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Abstract

The transmission function for a three and four rectangular barrier system of InP and

InAs is computed using the transfer-matrix method and the transmission formalism. The

widths of the wells and the barriers are varied while the barrier height is kept constant.

Such a multi-barrier structure is designed in order to act as a filter in a nanowire based

solar cell, where effective hot carrier transport would lead to an increase in the efficiency

of the current generation. In this case, the filter is designed in order to maximise the

transmission in the range 0.492 eV < E < 0.504 eV and minimise the transmission above

0.550 eV and below 0.460 eV. The optimal transmission for the three barrier filter was

obtained for a structure with 6.8 nm wide potential wells, 1 nm wide outer barriers and 4

nm wide central barrier. On the other hand, the four barrier filter had the most satisfying

results for potential wells of the widths 6.3, 6.3 and 6.8 nm and barriers of the widths 1,

1, 4 and 1.4 nm.
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1 INTRODUCTION K. Nováková

1 Introduction

The conversion between light and electrical energy has been studied ever since the first

observation of the photovoltaic effect in 1839 by Edmond Becquerel, the father of the

1903 Nobel laureate in Physics Henri Becquerel. The photovolatic effect describes the

generation of electric current and voltage of an illuminated material. When light, in the

form of photons, is absorbed by the material, its electrons get excited to higher energy

states. One of the greatest applications of the photovoltaic effect are solar cells which

directly convert light into electrical energy via the mechanism of charge separation. One

can classify solar cells based on the way they separate charge. The most common solar

cells are the p-n junction cells which separate the charge using an electric field. Such cells

will now be discussed in greater detail.

When a solar cell is in the dark, its current-voltage (I-V) characteristic is identical to

the one of a diode; a large current is observed when the forward bias is applied while

in the case of the reverse bias, only very insignificant amount of current flows through.

Conversely, when a solar cell is illuminated, the I-V curve is shifted in the direction of

the negative current I by an amount IL as shown in Fig. 1. When the voltage across the

solar cell is zero, the current is at its maximum possible value, Isc. On the other hand a

maximum voltage, known as the open circuit voltage Voc, is measured when no current

flows through the cell. The aim is to achieve the highest possible power output P , where

P = IV . The I-V plot is a very useful tool for this task, as one can find the optimal

operation values of the current and voltage, Imp and Vmp, of the cell yielding the desired

maximal power output as illustrated in Fig. 1 by the dashed rectangle.

Figure 1: The I-V characteristic of a solar cell, figure taken from Ref. [3].
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Let us now consider the illumination and the processes that follow more thoroughly. A

solar cell absorbs light energy in the form of photons. The absorbed photons excite the

electrons from the valence band to the conduction band and thus create electron-hole

pairs. If an electron-hole pair is created in the depletion zone of the p-n junction, the

electric field pulls the electrons and holes towards contacts on opposite sides of the cell.

The electrons are accelerated towards the n-side and the holes to the p-side, as shown

in Fig. 2. Thereby a photocurrent, Iphoto, of the respective charge carriers is generated

through the device and hence a potential difference, V , between the metal contacts on

each side of the cell is created. The photocurrent is reduced by the diffusion current,

Idiffusion, of the majority carriers, which is increased as the bias across the junction is

increased. Therefore, as mentioned earlier, the selection of the operation variables of the

solar cell is crucial. The potential difference across the device is then used to drive a

current through an external load of a certain resistance.

Figure 2: A scheme of the p-n junction in a solar cell, where E is the electric field created
in the depletion zone and the incoming photon is indicated by the yellow arrow.

The currently most widely used single junction semiconductor solar cells, such as mono-

crystalline and thin film cells, shown in Fig. 3, have a limited efficiency with its highest

theoretical value of 30 % given by the Shockley-Queisser limit, Ref. [2]. One of the

factors that prevents researchers from reaching this value is the recombination of the

carriers resulting from a short lifetime of the minority carrier in the electron-hole pair.

This stems from the fact that the minority carrier has a very high chance to recombine

with the majority carrier on the side of the junction that it is being pulled towards.

Such a recombination can have various resulting effects. It can lead to the emission of

a photon (radiative) or the energy from the recombination can be absorbed by another

2



1 INTRODUCTION K. Nováková

electron (Auger process). Alternatively, it can undergo recombination processes including

surface and grain boundary recombination or it can interact with traps and recombination

centres. Such recombination processes can be reduced by improving the engineering of

the cell by optimising the contacts, introducing a potential barrier at the back of the cell

(which reflects electrons and reduces rear surface recombination) or by utilising a material

of higher quality. Other parameters that affect the efficiency include the reflectivity of

the front surface and the directivity of the band gap of the material used. Ref. [2]

Figure 3: The currently most widely used solar cells, the thin film cell (on the left) and a
silicon mono-crystalline cell (on the right), are depicted above, figure taken from Ref. [4].

Many researches focus on improving such single junction cells in order to reach as close

as possible to the 30 % efficiency limit outside of the laboratory (See Ref. [1]). Others

concentrate on finding new materials with better absorption quality or look for inspiration

in nature with the aim of reproducing the mechanism of photosynthesis used by plants

with almost 100 % efficient conversion rate of solar energy (See Ref. [1]). However, these

are not the only solutions to the efficiency question. The alternative path that can be

taken is to increase the limiting 30% efficiency value itself.

First, let us consider the features that restrict the efficiency of a single junction semicon-

ductor cell as quantified by the Shockley-Queisser limit. Single junction solar cells can

only be fully efficient for absorbing a small range of the solar spectrum when the photon

energy is equal to the size of the band gap of the material the cell is made out of. Since

the range of photons absorbed is limited by the band gap size, photons of energy lower

than the band gap are not absorbed at all, while photons with higher energy are not ab-
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sorbed efficiently. When a highly energetic photon is absorbed by the cell, it gives rise to

an electron with high amount of kinetic energy which cannot contribute to the electricity

generation. This is due the fact that the high energetic electron, referred to as a "hot elec-

tron", quickly thermalises by emitting phonons which in turn heat up the cell and hence

dissipate the energy. Another factor that limits the efficiency of the solar cell is that each

photon only generates one electron-hole pair that can contribute to the energy generation.

One possible solution that combines all three aspects is the nanowire-based solar cell de-

sign which shall be the starting point for this thesis. A nanowire-based solar cell is a type

of an intermediate band cell which consists of a multi-level system, in this case realised

by a multi-barrier system created by alternating layers of semiconducting materials with

very different band gap size, Indium Arsenide (InAs) and Indium Phosphide (InP) in the

case of this thesis, as depicted in Fig. 4. In this way the cell can absorb photons of a

Figure 4: The principle of hot carrier transport, where the desired transmission function
T (E) is displayed.

broad range of energies and simultaneously efficiently deal with the "hot" carriers. It does

so by harnessing some of the excess kinetic energy from photogenerated "hot" carriers,

which reside on the upper levels, before they "cool down". The carriers transfer some of

their kinetic energy to generate more electron-hole pairs as they de-excite by the process

of impact ionisation and thus increase the current produced. However, for the impact

ionisation between the electrons to occur, the electrons from the higher energetic levels

must be prevented from tunnelling through the barrier system. On the other hand, if the

electrons that populate the low energy levels (lower than the chemical potential µ2 of the

contact on the other side of the barrier system) tunnel through they can be re-emitted

by the contact, resulting in a current flow against the photocurrent. Thus only electrons
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of a specific range of energies shall be extracted for the current generation to be efficient.

Such electron extraction can be done utilising an energy filter realised by a multi-barrier

system. The aim of this thesis will be the design of such a filter, which shall be based

on barrier systems consisting of three and four barriers as larger systems would make the

practical engineering rather complicated.

In the first part of this thesis, the parameters of the device are introduced. Later, the

different aspects of electron transport in heterostructures, necessary for the computation

of the transmission and the later analysis of the results, are summarised. A brief discussion

of the transmission formalism is included in this part as well in order to give more context

and justification for the computation of the transmission function. In the second part,

the results for a three and a four barrier filter are discussed and lastly a short summary

concluding the results is given.

2 Filter Parameters

The multi-barrier system is formed by repeated layers of InAs and InP which have quite

different band gaps (See Ref. [5] for exact values) meeting the first criteria for making

a heterostructure. The second condition for materials to form a heterostructure is the

almost identical value of the lattice constant. In the case of a bulk crystal structure,

a lattice constant mismatch leads to a deformation of the crystals. In order for such

a structure to exist, substantial amounts of pressure would be required. It is therefore

impossible to grow materials with a lattice constant mismatch under standard conditions

in this way. However, this is not the case on the nanoscale. Nanowires enable materials

with different lattice constants to be grown on top of each other since the mismatch of

lattice constants is compensated by the possible deformation of the structure, i.e. some

parts of the nanowire being wider.

InP having a larger band gap forms the potential barriers in the conduction and valence

band regions. However, in this thesis only the barrier system in the conduction band

is considered as the valance band is more complicated due to the degeneracy of states.

The difference between the band gaps of InAs and InP according to Ref. [6] yields a
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conduction band offset larger than 0.6 eV which is around 60% of the band gap difference.

The value used in the nanowire model is 0.7 eV and thus the height of the barriers of the

filter is considered to be 0.7 eV in this thesis as well. The effective electron masses of

InAs and InP used are

m(InAs) = 0.026 ·me and m(InP) = 0.0795 ·me

according to Ref. [5]. The desired filter should block electrons of energies above 0.550 eV

and below 0.460 eV while maximising the transmission of electrons in the range 0.492 -

0.504 eV which corresponds to the central energy states of the nanowire heterostructure.

6
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3 Transmission in Heterostructures

In this section, firstly the wavefunction that will describe the electron states in a nanowire

will be assigned, later the theory behind resonant tunnelling shall be explained and a brief

discussion describing the electron transport by means of the transmission formalism will

be included. Moreover, the transfer matrix method for the calculation of the transmission

function will be detailed. Lastly, the coefficients Ω and Γ, which later allow the analysis

of the results, will be introduced.

3.1 The Electron Wavefunction

In planar barrier structures, such as nanowires, the potential varies only in one dimension

- the direction of the vertical growth, in this case chosen to be the z-direction. This means

that the electrons are well confined in the x and y-directions and can move freely along

the axis of the wire, the z-axis. The states of the electrons in a quantum wire can be

described with an envelope function by assuming the effective mass approximation (Ref.

[7]),

Ψ(~r) = ψk(z)φn,m(x, y) , (1)

where n and m are the main quantum numbers confining the electron in the x and y di-

rections respectively, and k is the longitudinal momentum of the electron. The transverse

part of the wavefunction, φn,m, satisfies the time-independent Schrödinger equation (SE),

[ ~2

2m∗
∇2 + Veff(x, y)

]
φn,m(x, y) = En,mφn,m(x, y) , (2)

where m∗ is the isotropic effective mass, En,m is the eigenenergy and Veff is the effective

potential which includes contributions from the electrostatic potential, the potential of

band discontinuities, the average potential of ionised donors and acceptors and a many-

body potential contribution due to free charge carriers. The potential is constant in x

and y directions and is considered infinite outside the nanowire. In other words, the

workfuncion is large compared to the relative electron energies considered here. The

potential thus confines the electrons in x and y directions and the solution to Eq. 2

consists of standing waves and its eigenenergies form subbands or channels. Now, if we

7
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consider the wire to have a rectangular cross-section and assume an infinite potential

outside the wire as stated earlier, the following solution is obtained, see Ref. [7],

φn,m(x, y) =
( 4

LxLy

)1/2

sin(
nπx

Lx
)sin(

mπy

Ly
) , (3)

where Lx and Ly are the dimensions of the wire in x and y directions respectively and n

and m take integer values, i.e. n,m = 1, 2, 3, ... . On the other hand, the z-component of

the wavefunction, ψk(z), satisfies the following time-independent Schrödinger equation,

[~2

2

∂

∂z

1

m∗
∂

∂z
+ V

]
ψk(z) = Ekψk(z) , (4)

where V is now assumed to be constant potential forming a barrier and Ek is the electron

eigenenergy. This is an ordinary differential equation and yields the following general

solution,

ψk(z) =
1√
Lz

(
Aeikz +Be−ikz

)
, (5)

where A and B are the wave amplitudes and Lz is the wire dimension in the z-direction.

The total eigenenergy is then found to be,

Ek,n,m = Ekz + En,m =
~2k2

2m∗
+
n2~2π2

2m∗L2
x

+
m2~2π2

2m∗L2
y

, (6)

where a pair of the quantum numbers n, m describes a continuum of 1D states which can

be referred to as a subband, a mode or a channel, see Ref. [7].

3.2 Resonant Tunnelling

Unlike in classical mechanics, quantum particles such as electrons can tunnel through a

potential barrier and thus enter a classically forbidden region where the energy of the

particle is lower than the potential energy of the barrier itself. Such a phenomenon only

occurs if certain boundary conditions at the interface of different media are fulfilled; the

wavefunction and its normal derivative divided by the effective mass must be continuous

across the boundary separating the two media with different potential energies. The

requirement of continuity stems from the fact that a spatially discontinuous solution to

the SE would lead to an infinite probability of finding a quantum particle at a particular

point, which is physically not possible. As a consequence, the electrons have a certain
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probability of transmitting through a potential barrier or being reflected at a boundary.

Such scattering at a boundary is described by transmission and reflection coefficients,

T (E) and R(E), which depend on the electron energy.

Figure 5: The bound states of a finite potential well with the transmission function T (E)
indicated on the right.

When the transmission coefficient, defined as the probability for electrons to tunnel

through a barrier structure, is sharply peaked at certain energies we are referring to

the resonant tunnelling. The resonant energy at which the tunnelling occurs is associated

with a bound state with a finite lifetime in the quantum well surrounded by two barriers,

as shown in Fig. 5. Then the width of the resonant energy (the energy range in which the

transmission coefficient is sizeable) is inversely proportional to the lifetime of the bound

state. Depending on the width and the height of the barrier, several such quasi-bound

states exist inside the well.

3.3 Transmission Formalism

As electrons tunnel through the barrier structure, a resulting transmission current arises.

To compute the current I in a low dimensional device, several assumptions have to be

made. In the macroscopic case, the resistance is dependent on the length of the conductor,

L, as R = L
Wσ

, where σ is the conductivity and W is the area of the conductor. However,

as the dimensions of the conductor become smaller, the Ohmic relation breaks down and

a certain limiting value of the conductance, defined as G = 1
R
, is approached. The rela-

tion between the voltage applied, the current and the conductance on a nanoscale is the

key to the current calculations and to the understanding of the different possibilities of

improving the efficiency of a nanowire-based solar cell. Ref. [8]

9
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In our model, depicted in Fig. 6, we will assume contact reservoirs on both the left

and the right side of the barrier structure connected to the barrier via conducting leads.

Since we have a non-equilibrium system, the reservoirs are described by an unknown

distribution function fk, yet to be specified for each reservoir. Furthermore, it is assumed

that the contacts (the reservoirs) are perfectly absorbing, meaning that when an electron

is transmitted through the barrier structure and reaches the contact reservoir on the other

side, it looses all its excess energy and its phase coherence (the memory of its previous

state) in the contact.

Figure 6: Visualisation of the transmission formalism model.

As mentioned, the Hamiltonian that acts on the electron wavefunction can be separated

into longitudinal (z-direction) and transverse (x− y plane) components which facilitates

the calculations of the current. As we are only interested in the flow from left to right

(z-direction), we can consider only the z-dependent part of the wavefunction. Since

probability is a conserved quantity in quantum mechanics, it follows that it obeys the

continuity equation which relates the probability flux out of a region and the probability

in that region, Ref. [9]. The probability flux in the z-direction, sz, is defined as

sz =
i~
2m

(
ψ
∂ψ∗

∂z
− ψ∗ ψ

∂z

)
=

~k
mL

. (7)

If we now consider the current at a point zi on the left side of the barrier, the current can

be obtained by integrating the current probability flux over all possible k values. When

we are summing up over all possible k values, we must also include the occupation of

states which weights the likelihood of a certain k state to be occupied. The expression

then becomes,

I =
L

2π

∫ ∞
−∞

2
e~k
mL

fkdk , (8)

where the 2 in the integral comes from the spin degeneracy and 1
2π

factor appears as the

10
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sum of the momenta is converted into an integral.

Realising the expression for velocity, v = ~k
m

= 1
~
∂E
∂k

, in Eq. (8) and dropping the partial

derivatives (since we are integrating over one dimension of k only), we can convert the

integral and integrate over energy instead. The current measured at a point zi stems from

carriers injected by the left reservoir which are incident on the barrier as well as those that

are reflected, having a weighted occupation of states by the reflection coefficient, R(E).

The carriers that are injected into the system by the right reservoir can contribute to the

current at zi if they are transmitted through the barrier. Thus the occupation of states

of these carriers must be weighted by the transmission coefficient T (E). The expression

for current then becomes,

I =
2e

h

(∫ ∞
0

fL(E)T (E)dE −
∫ ∞

0

fR(E)T (E)dE
)

, (9)

where fL(E) and fR(E) are the distribution functions of the carriers originating in left and

right reservoir respectively and the conservation of current, T (E)+R(E) = 1, was applied.

In thermal equilibrium, the reservoirs can be described by Fermi distribution functions

and by quasi-Fermi potentials µL and µR of the left and right reservoir respectively. We

refer to quasi-Fermi rather than a Fermi level as the electron distribution is displaced from

equilibrium and hence the conduction and valence bands have to be each described by its

quasi-Fermi potential and no longer by a single Fermi potential. This assumption stems

from the fact that the recombination time of the electrons across the band gap is much

longer than the relaxation time within respective band. In the low temperature limit,

the difference between the distribution functions has the form of a step function and is

nonzero only in the interval µR < E < µL. This simplifies the expression for current and

yields

I =
−2e

h

∫ µR

µL

T (E)dE. (10)

If we assume that the applied voltage is small, the energy range of the electrons is narrow

and thus the energy dependence of the transmission coefficient T (E) can be neglected.

11
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We then arrive at the expression for current

I =
2e

h
T (µL − µR). (11)

The voltage measured across the structure is then eV = µL − µR and the alternative to

Ohm’s law for low dimensional conductors is

I

V
= G =

2e2

h
T , (12)

where 2e2

h
is the fundamental conductance.

If we are interested in the current dependence on electron energy, the key quantity which

needs to be computed is the transmission coefficient T (E) for a range of energies which

can then be referred to as a transmission function, which describes the transmission for

a specific barrier structure. Such a transmission function can be computed using the

transfer matrix method which is explained in the following section.

3.4 The Transfer Matrix Method

When an electron, described by the wavefunction from Sec. 3.1, approaches a potential

barrier, it scatters. As depicted in Fig. 7, an electron travelling from left to right through

the barrier system has a certain probability of being reflected or transmitted at the first

barrier. In the same manner, the wavefunction transmitted through the first barrier scat-

ters off the following barrier and is again partially reflected and partially transmitted.

Unlike from the first scattering, the reflected wavefunction can now interfere with the

Figure 7: The possible paths of the electron wavefunction.

wavefunction transmitted from the first barrier. Our goal is to relate the amplitudes of

the respective wavefunctions at each of the boundary points, z0, z1, z2 and z3, in order to

compute the transmission probability, i.e. the transmission coefficient T (E). This can be

12
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done by applying the transfer matrix theory which uses a so-called scattering matrix or

S-matrix to relate the wave amplitudes of the incoming and outgoing waves at a potential

boundary. The following description closely follows Ref. [10] and Ref. [11] where the

transfer matrix method was applied for similar computations.

Let us consider the z-component of the electron wavefunction on both sides of the bound-

ary at z0,

ψL(z) = AeikLz +Be−ikLz z ≤ z0 (13)

ψR(z) = CeikRz +De−ikRz z ≥ z0 , (14)

where ψL and ψR describe the electron wavefunctions on the left and right side of the

boundary z0, respectively. The variables kL and kR are the electron momenta defined as

kL =

√
2mL(E − VL)

~
and kR =

√
2mR(E − VR)

~
, (15)

where VL and VR are the potentials on the left and right side of the boundary and thus

the momenta can take both real and imaginary values. The wavefunctions must obey the

following boundary conditions,

ψL(z0) = ψR(z0) and
1

mL

dψL
dz

∣∣∣
z0

=
1

mR

dψR
dz

∣∣∣
z0
, (16)

where mL and mR are the electron effective masses on the left and right side of the

boundary. Eq. (13) and Eq. (14) provide;

AeikLz0 +Be−ikLz0 = CeikRz0 +De−ikRz0 (17)

kL
mL

(AeikLz0 −Be−ikLz0) =
kR
mR

(CeikRz0 −De−ikRz0). (18)

For the case that z0 = 0, the exponential functions simplify to 1 and the amplitudes C

and D of the outgoing wave can be expressed in terms of amplitudes A and B of the

incident wave by adding and subtracting Eq. (17) and Eq. (18). The resulting system of

13
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equations can be written in a matrix form as follows,C
D

 =
1

2mLkR

mRkL +mLkR mLkR − kLmR

mLkR − kLmR mLkR + kLmR

A
B

 = Md

A
B

 , (19)

whereMd is sometimes referred to as the discontinuity matrix since it relates the effective

masses and the momenta of the electron in the different media surrounding the boundary.

In general, one must also consider the case of a nonzero z and include the propagation

parts of the wavefunctions when relating the amplitudes. If we write the wavefunctions

in a dot product form, we can obtain a matrices which describe the translation of the

electron wavefunction on on each side of the boundary,

ψL(z) =
[
eikLz e−ikLz

]A
B

 ≡ [eikLz e−ikLz
]

ΦL. (20)

If the wavefunction ψL is translated by a distance P, we have

ψ
′

L(z′) = ψL(z
′
+ P ) =

[
eikLz e−ikLz

] AeikLP
Be−ikLP

 ≡ [eikLz e−ikLz
]

Φ
′

L. (21)

Now ΦL and Φ
′
L are related by a propagation matrix ML in the following way

Φ
′

L = MLΦL , (22)

where

ML =

eikLP 0

0 e−ikLP

 . (23)

In the same way the propagation matrix for the wavefunction on the right side of the

barrier, defined as MR, can be obtained

MR =

eikRP 0

0 e−ikRP

 . (24)

Combining the discontinuity and propagation matrices of general form (replacing distance

P by a variable z), a general expression for the wavefunction amplitudes C and D in terms

14
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of amplitudes A and B can be obtained,C
D

 =
1

2mLkR

e−ikRz 0

0 eikRz

mRkL +mLkR mLkR − kLmR

mLkR − kLmR mLkR + kLmR

eikLz 0

0 e−ikLz

A
B

 ,
(25)

we define

MS(z) ≡ 1

2mLkR

e−ikRz 0

0 eikRz

mRkL +mLkR mLkR − kLmR

mLkR − kLmR mLkR + kLmR

eikLz 0

0 e−ikLz


(26)

as the general form of the S-matrix for a boundary at certain position z. Due to the

S-matrix being multiplicative, the total transmission through a system of barriers can be

described by the product of the S-matrices at each potential boundary, which is defined

to be the transfer matrix, also referred to as the T-matrix. The T-matrix for our two

barrier system is then the product of the S-matrices of each of the four boundaries,C
D

 = MS(z3)MS(z2)MS(z1)MS(z0)

A
B

 = MT

A
B

 . (27)

As mentioned earlier, we only consider the electron coming from the left towards the bar-

rier system, hence the D amplitude of the wavefunction on the right side of the boundary

is set to zero. Similarly, the amplitude A of the wavefunction on the left hand side of the

barrier is set to 1 as it describes the incoming wavefunction and the amplitude B is then

the amplitude of the reflected wavefunctions and can be renamed to r. The transmitted

wave is described by the amplitude C which is denoted by t. Then Eq. (24) can be

rewritten as t
0

 = MT

1

r

 . (28)

Solving the matrix equation, we find that the transmission amplitude t has the following

form,

t =
MT11MT22 −MT21MT12

MT22

. (29)

The desired transmission coefficient, T (E), of an electron of a specific energy is defined

15
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as the transmission current over the incident current,

T (E) =
| t |2 k2

m2

12 k1
m1

, (30)

where k1 and k2 are the momenta in the left and right leads and m1 and m2 are the

effective masses in the left and right leads respectively. In the case of this thesis, the leads

are always made out of the same material and thus the expression for the transmission

coefficient simplifies to

T (E) =| t |2 . (31)

3.5 Simplified Γ and Ω Factors

In order to be able to later explain the behaviour of the transmission function when

varying the barrier widths, we need to introduce two new parameters. The transmission

through a barrier structure depends on the rates at which electrons enter and leave the

structure. These rates are not necessarily the same as they depend on the dimensions of

the barriers and wells in the structure. The rate at which electrons flow in/out is defined

to be the constant Γ, Γ = ~
t
, where t is the average time an electron spends inside the

structure. One can visualise the constant as the full width at half maximum (FWHM) of

the transmission peaks, in other words the energy resolution of the transmission peaks,

which can be mathematically shown by doing a Fourier transform of the time-dependent

probability function.

The second factor affecting the transmission, that is considered in this thesis, is the over-

lap of the wavefunctions which describe the respective bound states in the wells of the

multibarrier structure. The size of the overlap is characterised by the tunnelling coupling

constant between the wells, defined as Ω. The coupling constant Ω can be perceived as

the size of the peak splitting for each of the transmission peaks. For the case of a three

barrier structure, the size of the splitting is equivalent to 2Ω as shown in Appendix A1.

The size of the peak splitting has a different value depending on the number of barri-

ers/wells involved in the structure. In the case of four barriers, an additional energy state

arises resulting in more possible interactions between the wells. Yet the exact size of the

splitting in terms of Ω can be obtained by following the same method as in the case of a

16
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three barrier structure in Appendix A1.

The relative size of Ω and Γ then determines the splitting of the transmission peaks.

Let us consider a three barrier structure. In the case of the coupling of the wells being

smaller than the rate at which the electrons enter/leave the system, the peak splitting

vanishes and the transmission probability decreases. This is because the probability for

the electrons to appear in the second well is much lower than the probability to find them

in the first well (see Appendix A2 for more detail). The small fraction of electrons that

transmits through the central barrier has no time to oscillate between the outer barriers

as the period of the oscillation is longer than the average time the electrons spend in the

structure.

In the case of the coupling of the wells being larger than the escape rate of the electrons,

it is equally probable for the electrons to be in either of the wells. Thus, the electrons

oscillate in between the outer barriers, resonance occurs and clear splitting of the trans-

mission peaks can be observed.

17
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4 Discussion and Results

Before introducing and commenting on the results, the notation will be clarified. The

multi-barrier structures studied are illustrated in Fig. 8 with the respective barrier and

well widths indicated. To simplify the referring to the structures, each barrier structure

will be specified by a list of the barrier and well widths in the unit of nanometres. For ex-

ample, for the case of the barrier system in Fig. 8a the list would be [B1,W1,B2,W2,B3].

When a specified parameter of the barrier structure is varied, it is indicated with an x.

(a) Three barrier filter (b) Four barrier filter

Figure 8: Filters with indicated barrier widths Bi and well widthsWi where i takes integer
values.

As mentioned, the overall aim is to identify a multi-barrier system (with three or four

barriers) which maximizes the transmission of electrons with energy range 0.492-0.504 eV

and blocks electrons below 0.460 eV and above 0.550 eV.

4.1 Three Barrier Filter

From the energy solution of the time-independent SE, Eq. (6), it is clear that the energies,

at which bound states of a potential well appear, decrease with increasing well width as

the eigenenergy is inversely proportional to the well width. Such an energy shift of the

bound states was also observed during the simulations as depicted in Fig. 9. Hence

by changing the well width, the energy spectrum at which the resonance transmission

occurs could be chosen. To validate the position of the bound states in the wells and

so the position of the transmission resonance peaks, the time-independent SE for a finite

quantum well, with a 0.7 eV potential height and a 6.5 nm width, was numerically solved.

The bound states found were at 0.115 eV and 0.506 eV, which corresponded to the values

obtained for the states in the filter structure considering the offset due to the interaction

between the wells. The optimal well width, maximising the transmission in the desired

range, was found to be 6.8 nm with bound states approximately at 0.107 eV and 0.502 eV.

After identifying the suitable well width for the filter, the widths of the barriers were

varied. When increasing the width of the central barrier, the transmission function peaks

18
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Figure 9: Transmission function for [1, x, 1, x, 1] structure with varying well widths from
6 to 8 nm.

narrow, the peak splitting vanishes and the transmission probability decreases as shown in

Fig. 10a. The lower transmission and the smaller range of resonance energies with greater

barrier width is expected from the Ω and Γ coefficients approach explained in Sec. 3.5.

(a) (b)

Figure 10: Transmission function of [1, 7, 1, 7, 1] structure under variation of the barrier
widths, where in (a) the width of the central barrier was varied from 1 to 4 nm and in
(b) the width of the outer barriers was varied from 1 to 3 nm
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It was observed that the transmission at the second bound state was more favoured when

the outer barriers were identical, therefore their width parameters were changed simul-

taneously. When the width of the outer barriers was increased, the transmission peaks

narrowed down more radically than in the case of the inner barrier. This was again fore-

seen following the explanation of the Ω and Γ coefficients. The values of the coupling

coefficients, Ω1 and Ω2, for the first and second bound states, were obtained for different

barrier structures to confirm the theoretical prediction from Sec. 3.5. This was done

by measuring the distance between the split peaks and dividing by 2. When the central

barrier was increased, the coupling constants Ω1 and Ω2 both decreased (See Tab. 1) as

anticipated by the theory in Sec. 3.5. Looking at the values of the coupling constants Ω1

and Ω2 in Table. 2, one can conclude that by widening the outer barriers, the resonance

energies can be tuned to cover a smaller range or even to reach an exact value of the

energy of the bound state.

B1 B2 B3 Ω1 Ω2

1 1 1 0.042 0.132
1 1.2 1 0.033 0.107
1 1.4 1 0.025 0.086
1 1.6 1 0.018 0.068
1 1.8 1 0.012 0.052
1 2 1 0.004 0.035

Table 1: The variation of the coupling between the two wells as the width of the central
barrier is increased, where Ω1 and Ω2 are the coupling constants of the first and second
bound states respectively.

B1 B2 B3 Ω1 Ω2

1.2 1 1.2 0.0432 0.133
1.4 1 1.4 0.0435 0.133
1.6 1 1.6 0.0437 0.133
1.8 1 1.8 0.0437 0.131
2 1 2 0.0437 0.131
3 1 3 0.0437 0.127

Table 2: The variation of the coupling between the two wells as the width of the outer
barriers is increased, where Ω1 and Ω2 are the coupling constants of the first and second
bound states respectively.
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The width of each barrier was varied from 1 nm to 7 nm keeping the other variables

constant. Then different combinations of barriers, for example B1 and B2, B1 and B3,

were varied with barrier widths between 1 to 3 nanometres. After attempting various

combinations of barrier widths and identifying the relative transmissions at the first and

second state, the most optimal transmission was recorded with a 4 nm wide central barrier

and 1 nm wide outer barriers. The transmission function can be seen in Fig. 11.

Figure 11: Transmission function for the optimal three barrier system [1, 6.8, 4, 6.8, 1].

(a) (b)

Figure 12: Validating the reliability of the results by varying the barrier height of a
[1, 6.8,4, 6.8,1] structure to 0.7, 0.67 and 0.64 eV in (a), where in (b) the first resonant
peak is enlarged.
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As mentioned, the offset of the conduction bands is very difficult to measure and no exact

value is known. Therefore we had to consider a slight uncertainty in the height of the

potential barriers when designing the filter. As shown in Fig. 12, decreasing the potential

lowers the bound state energies slightly and increases the transmission probability as could

be predicted. Since the shift in energy for a 0.03 eV shift in potential is around 0.005 eV,

the variation of the potential should not dramatically affect the effectiveness of the filter.

4.2 Four Barrier Filter

An additional barrier in the filter results in a transmission function with an additional

splitting of the resonant peaks as predicted by Ref. [12], where a system of n barriers

produces a (n− 1)-fold splitting of the resonant peaks. Increasing the well widths again

shifts down the energies of the bound states as shown in Fig. 13. Unlike in the previ-

ous case, higher transmission in the desired energy region, 0.492 eV< E < 0.504 eV, is

achieved when a combination of wells with distinct widths is used. When testing different

combinations of well widths in the range 6-7 nm (taking steps of 0.1 nm), a particularly

satisfying result was obtained for W1 = W2 = 6.3 nm and W3 = 6.8 nm.

(a) (b)

Figure 13: Transmission function for 6, 7 and 8 nm wide wells for a [1, x,1, x,1, x,1]
structure in (a), with the peak at 0.1 eV enlarged in (b).

On the other hand, the behaviour of the transmission function under the variation of the

barrier widths is identical to the three barrier case. When varying the widths of the two

inner barriers the peaks narrowed down and the peak splitting decreased, while increasing

the width of the outer barriers narrowed the peaks more significantly and shifted them
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slightly to the lower energies. Such a behaviour of the transmission function, shown in

Fig. 14, could be again explained in terms of the Ω and Γ coefficients. Further use of

(a) (b)

Figure 14: Transmission function of [1, 7, 1, 7, 1, 7,1] structure under variation of the
barriers, where in (a) inner barriers, B2 and B3, are varied from 1 to 2.5 nm and in (b)
the outer barriers, B1 and B4, are varied from 1 to 2.5 nm.

asymmetry in the filter design proves to increase the transmission probabilities. When

increasing the width of the third barrier, B3, the transmission is decreased and the peak

splitting is suppressed, following the same trend as in the three barrier case, as shown

in Fig. 15. Altering the values of B2 and B3 between 1-4 nm, both simultaneously and

individually, the transmission was the most desirable for B2 = 1 nm and B3 = 4 nm.

Figure 15: Variation of transmission function for a [1, 6.3,1, 6.3,x, 6.8,1] structure with
the width of the third barrier modified from 1 to 4 nm
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The widths B1 and B4 were varied in the 1-2 nm range. Like in the case of the inner

barriers, they were varied simultaneously as well as separately. As demonstrated in Fig.

16, it was noticed that increasing the barrier width B4 increases the transmission proba-

bility at both resonant energies. It is then the question which factor is more significant

(a)

(b) (c) (d)

Figure 16: Variation of the transmission function of the [1, 6.3,1, 6.3,4, 6.8,x] structure
in (a), where the respective peaks are enlarged in (b), (c) and (d).

for a high photocurrent: is it to have the highest possible transmission at the second

bound state or to have the lowest possible transmission probability for the first state?

The answer is that one must balance both of these factors. However, it is preferred to

keep the first bound state resonance peak at very low energies even if it comes with the

cost of lowering the transmission at the second bound state. This is because the number

of electrons occupying the lower energy state is much higher and thus even with a low

transmission probability, the resulting current of these electrons can be quite significant.

Weighting these factors, an optimal value for B4 was found to be 1.4 nm. Varying the

barrier widths in any other combinations, i.e. B1 and B2 or B3 and B4, did not prove to

give satisfactory results. Moreover, as for the three barrier filter, the change in the height

of the potential barriers did not affect the results significantly. In the case of both the

24



5 OUTLOOK K. Nováková

(a) (b)

Figure 17: Trasmission function of the [1, 6.3,1, 6.3,4, 6.8,1.4] structure where the wells
and B4 include an additional digit, where in b the second peak is enlarged.

three and four barrier filter, the heterostructures can be manufactured with the accuracy

of fractions of atoms (on the order of 10−11) by using partially filled layers of InP and

InAs. For the filter to preserve its function, the manufacture of the barrier structures can

be done with a deviation up to 0.8 Ångström as shown in Fig.17.

5 Outlook

In this thesis, the transmission function for three and four barrier systems was investi-

gated. By varying the well widths of the structure, the bound states were set in order to

generate transmission resonant peaks in the desired energy range (0.492-0.504 eV). The

variation of the barrier widths changed the peak splitting as well as the peak widths,

where the resulting transmission functions could be explained in terms of the Ω and Γ

factors. In the three barrier case, a symmetry of the outer barriers and a wider central

barrier yielded higher transmissions in the desired range. On the other hand, the four

barrier filter gave better results, when asymmetry in both inner and outer barriers was

allowed.

Future work could include constructing a distribution function that would describe the

occupation of states in the system. This would then allow for the current in the system

to be computed facilitating the comparison of the different filter structures.
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A Appendix

A.1 Ω Factor Derivation

Consider a three barrier system where each of the wells has one state, Φ1 and Φ2 respec-

tively. The wavefunction that describes a superposition of these states is ;

Ψ(z, t) = Φ1(z)C1(t) + Φ2(z)C2(t) , (32)

where C1(t) and C2(t) are the time-dependent parts of the wavefunction in each of the

wells. The electron wavefunction, Ψ(z, t) satisfies the time-dependent SE,

i~
∂

∂t
Ψ(z, t) = ĤΨ(z, t) (33)

i~
(
Ċ1Φ1 + Ċ2Ψ2

)
= C1ĤΦ1 + C2ĤΦ2 , (34)

where the z and t have been dropped in the notation. Multiplying Eq. (34) by Φ∗1
∫
dz

and assuming that Φ1 and Φ2 are orthogonal, we get

i~Ċ1 = C1

∫
dzΦ∗1ĤΦ1 + C2

∫
dzΦ∗1ĤΦ2 , (35)

where the first integral is the eigenenergy of the first well, E1, and the second integral

describing the interaction of the two states is defined as Ω. In the same way, when

multiplying Eq. (34) by Φ∗2
∫
dz, we get

i~Ċ2 = C1

∫
dzΦ∗2ĤΦ1 + C2

∫
dzΦ∗2ĤΦ2 , (36)

where the first integral is Ω∗ and the second one is the eigenenergy of the second well, E2.

Assuming the two wells are identical (E1 = E2) and Ω is real, Eq. (35) and Eq. (36)

combine to give a matrix differential equation,Ċ1

Ċ2

 =
1

i~

E1 Ω

Ω E1

C1

C2

 , (37)

which can be solved following the general method of finding the eigenvalues and the
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eigenvectors and applying the initial conditions

C1(0) = 1 and C2(0) = 0. (38)

The eigenvalues are obtained by solving the equation,

det

E1−λ
i~

Ω
i~

Ω
i~

E1−λ
i~

 = 0 , (39)

which yields the following expression for the eigenvalues,

λ =
1

i~
(
E1 ± Ω). (40)

Here we see that the range of the energies at which transmission occurs is between E1 +Ω

and E1 − Ω. The distance between the split transmission peaks is hence precisely 2Ω.

Coming back to the dependence of the splitting on the barrier thickness, the resonance

energy range clearly depends on the value of Ω. For a wide central barrier, the states

Φ1 and Φ2 of the two wells can communicate less and thus Ω has a lower value, so low

that it is lower than the the constant Γ. Then the distance between the split peaks, 2Ω

is very small and hence a single peak without splitting is observed when the transmission

function is plotted.

To find the eigenvectors of the form

α
β

, we now have to solve the following matrix

equation for each of the eigenvalues,

1

i~

E1 Ω

Ω E1

α
β

 =
E1 ± Ω

i~

α
β

 . (41)

The eigenvectors obtained are

1

1

 and

 1

−1

 for the E1+Ω
i~ and E1−Ω

i~ eigenvalues respec-

tively. The general solution can be written as,1 1

1 −1

Ae(E1+Ω)t/i~

Be(E1−Ω)t/i~

 =

C1

C2

 , (42)
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which leads to the expressions for time-dependent parts, C1 and C2, of the wavefunction;

C1 = eE1t/i~
(
AeΩt/i~ +Be−Ωt/i~

)
(43)

C2 = eE1t/i~
(
AeΩt/i~ −Be−Ωt/i~

)
. (44)

Applying the initial conditions (See Eq. 38), the coefficients are found to be A = 1
2
and

B = 1
2
. Now it is evident that the two sought functions can be written in terms of sine

and cosine,

C1 = eE1t/i~ · e
Ωt/i~ + e−Ωt/i~

2
= eE1t/i~ · cos

(Ωt

~

)
(45)

C2 = eE1t/i~ · e
Ωt/i~ − e−Ωt/i~

2
= eE1t/i~ · isin

(Ωt

~

)
. (46)

These functions then describe the oscillations of the electrons between the bath and the

barrier structure, which can be seen more clearly in Fig. 18 in the following section.
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A.2 The Relation between Ω and Γ

To relate the Ω coefficient to the rate at which electrons enter/leave the barrier structure

Γ, we plot the probabilities, | C1 |2 or | C2 |2, of the electron to be found in the C1 and C2

state. As shown in Fig. 18, the probability of an electron to transmit through the barrier

Figure 18: The probability of the electron to be in the C1 and C2 state as a function of
t/~.

and to appear in the second well goes like sin2
(

Ω
Γ

)
, where the definition of Γ, Γ = ~

t
, was

applied.

When Ω > Γ, which is true at given times, the probability follows the general trend, i.e.

the electrons are equally likely to be found in the first and second well, and the electrons

oscillate in the structure. However in the case of Ω < Γ, the argument of the function

becomes small and hence sin2(Ω
Γ

) ∼ Ω2

Γ2 . The probability now follows a quadratic relation

and the likelihood of the electron to appear in the second well is significantly suppressed

thus no oscillation occurs.
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A.3 Python script
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