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Abstract

Object detection is an important tool in computer vision and a popular
application of machine learning. One of the main challenges in object detection,
and machine learning in general, is acquiring sufficient training data. Many
types of data can be hard or expensive to collect and label, or be subject
to privacy concerns and regulations such as the General Data Protection
Regulation (GDPR). This is particularly true for many object detection tasks,
such as face detection where the training data consists of images depicting
faces. Using synthetic data for training has been attempted before, but no
consensus exists on how to best utilize it. This work focuses on using a
priori trained Generative Adversarial Networks (GANs) to produce synthetic
images of faces, and using them to train detectors based on Haar-like features.
Experiments were conducted on both replacing real images with synthetic,
and introducing synthetic variance by augmenting real images using image-
to-image translating GANs. It was found that GAN-generated images can
indeed be useful for detector training. Although real images consistently
performs better, the amount of data plays a role as well, and a priori trained
GANs can easily produce a lot of synthetic data with good variation. If
real data is hard to collect, synthetic data produced by a GAN could be a
viable option. It was also found that image-to-image translating GANs can
be useful for data augmentation, especially when real data is scarce. Future
work should focus on the impact of variance and bias in the synthetic data
and how it can be controlled for optimal performance.

Keywords: Generative Adversarial Networks, Object Detection, Synthetic
Training Data, Data Augmentation, Deep Learning.
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Chapter 1

Introduction

1.1 Background and Motivation

Object detection is often described as a fundamental problem in computer
vision [5, 12, 55, 62], with applications to self-driving vehicles [53], surveillance
[56], medical technology [44] and much more. Additionally, it can serve as
a first step toward more advanced computer vision tasks, such as image
segmentation and object tracking [62]. The development of accurate object
detectors is an active area of research that has received much attention in
the last couple of decades [11, 15, 54]. A massive performance increase has
been seen in recent years, thanks to increasingly advanced algorithms based
on machine learning – especially with the emergence of deep learning [21].

A common denominator in machine learning algorithms is the need for large
sets of training data to achieve good results. This is particularly true for deep
learning, where the number of trainable parameters can be in the hundreds
of thousands, or even millions [52]. Usually, acquiring these datasets is not
just a matter of collecting data but also producing some sort of labelling. In
the context of object detection, this usually means drawing bounding boxes
around objects in images and specifying a related class label. This process
can be very time-consuming and expensive, especially since it is inherently
difficult to automate.

Another difficulty with data collection is the fact that a lot of data may be
sensitive to collect with regards to privacy concerns. This concern is especially
relevant in the case of face detection, where the training data typically consists
of people’s faces. Due to the need for diversity in training data, it is often

1



2 CHAPTER 1. INTRODUCTION

necessary to collect images of many different individuals. With developments
in data protection regulations, such as the recnt introduction of the EU-wide
General Data Protection Regulation (GDPR) [47], the awareness and use of
ethical and consensual data collection principles has likely increased. Adhering
to these principles, while still ensuring sufficiently large and diverse data sets
for machine learning applications, remains a challenge.

Another problem with the data collection process is that it might introduce
bias if the balance of the collected data is not carefully controlled. This can
in fact have severe consequences as machine learning applications end up
discriminating based on learned stereotypes present in the data. An example
of this was discovered by Zhao et al. [63], who studied gender bias in semantic
labeling algorithms trained on a biased dataset. The training data consisted
of images depicting an action and an acting agent, labeled as either “man” or
“woman”. In the training data, the label “woman” occurred more often than
the label “man” in scenes related to cooking. What Zhao et al. found was that
the trained algorithm was more likely to mislabel people cooking as women,
reflecting the bias in the training data. They also found that the trained
model in fact reinforced the bias from the training data, by mislabeling at a
higher percentage than the data was biased. This highlights the importance
of having a way to control bias in the training data for machine learning
applications.

The need for large and varied sets of training data, not just in the development
of machine learning applications and products but also in scientific research,
has led to the emergence of large public datasets. For example, the largest
such dataset for face detection, at the present time and to the best of our
knowledge, consists of almost 400 000 faces across more than 30 000 images
[60]. The existence of such datasets reduces the need for collection of new data
whenever a new machine learning algorithm needs to be trained. However, due
to licensing concerns, many public datasets are not available for commercial
use. Additionally, like any dataset they may suffer from some sort of bias.
When using such a pre-collected dataset, it is impractical – if not impossible –
to identify and control any bias introduced in the data collection process.

This apparently leaves us with only one option – to manually and painstakingly
collect as many images as we can, or think we need, while to the best of
our ability observing potential biases and trying to minimize them. There is,
however, another potential approach: producing synthetic training data using
some kind of generative model. There has been much work done on using
synthetic training data for machine learning with varied results. However,
most work use either explicit models to produce training data or to augment
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existing data, or use data driven approaches to produce additional training
samples. In this work, we would like to investigate using a generative model
trained a priori as substitute for data collection.

If we can use a generative model to produce training data, this eliminates
or reduces the need for collecting data manually. Additionally, this method
may not be subject to privacy concerns and regulations on data collection
storage, such as GDPR, since no identity information from the training data
can be extracted from the trained model. While the identities are used to
train the generative model, it is impossible to extract any information about
the individual training images once the model is trained and the original data
discarded. This means that even if the generative model needs training data
at some point, once the generator is trained we can throw away the real data
and only keep the model.

Advances in deep generative models in the last few years suggest that synthetic
images generated using these models can be used for training other machine
learning models. Notably, Generative Adversarial Networks (GANs) have
recently been used to produce high resolution images with stunning realism
[25]. GANs can also be used for image-to-image translation to produce
variations on input images [8].

Le et al. [31] showed that when training machine learning algorithms on
synthetic data, variance in the training data is crucial since it increases
tolerance between mismatch in the training data model and test data. In
deep generative models such as GANs, variance in the generated data comes
from gaussian sampling of latent variables.

1.2 Purpose and Delimitations

The purpose of this thesis is to investigate if GANs can be used for producing
synthetic data for the purpose of training object detection algorithms, and
how it compares to using real images. We will look at both replacing real
data with synthetic data, and augmenting real data using generative models.
We will focus on the following questions:

Question 1. Can synthetic data from a priori trained GANs replace real
data as training data for object detection?

Question 2. Can a priori trained image-to-image translation GANs be used
for data augmentation, to introduce novel variations in the data?
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We will evaluate the synthetic data by using it to train object detectors. We
will limit ourselves to one object: faces. We will use a hand-crafted feature
based detector.

1.3 Related Work

There exists much work on the topic of producing synthetic training data
for machine learning. However, the methods of generation and use of the
synthetic data varies greatly. We distinguish between generation and image
transformation processes, where image transformation generates new samples
as variations of an input sample, and pure generation processes can generate
new samples by sampling from noise.

We further distinguish between model-driven and data-driven processes. The
model-driven processes use some prior knowledge that can be explicitly
formulated to create new samples. Examples are manual drawing of new
samples or explicitly formulated image transformations of the original samples.
The data-driven processes learns a model through data, e.g. machine learning
based generation or translation processes.

1.3.1 Generation

Yu et al. [61] used model-driven generation of training data for Haar- and
HOG-feature based person detectors, by rendering 3D models of pedestrians
and pasting them into real images. They concluded that synthetic images
was a suitable complement to real data, but could not replace training on
real data entirely.

The conclusion that synthetic images could not replace real images for train-
ing was shared by Møgelmose et al. [38] who trained a Haar-feature based
detector using synthetic images of traffic signs, generated by applying random
distortions to a template.

Wang et al. [57] trained a deep-learning based licence plate recognition
algorithm using synthetically generated licence plate images which they
produced using a computer graphics script. However, unlike previous work,
they utilized an image-to-image translation GAN (im2im-GAN) to transform
the synthetic images to the space of real images, resulting in more realistic-
looking synthetic training samples. They concluded that their synthetic
data was always useful for pre-training, especially when the real data was
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sparse. They attributed this to the prior knowledge introduced by the scripted
generation, and attributed the GAN with transforming this knowledge to be
more similar to real data. However, they were not successful in training with
just synthetic data.

A similar method was emplyoed by Wessman and Andersson [58], who pro-
duced synthetic training data for deep-learning based person re-identification
tasks. They rendered 3D models of pedestrians using the computer graphics
engine Blender, and refined them using an im2im-GAN.

Zheng et al. [64] used a Deep Convolutional GAN [46] to generate images
of pedestrians for training person re-identification. They used this as a
method of extending the original dataset, i.e. they trained the re-ID on
both the generated images and the images used to train the generator, in a
semi-supervised manner.

Odena [39] also used a GAN to produce additional training samples for learning
classification in a semi-supervised manner, and achieved better classification
results compared to just using the real data.

Dozuas and Bacao [10] trained a conditional GAN (cGAN) to oversample
the minority class in an unbalanced binary classification problem. They used
this data to train a myriad of different classifiers based on logistic regression,
support vector machines, nearest neighbours, decision trees, and gradient
boosting machine. They found that the synthetically balanced datasets
trained better classifiers than using just the real data.

Ouyang et al. [42] trained a GAN to generate new samples of pedestrians in
the context of a larger image. They then added these synthetic images to the
training data used to train the PS-GAN, and used the extended dataset to
train Faster-RCNN [48] for pedestrian detection. Their results showed that
adding synthetic images increased the detection score. However, if too many
synthetic samples were added, the result was detrimental. They achieved the
best result when the ratio of real to fake was between 1:2 and 1:4.

To the best of our knowledge, no extensive survey has been made regarding
how well an a priori trained GAN can be utilized as a data generator in a
purely data-driven generation of synthetic training data for object detection.
This would be useful for privacy concerns and data regulations, assuming the
trained model is sufficiently anonymous.
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1.3.2 Image Transformation

It is well established that an effective method to create more training samples
and to reduce overfitting is data augmentation through label-preserving
transformations [51, 59]. A common method of data augmentation is geometric
transformations in pixel space, such as affine transforms [28].

Khalil et al. [26] instead increased the variance in training data for object
detection by simply cropping out the object and pasting them into different
contexts. The results varied, with some objects receiving better detection
performance, and some worse.

Antoniou et al. [1] took a data-driven approach to data augmentation and
trained what they called a Data Augmentation GAN (DAGAN), which learned
to create multiple samples from a single image. In contrast to classic data
augmentation, the variations introduced in the samples created by DAGAN
were not simply geometric pixel transformations. Rather, the DAGAN learned
to introduce variations in deep features. For example, for images of faces,
DAGAN was observed to vary attributes such as facial hair, skin tone, pose,
lighting conditions, and whether the person is wearing eyeglasses. The
results showed that classifiers trained with this method of data augmentation
performed better than those trained without.

It is noteworthy that DAGAN was trained without attribute labels in the
training data. This had the obvious benefit of not requiring these labels, but
also meant there was no way of controlling which attributes the DAGAN
learned to vary, or that these attributes made sense.

1.4 Ethical Considerations

Using synthetic data to train machine learning algorithms could be a way
to reduce the need for personal data in technological developments. In a
time where personal data has been coined “the oil of the internet and the
new currency of the digital world” [29], synthetic data could be likened
with a “green” alternative which carries less ramifications for data ownership
and personal integrity. Such an alternative could stimulate a more ethical
data economy and combat the lack of transparency present in much of data
collection today [30].

Synthetic training data could also potentially help alleviate problems with bias
in training and test data, since data that is hard to collect could potentially
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be replaced with synthetic data. Reducing such bias is important for equality
in algorithmic, data-driven decision making as demonstrated in [9, 63].

In this work, the purpose of the synthetic data is to train object detection
algorithms, specifically for face detection. Highly accurate object and face
detectors are of great importance to the development of e.g. surveillance
systems, autonomous vehicles, and medical imaging. These technologies have
the potential to help ensure a safer, better world for everyone. However, like
with any technology, it is easily imagined that object and face detection can
be used for unethical purposes as well. For example, they could be used as a
tool in unethical, integrity violating forms of personal data collection.

In [13] it is argued that engineers are responsible for the primary purpose of
the product of their work. If we accept this thought, we are through this work
also morally responsible for the development of object and face detectors.
It seems like the potential for good justifies both the development of this
technology, and the existence of the present work; however, care should always
be taken when using this technology to assure it is for a justified end.

1.5 Outline

The next chapter will describe some of the underlying theory which is the
basis of this thesis. Chapter 3 will describe the method used, and Chapter 4
the specific experiments and their results. In Chapter 5 the results will be
analyzed and a conclusion drawn.
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Chapter 2

Theory

This chapter describes the machine learning theory which underlies the
thesis. Its focus is mainly on deep learning as that is the basis of Generative
Adversarial Networks, which is the main focus of this work. For a more
detailed overview of deep learning and Generative Adversarial Networks,
please refer to [17].

2.1 Artificial Neural Networks

Artificial neural networks is a mathematical model for information processing
used in machine learning, which was originally inspired by the natural process
of how biological neurons process information in the brain [36].

2.1.1 The Artificial Neuron

An artificial neuron can be described as in Figure 2.1. In its simplest terms,
the neuron takes multiple input values xk and uses them to produce an output
value y. This is done by calculating a weighted sum of the inputs, and then
passing this value through an activation function ϕ. More formally, the
output takes the form

y = ϕ

(
m∑
k=1

ωkxk + b

)
,

where b is a bias term. This is usually replaced with a unit input x0 with
associated weight ω0, which allows us to write more compactly using vector

9
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Figure 2.1: Mathematical model of an artificial neuron. Figure from [41].

notation
y = ϕ(ωTx). (2.1)

For example, if the activation function is the sign function, (2.1) corresponds
to a decision plane in input space [40].

2.1.2 Artificial Neural Networks

By combining multiple artificial neurons, we can form artificial neural networks.
The most straightforward is the simple perceptron, in which we have many
neurons which take the same input, which leads to multiple outputs

yi = ϕ(ωT
i x).

Multiple neurons sharing the same inputs are said to form a layer. It is also
possible to stack layers, so that the outputs of one layer becomes inputs to
the next layer. The output of the second layer then takes the form

yj = ϕh(ω̃T
j h),

hi = ϕ0(ω
T
i x),

where index and tilde notation is used to indicate that weights and activation
functions can differ between layers. The layer which outputs h is called a
hidden layer. Neural networks of this type are powerful function approximators
[3].

2.1.3 Training a Neural Network

The purpose of a machine learning model, such as a neural network, is to
create a mapping f from an input space X to an output space Y . For
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example, the inputs can be images and the outputs locations of a desired
object. The mapping f is defined by the model architecture together with
trainable parameters. In the case of neural networks, the trainable parameters
are the weights ω. Training the model corresponds to setting the parameters
so that f becomes the desired mapping.

In order to find suitable parameter values, we can (for example) perform
supervised learning. The weights ω are then first initialized to random values.
The model is then presented with pairs of points (x̃, ỹ) ∈ X ×Y . Using some
suitable metric, an error E(f(x̃), ỹ) is then calculated and mathematical
optimization methods such as stochastic gradient descent are employed in the
space of trainable parameters to minimize E.

However, to learn the exact mapping f : X → Y using this method, one
would need to sample every single pair (x̃, ỹ) contained in X × Y . This is
usually impossible; for example, consider the task of training a classifier to
decide whether an image depicts a cat not. In that case, X is the space of all
possible images which do or do not depict a cat. Obviously, during training,
the model can only be presented with a limited subset XTrain ⊂ X (and its
corresponding pair in Y ). In order to ensure the model is not overtrained on
bias in XTrain, a separate test set XTest ⊂ X is used to validate the model
once training is finished. If samples from XTest does not give rise to much
larger prediction errors than samples from XTrain, the model is assumed to
generalize well to unseen samples.

2.1.4 Convolutional Neural Networks

Artificial neural networks with many hidden layers are called deep neural
networks and form the backbone of deep learning [17]. Deep learning is a very
powerful sub-field of machine learning. A particularly successful category of
models in deep learning is Convolutional Neural Networks (CNNs) [17, 33],
which are especially useful when the input data consists of images.

In CNNs, each layer of neurons acts as a kernel operation [17]. This both
leads to a significant amount of weight sharing within each layer, which has
great impact on the computational burden, and means the model is based
on traditional tools in image processing. For these reasons, CNNs have been
found to be largely useful and has led the front-line for developments in deep
learning [17, 32].
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2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) is a generative model introduced
by Goodfellow et al. [18]. In recent years, it has been the focus of much
attention [20] and has been used to produce astonishing results in synthetic
image generation [25]. The model borrows concepts from game theory; the
key idea is that the generator is trained alongside a discriminator, with an
adversarial objective to the generator. The generator and discriminator play
a two-player zero-sum game where the Nash equilibrium corresponds to the
generator producing samples indistinguishable from real data [17, 18, 49].

In a typical implementation the generator and discriminator are both deep
neural networks. In that case, the generator is a mapping G from a random
noise vector z ∈ Z to a point in data space x ∈ X. The noise vector z is
sampled from a probabilistic noise distribution pz(z). As a consequence, the
outputs of G will correspond to samples from some other distribution pg(x).

Meanwhile, the discriminator is a mapping D : X → [0, 1], where the value
D(x) is the probability that x was sampled from the distribution of training
data, pdata(x), rather than generated by G. Conversely, 1 − D(x) is the
probability that x was not sampled from pdata but from pg, i.e. x = G(z),
z ∼ pz.

An optimal discriminator will maximize the expected output when x ∼ pdata

and minimize it when x ∼ pg. This motivates the definition of the value
function [18]

V (G,D) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] . (2.2)

Maximizing V (G,D) with respect to D corresponds to finding an optimal
discriminator. Logarithms have been applied to the probabilities in (2.2) to
prevent very large gradients from appearing in the optimization, which could
otherwise be caused by V varying by several orders of magnitude.

Conversely to the discriminator, the objective of the generator is to fool the
discriminator as often as possible. This means that the generator should
instead try to minimize the value function. This conflict defines the min-max
game

G∗ = arg min
G

max
D

V (G,D),

where G∗ is an optimal generator. It can be shown that the global optimum
occurs when pg = pdata [18].
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In practice, G and D are implemented using neural networks and can be
written G(z;ωG) and D(x;ωD), respectively, where ωG and ωD are the
weights of the respective networks. The distribution pg is thus implicitly
defined by the network weights ωG. The networks are updated alternatingly
to minimize or maximize V (G,D), respectively, and typically an update step
for G is run for every ncritic update steps for D. For more details on the
training algorithm, we refer to [18].

For future reference, we re-formulate the value function (2.2) as a loss function

LGAN = Ex∼pdata [logD(x)]− Ex̃∼pg [log(D(x̃))] . (2.3)

During training, G is trained to minimize the loss LGAN while D is trained
to maximize it. It is also possible to have different loss functions for G and
D, respectively. Actually, for convergence reasons, in [18] D is trained to
minimize log(1−D(x̃)) rather than maximize log(D(x̃)).

2.2.1 Convergence and Mode-Collapse Improvements

A problem with the GAN model defined in [18] is that it is not guaranteed
to converge in practice [16] – or it might converge to a single point, usu-
ally referred to as “mode collapse” [49]. These problems are addessed by
Wasserstein-GAN (WGAN) [2] which minimizes the so-called Earth-mover
distance between the probabilities pdata and pg. This is done by replacing the
loss function in (2.3) with

LWGAN = Ex∼pdata [D(x)]− Ex̃∼pg [D(x̃)]

and introducing the additional constraint that D is 1-Lipschitz [2, 19]. In
WGAN, this constraint is enforced by weight clipping at each update step
to ensure that each individual weight ωi ∈ [−c, c]∀i for some predefined
c > 0. The Lipschitz constraint leads to better behaved gradients [2], so the
logarithms from (2.2) are no longer needed.

Gulrajani et al. [19] improved the enforcement of the Lipschitz constraint in
WGAN by replacing the weight clipping with a gradient penalty. They used
the loss function

LWGAN-GP = Ex̃∼pg [D(x̃)]− Ex∼pdata [D(x)]

+ λGPEx̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
,

(2.4)

where λGP is a hyperparameter controlling the impact of the gradient penalty
term and x̂ = tx̃′ + (1− t)x′ is formed by sampling x̃′ ∼ pg, x′ ∼ pdata and
t ∼ U(0, 1).
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Wasserstein-GAN with Gradient Penalty (WGAN-GP) has been successfully
used to produce synthetic images with a high level of realism [25]. The training
algorithm is described in detail in [19] and uses the Adam optimization method
[27] rather than SGD.

2.2.2 Image-to-Image Translation Using GANs

Mirza and Osindero [37] modified the GAN model to create what they called
a Conditional GAN (cGAN). Here, labels on the training data are utilized to
control the generation by specifying a target subset of data space Xc ⊆ X
at generation time. This is done by conditioning both the generator and
discriminator on a class label c associated with that specific subset. In
practice this is done by concatenating the input to G and D with the label c,
so that G = G(z, c) and D = D(x, c).

Isola et al. [22] further modified the cGAN to perform image-to-image transla-
tion (im2im-GAN). They translated images from one domain, X, to another,
Y , by using the image as condition in the cGAN, i.e. they used G = G(z,x)
and D = D(y,x) where x ∈ X and y ∈ Y . Using this model, it is possible
to translate e.g. black-and-white images to color, daylight images to night,
and sketches to photographs.

A major drawback of the im2im-GAN by Isola et al. is the need to perform
supervised learning using paired training samples. This was addressed by Zhu
et al. [65], by training a second generator F : Y → X alongside G : X → Y .
They then required the two generators to be cycle consistent, i.e. that F ◦G and
G ◦ F maps samples back onto themselves. This was enforced by minimizing
the 1-norm between samples and their “cycled” image, leading to the cycle-
consistency loss

Lcyc(G,F ) = Ex∼pdata [‖F (G(x))− x‖1] + Ey∼pdata [‖G(F (y))− y‖1] . (2.5)

By adding this term to the loss function in (2.3), Zhu et al. were able to
perform impressive image translation without any paired training samples;
for example they could translate paintings by Monet to photographs, and
vice versa.

2.2.3 Multiple-Domain Image-to-Image Translation

While Zhu et al. achieved impressive results on mapping from one domain
to another, we are more interested in translating a single image to multiple
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domains. This is possible using the method in [65], of course, by training
many different generators. However, this method does not scale well with the
number of domains.

This scalability problem was addressed by Choi et al. [8] who trained a
single generator (and discriminator) to generate conditionally from multiple
domains. The model is called Star-GAN, after the star-like topology in which
the generator can take an input from any domain and produce an output in
any domain, see Figure 2.2.

(a) Multiple generators (b) Star-GAN

Figure 2.2: Illustration of the difference in topology between (a) using many single-
domain translators such as [65] and (b) Star-GAN. Image is from [8].

In order to accomplish this, StarGAN uses the trick from cGAN of conditioning
the generator on a target domain label, so that G : {x, c} 7→ y. They also
modified the discriminator to not only produce a probability distribution
over the two sample sources Dsrc, but also a probability distribution over the
domains Dcls(x), so that D : x 7→ {Dsrc(x), Dcls(x)}.

The domain classification loss Dcls(x) was introduced to ensure that images
generated with the condition label c will be classified as being in that domain.
This is enforced by the classification loss

Lfakecls = Ex∼pdata,c∈C [− logDcls(c|G(x, c))] .

The classifier needs to learn this classification from real samples. This is
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enforced by the following loss:

Lrealcls = Ex∼pdata,c∈C [− logDcls(c|x)] .

In order to enforce preservation of the image content not related to the domain
transfer, a cycle consistent reconstruction loss was used similarly to that in
[65] to minimize the L1 norm of an image passed through the generator twice
(cf. (2.5))

Lrec = Ex∼pdata,c∈C [‖x−G(G(x, c), c′)‖1] ,

where c′ is the label associated with the image’s original domain.

The adversarial generator-discriminator interaction was controlled by the
WGAN-GP loss (cf. (2.4)):

Ladv = Ex∼pdata [Dsrc(x)]− Ex∼pdata,c∈C [Dsrc(G(x, c))]

− λGPEx̂

[
(‖∇x̂Dsrc(x̂)‖2 − 1)2

]
.

The full loss functions used to update G and D are:

LG = Ladv + λclsLfake
cls + λrecLrec,

LD = −Ladv + λclsLreal
cls ,

where λcls and λrec are hyperparameters controlling the relative impact of
classification and reconstruction loss, respectively.

2.3 Object Detection

Object detection is the task of determining the location of a specific object
in an image. In many use-cases, there can be zero, one, or multiple different
instances of the object in a single image. It can also entail detection of many
different kinds of objects simultaneously, and distinguishing them from each
other. In that case, the detector needs to be able to distinguish between all
those objects, or multiple single-object detectors needs to be run on each
image.

Object detection can be compared to another common computer vision
application of machine learning: classification. Since object detection is
basically classification with the added step of localization, object detection
can be said to be strictly harder than classification. A straightforward
implementation of object detection is to simply run a classifier on every



2.3. OBJECT DETECTION 17

feasible sub-region of an image, at some level of granularity. This approach
is the basis for sliding window based detectors [48], and some of the earliest
efficient object detectors were based on this method [54]. A sliding window
based detector is trained like a classifier, with positive and negative examples.

More modern object detectors, typically based on deep learning, do not use a
sliding window approach but instead includes a region proposal component.
This means that the detector learns, along with the classification, to propose
the windows on which classification should be run [48]. This type of detector
requires training images where the object occurs “in-context” in the same way
they will when the actual detection task is performed. This also means that
the training images needs to have object locations labeled.

2.3.1 Viola-Jones

Although sliding window based detectors are basically classifiers, it does not
work well to simply train any classifier and run it as a detector. The reason
for this is that it needs to be run very many times for each image, typically
in the millions [54], where most windows are negatives.

The first efficient object detection algorithm was developed by Viola and
Jones [54] and is based on the sliding window approach. It is quick to discard
negatives because it runs multiple classifiers in succession, with increasing
complexity. The first layer of classifiers are simple and fast, but can still
discard many negative samples at the cost of a high rate of false positive
detections. Subsequent layers will thus operate on much fewer samples and
can afford harder scrutinization. Ideally, each layer will eliminate some
false positives from the previous layer, while keeping all of the true positive
detections. This idea is illustrated in Figure 2.3.

Each classifier in the cascade work by detecting a few simple features, rem-
iniscent of Haar basis functions [43]. Viola and Jones suggested using two-
three- and four-rectangular features, illustrated in Figure 2.4. The set of all
possible such features for a given image is naturally very large, and extensively
evaluating them all would be prohibitively expensive. The solution to this
is to learn a classification function which selects a small set of features to
evaluate [54].
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Figure 2.3: Schematic over the cascade of classifiers used in the Viola-Jones detector.
Source: [54].

(a) (b) (c) (d)

Figure 2.4: The features used in the Viola-Jones detector can be divided into three
categories: edge features (a and b), line features (c), and four-rectangle features (d).
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Method

The goal of the present work is to investigate if synthetic data generated with
GANs can be used as a substitute for real data for training object detection
algorithms. In Section 1.2 we formulated two questions to which we shall
direct our focus. For instructive purposes, they are repeated here:

Question 1. Can synthetic data from a priori trained GANs replace real
data as training data for object detection?

Question 2. Can a priori trained image-to-image translation GANs be used
for data augmentation, to introduce novel variations in the data?

To investigate these questions, we need to establish a framework for comparing
different datasets’ usefulness as training data. This is done by training an
object detector with the different datasets and running them through a
detection benchmark to establish a score for the detectors’ performance. The
process is illustrated in Figure 3.1 and 3.2 for the tasks related to Question
1 and 2, respectively. As seen there, the evaluation pipeline is the same for
both tasks.

19
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real data

Generator

synthetic data

Train Train

Benchmark Benchmark

Score Score
Compare

Evaluation

Figure 3.1: Pipeline for comparing using synthetic training data vs. using real data.

real data
Image-
to-image
translator

augmented
data

Train Train

Benchmark Benchmark

Score Score
Compare

Evaluation

Figure 3.2: Pipeline for evaluating image-to-image translation GAN for data aug-
mentation.
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3.1 Resources

3.1.1 Datasets

Training data

For training data, we used the publicly available Large-scale CelebFaces
Attributes Dataset (CelebA) [35], which consists of 202 599 head-shot style
images of celebrities with 10 177 different identities. These images are also
labelled with 40 binary attributes describing facial features, hair color and
accessories, which will be utilized for training image translation.

Evaluation data

For evaluation data, we used the publicly available Face Detection Dataset and
Benchmark (FDDB) [23], which has 5171 faces annotated over 2845 images.
This dataset was specificly created to be an unconstrained benchmark for
face detection, with large variations in pose and facial attributes [23].

To also get an idea of the detection performance on faces with different
attributes, evaluation was also run on a few highly biased datasets. These
were available internally at Axis Communications AB and had been manually
collected from Flickr at an earlier time. The biased datasets are summarized
in Table 3.1.

Table 3.1: Overview of biased datasets used for evaluation.

Dataset Images Faces Bias

Children 260 277 Infants and small children.
Elderly 176 187 People with aged faces; wrinkles.
Glasses 178 184 People with eyeglasses and sunglasses.
Women 219 225 Images of women.
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3.1.2 Model Implementations

Synthetic Image Generation

For synthetic image generation, we used a GAN based on the WGAN-GP loss
implemented in Python 3 by Karras et al. [25], using TensorFlow 1.6, which
was available as open source [24]. This model used several tricks on top of
WGAN-GP described in [25] and had been trained to produce high-resolution
images of faces and other objects. Trained models produced by Karras et al.
were available for download along with the code. We used a model trained
on CelebA which could produce head-shot images of imaginary celebrities at
a 1024× 1024 resolution.

Image-to-Image Translation

For image-to-image translation, we used a Star-GAN model implemented in
Python 3 by Choi et al. [8], using PyTorch 0.4.0, available as open source
[7]. We did not use any pre-trained models, but instead trained our own
from scratch. Relevant training parameters used are summarized in Table
3.2. The Adam parameters α, β1 and β2 are described in [27], while the rest
are described in Section 2.2.

Table 3.2: Training parameters used for Star-GAN.

Training parameter Value

λGP 10
λcls 1
λrec 10
ncritic 5
α 0.0001
β1 0.5
β2 0.999

Object Detection

For object detector in the evaluation pipeline, we used the Viola-Jones detector
implemented in the open source computer vision library OpenCV 2.4.9.1 [4].
Training was done using the tool opencv_traincascade included in OpenCV.
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The training parameters passed as arguments to opencv_traincascade are
summarized in Table 3.3. Inference using the trained model was done in
Python 2 using the package cv2.

Table 3.3: Arguments passed to opencv_traincasacade when running training.

Argument Value

numStages 20
minHitRate 0.999
maxFalseAlarmRate 0.5
w 20
h 20
mode BASIC
featureType HAAR
acceptanceRatioBreakValue 10−5

3.2 Evaluation Pipeline

The evaluation pipeline consisted of three steps: training a detector, running
detection on a benchmarking dataset, and calculating a performance score.

3.2.1 Training a Viola-Jones Detector

In order to train a new detector, we need to provide sets of both positive
and negative images. The positive images are examples of the object we
want to detect, while the negative images are examples of anything else. For
negative images, we consistently used an Axis internal dataset consisting of
3019 images depicting a wide variety of scenes and objects.

Using the OpenCV utility opencv_createsamples, we could apply the com-
mon data augmentation method of applying geometric transformations to
create multiple positive samples from each positive image. The transforma-
tions used in this work were rotation, shearing, and variation of pixel intensity,
see Figure 3.3. Each formed sample was pasted onto a random background
from the negative images. The samples were also resized to a specified width
and height, and converted to greyscale. This was done because the Viola-Jones
detector only works with pixel intensities and not color channels.
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(a) Original (b) Samples

Figure 3.3: Multiple samples were created from the original by applying geometric
transformations and pasting it onto random negative images. The samples were also
rescaled and converted to greyscale.

By using this method, a dataset of eg. 100 images of faces could be turned
into 1000 positive samples by sampling each image 10 times. In this work, the
rotational transformation was sampled uniformly from the angular interval
±0.3 rad. The shears were actually performed as rotations around the images’
x- and y-axis, followed by projection onto the view plane. These rotations
were sampled uniformly from the angular intrerval ±0.6 rad. The arguments
passed to opencv_createsamples are summarized in Table 3.4.

Table 3.4: Arguments passed to opencv_createsamples when performing data
augmentation.

Argument Value

maxxangle 0.6
maxyangle 0.6
maxzangle 0.3
maxidev 40
w 20
h 20

3.2.2 Running Detection

The inference step of the Viola-Jones algorithm is done by sliding a win-
dow across the image at multiple scales. Each window is then evaluated
by passing it through the cascade of classifiers. This was done using the
OpenCV-function detectMultiScale with the scaleFactor parameter set
to 1.3. Since variation in window position and scale is small, it is likely
that each positive classification is accompanied by many other neighbouring
and overlapping positive classifications. This leads to the detector often
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(a) (b)

Figure 3.4: Example of the effect of the minNeighbors parameter. Effect of balancing
between reducing false-positives while retaining true positives. In a) minNeighbors
is 0. In b) minNeighbors is set to 1, so overlapping boxes have been averaged. The
number of false positives is reduced, but this happened at the cost of reducing the
number of true positives as well.

outputting multiple detection boxes at the same location, as can be seen in
Figure 3.4a.

To handle this, the inference step takes an integer parameter, minNeighbors.
When this is set to n > 0, overlapping boxes will be averaged into a single
box. Additionally, all boxes which do not overlap with at least n other
boxes will be turned into negative detections. This enables the possibility to
reduce the number of false positives by removing the least certain detections.
However, there is also a risk of removing true positives this way. Tuning of
the parameter minNeighbors is thus a balancing act between reducing false
positives and retaining true positives, see Figure 3.4.

3.2.3 Calculating a Performance Score

Since our evaluation datasets are annotated with ground truths, once detection
has been run we can determine if each detection is a true or false positive.
This is done by calculating the pixel overlap ratio called intersection over
union (IOU) [34], which is the area of the intersection between a detection box
and ground truth, divided by the area of the union. If this ratio is larger than
a certain threshold, usually set to 0.5, the detection is determined to be a true
positive; otherwise it is regarded as a false positive. A ground truth which
is not detected is called a false negative [23]. In our experiments, the IOU
threshold value was set to 0.4 to make the score less sensitive to differences
in labelling convention between different datasets.
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When we know the number of true positives (TP), false positives (FP) and
false negatives (FN) for an entire dataset, we can calculate two metrics called
precision and recall. Precision is the ratio of detections which were true, and
recall is the ratio of how many of the objects were detected [11]:

precision =
TP

TP + FP
, recall =

TP
TP + FN

.

By calculating their harmonic mean, we get a measure called F1-score [6, 50]:

F1-score = 2 · precision · recall
precision + recall

.

When benchmarking a detector to evaluate its training data, we do not want
the method of setting minNeighbors to affect the result. For this reason,
we run the detector for all values of the parameter between 1 and 10, and
calculate the corresponding F1-score. We then report the highest of these
scores.

Bounding Boxes for FDDB

Calculating IOU is complicated for the FDDB benchmark by the fact that
FDDB uses elliptical ground trouth annotations, while detectors typically
output rectangular detection boxes (as seen in Figure 3.4). When calculating
the IOU for detections on FDDB, we thus chose to approximate the elliptical
ground truths with a rectangle. We did this by horizontal projection of
the major axis, and vertical projection of the minor axis, as illustrated in
Figure 3.5. While this practice means that IOU was not calculated using the
exact ground truth, the impact on the results are likely negligible – especially
considering the lowered IOU threshold.

Figure 3.5: Approximation of elliptical bounding box with a rectangle, using projection
of the major and minor axes.
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Experiments

We conducted two sets of experiments, to answer the two different questions
posed under the scope of replacing data collection with a priori trained GANs.
First we compared training on data generated by a GAN with training on
real data. Then we tried using an image-to-image translation GAN for data
augmentation.

4.1 Image Generation

To test the possibility of using synthetic images instead of real images for
training, we used the pretrained GAN model by Karras et al. [25] trained
on CelebA to generate 5000 synthetic “fake-CelebA” images. This was done
by sampling a 512-dimensional vector z ∼ N (0, I) and generating G(z).
Samples of synthetic images can be seen in Figure 4.1 alongside real samples
from CelebA. Note that only the face area is presented. We then trained
Viola-Jones detectors using subsets of these, from 10 images up to all 5000.
To compare with real training data, we also trained detectors using subsets
from the real CelebA, from 10 images to 5000. The number of negative
samples used was set constant to 3000. No data augmentation was used in
this experiment.

Each trained detector was then run on the five evaluation datasets from
Section 3.1.1, and the F1-score was calculated. The results can be seen in
Figure 4.2. We see that using synthetic data is consistently worse than using
the same amount of real data. But we also see a trend that using more
data is better than using less data. This trade-off means that using a lot of

27
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(a) (b)

Figure 4.1: Samples of (a) real images from CelebA and (b) synthetic images
generated by a GAN trained on CelebA. Each synthetic image is the generator
output G(z) from a noise sample z ∼ N (0, I).

synthetic data can be better than using a little real data. For example, using
5000 synthetic images gives a better score than 100 real images for all tests.
In Table 4.1, the scores for real images and 5000 synthetic images are also
presented to highlight the cutoff where 5000 synthetic data becomes better
to use than real images. We see that this cutoff happens around 600-800 real
images.

In Figure 4.2, we also see that performance varies across the datasets with
different bias, with the Glasses and Elderly datasets being the hardest to
achieve a high score on.

In order to investigate the limits of achievable performance using the synthetic
data generated here, we finally trained a detector on 5000 synthetic images
while applying the data augmentation technique described in Section 3.2.1. All
training parameters were retained, except the acceptanceRatiobreakValue
parameter from Table 3.3, which was not used in this experiment. For
comparison, we also trained a detector on 5000 real images using the same
method. The results of evaluating on the five test datasets from Section 3.1.1
are presented in Table 4.2. We see that real data consistently gave a better
performance on all test datasets, except for the Women dataset, where the
detectors trained on real and synthetic data, respectively, performed equally.

4.2 Image-to-Image Translation

The second question posed concerned using image-to-image translating GANs
for data augmentation. This idea is similar in spirit to the DAGAN in [1].
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Figure 4.2: F1-score of Viola-Jones detectors trained for face detection, as a function
of the number of positive training images. Training was done either on real images
(blue squares) or GAN-generated, synthetic images (red circles). The detectors were
evaluated on five different datasets, corresponding to the five different plots.
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Table 4.1: F1-score for training on real data (blue squares in Figure 4.2). The first
score to reach the same or better performance than 5000 synthetic images is marked
with bold.

Training data # images FDDB children glasses elderly women

Real 100 0.25 0.24 0.07 0.05 0.39
Real 200 0.36 0.37 0.06 0.07 0.56
Real 300 0.38 0.40 0.07 0.12 0.61
Real 400 0.40 0.40 0.10 0.09 0.58
Real 500 0.54 0.57 0.18 0.19 0.69
Real 600 0.57 0.58 0.19 0.24 0.72
Real 700 0.53 0.60 0.15 0.22 0.71
Real 800 0.60 0.64 0.26 0.29 0.76
Real 900 0.56 0.59 0.19 0.20 0.73
Real 1000 0.60 0.64 0.22 0.27 0.75
Real 2000 0.66 0.67 0.32 0.35 0.79
Real 3000 0.69 0.72 0.39 0.35 0.82
Real 4000 0.69 0.74 0.37 0.37 0.82
Real 5000 0.73 0.75 0.50 0.42 0.84

Synthetic 5000 0.56 0.60 0.20 0.21 0.72

Table 4.2: F1-score of Viola-Jones detectors trained on 5000 real or synthetic positive
training data, respectively. Classical data augmentation was used, as described in
Section 3.2.1. The best score achieved for each dataset is marked with bold.

Evaluation Dataset Score (Real Data) Score (Synthetic Data)

FDDB 0.77 0.73
Children 0.84 0.78
Elderly 0.57 0.45
Glasses 0.52 0.43
Women 0.87 0.87
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Their idea was that instead of performing a small number of hand-picked
transformations, they trained a neural network to decide how to make the
transformations instead. This led to more complex variations being introduced
than using standard augmentation methods. One advantage of using image-
to-image translation, however, is the possibility to control the sampling of
the augmentations to attribute labels.

For this purpose, we trained a Star-GAN model, using all images in CelebA
except 2000 randomly selected for testing. We trained the model using
four salient labeled attributes: “wearing eyeglasses”, “mouth slightly open”,
“mustache”, and “smiling”. Training was done for 200 000 iterations with a
batch size of 16. At that point, no further improvement in visual quality
seemed to happen with more iterations, so training was stopped. An example
of images transformed with the trained model can be seen in Figure 4.3.

Figure 4.3: Example of images transformed using Star-GAN. The leftmost images
are the originals from CelebA, and the following images are translations which
added the attributes (from left to right): “wearing eyeglasses”, “mouth slightly open”,
“mustache”, and “smiling”.

To test how this method of data augmentation impacted training, a number of
real images were selected from the CelebA dataset and used to train a Viola-
Jones face detector. Two experiments were made, where 50 or 250 images were
hand-picked to ensure they did not contain the feature “wearing eyeglasses”.
In the 50-images experiment, it was also ensured they did not contain the
feature “mustache”, and that the images were not in profile. Training was done
using the parameters from Table 3.3, except acceptanceRatioBreakValue
which was not used. The images were cropped so that training was only done
on the face area, as illustrated in Figure 4.4. Regular data augmentation,
described in Section 3.2.1, was used to create a total of 5000 positive training
samples both in the 50- and 250-images experiments.
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→

Figure 4.4: The training images were cropped to only contain faces.

The images were then transformed using the trained Star-GAN model, which
produced 200 or 1000 transformed images in the two experiments, respectively.
The transformed images were added to the two sets of originals, resulting in one
augmented dataset with 250 images (50 real, plus 200 StarGAN-transformed)
and one with 1250 images (250 real, plus 1000 StarGAN-transformed). These
were used to train new Viola-Jones detectors, using the same training proce-
dure as before. Regular data augmentation was still applied to create 5000
training samples from the 250 or 1250 images, respectively. The F1-scores of
the resulting detectors, tested on the evaluation datasets from Section 3.1.1,
are seen in Table 4.3 and 4.4 for the two experiments, respectively.

From the tables, we see that the detectors’ achieved F1-score increased across
all the test data in both experiments when Star-GAN augmentation was
employed. The benefit of Star-GAN augmentation was the greatest for
the small example, and especially for the general FDDB dataset. For the
larger experiment, the Elderly dataset benefited the most from Star-GAN
augmentation, but in the smaller experiment it benefited the least.

Table 4.3: F1-score of a Viola-Jones detector evaluated on the five evaluation
datasets from Section 3.1.1, after training on 50 real images (Baseline) or 50
real plus 200 StarGAN-transformed images (StarGAN-augmented). Regular data
augmentation was used to create 5000 training samples in both cases. The training
images were hand-picked and did not contain faces with glasses or mustaches, and
were not in profile. ∆ denotes the difference in F1-score between “Baseline” and
“StarGAN-augmented” trainings.

Dataset Baseline StarGAN-
augmented ∆

FDDB 0.24 0.51 +0.27
children 0.43 0.57 +0.14
elderly 0.04 0.15 +0.11
glasses 0.02 0.19 +0.17
women 0.54 0.68 +0.14
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Table 4.4: F1-score of a Viola-Jones detector evaluated on the five evaluation
datasets from Section 3.1.1, after training on 250 real images (Baseline) or 250
real plus 1000 StarGAN-transformed images (StarGAN-augmented). Regular data
augmentation was used to create 5000 training samples in both cases. The training
images were hand-picked and did not contain faces with glasses. ∆ denotes the
difference in F1-score between “Baseline” and “StarGAN-augmented” trainings.

Dataset Baseline StarGAN-
augmented ∆

FDDB 0.68 0.73 +0.05
children 0.74 0.79 +0.05
elderly 0.30 0.47 +0.17
glasses 0.34 0.41 +0.07
women 0.84 0.87 +0.03

4.2.1 In-context Translation

In the sections above, focus have been on generating or translating cropped
images which only contain the object of interest. While this suffices for sliding-
window based detection algorithms such as Viola-Jones, many promising
object detection algorithms also learn region proposal and require training
samples where the object appears in a context [48]. For this reason, it could
be useful to also modify object features when the object appears in a context.

In order to demonstrate this, we trained Star-GAN on CelebA with the same
settings as above. We then employed a similar (automated) procedure as [45]:

1. Given an image containing faces in a context, detect the faces using
a face detector. For this purpose, we used a deep learning based face
detector from an open source face recognition library for Python 3 [14].

2. Pad the detected face areas to include approximately as much of the
surroundings as CelebA.

3. Cut each head area from the image and re-scale it to fit the StarGAN
input requirements.

4. Apply StarGAN to the head-images, to create the transformed faces.

5. Scale back the transformed head-images to the original’s in-context
dimensions, and paste it back into the original image.

The procedure above is illustrated in Figure 4.5. An example result of running
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an image through the pipeline can be seen in Figure 4.6, where the attribute
“wearing eyeglasses” has been imposed on all detected faces.

StarGAN

Figure 4.5: Illustration of the procedure employed to perform In-context translation
using Star-GAN. First, the face was detected using a face detector and cropped out.
Then, Star-GAN was applied to transform the face. Finally, the transformed image
was pasted back in its context.
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(a) Original image, taken from the WIDER FACE dataset [60].

(b) Added eyeglasses in context using the procedure described in
Section 4.2.1.

Figure 4.6: Demonstration of in-context image-to-image translation using Star-GAN.
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Chapter 5

Discussion

5.1 Image Generation

Visual inspection of the synthetic images in Section 4.1 reflects the results in
[25] of high realism in synthetic images, and does indeed suggest that synthetic
images might be useful for training. Figure 4.2 shows that training on real
data consistently gives better results than training on the same amount of
synthetic data. However, this is actually not surprising since the synthetic
data is modeled after the real data. If the model is perfect, it will exactly
replicate the distribution of the real data. If it is not perfect, which is the
more likely scenario, at least some of the generated samples will not quite
resemble the real images. Such samples might be detrimental for the detector
training as they will most likely not resemble any real samples.

It is also not surprising that training on more data is generally better than
training on less data, as this is a well established phenomenon in machine
learning. This leads to a trade-off situation where using a large amount of
synthetic data can be better than using a small amount of real data. In
Figure 4.2, we see that in our specific setting we needed around 10 times as
many synthetic images to get comparable performance to training on real
images.

However, provided we have a trained generative model, it is typically just as
easy to generate e.g. 5000 images as it is to generate 5. Acquiring more real
data, on the other hand, does not become easier. It therefore makes more
sense to compare the best scores for synthetic data with different amounts
of real data. We can then see there is a cutoff, where it becomes better to
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collect n real images than acquire a generative model. From Table 4.1 we see
that this cutoff happens around n = 600 to 800 images for our specific test
case, assuming we could not train a better detector using more than 5000
synthetic images. The reason for this limit is that it becomes impractical to
train the Viola-Jones detector with much more than 5000 positive samples.

Another possibility would be to use real data in combination with the genera-
tive model to get superior results to using either real or synthetic data. This
is beyond the scope of this thesis, but previous work has shown the potential
of adding synthetic data to real training data [39, 42, 57, 61, 64] although it
has also been shown it can sometimes be detrimental [42, 58].

It should be noted that any numbers presented are highly specific to the GAN
model, training data, choice of detector, choice of score metric, and other
parameters specific to our experiment. It is hard to infer general behaviour
from our experiments, but it seems reasonable to hypothesize that for any
reasonable generative model there is a lowest number of real images that
performs better than using the generative model to produce a lot of synthetic
samples.

In Figure 4.2, we see that retraining the detector using more data does not
always result in higher performance score, which leads to the “spikeyness”
of the plots. For example, the detector trained on 900 real images gets a
lower score on all test datasets than the detector trained on 800 real images.
This counter-intuitive result is most likely a product of stochasticity in the
detector training. In fact, two separate training runs with the exact same
training parameters are not guaranteed to produce the exact same results.
This makes it difficult to draw conclusions based on exact numbers. If time
allowed, it would be preferable to average each point over many training runs.

We also see that performance differs greatly on the different datasets, with
Glasses and Elderly seemingly being the hardest benchmarks, both for real
and synthetic images. This indicates a larger mismatch between these test
sets and the training data, which can be expected for such specific categories.

When data augmentation is employed, the performance of the detectors
trained on synthetic data closes in on the detectors trained on real data,
as seen in Table 4.2 – and on the Women dataset, the detector trained on
synthetic data reached the same score as the detector trained on real data.
This result indicates that synthetic data can indeed be used to train reasonably
performing detectors, and might not be much worse compared to real data.
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5.2 Image-to-Image Translation

When using Star-GAN for data augmentation, the F1-score of the resulting
detectors increased on all evaluation datasets, as seen in Tables 4.3 and 4.4.
This might be expected since, as discussed in Section 5.1, increasing the
number of training images typically leads to higher performance. However,
data augmentation is not quite comparable to simply collecting more data.
This can be readily seen in our experiments, where 50 real plus 200 Star-GAN
generated training images gives worse results compared to using 250 real
images.

Instead, data augmentation should be seen as a way of increasing variance
in the data to combat a priori biases, as discussed in [51, 59]. Compared
to using affine transforms, or other pixel-space transformations, our method
should be superior since it introduces variance in deep features, which are
higher-level features compared to pixel values. Additionally, unlike DAGAN
it is based on labelled features and thus likely more sensible than the features
learned by DAGAN [1].

The results indicate that Star-GAN successfully introduced variance in the
training data. We also see that the benefits of this method is the largest
when data is very scarce, which can be somewhat expected. In our case, the
increased variance comes from the features the Star-GAN learned by seeing
all of CelebA. Thus, we are indirectly using information from all of CelebA
even though we only need access to 50 or 250 real images at the time of
training the detector – the rest is encoded in the trained Star-GAN model. Of
course, there is a potential for using this augmentation for training samples
not within CelebA, but we leave that for future work.

In Table 4.3 we see that in the low-data regime, the performance increase
was greatest on the FDDB dataset. This is interesting, because it means that
even if we selected a few specific features for augmentation, the benefits were
greatest for a very general test case. For the same reason, it is noteworthy
that performance was increased on the datasets Children and Women, even
though one of the augmented features, “mustache”, should have a negative
impact on those. Similarly, the performance increase on the Glasses dataset
did not stand out considerably, even though that was one of the augmented
features.

However, in the 250-images example in Table 4.4, the performance increase
was greatest on the Elderly dataset, which could be expected to contain a
larger proportion of the features “wearing eyeglasses” and “mustache”.
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It could be expected that augmenting for a specific feature would increase
detection on samples with that feature. In that case, this technique could be
used to shift a dataset toward a specific bias. More experiments would have
to be done, however.

5.2.1 In-context Translation

The in-context image-to-image translation results presented in this report are
preliminary and mostly included for demonstration purposes. The results
suggest that the image-to-image translation in this report could potentially
also be used for detectors which learns region proposal. However, the method
used here employing Star-GAN in context might not be optimal; for example,
bounding box artifacts are left around the transformed object as can be
seen in Figure 4.6b. In [45] they used masking of the object for a smoother
transition between the transformed area and the surrounding pixels.

Generation of entirely new samples of an object in a context is a different
challenge. In [42], a GAN was trained to generate pedestrians at a specific
location of an image by training one discriminator to enforce realism of the
generated pedestrian, and another discriminator to make sure the generated
pedestrian fit in to the context of the image. A similar procedure would
probably be more complicated when the object has specific environmental
constraints, such as how a face is usually located at the top of a body. One
possibility then could be to have another generator generate the body.

5.3 Future Work

For future work, it would be interesting to further investigate exactly how
good performance can be reached when training on only the GAN-generated
synthetic data. For example, it could be investigated if there is a better way
to sample z for the purpose of generating training data than simply drawing
from a Gaussian distribution. Perhaps consciously controlling the bias of
generated samples, for example using the method in [46], could be used to
mitigate a priori bias in the data used to train the GAN. Another way could
be combining the generated images with Star-GAN augmentation.

It could also be of some interest to see how a combination of the generated
images with real images would fare. This could be investigated for both the
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case when the real images are sampled from the training data of the GAN,
and when the real images are from an entirely different dataset.

Future work could also investigate how to use the synthetic data for training
deep learning based detectors with region proposal, since this type of detector
is likely most relevant for object detection applications in the future. In
this work, we began looking at in-context image-to-image translation, but no
training using this data was performed. Further developments of this idea
are left for future work. Generation of new samples in a context could also
be useful to investigate.

5.4 Conclusion

The image quality attainable with Generative Adversarial Networks has
increased a lot in recent years, and the results in this thesis suggest that
synthetic data generated by GANs can be used to train object detectors with
decent results. While it seems like replacing real data with an equal amount
of synthetic data always leads to worse performance, one of the advantages
of a generative model is that it can be used to easily produce large amounts
of synthetic data. In this work we have seen that, using an a priori trained
GAN, it is possible to train reasonable detectors using only synthetic data.

We have also seen that image-to-image translation using GANs can be useful
for data augmentation. Unlike both traditional data augmentation methods
and more recent approaches like DAGAN, this introduces variance in labeled
features learned in a supervised manner. For that reason, it should both
introduce realistic variance and enable new ways of controlling dataset bias.

The main benefit of using synthetic over real training data is to reduce the
need for handling real personal data, which is subject to both regulations such
as GDPR and ethical concerns. The methods discussed in this thesis could
make it easier to train object detectors and other machine learning algorithms
while adhering to these regulations and ethical considerations. Another benefit
of the methods discussed is that they could enable more control over dataset
bias, which can help reduce the risk of algorithmic discrimination and produce
more reliable applications of machine learning.
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