tivt underhall ar en typ av tillstindsbestdmt un-
derhall, dér felkoder forutspas for att kunna sétta
in ratt atgirder for att undvika felet. Det leder
till minskad miljéopaverkan och 6kade ekonomiska
marginaler.

Ett siatt att utfora prediktivt underhall ar att

lata maskininldrningsmodeller ldra sig fran tidi-
gare data. Inom examensarbetet utvecklades
artificiella neuronnétverksmodeller som trénades
for att forutspa felkoder tre timmar framat i
tiden. Tre olika typer av artificiella neuronnétverk
utvecklades och jamfordes, varav tva ar designade
for att hantera data sparad éver tid och darmed
lattare kan hitta samband 6ver tid.

Ofta arbetar maskiner i normaltillstdnd storre
delen av tiden, alltsa dr det mesta av den tillgidng-
liga datan utan nagra felkoder. Det leder till att
modellen har en tendens att trédnas for att enbart
forutspa att modellen fungerar normalt. FExem-
pelvis kommer en modell, som pastar att maskinen
alltid fungerar normalt, uppna en noggrannhet
pa 60% om maskinen fungerar normalt 60% av
tiden. Ur underhéallssyfte dr det en helt viardelos
prediktion, da det ar viktigare att kunna férutspa
felkoderna.

Vi ser det som en mdojlighet att forbattra var
modell genom att forbattra och berika datan. For-
magan att kunna tréana artificiella neuronnétverk,
samt mojligheten for en bra prestanda, ar starkt
beroende bade pa den kvantitativa och den kvali-
tativa tillgdngen av data.
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