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Abstract

It is a common practise to quote option prices using their Black-
Scholes implied volatility. A volatility surface describes an options
implied volatility as a function of the strike price and time to matu-
rity. It can be used as a tool for hedging but also valuation when
prices are not directly observable. The short-term evolution of this
surface has been described by a variety of apocryphal rules. Three of
these rules are tested empirically for exchange traded S&P 500 index
options for two distinguished periods. The square root of time rule,
consistent with the no-arbitrage condition, has the highest explana-
tory and predictive power. Extended versions are also derived but
with no significant improvement.

Keywords: Volatility Surface, Implied Volatility, Rules of Thumb, No-
Arbitrage Condition, Index Options
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1 Introduction

The variation of the volatility surface for options, has been described by a
variety of apocryphal rules. Since the surface is used as a tool for market
participants to hedge and value contracts, understanding changes are of great
importance. This essay examines the practicality of these rules on index op-
tions, based on their explanatory power under two different volatility regimes.
In comparison to earlier work, different extensions will be introduced to see
if improvements may be possible. This will be done under a no-arbitrage
framework. The rules will then be tested out of sample, to evaluate their
predictive power.

1.1 Options and Terminology

An option is a type of derivative, therefore the value depends on (or derives
from) the value of other underlying variables [6, p. 23]. There are numerous
variations but the main types of options are calls and puts. A call option
gives the holder the right to buy the underlying asset by a certain date for a
certain price. A put option is similar but gives the holder the right to sell [6,
p. 30]. Buyers of calls or puts are referred to as having long positions ; while
sellers are referred to as having short positions [6, p. 33].

The price set in the contract is called exercise price or strike price, denoted
K. The maturity (T ) is the date which the option expires. There are dif-
ferent subtypes of options that can be exercised differently. An American
option can be exercised at any time while an European option can only be
exercised at the expiration date [6, p. 33]. The price of the underlying asset
at time t will be denoted by St and the price of buying an option is called
the premium denoted by Π.

A call option will never be exercised if the underlying asset has a price be-
low the strike price (St < K). Similarly for a put option but with reversed
inequalities (St > K). This scenario is referred to as the option being out-
of-the-money. If instead the asset price is equal to the strike price (St = K)
the option is refereed to as at-the-money. Lastly, a call option where the
asset price is above the strike price (St > K) and inequality reversed for put
option (St < K), will be referred to as in-the-money. The moneyness of an
option will be referring to the ratio of K/S.
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1.2 Pricing of Options

In the early 1970s, Fischer Black, Myron Scholes and Robert Merton achieved
a major breakthrough. This was due to the development of the pricing model
of European stock options known as the Black-Scholes-Merton (or Black-
Scholes) model [6, p. 343]. The importance of the model would later be
recognized when Robert Merton and Myron Scholes were awarded the No-
bel prize for economics in 1997. Fischer Black had passed away in 1995 but
would undoubtedly been one of the recipients. Their contribution can not
be overstated.

Since the early 70s, the field of pricing options have come a long way. Ex-
tensive analytic models have been developed to cope with some of the more
rigid assumptions in the early model. Molecule models of a wide range of dif-
ferent types have been developed for different options [2, p. 147]. The rapid
increase of computing power during these decades has also made different
numerical models viable.

1.3 Volatility Surface

Volatility (σ) is a measure of the uncertainty of the return realized on an
asset [6, p. 861]. The implied volatility is derived from an option price using
Black-Scholes model. A plot of the implied volatility of an option with a
certain life as a function of its strike price and time to maturity is known as
the asset’s volatility surface [10]. The moneyness of an option and the delta
(sensitivity to changes in underlying ∆ = ∂Π

∂S
) may also be used as the strike

dimension.

To derive a volatility surface, the implied volatilities of traded options are
used. For European options and in the absence of arbitrage, the put-call
parity implies that the implied volatility of a call and put is the same. These
options may be traded on an exchange but can as well be over-the-counter.
The mid price of the bid/ask is used to derive the implied volatility. If there
are no contracts traded for a specific strike and maturity, one realizes that
the surface will suffer from holes. This has been a heavily researched topic
and there are countless of methods for interpolation and extrapolation. Note
that the volatility surface need to satisfy the condition of static and dynamic
no-arbitrage to be practically valid.
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1.4 Rules of Thumb

The rules of thumb are trying to capture the dynamics of the volatility sur-
face. This short-term evolution is described through dependence on plausible
variables. The types of rules of thumb analyzed fall into two categories. The
first one describes how the volatility surface changes through time. The
second one is concerned with the relationship between implied volatility for
different maturities at a point in time [10]. In physics or mathematics, pa-
rameters that do not change are called invariants. It is however customary
to refer to what does not change as ”sticky” in options trading [5].

Figure 1: Volatility surface for the S&P 500 index the 3 December 2018. The
vertical axis show the implied volatility, while the horizontal axes shows the
maturity and the moneyness.

Three examples of different rules are the sticky strike rule, the sticky delta
rule and the square root of time rule. The first two are concerned with
changes in time and the last one fall into the second category. There are a
variety of subrules of these rules. What follows are general ones stated in
previous work like [10] and [5]. All of them assume a European call option
with implied volatility σTK where T is the maturity and K the strike price.
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1.4.1 The Sticky Strike Rule

The sticky strike rule is a poor man’s attempt. The rule assumes that the
σTK is independent of the asset price. In its most basic form, it varies only
with K and T . A more generalized version describe σTK as independent of
the underlying, but possibly dependent on other stochastic variable.

1.4.2 The Sticky Delta Rule

The sticky delta rule (also called sticky moneyness rule) is an alternative
where the implied volatility is dependent on the asset price and strike price.
This is through the moneyness variable. The intuition behind the rule is
that an option that is X% out-the-money after the index moves should have
the same implied volatility as the X% out-the-money option before the index
move.

1.4.3 The Square Root of Time Rule

Another rule that is sometimes used is the square root of time rule. It is
based on the time scaling of volatilities [7]. The time value of an option is
approximately proportional to the square root of time. This is being captured
by including dependence on the square root of time. The rule will then
describe the relationship between implied volatilities for different maturities
at a point in time.

1.5 Structure of the Essay

In the next section, already discussed concepts will be elaborated. Previous
work of different rules of thumb and empirical observations will be discussed.
Section 3 introduces theory and the no-arbitrage condition. This is trough
a stochastic implied volatility model. The regression models will then be
constructed for different rules of thumb in Section 4. In Section 5, the result
is presented and in the last section conclusions will be made and discussed.
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2 Review of the Existing Literature

This section provides an overview of previous work related to this essay.

2.1 Consistency with No-Arbitrage Condition

The paper ’Volatility Surfaces: Theory, Rules of Thumb, and Empirical Ev-
idence’ written by T. Daglish, J. Hull and W. Suo [10] relates to testing
conventional rules. In the paper they focus on the consistency of different
rules given a derived no-arbitrage condition. They show that a basic sticky
strike rule that only depends on K and T is only internally consistent with a
model where the volatility surface is flat. This is the original Black-Scholes
model. A generalized version of the sticky strike rule is analyzed and showed
only to be consistent with Mertons-model where the instantaneous volatility
is a function of time. Therefore, any volatility surface that suffer from skew-
ness will be inconsistent with any version of their sticky strike rule. For the
basic sticky delta rule the same is concluded. A more general version of the
sticky delta rule, where the implied volatility is stochastic and depends on
the moneyness and time to maturity, can be consistent with the no arbitrage
condition. The relative sticky delta rule, which models the excess volatility
over the at-the-money volatility, and the square root of time rule are shown
to be approximately consistent.

2.2 Empirical Evidence for different Rules of Thumb

The explanatory power of the rules seems to vary under different regimes.
Emanuel Derman analyzes the variation of three-months implied volatilities
for S&P 500 options [5]. With fourteen months of data from 1997-1998, Der-
man divides the period in seven different regimes, where the boundaries are
somewhat subjective. Each regime has its own characteristics. Its concluded
that each regime has a dominant rule that explains the observations. When
the index and volatilities are fairly stable, they seem to follow the sticky
strike rule. The sticky strike rule does also a good job of explaining the
index when it exhibits an upward trend. A sticky implied tree rule is also
analyzed. This rule seems to be good when the index enter a period of high
volatility and appreciable downward jumps. It should be noted that the S&P
index, realized an annualized volatility of 9% for the most tranquil period
and 30% for the most turbulent.
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Test of rules of thumb are also being conducted in [10]. The data used is
monthly volatility surfaces from the over-the-counter market for 47 months
(June 1998 to April 2002). In comparison to Derman, six maturities are
considered ranging from six months to five years. The moneyness range from
0.8 to 1.2. The sticky strike rule tested, can be regarded as a Taylor expan-
sion of second degree. The rule show poor explanatory power and sizable
errors when tested out-of-sample. Using a similar Taylor expansion, the rel-
ative sticky delta rule and variants of square root of time rule show great
promises. They also conclude that the latter can be marginally improved to
explain volatility changes. This is through an exponent equal to 0.44 instead
of the square root 0.5.

2.3 Time Effect Extensions

An extension of the sticky strike rule specification is made by Jacinto Romo
in [8] and tested on monthly data for the Spanish index IBEX 35. A stochas-
tic term is added to make the rule more flexible. The term is considered
to aggregate the effect of random variables, such as news, that may affect
the volatility surface. The one specified allows for a parallel shifts, together
with preserving the overall term structure and skewness. The extended ver-
sion outperforms the parsimonious version of the rule, but with the loss of
economic interpretation.
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3 Theory

3.1 Risk Neutral Valuation

The arbitrage free price, Π(t,Φ(ST )), of the claim Φ(ST ) at a time t is given
by:

Π(t,Φ(ST )) = e−r(T−t)EQt [Φ(ST )]

Where Q is the risk neutral measure and r the risk-free interest rate [3,
p. 103].

3.2 The Black-Scholes Formula

The derivation will follow [3, p. 104-105]. The bank account Bt with risk-free
interest rate r and the underlying asset St follows the processes:

dBt = rBtdt

dSt = αStdt+ σStdWt

Where r and α are the drift terms for the processes. The diffusion compo-
nent is the volatility σ and W is the standard Brownian Motion (BM). One
can think of this component as adding the noise to the assets movements.
A definition for the BM is included in the appendix A.1. It is important to
note that the processes assumes absence of jumps.

The risk neutral Q-dynamics of S is given by:

dSu = rSudu+ σSudWu

St = s

Finding ST is done by integrating over [t, T ] [3, p. 67-69] to receive:

ST = s exp

{
(r − 1

2
σ2)(T − t) + σ(WT −Wt)

}
= sez

Using the risk neutral valuation earlier, the pricing formula can be obtained:

Π(t, s) = e−r(T−t)
∫∞
−∞Φ(sez)f(z)dz

Where f is the density of a random variable Z, where:

Z ∈ N

[
(r − 1

2
σ2)(T − t), σ

√
T − t

]
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3.3 Blacks-Scholes Pricing Formulas for European Op-
tions

The integral formula is general and must be evaluated numerically. However,
analytic expressions for European options can be derived given the boundary
conditions. What follows are the Black-Scholes price formulas for calls c and
put p options.

c = StN(d∗1)−Ke−r(T−t)N(d∗2)

p = Ke−r(T−t)N(−d∗2)− StN(−d∗1)

Where

d∗1 =
1

σ
√
T − t

[
ln(St/K) + (r + σ2/2)(T − t)

]

d∗2 = d∗1 − σ
√
T − t

and N(x) is the cumulative probability distribution function for a variable
with a standard normal distribution.

3.4 Implied Volatility

The implied volatility σTK matches the value of an option observed in the
market, Πt, with the one obtained by Black-Scholes formula [6, p. 363]. It
is not possible to derive it in closed form, so an iterative search procedure is
used.

σTK(St, t) = BS−1(Πt, St, K, t, T )

3.5 The Implied Stochastic Volatility Model

In the Black-Scholes model, the underlying volatility is known and con-
stant. This can be extended by assuming that the implied volatility follows
a stochastic process. The process for the underlying asset (stock index) is
assumed to have a drift that consists of the difference between the risk-free
interest rate r and the the yield q. The diffusion component is the volatility
σ and W is the BM. Note that r and q are assumed to be deterministic.
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dS = (r − q)Sdt+ σSdW

In [9] the process for the implied volatility includes a term with the same
BM as the underlying asset process. Here the process will instead follow the
previous authors in [10], where all are specified at once. For algebraic con-
venience the implied variance (VTK(t, S) = (σTK(t, S))2) will be used. The
process for the implied variance is then:

dVTK = αTKdt+ VTK
∑N

i=1 θTKidWi

Where θTKi measures the sensitivity of VTK to the BM. Both of these pro-
cesses assumes absence of jumps.

3.6 No-arbitrage condition

The process followed by Π the price for a call (note that given put-call parity,
it could equally have been for a put) can be derived by Ito’s lemma in two
dimensions. For absence of arbitrage, the drift is equal to rΠ. A comprehen-
sive derivation can be found in the appendix A.2 with the help of [2, p. 118].
As derived in [10], an expression for the drift of the implied variance as a
function of its volatility will provide a no-arbitrage condition.

αTK = 1
T−t(VTK − σ

2)− VTK(d1d2−1)
4

(
∑N

i=1 θ
2
TKi +

∑
i 6=j θTKiθTKjρiρj) +

σd2

√
VTK

T−t
∑N

i=1 θTKiρi

Where ρi is the correlation between the BM in the underlying asset process
and the ith BM in the implied variance process (corr{W,Wi}). The di are
results of the Black-Scholes model:

d1 =
ln(S/K)+

∫ T
t [r(τ)−q(τ)]dτ√

VTK(T−t)
+ 1

2

√
VTK(T − t)

d2 =
ln(S/K)+

∫ T
t [r(τ)−q(τ)]dτ√

VTK(T−t)
− 1

2

√
VTK(T − t)
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3.6.1 The Sticky Strike Rule

For the most basic sticky strike rule, where σTK is a deterministic function
only of T and K, the implied variance does no longer have a diffusion compo-
nent. In other words, all θTKi = 0. From the no arbitrage condition together
with the implied variance process:

dVTK = αTKdt =
1

T − t
(VTK − σ2)dt

such that:

σ2 = −d[(T − t)VTK ]

dt

The volatilities are then the Black-Scholes constant volatility model. This
type of sticky trike rule is inconsistent with any type of volatility skew. For a
more generalized version where σTK is independent of the underlying asset,
all ρi will equal zero and di depends on the underlying asset, so all θTKi = 0.
This is the same case as the basic sticky strike and the same conclusion can
be drawn.

3.6.2 The Sticky Delta Rule

The most basic sticky delta rule, assumes σTK to be a deterministic function
of moneyness K/S and T . This is the same case as for the basic sticky strike
rule and all θTKi = 0. The rule is then inconsistent with any type of skewness
in the volatility surface.

For a generalized sticky delta model, where σTK is stochastic and depen-
dent on the moneyness and T , may be consistent. To see this, note that if
all the θTKi in the no-arbitrage condition have the same form of dependence
on the moneyness and time, the same holds for αTK . The d1 and d2 do al-
ready have a dependence on the moneyness. This type of rule can then be
consistent with a volatility surface that has some type of skewness.

3.6.3 The Square Root of Time Rule

The rule is concerned with the relationship between implied volatilities for
different maturities at a point in time. Anchoring the implied volatility will
be the at-the-money one. Here it is defined to be an option where the strike
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price equals the underlying asset price. It is worth noting that sometimes the
at-the-money volatility is defined as an option where the strike price equals
the forward asset price. Here follows two general versions of the sticky strike
rule:

σTK
σTS

= ψ1( ln(K/S)√
T

) σTK − σTS = ψ2( ln(K/S)√
T

)

For both expressions ψ is a function. The first one is concerned about de-
scribing the ratio while the second one is the excess of the volatility over the
at-the-money volatility.

Since the time value of an option is approximately proportional to the square
root of time [7], due to the assumption of the process driving the underlying
asset is a BM, this rule is fairly intuitive. Although this is true when the un-
derlying asset follows one, it is less clear when the volatility is also assumed
to follow a stochastic process. Leaving the mathematical side, this rule is
approximately consistent with the no arbitrage condition for αTK . A mean-
reverting volatility model might be an example, where the implied volatility
approximately satisfies the square root of time rule, when the reversion co-
efficient is large [10]. In [1, p. 18] a more rigorous treatment of the topic can
be found.
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4 Models and Data Analysis

4.1 Data and Description of Variables

The data consists of 60 monthly volatility surfaces for the S&P 500 from the
exchange traded market split into two distinguished periods. The first one
is taken from 1 June 2007 to 1 June 2009 and the second one 1 February
2016 to 2 November 2018. The boundaries for each period have been cho-
sen somewhat subjectively. A clear downward trend characterizes the first
period, while the second a tranquil upward trend. In the appendix A.3, two
graphs are included to show the stark difference in the periods.

The maturities range from one month up to two years. Higher maturities
are available but a lot of the contracts are then not traded. This absence
of trading will result in interpolations or extrapolations which are not as
informative. Nine values of moneyness are considered, ranging from 80% to
120%. A total of 72 points on the volatility surface are provided each month
with a total of 1872 and 2448 for each period. Around 18.5% of the implied
volatilites in the first period have been interpolated or extrapolated while
7.7% for second. A large majority of these are in the higher range of the
moneyness and lower maturity dimension together with high maturities. All
of the data has been extracted from Bloomberg.

4.2 Regressions for Rules of Thumb

The αi, βi and γi are population parameters and ε is a normally distributed
error term. A dummy variable δ representing a vector of N − 1 parameters,
where N represents the number of months, will be added to some of the mod-
els. This unspecific term will work as an aggregation for random variables
affecting the volatility surface each month. This is to see if the models may
be improved by for example macroeconomic indicators affecting it during a
specific month. One can construe it as a parallel term shift for the respective
months.

The functional specification of all models can be thought as a second or-
der Taylor series expansion. A linear specification might be to restrictive,
which is why quadratic terms will be favored. This will include squared terms
and a cross-term.
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A model’s viability out of-sample will be tested by obtaining a root mean
square error. It is based on a quadratic loss function where larger forecast
error are punished more heavily [11]. This forecast evaluation will be tested
for models excluding the dummy vector. This is due to the implausibility
that the estimated coefficient for a certain month, will have the same impact
a year later. The two periods will be split such that the first 19 and 25
months respectively will be used for the fitted model.

4.2.1 The Sticky Strike Rule

This model is inconsistent with the no-arbitrage condition setup earlier. How-
ever, for some volatility regimes, it has been shown to do a better job ex-
plaining the implied volatility then more structurally sound models [5]. The
basic sticky strike rule will be tested where the implied volatility depends
only on the strike K and the maturity T .

σTK = α0 + α1K + α2K
2 + α3T + α4T

2 + α5KT + ε

4.2.2 The Sticky Delta Rule

The basic sticky delta rule was earlier showed to be inconsistent with the no-
arbitrage condition. For a generalized sticky delta rule, it was shown to be
plausible given certain assumptions about the sensitivities of the variances.
This version will be tested, where it is dependent on the moneyness K/S and
T in a functional form of a second degree Taylor expansion together with the
dummy vector δ.

A relative general version might also be plausible where the excess volatility
over the at-the-money will be modeled. This will be through a dependence
on the log of moneyness and T in a likewise functional form.

σTK = β0 + δ + β1(K
S

) + β2(K
S

)2 + β3T + β4T
2 + β5(K

S
)T + ε

σTK − σTS = β0 + β1 ln(K
S

) + β2 ln(K
S

)2 + β3T + β4T
2 + β5 ln(K

S
)T + ε
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4.2.3 The Square Root of Time Rule

Given the no arbitrage condition, this model will be approximately consis-
tent. Two general versions were earlier introduced and it is the latter one
that will be tested. The excess volatility over the at-the-money volatility will
be dependent on a forth degree polynomial of the log of moneyness over the
square root of time. This follows [10] but it is less clear what degree is most
appropriate. A more parsimonious version might be tested depending on the
result.

Extending the first version, a dummy vector δ will be added to see if it
may capture shifts during each month.

σTK − σTS = γ1
ln(K/S)√

T
+ γ2( ln(K/S)√

T
)2 + γ3( ln(K/S)√

T
)3 + γ4( ln(K/S)√

T
)4 + ε

σTK − σTS = δ + γ1
ln(K/S)√

T
+ γ2( ln(K/S)√

T
)2 + γ3( ln(K/S)√

T
)3 + γ4( ln(K/S)√

T
)4 + ε
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5 Results

All of the referenced regression output can be found in the appendix A.4,
sorted after each rule and period. Robust standard errors have been used for
all regressions.

5.1 1 June 2007 - 1 December 2008

For the basic sticky strike rule, the T 2 is the only notably insignificant term
at the 1% level but not 5%. The estimated coefficients K and T are clearly
negative, which is in line with the general skewness observed (see the volatil-
ity surface in Section 1.4). However, the general sticky dela rule and relative
sticky delta rule seem to both better explain the variation. They have as well
clearly negative coefficients for the T and moneyness parameters. A com-
parison between the sticky strike rule and the sticky delta rules can be done
through a F -test. If two models have equal explanatory power, the ratio
of the squared errors should be F -distributed adjusted for their respective
degree of freedom. A two-tailed test show a clear rejection at all levels. To
compare the two sticky delta rules, all of the information criterion’s unani-
mously point to the more parsimonious version. The criterion’s incorporates
a trade-off between goodness-of-fit and the number of regressors. The gener-
alized sticky delta rule is heavily punished and the more parsimonious relative
sticky delta rule is to be favoured.

For the square root of time rules, the second degree term is insignificant
at all levels for both models. A more parsimonious version might somewhat
marginally improve it. The first term is negative and all higher degrees are
positive. In comparison to the relative sticky delta model, all information
criterion’s unanimously point to the square root of time rules. Comparing
the two nested versions it is less clear cut. The Schwarz Bayesian Informa-
tion Criterion tend to favour more parsimonious models because of the larger
penalization of increased number of regressors. Although the Akaike’s Infor-
mation Criterion might be lower for the general square root of time rule, the
more parsimonious version should here be preferred.
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5.2 1 February 2016 - 2 February 2018

The null hypothesis for a significant T 2 term is clearly rejected at all levels
for the basic sticky strike rule and the general sticky delta level. Some of
the terms in the dummy vector are also insignificant but a joint test for all
the regression coefficients to be zero is clearly rejected. As for the previous
period, the two versions of the sticky delta rule are preferred. Once again,
taking into account the trade-off of explanatory power and parsimony, the
second trait will here be more desirable.

Both of the square root of time rules seems to better explain the varia-
tion observed in the second period. None of the degrees are insignificant but
some of the terms in the dummy vector are. Testing for joint significance, it
is clearly rejected that all coefficients be zero. Comparing the two versions,
all information criterion’s favour the extended or general version. It seems
then that the extension might marginally improve the model and captures
aggregate effects acting each month.

5.3 Forecast Evaluation

5.3.1 First Period

For the basic sticky strike rule, a root mean square error (RMSE) of 0.14 was
obtained. The measure is dependent on the scale of the dependent variable
but this represents a quite sizable error. There seems to be a tendency as well
for the rule to systematically overestimate the implied volatility. For almost
all predictions, the rule yield a higher implied volatility then observed in the
market.

For the sticky delta rule and the square root of time rule, RMSE of 0.011 and
0.0074 were obtained. This represent a fairly close fit to the data observed.
Even though the square root of time rule involves less parameters, it will still
lead to improvements in the overall predictive power. No tendencies for over-
and underestimating could be observed.

5.3.2 Second Period

A RMSE of 0.060 was obtained for the basic sticky strike rule. However,
a reversed effect was observed for the predictions. The rule systematically

20



underestimated the implied volatilities. Although true for a majority of the
predicted values, the effect was not as strong as in the earlier period.

Out of sample performance for the sticky delta rule and the square root of
time rule, resulted in a RMSE of 0.017 and 0.011 respectively. This is again
a fairly close fit where the square root of time rule has a higher predictive
power. There were no tendencies for over- and underestimating.
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6 Conclusions

6.1 Rules of Thumb

The empirical tests of the rules of thumb, show a strong support for the
square root of time rule. This is based on the information criterion. It is
the most appropriate rule for a tumultuous downward trending index and a
tranquil upward trending one. This rule will as well approximately satisfy
the no-arbitrage condition. The simpler sticky strike rule and versions of the
sticky delta will not, but show less explanatory and predictive power.

The square root of time rule is extremely useful in creating a complete volatil-
ity surface. If a relatively small number of options are available, one can
compute the complete volatility surface. However, if one is interested in the
sensitivity of underlying variable changes, the rule is not as useful. This is
due to the modelling of excess volatility over the at-the-money. The ”Greeks”
as they are often referred to among option traders, are a set of values mea-
suring the risk involved in options contract. Under this rule, they will not
be easily calculated. Though the rule explains the dynamics of the volatility
surface, a market participant with the intention of hedging, might not find
it as useful when calculating overall risk exposure.

The extended versions seems to hardly improve the models, if anything
marginally. Preserving the term structure and volatility skew, might not
be the best way to capture the aggregate factors affecting the volatility sur-
face. A more complex structural econometric modelling of the effect might
improve. Although giving economic content, it is not always very useful for
predictions. A time series extensions might then be a better alternative, but
it is unclear how this will affect the no-arbitrage condition.

6.2 Interpolations and Extrapolations

When there is no available price data, the volatility surface will suffer from
hole. Bloomberg uses a non-parametric numerical method for the moneyness
dimension and a Hermite cube spline for the time to maturity [4]. It is in the
company’s interest of providing accurate data and one may conclude that
the methods are sophisticate enough.
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However, more turbulent periods will have less traded contracts which is
the main reason why the first period has 18.5% interpolated or extrapolated
implied volatilities while 7.7% for second one. This strong correlation will
result in less informative data during more volatile periods. One should how-
ever note that not all trades are done on the exchange. It is not plausible
to execute large volume trades on an exchange, so the data will not be able
to capture transactions over-the-counter. Although the dynamics are slight
different, empirical tests on the over-the-counter market in [10], seem to be
in agreement with exchange traded in this paper.

6.3 Assumptions Made for the No-Arbitrage Condi-
tion

The no-arbitrage condition, underpinning the rules of thumb, is heavily de-
pendent on the assumed stochastic process. In the stated form, the under-
lying asset and the implied variance will have continuous paths. Presence
of jumps are not taken into account and will then be excluded. These type
of jumps usually occur during turbulent market periods. Political and eco-
nomical events but also extreme trade executions like a fat-finger error or a
flash-crash may give rise to these movements.

Changing the no-arbitrage condition to include jumps, will increase the over-
all complexity. However, it would be of interest to see how theses rules of
thumb will be affected.

6.4 Concluding Remarks

The square root of time rule outperforms the other rules of thumb for the
two periods analyzed. However, there is room for improvement and as well
finding a rule which appeals to a wider market audience. A more realistic
no-arbitrage condition can also be derived, which may underpin a stronger
theory for the rules of thumb.
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A Appendices

A.1 Brownian Motion

Defintion: Let W = {Wt : t ∈ R+} be a stochastic process. W is a BM if
it satisfy the following properties:

W0 = 0 (1)

The increments are independent and stationary. (2)

(Wt+h −Wt) ∈ N (0, h) (3)

Wt has continuous paths (4)

A.2

Recall the Two-dimensional Itô Formula [2, p. 118] applied to a function
Π(t, x, y) ∈ C1,2,2([0, T ],R2) and the processes Xt and Yt are given by:

dXt = µ(t,Xt)dt+ σ(t,Xt)dW
x
t

dYt = α(t, Yt)dt+ β(t, Yt)dW
y
t

Where the two Brownian Motion has correlation ρ. The function Zt =
Π(t,Xt, Yt) will then follow the process (to ease the notation the arguments
are skipped):

dZt = dΠ(t,Xt, Yt) = [∂tΠ + µ∂xΠ + α∂yΠ + 1
2
(σ2∂2

xxΠ + β2∂2
yyΠ) +

ρβσ∂2
xyΠ]dt+ σ∂xΠdW

x
t + β∂yΠdW

y
t

Setting the drift term equal to rΠ, or the interpretation that it must instanta-
neously earn the same rate of return as other short-term risk-free securities
[6, p. 354], will result in no-arbitrage. Using instead Π(t, S, VTK) and the
processes defined in 3.2, where we have N different Brownian Motions for
the variance, yield:

∂tΠ + µ∂xΠ + α∂yΠ + 1
2
(σ2∂2

xxΠ + β2∂2
yyΠ) + ρβσ∂2

xyΠ = rΠ

∂Π
∂t

+ (r − q)S ∂Π
∂S

+ αTK
∂Π
∂VTK

+ 1
2
σ2S2 ∂2Π

∂S2 + 1
2
V 2
TK

∂2Π
∂V 2

TK

[∑N
i=1 θ

2
TKi +∑

i 6=j θTKiθTKjρiρj] + SVTKσ
∂2Π

∂S∂VTK

∑N
i=1 θTKiρi = rΠ
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Using the One-dimensional Itô Formula [2, p. 123] on the underlying asset
defined in 3.2 and holding VTK constant:

∂tΠ + µ∂xΠ + 1
2
σ2∂2

xxΠ = rΠ

∂Π
∂t

+ (r − q)S ∂Π
∂S

+ 1
2
V 2
TKS

2 ∂2Π
∂S2 = rΠ

Using the two results after Itô’s Formula has been applied and solving for
αTK will yield:

αTK = − 1
2∂Π/∂VTK

[
S2 ∂2Π

∂S2 (σ2 − VTK) + ∂2Π
∂V 2

TK
V 2
TK

∑N
i=1(θTKi)

2 +

∂2Π
∂V 2

TK
V 2
TK

∑
i 6=j θTKiθTKjρiρj + 2SVTKσ

∂2Π
∂S∂VTK

∑N
i=1 θTKiρi

]
All of the above partial derivatives are the same as those for the Black-Scholes
model, see [3] for a comprehensive list. Substituting and the relation for αTK
in section 3.2 will be the result.

25



A.3

Figure 2: S&P 500 1 June 2007- 1 June 2009

Figure 3: S&P 500 1 February 2016- 2 November 2018
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A.4 Rules of Thumb - Regressions

A.4.1 The Sticky Strike Rule

Figure 4: Basic Sticky Strike Rule: 1 June 2007 - 1 December 2008
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Figure 5: Basic Sticky Strike Rule: 1 February 2016 - 2 February 2018
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A.4.2 The Sticky Delta Rule

Figure 6: General Sticky Delta Rule: 1 February 2007 - 1 December 2008
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Figure 7: General Sticky Delta Rule: 1 February 2016 - 2 February 2018
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Figure 8: Relative Sticky Delta Rule: 1 June 2007 - 1 December 2008
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Figure 9: Relative Sticky Delta Rule: 1 February 2016 - 2 February 2018
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A.4.3 The Square Root of Time Rule

Figure 10: Square Root of Time Rule: 1 June 2007 - 1 December 2008
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Figure 11: Square Root of Time Rule: 1 February 2016 - 2 February 2018
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Figure 12: General Square Root of Time Rule: 1 June 2007 - 1 December
2008
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Figure 13: General Square Root of Time Rule: 1 February 2016 - 2 February
2018
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