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Abstract

Preparative chromatography is an important separation technique in downstream processing
for several industries. It has the ability to separate two or more component from each other to
achieve high purity. Most components that are separated with preparative chromatography are
high value components and it is therefore necessary to use small amounts in the development
of the process too lower costs. The ability to model these systems and simulate them before
running experiments could lower these costs and also make the process more efficient.

At the Department of Chemical Engineering at Lund University, liquid chromatography
systems (AKTA from GE) are controlled with a in-house developed software called Orbit. In
this thesis, a simulation software was integrated into the software so that an experienced user
could simulate methods with the same syntax as before. The software was able to simulate
the whole flow path with tubes, columns and other units. The user was then able to follow
different components throughout the system and predict their behavior. For the column, a
simplified mass steric action model was implemented so that the adsorption of components
could be described.

A parameter estimation software was also implemented into the software package. This
gave the user the option to estimate model parameters for a component using only two data
sets. The software designed so that Orbit could conduct the experiments on the AKTA ma-
chines and then from that data, it could estimate model parameters. In this study, data sets
was created using the simulation software and known model parameters. Using these data
sets, the software was able to estimate the model parameters in different cases with great
precision and robustness. Even if the user made a bad guess, the software was still able to
find precise parameters.






Sammanfattning

Kromatografi &r en viktig separationsteknik vid upprening av produkter inom manga pro-
cessindustrier. Metoden anvinds for att separera tva eller fler komponenter fran varandra
for att utvinna produkter med hogt utbyte och hég renhet. Komponenterna som utvinns vid
kromatografi dr oftast vildigt dyra att producera och diarmed sa dr det véldigt viktigt att att
anvianda sma mangder i utvecklingsfasen for att dra ner kostnaderna av slutprodukten. Moj-
ligheten att modellera och simulera hur dessa komponenter beter sig i systemen innan man
utfor experiment hade kunna sinka kostnaderna i utvecklingsfasen, men dven effektivisera
arbetet.

Vid institutionen for kemiteknik vid Lunds Universitet anvéinds en utvecklad mjukvara for
att styra vitskekromatografisystem (AKTA systemen frin GE). I denna studie si har denna
mjukvara integrerats med en simuleringsmjukvara som tar informationen som skickas till
systemen och simulerar dem pa forhand. Mjukvaran kan simulera hela systemet med tuber,
kolonner och andra enheter som tillhor maskinerna. En anvindare kan f6lja komponenterna
genom systemet, undersoka hur de ror sig genom tuber och enheter, men dven forutspa resul-
tat innan de genomfors experimentellt. For kolonnen sa implementerades en adsoptionsmod-
ell for att modellera hur komponenterna adsorberas och eluerar.

I mjukvaran sa implementerades dven en modellparameterskattning. Den gav anvindaren
valet att skatta modellparametrar utifran enbart tva stycken experimentella dataset av en kom-
ponent. Aven denna mjukvara var integrerad med resterande vilket ledde till att experiment
utforda pd AKTA systemen kunde direkt anvindas i parameterskattningen. I denna studien s
skapades experimentella data med hjilp av simuleringsmjukvaran och kinda modellparame-
trar fran tidigare studier. Utifran den datan sa kunde mjukvaran skatta modellparametrar med
bra precision och robusthet. Aven om anviindaren gjorde en dilig gissning pA modellparame-
trarna sa skattade mjukvaran parametrarna mycket vil.
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Nomenclature

Latin Letters

A Flow area

c Mobile phase concentration

D Dispersion coefficient

F Volumetric flow

GP.o1ymn Number of grid points for a column
GP,,p. Number of grid points for a tube

h Distance between two gridpoints
Keq Equilibrium constant

kiin Kinetic adsorption coefficient

N Dispersion

Neotumns Number of columns

Neomp Number of components

Nitems Number of simulated items

Nops Number of observed values

N:ubes Number of tubes

Ny State variables

q Stationary phase concentration
Oist Objective function for the distance between peaks
Ores Objective function for the squared residuals
t Time

tret Retention time

Uins Interstitial flow velocity

v Flow velocity

%)

SE

=3
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w Weight for objective function
Greek Letters

A Difference between two points

\Y Characteristic charge

€ Total fluid fraction of the column
& Column void fraction

Ep Packing porosity

Overall Subscipts and Superscripts

ax Axial direction
data Experimental data
i Component

in Inlet

init Initial

max Maximum

n Grid point index

s Salt

sim Simulated data

Z Point in the axial length of the item
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Introduction

Chromatography is an important separation technique in downstream processing for several
industries. It has the ability to separate two or more components from each other to achieve
high purity. In liquid chromatography, the liquid is pumped through a system and separation
occurs where the liquid is introduced to a new phase. In this thesis, the second phase is
a solid phase called stationary phase in the form of a packed column. It is in the column
that the components adsorb on the stationary phase, and when the composition of the liquid
changes, the components desorb. The change in liquid composition in this thesis is an increase
in salt concentration that weakens the interaction between components and stationary phase.
When the goal of the chromatography is to purify components from each other it is called
preparative chromatography and this will be the focus of this thesis.

In many industries, high cost components is produced and purified using preparative chro-
matography. This requires a long experimental phase to gather data of the system and build a
good method of separation. Since the component is expensive to produce, this leads to high
research costs if a lot of component is needed for the downstream process research. If this
time and number of experiments could be decreased, the cost of developing a process for
these components could be greatly reduced.

There are many proven models for the adsorption of components on a packed column.
Using these models, simulation of components with known kinetics can greatly reduce the
experimental phase and therefore the cost of production. Instead of spending time on con-
ducting a great number of experiments and try to understand the complex system, a small
number datasets could be used to estimate the model parameters.

At the Department of Chemical Engineering at Lund University, a software for controlling
a chromatography processes has been developed. Users can specify their own run methods
and the software can make decisions based on the information given e.g. controlling pH
and choosing the cutoff points to achieve the highest purity. The integration of a simulation
and parameter estimation software would grant users the ability to both simulate their run
methods before starting an experiment, but also automate parameter estimation for unknown
components.

1.1 Aim

This project has two aims. The first is to develop a software that can simulate any type of
instructions that are given to the chromatography system and show the results of the whole
procedure. This will give the user the ability to predict the outcome of the experiments and
change parameters before starting the experiment. The study also covers the implementation
of the ability to conduct a robust parameter estimation of a adsorption column model. Given
very little information, the software should be able to find the parameters for any component.

The second aim is to automate this procedure so that the user only sets up a few ex-
periments in the code and starts them all with a press of a button. Then the idea is that the
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software will handle the rest. All this is to be integrated in the already used software Orbit at
the Department of Chemical Engineering at Lund University.



2

Background

In this chapter, the background and theory behind the software will be presented.

2.1 High Pressure Liquid Chromatography (HPLC)

The separation in chromatography is based on differences in equilibrium constants for the
components of a mixture placed in the diphasic system (a mobile and a stationary phase).
In an HPLC system, the liquid (also called the mobile phase) is pumped through a column
containing the stationary phase. The liquid is pumped through the stationary phase and de-
pending on the physical and chemical properties of the components and the specific column,
separation occurs [1].

The stationary phase can be of many types, the important thing is that the equilibrium
area where adsorption and desorption can occur is large. A large area provides more sites
where the adsorption and desorption can occur which increases the separation in the column.
One type is to have an absorbent with a relatively large surface area and very accessible pore
channels (i.e a resin). Another common type is to have coated walls in the column where the
phase interaction can occur. There are a number of different types of columns that can be
used in a HPLC system. Each utilizes different chemical and physical properties to separate
the components from each other. For protein separation, ion-exchange column is probably
the most common. It has a stationary phase that is either negatively or positively charged and
binds components depending on their charge [2]. Another type is the size-exclusion column
that separates components based on physical size. In this project, an ion-exchange column
will be used.

There are two main areas of use for a chromatography system: Preparative or analytical.
In preparative, the goal is to purify a substance from a mixture and store it for further use.
Unlike in analytical where the information gathered from the separation is more important to
understand the substance [1].

This project will focus on both parts: The analytical part is used to understand how the
components interacts with the system and is needed for the parameter estimation. When
an understanding of how the components interacts, the focus will be on how to use this in
preparative methods.

2.2 System

The system that will be simulated is an AKTA Pure chromatography machine made by GE
Healthcare. It is a High Pressure Liquid Chromatography machine with plenty of flexibility.
The system is designed so that the user can set up the system with different modules depend-
ing on the purpose of the experiment. There are different types of modules e.g. UV sensor,
pH sensor, pumps and different kinds of valves. The different kind of valves are used for
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separate purposes such as sending the fluids to the column or having an inlet for the injection
pump [3]. A picture of the machine can be seen in Figure 2.1.

Figure 2.1 The AKTA Pure chromatography system.

The modules are connected to each other with tubes which comes in different flow area sizes
and are used widely over the system. The key component of the system is the choice of
column where the separation of components occur.

2.3 Orbit

The software that ships with the machine is called Unicorn. In Unicorn, the user can setup
chromatography runs with different settings on buffer gradient, flow paths and flow velocity.
The user can also view the measurements made by the sensors on-line while commencing an
experiment.

Unfortunately Unicorn has several limitations such as no real time control, complex
scripting and simultaneous run of multiple connected AKTA systems. These things are all
necessary when creating complex HPLC processes that is needed for more complex prob-
lems. This was the reason why the program Orbit was created. All these demands are met in
Orbit through OPC (software interface standard for Windows to communicate with industrial
hardware).

As a user, one can specify different phases e.g. a wash of the system, loading the column,
elution and regeneration phases. Once specified, Orbit will create a "method" out of this in-
formation and send it to the chromatography machine. While all these phases are executed
by the AKTA Pure, other calculations and control systems runs in the background of the soft-
ware. This allows great flexibility for the user and the possibility to make complex processes
with ease. [4] An overview of orbits role can be seen in Figure 2.2.
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Figure 2.2 An overview over the Orbit controller program developed in Python. [4]

2.4 Simulation of Chromatography Processes

There has been several other studies on simulation of chromatography processes over the
years [5]-[9]. In these studies several different models of adsorption is discussed and cal-
ibrated depending on process conditions. In a study, Karlsson et al. [S] simulated a ion-
exchange step for a antibody purification step using Langmuir kinetics with mobile phase
modulators (MPM). In this model, there is a certain amount of available ligands on the sta-
tionary phase which the proteins compete against each other to bind into. The salt is con-
sidered as inert and the concentration of salt affects the retention of proteins. Karlsson et
al. also states that in 2001, downstream processing of antibodies contributed to 80 % of the
total production cost. To lower these costs, development of cheap methods for designing and
optimizing purification steps is seen as a high priority. In this development, simulations is a
great way of reducing the number of experiments thus reducing cost.

In a study by Jakobsson et al. [6], a model-based approach to an ion-exchange chro-
matography step is introduced. It shows the possibility to make robust calibration within a
confidence interval for two components. By showing that this type of calibrations is possible,
single-component experiments can be avoided which lowers the developments costs. The ad-
sorption model in this study was the steric mass action model (SMA). The key role of the
SMA model is that the electro-neutrality must be conserved in the interaction between pro-
teins and solid phase in the form of an equilibrium reaction. Both salt and protein compete
for the available binding sites in the column and a binding of a protein also shields a number
of ligands. Jakobsson et al. also presents the possibility of a linear relation between pH and
the equilibrium model parameter in a narrow pH range. This gives robustness to the model
since pH variations is one of the most difficult process parameter to control.

In Al-Kaisy’s master thesis [7], four different adsorptions models were investigated and
calibrated against experimental data. Besides the already mentioned MPM and SMA models,
the self-association (SAS) model and the generalized Langmuir (GL) model was investi-
gated. Since the focus of this thesis is not on the model, the two later mentioned will not be
explained further. Al-Kaisy showed that all these models could be calibrated into a good fit
on experimental data when the column was loaded with a small amount of proteins. For the
experiments with a high load of proteins in the column, all models had a hard time fitting
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the data. When validating the model parameters against a three component experiment with
a low protein load, all models showed an acceptable fit.

In Persson’s master thesis [8] he investigated the usage of a two-column recirculation
process to achieve better process performance than traditional batch chromatography. In
the study, he calibrated an SMA model from experiments to three proteins: Lysozyme, cy-
tochrome c and ribonuclease A. With the help of these models, he performed an optimization
based on yield, purity and productivity. The ion-exchange column used in Persson’s work is
still used at the Department of Chemical Engineering at Lund University, which makes this
study an excellent reference for similar experiments.

In Sellberg’s doctoral dissertation [9], the difficulties of parameter estimation was dis-
cussed. It was stated that parameter estimation in mathematical modeling of chromatographic
processes is the most difficult part. Therefore, several types of experimental designs are pre-
sented as an aid when performing an estimation. In pulse experiments, characterization of
the chromatographic equipment is achieved (e.g. column void volume and porosity of the
stationary phase) by pumping a small sample of non-binding component through the col-
umn. For estimating parameters in the adsorption model, linear range experiments are used.
By loading the column with a small amount of the studied component and eluting at different
gradients, the different behaviors for the adsorption model in the linear range of the adsorp-
tion isotherm can be observed. Sellberg also presents suggestions on numerical methods for
non-linear parameter estimation and selection of initial guess.
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Method

In this chapter the methods of this thesis is presented. First, the mathematical model is intro-
duced followed by the simulation, parameter estimation and experimental methods.

3.1 Mathematical Model

As described in section 2.2, the system is built up with tubes, columns and other units. From
now on, all these will be referred to as items in the system. In the simulations, only the tubes
and the columns will be discretized and simulated. All other items such as sensors or valves
will only work as perfectly mixed tanks with an inlet and an outlet. A sketch over the a tube

system is shown in Figure 3.1
>> N
A

V4

\/

Z L

Figure 3.1 A sketch over a tube

where 7 is the position at a specific point on the tube, Az is the small step in the length of the
tube and L is the total length of the tube. Since each item can be seen as a tube where a fluid
flows through, a component mass balance can be set up for a tube[10]. While deriving this
model, a few assumptions are made:

* The liquid has constant density throughout the whole tube.
* The system is under isothermal conditions.
* The convection and dispersion is only in the axial direction.

* The concentration within the particles of the column is assumed to be uniform.
With this information, the component mass balance can be derived as following:

Rate of Accumulation = Rate of Flow In— Rate of Flow Out
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d(c
AAz (d;Z) = (Fzciz = AN;) = (FopacCizra: —ANzyaz) G-

where A is the cross sectional area of the tube, Az is the small step in the direction of the
tube, ¢ is the mean concentration in the mobile phase, # is time, F is the volumetric flow rate,
c is the concentration in the mobile phase and N is the dispersion. The subscript i denotes
component and the subscript z denotes at what point along the tube. If Az goes towards zero:

_ B = FynCizrn: _v@
Az—0 AAz dz

_ AN; — AN A, _ _d_N

m
Az—0 AAz dz

where v is the flow velocity and D, is the dispersion coefficient in the axial direction. Since

N = _Dalel_g
dN d’¢
dZ - ax de

with this information a lumped model can describe the component mass balance. The first
term on the right side of the equal sign to represent the convection and the second term is to
represent the axial dispersion[10].

dc; dc; d%c;

—t__y1tap 3.2
or = "oz TP G-
3.1.1 Dispersion Coefficient
The dispersion coefficient can be expressed as
vL
Dy = Pe (3.3)

where Pe is the Peclet number which indicates the ratio of convective to dispersive transport.
If the magnitude of Pe — oo, dispersion is negligible and a plug flow behavior is obtained.
But if Pe — 0, the system is approaching a well mixed situation [10]. In this thesis, the D,
for the software is set to 1.0- 1078 for both the columns and tubes.

3.1.2 Column Adsorption

Due to the porous packing and the adsorption properties in the ion-exchange column, the
lumped model for the column looks a bit different. First, due to the porous packing, the flow
velocity needs to be substituted into the interstitial flow velocity as following:

1%
Uit = —
E

where u;,; is the interstitial flow velocity and € is the total fluid fraction of the column which
can be calculated from Equation 3.4:

e=¢e+(1—¢€)g (3.4)

where €. is the column void fraction and €, is the packing porosity. For this thesis, these
parameters will be be set to the values used in Persson’s master thesis [8]. These values are
found in Table 3.1.
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Table 3.1 Values for column void and packing porosity[8].

Parameter Value

& 0319
£ 0.856

Secondly, an adsorption term is also added to describe the separation. There are several type
of adsorption models mentioned in section 2.4, and in Persson’s master thesis, model param-
eters for three proteins is established. Due to this, the simplified SMA model is chosen so
that the model parameters from his master thesis can be used as a reference in this work. The
model is simplified in the sense that the salt is regarded as an inert component that does not
adsorb. The model is described in Equation 3.5:

aq; Neomr g, "
= kpini | Kegi-ci | 1— Z l —gj-cy (3.5)
ot j=1 qmax,j

where ¢ is the concentration in the stationary phase, k;, is the kinetic adsorption coefficient,
K., 1s the equilibrium constant, Ny 1s the total number of components and V is the charac-
teristic charge. The subscript s denotes that it is salt. With these additions, the lumped model
for the adsorption column is defined as in Equation 3.6 [11]:

dc; dc; 826'1' I—g aC[i
=—v

9 Vo, TPaga T o

(3.6)

3.1.3 Initial and Boundary Conditions

To simulate all the items in the system, boundary and initial conditions needs to be set up for
each item. At each inlet of the items, a Dirichlet condition is set as seen in Equation 3.7.

Ci —0 = Cin,i(t) (3.7)

where the subscript in indicates the inlets concentration for the tube. For each outlet of the
items, a von Neumann condition is set as seen i Equation 3.8.

aC,'

- =0 3.8
2|, (3.8)

At the beginning of each simulation, the initial conditions is set so that the system is filled
with a solvent with a low salt concentration. The initial condition can be seen in Equation
3.9.

Cinit (Z‘ = O,Z) 3.9

where the subscript init indicates that it is the initial concentration.

3.2 Method of Simulation

In this section, the method of the simulation will be discussed. This software is based on
preexisting software written by Niklas Andersson at the Department of Chemical Engineering
at Lund University. The software has been further developed throughout this thesis.
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3.2.1 Creating a Mesh

With the mathematical model for tubes and columns stated in section 3.1, the system can be
simulated. Each item is discretized into a mesh with a number of grid points where the first
grid point is the inlet and the last is the outlet. The last grid point is also connected to the next
item’s first grid point, creating a long chain of connected items. Depending on what type of
item, different number of grid points were used. In Table 3.2, the number of grid points used
are stated.

Table 3.2 The number of grid points used in the simulations

Item Number of Grid Points

Tube 10
Column 50

With increasing the number of grid points, the accuracy of the simulation increases to the ex-
pense of an increasing number of calculations. When the number of calculations is increased,
it results in an increase in total calculation time for the simulation. This gives a trade-off
between accuracy and total simulation time. A low number of grid points also increases the
numerical dispersion in the system meaning that this effect will be more present than the
actual dispersion in the system.

The number of grid points is chosen based on trials by Oliver Persson in his master
thesis at the Department of Chemical Engineering at Lund University [8]. He found that a
higher number than 50 grid points for the column does not give higher accuracy because
the numerical dispersion is low enough. So for this system, the number of grid points in the
tubes are a low, but since the accuracy in the tubes are not as important as in column, this is
regarded as feasible for this study. The same goes for the number of grid points in the column
which can also be regarded as low, but increasing this would create a very big system with
high calculation times. Therefore 50 grid points are kept for the column.

3.2.2 Method of Lines

To discretize in space, the method of lines (MOL) is used to turn the partial differential
equations (PDEs) into larger systems of ordinary differential equations (ODEs) [12]. To ap-
proximate the derivatives at each element, the finite volume method is utilized [13]. For
the first-order derivatives, a two-point backward difference is used and for the second-order
derivatives a three-point central difference is used to make the estimation. This can be seen
in Equation 3.10 respectively 3.11.

dcn  Cp—cCni
— 3.10
0z h ( )

0%cn  Cpa1—2¢n+cn_t
= 3.11
02 2 (3.11)
where 4 is distance between two grid points. The subscript n declares the grid point index for
the item.

3.2.3 The Simulation Procedure

Thanks to the integration of the simulation software into Orbit, an experienced user of Orbit
will not have to change any syntax in the method creation. When setting up phases for the
desired simulation experiment, there is no difference compared to setting up a regular exper-
iment. The user does have to specify what components that will be present in the system and

10
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what types of buffers the system is connected to. The user also has the option to turn on and
off the simulation software depending on the desired experiment. When the specified method
is sent to the simulation software, the following procedure takes place:

1. All the ports (inlet and outlets of items) are collected, simulation parameters (e.g. num-
ber of grid points and dispersion coefficient) are set, initial states are saved and active
pumps are defined.

2. The software checks so that in all instructions, there is a buffer connected to the system.
If there is not one set, a new buffer is created and connected. All the components of the
system is also stored.

3. An empty vector for the total solution of all items is created. After the vector is created,
the initial values for every point is gathered and set.

4. A for-loop over all instructions in the method is started:

a) The flowpath for the current instruction is found. The inlet and outlets of the
system is set and flow direction for all items. An empty vector is created for the
items that will be simulated during the current instruction. The vector is then filled
with the solution from the previous simulated instruction.

b) The current instruction is simulated
¢) The results from the simulation is added to the total solution vector.

d) Return to the top and continue with the new instruction.

Note that this description of the simulation procedure is a simplification. The steps mentioned
above are the fundamental steps that one need to understand. Many more steps do occur in
the procedure, but are not necessary for the general understanding.

3.2.4 Solving ODE:s in Python

Since Orbit is written in the programming language Python, the simulation software also uses
Python due to the simplicity while integrating both the systems.

To solve a system with ODE:s, the function solve_ivp in the library of scipy.integrate is
very useful. The function numerically integrates a system of ODE:s given an initial value.
A user can specify what type of integration method to be used. For this thesis, backward
differentiation formula (BDF) was chosen based on simulation experience at the Department
of Chemical Engineering at Lund University. The method is an implicit multi-step method
with a variable order based on the derivative approximation [14].

3.2.4.1 The Usage of the Jacobian Sparsity Matrix
One way to speed up the numerical calculations of the ODE solver is to pass on a Jacobian
sparsity matrix. The idea is that the solver gets a matrix which tells the solver which state
variables that will affect the partial derivatives. This way the solver does not have to calculate
the Jacobian at every given point, instead it can just follow the given matrix.
The Jacobian gives the relationship between the existing state variables in the system and
their partial derivative. This gives a (n,n) matrix with the partial derivatives representing the
rows and the state variables being the columns. The script has the following procedure [15]:

1. Creates an empty matrix with the size of the Jacobian

2. Calculates the initial partial derivatives of the system with some randomized initial
values.
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3. Then one state variable at the time is changed. New partial derivatives is calculated and
the ones that changed at each time is noted.

4. In the end a matrix filled with zeros and ones is formed. The zeros represent that the
state variable has no effect on the partial derivative and vice versa.

An illustration over how a Jacobian sparsity matrix can look like if represented as above is
shown in Figure 3.2. The blue boxes represents where the state variables have a direct impact
on the partial derivatives.

State Variables
0 20 40 60 80 100

Partial Derivatives

Figure 3.2 An illustration over a Jacobian sparsity matrix for a system. The blue boxes
represent where the state variables have a impact on the partial derivative.

3.3 Method of Parameter Estimation

With the results from the simulations, a parameter estimation of the components is possible
if some real data of the same run-method is given. The parameter estimation can be seen
as a "calibration" of the model curve to the actual data. For this thesis, the focus will be on
estimating k;,, K., and v of the protein components. This is done in steps by minimizing
two different objective functions.

3.3.1 Objective Functions

The first objective function aims to minimize the distance between the experimental and
the simulated peak. A weight is also introduced so that the user can specify whether the
concentration or the retention time is more important. The objective function can be seen 1

Equation 3.12

12



3.3 Method of Parameter Estimation

Quist = \/(W (trez7data - trensim))z + ((1 - W) : (Cret,daza - Cret7sim))2 (3.12)
where Qg ;s is the objective function for distance between peaks, w is the weight on the
retention time of the objective function and #,,; is the retention time. The subscript data
denotes experimental data and sim denotes simulated data. #,.; and c,; is found by describing
the profile with splines and using the bisection method. This is necessary to remove discrete
behavior. If the goal of the objective function is to minimize the retention time only, the
weight should be set to 1, thus the concentration difference will be zero. An illustration of
the variables can be found in Figure 3.3.

INlustration of the varibles in the objective function Q ;g

__________________ —— Simulated
0.04 - Acret bata
T
=
= 0.03
E
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s
8
2
5
O 0.01 H
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T T T T T
0 10 20 30 40

Time (min)

Figure 3.3 An illustration of the variables in the distance measurements for Q ;.

The second objective function aims to minimize the sum of the squared residuals between
the experimental data and the simulated result. The function can be seen in Equation 3.13.

Nobs
2
Ores = Z (Cj,data - Cj,sim) (3.13)
j=1
where Q.5 1s the objective function for the squared residuals and N, is the number of
observed values.

3.3.2 Minimize Methods

There are different numerical methods for minimizing the objective function seen in Equa-
tion 3.12. In the library scipy.optimize, the function minimize gives the user over 10 different
methods for minimization. As a user, you specify the objective function which is to be opti-
mized and what parameters that the method can adjust to achieve better results. In this case,
the objective function can be found in Equation 3.12 and the parameters to be adjusted are
kkin, Keq and v. For this thesis, three different methods for minimization are used. Their de-
scription from the function’s documentation is listed below [16]:

* COBYLA - Based on linear approximations to the objective function, this is a con-
strained Optimization by Linear approximation method.

* SLSQP - Uses sequential least squares programming to minimize a function of several
variables with any combinations of bounds, quality and inequality constraints.

13



Chapter 3. Method

* Nelder Mead - Uses the simplex method. It is a very robust method, but slow compared
to the other two methods if the numerical computation of the derivative can be trusted.

For the objective function found in Equation 3.13 the library scipy.optimize has a function
called curve_fit which creates the objective function itself as long as the user provides the
data, simulated results and adjustable parameters [17]. This function uses the Levenberg-
Marquardt algorithm to solve the minimization of the sum of the squares. In this thesis, the
method will not be further explained. For further robustness, the least_squares function in
the scipy.optimize was also used where a Trust Region Reflective algorithm (trf) with a 3-
point finite difference scheme for numerical estimation of the Jacobian proved to be very
effective. This method was more robust than Levenberg-Marquardt, but the number of calls
to the simulation function is twice as high thus increasing computational time.

3.3.3 The Parameter Estimation Procedure

The goal is to build a robust software that can take few sets of data and make a parameter esti-
mation for a simplified SMA model. Throughout the minimization of the objective functions,
the user is asked to do an initial guess. This puts the user in a tricky situation since one does
not always have knowledge of the component that is under investigation. This means that the
parameter estimation procedure needs to be designed so that with a bad initial guess, robust
methods will reach the solution in any case. There are many numerical difficulties to handle
to reach the solution. Each of the three parameters are strongly coupled to each other and
shows different sensitivity in different areas e.g. ki;,, shows different sensitivity depending on
the values of K, and v. Thus, the parameters also show more direct effects on retention time
and peak width:

* A higher k;, gives a smaller peak width and vice versa.
* A higher K,, increases retention time and vice versa.

* v is strongly coupled to both retention time and peak width. But its effects can be
exposed by changing salt concentration since these two are strongly coupled.

A general description of the procedure is shown below. In all minimizations, both the data
set for the 8 min linear gradient and the 20 min linear gradient was included. Note that this
does not include all safety methods (methods created in case a minimization method crashes
or reaches a bad result), but presents an insight to the software.

1. Adjust K., until the peak elute within the elution phases. If K, is too low, the com-
ponent will not be adsorbed by the column and therefore be pumped right through the
column. But if K., is too big, the adsorption term will be too strong thus binding all the
component and nothing will elute. In either of these cases, the minimize methods have
no chance of finding the minimum of Equation 3.12. This is due to a too big or too low
K4, there is no sensitivity meaning that increase or decrease of K., does not affect the
objective.

2. K,q is estimated by minimizing Equation 3.12 so that the retention time of the data and
the model is identical.

min Qdist
eq
s.t.  Equation 3.5—3.9 (3.14)
w=1
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3. kkin 1s adjusted so that it shows sensitivity. This is done by calculating the residuals
between the data and the simulated model for a number of different ki;, values. The
newly selected kg, is based on where the derivative of the residuals is the biggest.

4. All parameters are estimated by minimizing Equation 3.13 with the function curve_fit
presented in section 3.3.2.

min Qres
kiinKegq,V (3.15)
s.t. Equation 3.5 -3.9

5. kgin is estimated by minimizing 3.12 so that the top of the simulated peak gets as close
as possible to the data peak. This step is done to increase the sensitivity of kg;,.

min Qdist

kkin

s.t.  Equation 3.5—-3.9 (3.16)
w=0.7

6. All three parameters are under estimation while minimizing Equation 3.13 using the
least_squares function with the trf-method. This follows the same minimization objec-
tive as in Equation 3.15.

3.4 Experimental Methods

In this section, the method for the different experimental cases is presented.

3.4.1 Experimental System

It is important to remember that the model simulations and parameter estimations for this
system is only applicable for this system. The model is very sensitive, e.g. if the pH would
change or a different column would be used in the experiments, the model would no longer
be applicable [6].

The column used in this thesis is the HiTrap SP HP 1 ml from GE Healthcare which has
a particle diameter of 24-44 um, bed diameter of 7 mm and a height of 25 mm [18]. The
solutions used in the experiments are stated in Table 3.3.

Table 3.3 Solutions used in the simulations.

Solution NaCl Protein
Buffer A 0.5 mM -
Buffer B 0.5M -
Protein solution - 1 g/LL

For simulating experimental data of proteins, the model parameters from Persson’s master
thesis is used [8]. These parameters can be seen in Table 3.4. Note that the parameter g4, Was
not investigated in this thesis and therefore assumed to be according to Persson’s findings.
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Chapter 3. Method

Table 3.4 SMA model parameters for ribonuclease A, cytochrome ¢ and lyzozyme [8].

Parameter Ribonuclease A Cytochrome ¢ Lysozyme Unit

Kicin 1.0-1072 1.0-107% 1.0-107%  m? mol=! 57!
Keq 6.8-107 5.0-10% 4.0-10'2 mol m=3
v 3.3 4.1 4.7 -

Gmax 51 51 51 mol m™3

In Figure 3.4, an illustration on the simulated AKTA Pure system is shown and in Table 3.5 a
description of the items in the figure is shown. In the beginning of the simulations the whole
system is filled with Buffer A except for the super loop that is filled with the protein solution.

A Buffers B Buffers

O
@)
~O--@

Cond {-»{ pH --
v

Waste

Figure 3.4 An illustration how the units and tubes are connected in the simulated AKTA
Pure system. The dotted lines are the main flow path, where as the solid line is the optional
flow paths.
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Table 3.5 Explanation of abbreviations from Figure 3.4

Item Explanation

Al Inlet valve A
BI Inlet valve B

P Pump

v Injection valve
SL Super-loop
Cv Column valve
C Column

uv UV sensor
Cond Conductivity sensor
pH pH sensor

ov Outlet valve

With this simulated flow path, the system consists of:
* 12 tubes
* 1 column

* 4items (mixer, UV-sensor, conductivity sensor and pH-sensor acting as perfectly mixed
tanks)

This result in a system where the number of state variables can be described by the number
of components and the number of grid points (see Table 3.2). This is shown in Equation

Nx - Ncomp ' (Ntubes * GPlubes +2- (Ncolumns : GPcolumns) + Nitems) (3 17)

where N, is the number of state variables, N;,;.s 1s the number of tubes, GF, ;.5 1s the number
of grid points for tubes, (N ojumns is the number of columns, GP, ., is the number of grid
points for columns and Nj,s is the number of items in the system. The amount of state
variables for the columns is doubled since both concentration and adsorption is modeled in
the columns and for the items there is no grid points. For the system in this thesis with 2
components, this results in a total of 448 state variables.

3.4.2 Simulation Case 1 - Simulation of 3 components

Before this thesis, the simulation software was based on a component mass model for a
tube system without the adsorption term. Throughout this thesis, an adsorption term was
added to simulate ion-exchange column behavior in the AKTA Pure system. To showcase
the functionality of the simulation software, the three component system described in section
3.4.1 were simulated in a linear gradient system. In Table 3.6, the experimental run method
is described.

3.4.3 Integrated Parameter Estimation

Note that all the data for these cases was based on previous experimental parameters from
Persson’s master thesis [8]. Using parameters from his work, experimental data was simulated
using the simulation software. This means that no practical experimental data was obtained
from an GE Akta Pure system.

In section 3.3.3 the general parameter estimation procedure in the software is presented.
To showcase the result of every step, a guess was provided to the software and after every
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Table 3.6 An overview over the phases in the simulation linear gradient experiments

Phase name Buffer Time (min)
Flush 100% Buffer A 1
Inject Injection of protein 1
Wash 100% Buffer A 1
Gradient elution From 20% to 100% Buffer B 8
Final Elution 100% Buffer B 5
Regenerate 100% Buffer A 5

step in the procedure, the estimated parameters were saved. The software was provided of
experimental data representing lysozym. The guess for the parameter estimation procedure
investigation is shown below:

kiin = 1.0-1076 m3 mol = 571
Key=5.0- 10" mol m=3

v=35

To test the robustness of the parameter estimation software, three different cases were inves-
tigated with a different protein in each case. Two experimental data sets were created for each
case using a linear gradient. The first dataset had a gradient of 8 min and the second had a
gradient of 20 min. An overview of the whole method for the simulation of the datasets and
cases can be seen in Table 3.7.

Table 3.7 An overview over the phases in the parameter estimation experiments

Phase name Buffer Time (min)
Flush 100% Buffer A 1
Inject Injection of protein 1
Wash 100% Buffer A 1
Gradient elution From 20% to 100% Buffer B 8 or 20
Final Elution 100% Buffer B 15
Regenerate 100% Buffer A 6

The investigated cases were very similar. For each case, three different initial guesses were
made. Two of the guesses were based on the protein that was not under investigation e.g. if
the experimental dataset was made with ribonuclease A, two of the initial guesses were the
parameters of cythochrome c and lyzozyme. The last guess was based on the parameters that
the software will use if the user does not provide a guess. In total there were four different
guesses made in this thesis: three based on the actual experimental parameters and one default
by the software. These were referred to as:

¢ Initial Guess Ribonuclease A: (Initial Guess R)
* Initial Guess Cythochrome C: (Initial Guess C)
* Initial Guess Lysozym: (Initial Guess L)

e Initial Guess Default: (Initial Guess D)

18
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The three cases and their guesses are presented in Table 3.8, Table 3.9 and Table 3.10 which
are defined as case 2-R, case 2-C and case 2-L.

Table 3.8 Initial guesses for the parameters of ribonuclease A in case 2-R.

Parameter Initial Guess D Initial Guess C Initial Guess L Unit

Kin 1.0-10710 1.0-107* 1.0-107° m? mol~! 57!
Keq 2.0-10° 5.0-10% 4.0-1012 mol m—3

\% 4.2 4.1 4.7 -

Table 3.9 Initial guesses for the parameters of cythochrome c in case 2-C.

Parameter Initial Guess R Initial Guess D Initial Guess L Unit

kin 1.0-1072 1.0-10710 1.0-1076 m> mol™! 57!
Keq 6.8-107 2.0-10° 4.0-1012 mol m=—3

\% 3.3 4.2 4.7 -

Table 3.10 Initial guesses for the parameters of lysozyme in case 2-L.

Parameter Initial Guess R Initial Guess C Initial Guess D Unit

Kin 1.0-1072 1.0-1074 1.0-10710 m> mol=! 571
Keq 6.8-107 5.0-10% 2.0-10° mol m~—3

\% 3.3 4.1 4.2 -

For each of the cases the experimental parameters compared to the initial guess and the
estimation will be presented. In some of the cases, the estimation is so good that a plot of the
experimental simulation and estimated simulation would not show a big difference. Therefore
the residual sum of squares (RSS) for between the simulated data and simulation with the
parameter estimation is also provided to give the reader a sense of how close the parameter
estimation is. The number of calls to the simulator for the different parameter estimations
(SimCalls) will also be provided.
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4

Results & Discussion

In this chapter, the results from the experimental methods and its cases is shown together
with a discussion of the model behavior and the software implementation.

4.1 Simulation Case 1 - Simulation of 3 components

Since the whole system was simulated by the software, every item with its own grid points
has its own solution. This means that for every item (e.g. a tube or a valve), the concentration
of components and salt can be shown over time. To show this, a few items are plotted over
time below in Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4.

Outlet from the mixer over time

0.05 - —— Salt
Cyto
~ 0.04 - — Ribo
TE —— Lys
2 0.03 A
=
S
£ 0.02
=)
3
a
o
© 0.01 A
0.00 - k
1 1 1 1 1
0 5 10 15 20

Time (min)

Figure 4.1 Concentration of the components at the outlet of the mixer over time. Note that
the salt concentration is scaled by 10~ to illustrate the elution sequence in the same figure.

From the figures, one can follow the components through the whole system. At the mixer, the
only component that is visible is the salt. This is because the protein components never pass
the mixer since they are injected at a later stage of the system. In Figure 4.2, the protein com-
ponents passes as pulses right before they enter the column. The protein solution contained 1

g/L of each protein, but since all proteins have different molar masses, the concentration of
them differ.
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4.1 Simulation Case 1 - Simulation of 3 components

Outlet from the tube connected to the
column’s inlet over time

Concentration (mol -m™)
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ﬁ Cyto
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0.04
0.02 -
0.00 K

1 1 1 1 1
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Figure 4.2 Concentration of the components at the outlet of the tube that is connected to the
column over time. Note that the salt concentration is scaled by 10~ to illustrate the elution
sequence in the same figure

Outlet from the UV sensor over time
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Figure 4.3 Concentration of the components at the outlet of the UV sensor over time. Note
that the salt concentration is scaled by 10~ to illustrate the elution sequence in the same
figure
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Outlet from outlet valve over time
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Figure 4.4 Concentration of the components at the outlet of the outlet valve over time. Note
that the salt concentration is scaled by 10~ to illustrate the elution sequence in the same
figure

At the outlet of the UV sensor, the separation done by the column can be seen since the
protein components are now shaped as peaks instead of the pulse that was seen before the
column. If comparing the results from the UV sensor (Figure 4.3) and the outlet valve (4.4) it
is clear that the peaks are passing at different times. This shows that there is a distance for the
solution to travel before reaching the next unit, in this case tubes. Therefore, the peaks will
reach each items at different times. This can also be seen on the salt curve on each figure. For
the mixer, the salt concentration returns to 0 around 17.5 min and at the outlet valve the salt
concentration returns to zero at 21.5 min.

The effect of the dispersion term can also be seen when comparing the salt concentration
of the mixer and the outlet valve. At the mixer, buffer A and buffer B meet for the first time
and is instantly mixed. Since there is no modeling done for describing the mixing, this results
in the mixer acting as a perfectly mixed tank. This kind of mixing is probably not the case
in reality, its effect is not in the scope of the study and was therefore not further evaluated.
Looking at the salt concentration of the outlet valve, the curve for the salt is much smoother.
This is because of the dispersion of the salt through out the whole system. An an increase of
smoothness around the salt curve can also be seen by looking at the figures in the order of the
flow path. The dispersion can also be seen on the protein components if comparing the peaks
at the UV sensor and the outlet valve. At the UV sensor, ribonuclease A and cythochrome c
barely overlaps. But at the outlet valve, these two components show a slightly larger overlap.
This shows that the dispersion term is active for the whole system, not only the salt.

Keep in mind that due to the numerical dispersion, from the low number of grid points,
this effect overlaps the dispersion term. To simulate the dispersion more precisely, the number
of grid points should be chosen to a higher number, and the dispersion coefficient should be
adjusted to fit the simulated system. For instance, the dispersion coefficient is much higher in
a column than in a tube due to the packing in the column.
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4.1.1 The Effect of the Jacobian Sparsity Matrix

To prove that the Jacobian sparsity matrix decreases the calculation time as described in
section 3.2.4.1, the time for a simulation to complete was measured with and without the
Jacobian sparsity matrix. A mean was calculated over 10 simulations for each of the cases.
This was measured for the simulation in Case 1 explained in section 3.4.2.

When the Jacobian sparsity matrix was given to the ode-solver, the simulation time was
35.4 s while without 94.6 s. This shows that the Jacobian sparsity matrix makes the ode-solver
2.5 times faster in this simulation (Reduced the computational time by approximate 60 %).
From these results, the Jacobian sparsity matrix has a great impact on computational time. If
the matrix would not be given to the ode-solver, computational time would greatly increase.
This would result in a problem in the parameter estimation software where the minimization
methods calls the simulation function over 800 times resulting in very large computational
times.

4.2 Parameter Estimation Procedure

To illustrate the sensitivity of k;,, the derivative of objective function Q ;g in respect to kg,
is shown in Figure 4.5.

The derivative of the Qs in respect to kg,
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Figure 4.5 The derivative of Qg with respect to k;,

From the figure, the sensitivity of kg;, can be observed. With very low kg;,, the peak will
not elute and therefore the peak is outside of the elution window (the elution window is the
time span where buffer B is introduced to the system). When increasing k;, slightly the peak
enters the elution window and a smaller value on Qg is achieved and therefore the derivative
is very high for these values since the distance step is very high. When k;,, increases more, the
derivative decreases rapidly reaching a very low value in comparison to the high sensitivity
case. This lower derivative resulted in a lower sensitivity of the parameter which leads to less
room of estimation possibilities for the curve_fit function.

23
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To showcase the different steps taken by the parameter estimation software, an illustration
of the steps taken can be seen for both a 8 min linear gradient and a 20 min linear gradient in
Figure 4.6 and Figure 4.7 respectively. In Table 4.1, the estimated parameters for each step is
shown.

[lustration of parameter estimation procedure of lysozym
with a bad guess - 8 min linear gradient
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Figure 4.6 An illustration of the steps taken in the parameter estimation procedure in the
software for a 8 min linear gradient. Note that units on the y-axis does not correspond to the
salt concentration, i.e. the salt concentration is shown as an illustration of the elution sequence.

Table 4.1 Parameter estimation procedure result for one component.

Step Kiin Keq \Y
Data 1.00-107® 4.00-10'> 4.70
Initial Guess 1.00-107% 5.00-10'* 3.50
Step 1 1.00-107% 2.10-10' 3.50
Step 2 1.00-107%  3.92-10° 3.50
Step 3 1.00-107'" 3.92.10° 3.50
Step 4 1.21-10710 1.73.10'" 4.17
Step 5 3.99-107% 1.73-101" 4.17
Step 6 4.52-107°  4.00-10'2 4.70

At a first glance, the peak for the initial guess can not be found in either of the figures. But
by looking at the size of K, for the guess, one can assume that the binding of the component
was too strong and therefore no component leaves the column for the initial guess. In step 1,
the peak was visible in both figures and shows that the software was able to bring the peak
into the elution window of the simulation. This was done by lowering the size of K., so that
the peak was visible during the elution phase. In this case, the software recognized that there
was no peak visible from the initial guess meaning that the adsorption term is too strong. If
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[llustration of parameter estimation procedure of lysozym
with a bad guess - 20 min linear gradient
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Figure 4.7 An illustration of the steps taken in the parameter estimation procedure in the
software for a 20 min linear gradient. Note that units on the y-axis does not correspond to the
salt concentration, i.e. the salt concentration is shown as an illustration of the elution sequence.

the adsorption was too low, the whole peak would instead elute before any salt was added
into the column and the software would instead increase K., to put the peak in the elution
window.

After step 2, K,, was estimated so that the retention times of the data and the simulated case
was the same. In both figures, the retention times were very similar between the data and the
"Step 2". However the peak height was not very similar and the shape of the peak was a bit
off.

In step 3, the peak looks a bit different. Here k;;, was set to a much lower value where
it shows sensitivity. The result of the decreased ky;, contributed to a much lower peak height
than the data and a peak that was much broader. But this step was still implemented since
it was shown in experiments that without setting the kz;, to a value where it shows high
sensitivity, the curve_fit was not able to make a good estimation. And since this function is
much faster than the trf-method, this kg;, adjustment step is necessary to increase the speed
of the software. A small peak before the elution phase starts can also be seen in the figures.
The explanation for this was that since the adsorption term was very low due to the low k;,
value, very small amounts of component was adsorbed in every grid point and therefore a
small amount managed to go through the whole column without being adsorbed.

Step 4 utilized the curve_fit function and managed to get closer to the real parameters but
both the peak height and retention time was still not fitted to the data. In this case, step 5
did not seem to make any big difference since the peak for this step directly aligned with the
peak for step 4. Step 5 was added to the procedure to make sure that the value k;, was at its
best before using the trf-method to decrease computational time, but shows to be inefficient
in some cases such as this. Finally, step 6 reached the experimental data parameters with the
trf-method. This method is also the most time consuming method with more than 60 % of
the simulation calls depending on what case.

This procedure was not the one with the lowest computational time and may have not
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been the most efficient, but it was the most robust procedure. Since the aim of the thesis was
to create a robust parameter estimation software, it was chosen to fill that requirement.

4.3 Parameter Estimation Robustness - Case 2

For the three cases in the test of the software’s robustness, the estimated parameters for each
guess is provided together with RSS for both the linear gradients. In a separate table, number
of simulations calls for each guess is shown together with the mean for the case. To show how
good the concentration curve fits with the estimated parameters, a plot for the 20 min linear
gradient is shown together with the experimental data set. Since the estimated parameters are
very close to the experimental parameters, only one concentration plot is shown for each case.
The rest of the 20 min linear gradient plots can be found in Appendix A and the 8 min linear
gradient plots can be found in Appendix B. In these plots, the concentration is measured in
the outlet of the UV-sensor of the system. Also note that units of the y-axis in the plots does
not correspond to the salt concentration, i.e. the salt concentration is shown as an illustration
of the elution sequence.

Since all cases showed very similar results a general discussion of the results is presented
after the results from all the cases.

4.3.1 Case 2-R

The estimated parameters are shown in Table 4.2 and in Table 4.3 the number of simulation
calls are shown. The concentration plot for initial guess L is found in 4.8.

Table 4.2 Parameter estimation results with RSS from case 2-R.

Estimated . K v RSS RSS
Parameters kin ¢4 (8 min) (20 min)

Experimental 1.00-102 6.80-10" 3.30 - -

Initial GuessD 1.87-10~% 6.80-107 3.30 4.58-10"!! 2.96.10!
Initial Guess C  3.70-10~% 6.80-107 3.30 2.11-10"!'' 1.10-10~M
Initial Guess L 2.97-10~* 6.80-107 3.30 3.41-10"!' 1.50-10"!

Table 4.3 Number of simulation calls from case 2-R.

Initial Guess SimCalls Mean SimCalls

Initial Guess D 1150
Initial Guess C 1114 1159
Initial Guess L 1214
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Initial Guess L in Case 2-R with 20 min Gradient
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Figure 4.8 Results of case 2-R from initial guess L with a salt gradient of 20 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.

4.3.2 Case 2-C

The estimated parameters are shown in Table 4.4 and in Table 4.5 the number of simulation
calls are shown. The concentration plot for initial guess D is found in 4.9.

Table 4.4 Parameter estimation results with RSS from case 2-C.

Estimated ko % v RSS RSS
Parameters ki ¢4 (8 min) (20 min)

Experimental 1.00-10~% 5.00-10'9 4.10 - -

Initial Guess R  1.56-107 5.00-10° 4.10 1.10-10710 1.35.10°10
Initial GuessD 6.88-107° 5.02-10'0 4.10 4.79-10°% 7.25.-10°8
Initial Guess L  7.05-10~° 5.02-10'0 4.10 4.50-107% 6.96-1078

Table 4.5 Number of simulation calls from case 2-C.

Initial Guess SimCalls Mean SimCalls

Initial Guess R 1110
Initial Guess D 866 954
Initial Guess L 886
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Initial Guess D in Case 2-C with 20 min Gradient
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Figure 4.9 Results of case 2-C from initial guess D with a salt gradient of 20 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is

shown as an illustration of the elution sequence.

4.3.3 Case 2-L

The estimated parameters are shown in Table 4.6 and in Table 4.7 the number of simulation
calls are shown. The concentration plot for initial guess R is found in 4.10.

Table 4.6 Parameter estimation results with RSS from case 2-L.
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Estimated . % v RSS RSS
Parameters kin “q (8 min) (20 min)
Experimental  1.00-107® 4.00-10'> 4.70 - -
Initial Guess R 8.62-107° 4.00-10'2 4.70 1.48-107'! 6.56-10"12
Initial Guess C  2.12-10° 4.00-10'2 470 8.30-107'! 8.31-10°!!
Initial GuessD 8.76-10710 4.00-10'2 4.70 4.95-10719 4.81.10°10

Table 4.7 Number of simulation calls from case 2-L.

Initial Guess

SimCalls Mean SimCalls

Initial Guess R 1540
Initial Guess C 1230 1294
Initial Guess D 1112
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Initial Guess R in Case 2-L with 20 min Gradient
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Figure 4.10 Results of case 2-L from initial guess R with a salt gradient of 20 min. Note
that units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration

is shown as an illustration of the elution sequence.
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4.3.4 Summation on the Parameter Estimation

From the results in the tables and figures, the estimated parameters were very similar to the
experimental parameters except for the ki;, that was smaller for all initial guesses. Looking
at the concentration plots, the curves fits each other very well on all initial guesses with no
distinguishable visual difference. This shows that the size of kg;,, does not have a big impact
on the result of the model. It also shows that the software is able to find a ky;,, where it gives a
good parameter estimation result without reaching the experimental parameters. The amount
of SimCalls for the initial guesses ranges from 866-1540 and the ones that took the most calls
were the ones where the guess was far away from the correct parameters.

The RSS-values for each case were very small. This can also be seen visually in the
concentration plots where the curve for the experimental parameters and the estimated pa-
rameters were close to identical. The reason that the RSS-values are not zero in the cases
could be the small differences that the ode-solver gives in each iteration of solving the same
system. These differences are very small, but noticeable in the RSS-value. In case 2-C, the
RSS-values are slightly higher for initial guess D and L. This is due to the estimated K., pa-
rameter that differs slightly from the experimental parameter. This gives a higher RSS-value
but there was still no visual difference in the concentration plots meaning that the difference
does not impact the overall result.

The goal of the parameter estimation was to fit the experimental data as good as possible.
This implies that the peaks from the experimental parameters and the estimated parameters
should overlap completely. For this study, this showed to be achievable since the experimental
data was created from the same simulation software that was used in the parameter estimation
software as well. The software also showed good robustness since the same procedure could
find the correct parameters for all the initial guesses in all cases. In all cases, the experimental
parameters were found and the software was able to estimate a very good model. This means
that the created software can approach the correct parameters from a wide range of initial
guesses and that the software shows robustness in its calculations.

The cost of this robustness was the number of SimCalls. As mentioned in section 3.3.2,
the trf-method makes twice as many SimCalls than the Levenberg-Marquardt method. This
is due to the 3-point finite difference scheme for numerical estimation of the Jacobian that
requires twice as many calculations. Although this trf-method gives robustness, it adds cal-
culation time in the form of more SimCalls. But when using only the Levenberg-Marquardt
method, the software did not reach correct parameters in all cases and had a hard time esti-
mating the results of the steps taken in the minimization. Therefore the trf-method became
necessary to achieve the robustness demand in the software. This did however take at least
850 SimCalls for each guess, and in most of the cases even more. Depending on the pro-
cessor of the computer running the software, the computational time differed. In this study,
guesses took between 2-4 hours to complete. This was however only the time for the param-
eter estimation software to be completed. If a user would want to do the whole procedure,
meaning that the experiments on the AKTA Pure was to be conducted too, the total time of the
software would increase. Adding the total experimental time, the total time of the parameter
estimation method would be around 3.5-5.5 hours. This might be regarded as a long time, but
since only two experiments needs to be conducted, the amount of protein that is used can be
lowered compared to other experimental methods. This computational time could of course
be reduced with a better processor or using a cluster of computers.

The whole procedure can be regarded as automated as soon as the user starts the proce-
dure. The regular workflow is that experiments are conducted on the AKTA Pure and from
the results, the user uses that data to estimate parameter in a separate script/program. With
this automation, the efficiency of a parameter estimation can be increased leading to less data
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analysis since the software does that by itself.

This "perfect parameter estimation"” might not be necessary for the the estimated model
parameters to be useful. In some cases, the user is only interested of e.g. the retention time and
not the peak height. This is often the case when trying to separate two or more components
where the user wants to decide at what time the flow path should change so the components
can end up at different end points. So even if the software does not show a perfect fit, some
information can still be useful. But in those cases, validation of the estimated model should
be conducted to make sure that the model shows good results in a wide range. Otherwise the
model might only be applicable in certain cases and therefore not suitable for use in a wide
range of determination of process design.

It is important to remember that the results from the parameter estimation software must
be validated against one or more separate linear gradient experiments. Otherwise the result
can never be used as a valid model since it has not shown to be accurate for more than two
cases of linear gradients. For this thesis a validation was unnecessary since the experimental
parameters were known and the estimated resulted in the same values. But if the software
were to be used in a lab, validation is necessary to validate the model for further use. There
are also other problems that arise when conducting real experiments of the AKTA machines.
From the experiments, the data of the peaks comes in the form of a UV-signal. This signal
can be transformed into concentrations by Lambert’s-law (if a calibration curve of the sensor
has been made). If there is any errors in this calibration, the concentrations from the data and
the ones achieved in the simulations will not be the same. From real experimental data, other
differences also arises such as signal saturation, different dispersion etc. All these differences
needs to be accounted for when using the software in real experiments.
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5

Conclusions

An integration of a simulation software to the preexisting and widely used AKTA machine
software Orbit was successfully implemented. The software was able to simulate a complete
AKTA system with tubes, columns and other units. The system also implemented a simplified
steric mass action model that described the adsorption of components in the columns. With
the software, the user has the ability to follow components through the whole system and
predict results before conducting experiments on the system. The computational time was
reduced 60 % by providing a Jacobian sparsity matrix to the ode-solver.

A parameter estimation software was also implemented to the software. With only two
simulated data sets, the software was able to estimate precise SMA model parameters for a
single component. The software’s main focus was robustness, meaning that it could reach
a good solution even with a bad guess. If a user did not provide a guess, the software sets
one for the user. In all the investigated cases, the software was able to find the correct model
parameters. The cost of this robustness was a great amount of calls to the simulation function.
The number of simulation calls varied around 866-1540 and resulted in computational times
of 2-4 hours. With this implementation the experiment and model estimation was automated
with the same syntax as an experienced Orbit user is familiar with.
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Future Work

In this thesis, all the experimental data is based on simulations of known model parameters.
To really evaluate the parameter estimation software and its robustness, it should be tested
against real experimental data from an AKTA Pure system.

There is also room for improvement of the software. In this thesis, only one compo-
nent have been under investigation. The next step would be to add the possibility of making
parameter estimations for multiple components. When trying to implement multiple compo-
nents, other problems arise. If the experiments are conducted on an AKTA Pure machine,
the only experimental data for the components would be a single UV-signal of one particu-
lar wavelength or multiple UV-signals of particular wavelengths. This means that the risk of
components showing up on different wavelengths of the UV-signals are high and it is there-
fore hard to know which peak is which component. This means that the software needs to
get experimental data where the different component peaks can be separated from a single
or multiple signals and then make the parameter estimation. It would also be of interest to
make parameter estimations of the g,,,,. For this type of estimation, overload experiments
are usually conducted. In an overload experiment, the column is loaded with a high amount
of high concentration component solution and then the column is eluted.

As with all software, the goal is to lower the computational time. In this thesis, all pa-
rameter estimations took over 2 hours to complete. This was only for a single component,
meaning that if more components were to be introduced, the computational time would in-
crease additionally. The focus of this thesis have been to create a robust software that can
handle a wide variety of cases, but if development of this software would be continued, focus
should also be on computational time.
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A

Parameter Estimations Plots - 20 min
Gradient

Here are the concentration plots from the 20 min gradients in the parameter estimation de-
scribed in section 3.4.3.

Initial Guess D in Case 2-R with 20 min Gradient
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Figure A.1 Results of case 2-R from initial guess D with a salt gradient of 20 min. Note that

units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Initial Guess C in Case 2-R with 20 min Gradient
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Figure A.2 Results of case 2-R from initial guess C with a salt gradient of 20 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Figure A.3 Results of case 2-C from initial guess R with a salt gradient of 20 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Initial Guess L in Case 2-C with 20 min Gradient
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Figure A.4 Results of case 2-C from initial guess L with a salt gradient of 20 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Figure A.5 Results of case 2-L from initial guess C with a salt gradient of 20 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Initial Guess D in Case 2-L with 20 min Gradient
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Figure A.6 Results of case 2-L from initial guess D with a salt gradient of 20 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Parameter Estimations Plots - 8 min
Gradient

Here are the concentration plots from the 8 min gradients in the parameter estimation de-
scribed in section 3.4.3.

Initial Guess D in Case 2-R with 8 min Gradient
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Figure B.1 Results of case 2-R from initial guess D with a salt gradient of 8 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Initial Guess C in Case 2-R with 8 min Gradient
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Figure B.2 Results of case 2-R from initial guess C with a salt gradient of 8 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Figure B.3 Results of case 2-R from initial guess L with a salt gradient of 8 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.




Appendix B. Parameter Estimations Plots - 8 min Gradient

Initial Guess R in Case 2-C with 8 min Gradient
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Figure B.4 Results of case 2-C from initial guess R with a salt gradient of 8 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Figure B.S Results of case 2-C from initial guess D with a salt gradient of 8 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Initial Guess L in Case 2-C with 8 min Gradient
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Figure B.6 Results of case 2-C from initial guess L with a salt gradient of 8 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Figure B.7 Results of case 2-L from initial guess R with a salt gradient of 8 min. Note that
units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Initial Guess C in Case 2-L with 8 min Gradient
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Figure B.8 Results of case 2-L from initial guess C with a salt gradient of 8 min. Note that

units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Figure B.9 Results of case 2-L from initial guess D with a salt gradient of 8 min. Note that

units on the y-axis does not correspond to the salt concentration, i.e. the salt concentration is
shown as an illustration of the elution sequence.
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Syntax Explanation for Orbit

In this appendix, a short summary of the syntax of the simulation and parameter estimation
syntax is presented. For the simulation of the instructions, a class called orbitSim is used.
When estimating parameters the class orbitCalibrate is used.

In the method function of every orbit-script, the user needs to specify the buffer and
number of components as in Listing C.1. First the different components are defined. If some
parameters are unknown, these values can be set to 1. Then the buffers are defined by its
content and then the system is filled with buffers as the initial set up. Finally the buffers are
connected to a inlet of the inlet valve.

def method(S, gradientTime):

777 wxskxxxkx Define buffers and components ssssssssss 77
# —— Define the components in the system
cl = Component(name = ’Salt’,
S=S,
Mw = 18.01,
K_uv=1) # to match the conductivity
c2 = Component(name = ’Ribo’,
S=S,
Mw = 13.7e3,

K uv = 1080e5,
k _kin = le—2,

beta = 3.3,

H. 0 = 6.8¢7,

g_max = 51)
c2 = Component(name = ’Lys’,

S=S,

Mw = 14.3e3,

K uv = 10000,
k_kin = le—6,
beta = 4.7,
HO0 = 4el2,
g_max = 51)

# —— Define the buffers in the system

bl = Buffer(conc = {’Salt’:0.0005e3, ’Ribo’:0})

b2 = Buffer(conc {>Salt’:0.5e3}) # mol/m3

b3 = Buffer(conc = {’Salt’:0.0005e3, ’'Ribo’:1/13.7e3x1e3,
"Lys’:1/14.3e3%1e3}) #mol/m3

# —— Fill system with buffer

bl. fillSystem (S)

b2. fill (S.pump.p[ OutB’]. tube)
b2. fill (S.inlValveB .p[ Out’]. tube)
b2. fill (S.inlValveB)

b3. fill (S.supLoop)
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Appendix C. Syntax Explanation for Orbit

b3. fill (S.supLoop.p[ Out’]. tube)

# —— Connect buffers to inlets
bl.connect(S.inlValveA .p[’5°])
b2.connect(S.inlValveB .p['1°])

Listing C.1 Defining buffers and components in the method fuction for the process

In the run options in the method to Orbit, the user can specify if a simulation or a cali-
bration should be preformed. An example of this can be seen in Listing C.2. In this exam-
ple, the method is set for a calibration and not only a simulation. As soon as the dictionary
simulation is not empty, an object of orbitSim is created in the process-object created
in the method function. If *simulate’ is set to True, the instructions sent to orbit will be
simulated directly.

P = Process (name="Gradient_Opti’,
phases=phases ,
S=S)

options = {’mode’:’test’,

’timeFactor’:30.,

>sampleSignals ’:[ "uvl’],

>sampleTime’:1.0,

"loops " :[1],

logData’: False ,

’logRun’ : False ,

>simulation’:{ calibrate ’:True,
simulate ’: False}}

Listing C.2 Options for the process

When a process-object is created, a orbitSim-object is saved within. An example how

a calibration is preformed is presented in Listing C.3 and an explanation of the code is pre-
sented below:
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* A orbitCalibrate-object is created. This object contains all minimization functions.

* A system-object is created based on the system file that defines all the units on the
AKTA system including the tubes etc. This system-object (S1 and S2) is passed on to
the method function that creates a process-object (P1 and P2).

» The system-object, the process instructions, the orbitSim-object and experimental
concentration and time data is added to the orbitCalibrate-object. This is needed
for the calibration to separate which simulation instructions that are coupled to which
experimental data.

* A guess (x0) is created as a list. Then the parameter estimation is called by the func-
tion calibrate in the orbitCalibration-object. The function returns the estimated
parameters

# Creates the orbitCalibrate object
orbitCali = orbitCalibrate ()

# Simulates the second session and adds the data to the calibrator
S2 = SystemPure (mode="test )
P2 ,resTime2 ,resCond2 = method(S2,20)
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Appendix C. Syntax Explanation for Orbit

orbitCali.addRunData(S2,P2.1,P2.orbsim ,data2 ,tsol2)

# Simulates the first session and adds the data to the calibrator
S1 = SystemPure (mode="test )

Pl ,resTimel ,resCondl = method(S1,8)
orbitCali.addRunData(S1,P1.1,P1.orbsim ,datal ,tsoll)

# kkin, beta, H_O
x0 = [le—4, 4.1, 5el0]

# Parameter estimation
calibrated_x ,n = orbitCali.calibrate (x0)

Listing C.3 An example how a calibration of a component is set up
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