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Abstract

Convolutional neural networks have in recent years been successfully
employed for various image processing tasks, such as filtering noise. There
are however relatively few published attempts for processing video in this
way. Image processing methods on single images can be applied frame by
frame, but often fail to consider continuity and flow between frames. In
this master’s thesis we constructed several fully convolutional neural network
models, trained to filter noise spatially as well as temporally. We present
the differences between these models and compare the performance of each
of them with a noise filter from a state-of-the-art camera, as well as with a
solely spatial filter. Our data was created by adding noise to clean videos
according to a noise model which realistically simulates noise from camera
sensors under low-light conditions. On a frame by frame basis, our best model
outperforms the state-of-the-art camera in most situations. Despite still having
minor struggles with continuity in video, clear improvement can also be seen
in comparison with only spatial noise filtering.

Keywords: Deep Learning, CNN, Image Processing, Video Denoising, Noise
Filtering
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Chapter 1
Introduction

(a)
Our result

PSNR: 29.92

(b)
State-of-the-art camera∗

PSNR: 26.38

(c)
Input

(d)
Ground truth

Figure 1.1: Our denoising result compared to a state-of-the-art
camera∗.

In recent times, convolutional neural networks (CNNs) have been demonstrated to outper-
form most other methods for processing images in tasks such as deblurring, demosaicing,
and denoising. A good example are the results produced by Chen et al. [1]. They suc-
cessfully denoised low-light images using a fully convolutional neural network (FCNN),
with better performance than current standard algorithms. Nevertheless, Plotz andRoth [2]
showed that many recent papers on image processing with neural networks simply use syn-
thetic (artificial) noise added to clean images. The results from these papers may therefore
be inaccurate in practical settings, as commonly used noise models such as the Gaussian
distribution may be different from noise generated by real cameras.∗

∗Our method for producing the results for the state-of-the-art camera is explained in Section 3.2.1.
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1. Introduction

Our primary goal was to investigate the potential of using CNNs for spatio-temporal noise
filtering of videos, and how it would fare in comparison to other methods. There are
multiple proposed network architectures for single image denoising [1] [3] [4], but not
nearly as many for video. A reason why could be the difficulty of finding a metric for
video comparison. Prevalent metrics in image processing may be appropriate for frame
by frame comparisons, but lack some relevance when comparing entire videos due to not
measuring flow and temporal coherence. We propose a hypothesis that a CNN can learn
how to incorporate the temporal similarities between nearby frames in a video, in order to
achieve better denoising results than what currently exists.

We have experimented with multiple configurations in several architectures of CNNs.
We studied these configurations and evaluated them based on performance. A noise filter
in a state-of-the-art camera was used as comparison. This noise filter is part of a modern,
high performing image pipeline, contained in the camera. An image showing the difference
in denoising results between this camera and one of our models can be seen in Figure 1.1.
Our training and test data were put together by adding realistic synthetic noise to videos
according to our noise model, to simulate images captured by a real camera sensor in low
light.

1.1 Purpose and Problem Statement
The purpose of this master’s thesis was to investigate whether CNNs can be trained to
utilize temporal similarities in order to filter noise in videos, and if there is benefit in
doing so rather than only filtering spatially. A primary objective was to ensure that our
results are comparable to a state-of-the-art noise filter. Our aim was to design and train the
noise filter to perform well under low-light conditions. We present the following problem
formulations for this thesis:

• Is it possible to perform spatio-temporal noise filtering on video using a CNN, in
such a way that it outperforms a high performing, solely spatial, noise filter applied
frame by frame under low-light conditions?

• Is it possible to perform spatio-temporal noise filtering on video using a CNN, such
that it outperforms a state-of-the-art denoising algorithm in a modern image pipeline
under low-light conditions?

We were interested in concluding the best model given a number of configurations used for
training and testing. The performance of a noise filter was measured frame by frame using
peak signal-to-noise ratio (PSNR). In addition, we analyzed temporal coherence through
manual inspection of videos.

10



1.2 Limitations

1.2 Limitations
Training the networks on images with synthetic noise and then testing them on real noise,
would be an excellent way of verifying that the noise model accurately mimics real noise.
However, because of time constraints this was never attempted. Focus was instead put on
improving the performance of our models on synthetic noise.

There are few public datasets available for video processing. To clarify, we refer to
datasets that have both the clean and noisy versions of the videos. This is particularly
true for datasets where the noise was added to videos in raw format. We therefore had to
compile and pre-process our own data. By having an even higher quality dataset, better
results than what we achieved may be possible. Furthermore, different types of neural
network architectures such as recurrent neural networks (RNN) have been successful in
image processing tasks [4]. To limit the scope of this thesis, we chose to stay within the
realm of CNNs.

Finding the most computationally efficient denoising method, or one that is limited
by camera hardware, was not part of this thesis. Instead, focus was put on achieving high
performance with regards to suitable measurements presented in Chapter 3. Moreover, the
hardware at disposal (i.e. the GPU and the CPU) for training the networks put up its own
limitations. Having many frames in memory at the same time (as opposed to one frame
at a time, as in the spatial case) proved to be expensive with regards to both memory and
computational cost. This hindrance restricted network architecture and design.
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Chapter 2
Theoretical Background

The necessary theory for this master’s thesis includes how images are processed in camera
image pipelines, how images are affected by noise and how it can be reduced, how neural
networks are used in image processing, and how our thesis relates to previous work. These
areas are covered in this chapter.

2.1 Digital Images and Color Models
There are multiple ways to represent images digitally. Generally, light that reaches an
image sensor is encoded to information through a color filter array (CFA), which is placed
right in front of the sensor [5]. As the name indicates, the light is filtered into components
of different colors, namely green, red, and blue. An image represented in this way is said
to be in raw format. 12 bits per channel are often used, so that the color components for
each pixel accepts a value between 0 and 4095. The most common type of CFA is a Bayer
pattern arrangement of color filters, which is depicted in Figure 2.1. Half the pixels filter
green light as the human eye is most sensitive to this color, and one fourth of the elements
filter red and blue light respectively. An image in raw format has a threshold where some
pixel values greater than zero will correspond to a pixel value of zero. This threshold is
known as the black level.

The RGB format is most commonly used for representing color images. This is an
additive color model where the image is divided into three channels, red, green, and blue,
so that each pixel has three color values. Another frequently used color model is YCbCr
which separates the luminance, meaning brightness, and chrominance, which is the color
information. Here Y denotes the luminance whereas Cb and Cr are the chrominance-
blue (blue-difference) and chrominance-red (red-difference) components. Black and white
images are usually referred to as grayscale images. Such images have only one channel,
in which pixel values represent the intensity of light.

13



2. Theoretical Background

Figure 2.1: Bayer filter mosaic, a type of color filter array.

2.2 Modelling Image Noise
Image noise can be described as random variations of pixel values and is essentially loss
of information. Noise typically makes images look visually grainy. As an image sensor
is struck by photons, the energy of the photons is converted into electrons. The electrons
produce an electric charge that is measured [6]. This measured value represents the in-
tensity of light. The sensor is divided into pixels and has a certain full well capacity,
meaning the number of photons that may be recorded. Low-light situations lead to low
photon counts, resulting in noisy images. A higher full well therefore leads to less noise
and easier denoising.

The cause of noise in an image originates from the nature of light as well as from the
sensor and electronic components of the camera. Hence, noise as modelled in this thesis
has two components: shot noise µs and read noise µr . A noisy image In can be expressed
as In = Ic + µs + µr , where Ic is a noise-free image. Noise-free images will in this thesis
be referred to as clean images.

2.2.1 Shot Noise
Despite illuminating a sensor evenly for some amount of time, the number of photons X
that hit a certain pixel is not constant [7]. This variance is called shot noise and affects all
sensors. Shot noise is signal dependent, meaning that it depends on howmany photons that
currently hit the sensor. It follows a Poisson distribution, X ∼ Poisson(λ), as is illustrated
in Equation (2.1).

f (x; λ) =
λxe−λ

x!
(2.1)

The mean value λ of the Poisson distribution is the average number of photons arriving
at the sensor during exposure and varies from element to element. Incidentally, by using
the central limit theorem, X can be approximated to a Gaussian distribution when λ is
sufficiently large [8]. The mean and variance of this distribution are then both equal to λ.

14



2.3 Image Processing

2.2.2 Read Noise
The process of measuring the generated electric charge in a pixel includes several sources
of error, in the pixel itself as well as in the following camera components. The combination
of errors originating from these sources is called read noise [7]. Unlike shot noise, read
noise is not signal dependent. It follows a Gaussian distribution, X ∼ Gaussian(λ), i.e.,

f (x; µ, σ2) =
1

√
2πσ2

e−
(x−µ)2

2σ2 (2.2)

with a mean value of µ = 0 and a standard deviation σ, which depends on the above
mentioned sources of error.

2.3 Image Processing
Image processing encompass all usage of computer algorithms to carry out processing of
images [9]. Some of the most common procedures are image quality improvement tasks
such as removing blur (deblurring) or demosaicing [10]. Demosaicing is the process of
reconstructing a color image from the information loss in the CFA [11].

During recent years, there have been a huge surge in the use of neural networks, es-
pecially for classification tasks [12], but also for image processing. A famous example
is the AlexNet which won the 2012 edition of ImageNet large scale visual recognition
challenge, a competition that has been a driving force for the development of CNNs since
2010. AlexNet introduced and popularized multiple ideas in deep learning that are fre-
quently used today, such as the rectified linear unit (ReLU) activation function.

2.3.1 Image Processing Pipeline
An image processing pipeline consists of several steps to transform an image from raw
format into a format that is more suitable to be observed by humans. Which steps to include
and how to perform them vary from camera to camera. The general steps, however, are:
capturing the raw image from the sensor, white balancing, tone mapping, demosaicing,
denoising, black level removal, gamma correction, and further post-processing. Other
than making images look appealing to humans, considerations and trade-offs can be made
for storage space and computational cost.

2.3.2 Convolutions and Kernels
Kernels, or filters, are the cornerstones of image processing. These are matrices, often
with sizes 3 × 3 or 5 × 5, used in convolutions. Convolution is an operation where the
kernel slides over another matrix. For each position, every pixel is added together with its
neighbors, weighted by the kernel. The number of neighbors to consider is determined by
the kernel size. Equation (2.3) is an example of the calculations for a single position in a
convolution, where the element y11 in a resulting matrix Y is calculated through addition
of element-wise products.

15



2. Theoretical Background

y11 =

x00 x01 x02
x10 x11 x12
x20 x21 x22

 �
k00 k01 k02
k10 k11 k12
k20 k21 k22

 (2.3)

= (x00 · k00) + (x01 · k01) + (x02 · k02) + (x10 · k10) + (x11 · k11) + (x12 · k12) + (x20 · k20)
+ (x21 · k21) + (x22 · k22)

The entire resulting matrix can be expressed as Y = X ∗ K , where the symbol ∗ denotes
convolution and K is a filter kernel. It is possible to achieve different visual effects and
distortions through modification of K . Commonly desired effects are blurring and sharp-
ening, but also edge detection which may be used in feature extraction for a classification
task.

2.4 Denoising
The image processing technique of removing noise is called denoising. An example of an
image denoising algorithm that is currently used in research and industry is block-matching
and 3D filtering (BM3D) [13]. A simpler denoising can be achieved through convolution
with, for example, a Gaussian filter. This way, information from neighboring pixels is
utilized in order to recover information for a certain pixel. This is in image processing
called spatial filtering.

PSNR
The peak signal-to-noise ratio (PSNR) is commonly used to measure image quality of a
denoised image given a clean target. Since PSNR is the ratio of power between signal and
noise, a higher PSNR value means that the denoised image is more similar to the target.
The formula for PSNR is given in the following equation:

PSNR(y, ŷ) = 10 · log10
( MAX2

LMSE(y, ŷ)
)

(2.4)

where LMSE is given by Equation (2.9), y is the target image, ŷ is the output image, and
MAX is the largest possible pixel value. As an example, for an 8-bit image this value is
28 − 1 = 255.

16



2.5 Neural Networks

2.4.1 Video
In video, a third dimension called depth is introduced in addition to the spatial dimensions
of height and width. The depth corresponds to the number of frames in a series, hence it
is a temporal dimension. The majority of adjacent frames in a video consist in a practical
setting of similar information. In other words, for a large proportion of pixel values f0i j in
position i, j of a video frame F0, f0i j ≈ f1i j for an adjacent frame F1. Similarities in the
temporal dimensions could therefore be used to recover information lost due to noise. The
noise in one frame does not depend on noise in previous frames, meaning that the noise
is temporally uncorrelated. Suppose, for instance, that some noise µi is applied to every
frame Fi, i = 0, 1, . . . , t in a video F with t frames. Then the observed image becomes
Ii = Fi + µi. If µ1i j ≈ 0 so that f1i j + µ1i j = i1i j ≈ f1i j for a pixel in position i, j, then in
cases where |µ0i j | � 0, f0i j may be approximated with the value of i1i j . We say information
is recovered temporally.

2.5 Neural Networks
The functionality of neurons in the human brain may be modelled by artificial neurons.
A neuron is said to be fired when provided with some stimulation. They may in turn
be connected in artificial neural networks (ANN), inspired by how the human brain is
structured. Neurons are arranged in layers in such networks: Every ANN has an input layer
and an output layer, with connections between. A network may be extended depth-wise
with hidden intermediate layers that essentially increase the complexity. The discipline of
working with such networks goes by the name of Deep Learning. The learning part refers
to the methodology of updating the trainable variables of a network to achieve desired
results.

A basic neural network can be described as a function f (x, θ), where x is an input and θ
is a vector containing the trainable variables. By evaluating f for some input x, an output ŷ
is obtained as ŷ = f (x, θ). This operation is referred to as a forward pass [14]. A common
application in which neural networks are employed is image classification, where there
exists a set of classes C with size n. Every input image x (i.e. a two- or three-dimensional
array) has a certain classification ci ∈ C. The output ŷ from such a network may be a
vector with n predicted probabilities, such that x has classification ci with probability ŷi,
i = 1, 2, . . . , n.

An activation function determines the output of a neuron based on the input [14]. A
neuron is fired if the value of the activation function passes a certain threshold. The value
for determining the threshold is known as a bias, and every neuron’s activation function
has one associated with it. In addition, every connection in a neural network has a weight
which determines its strength. The weights and biases of a network are commonly denoted
as W and B respectively. These are included in θ.

17



2. Theoretical Background

The output ŷ of a neural network is compared to a ground truth y through a loss function.
A loss function can be defined as:

L(y, ŷ) =

n∑
i=1

|yi − ŷi | (2.5)

where ŷ = f (x, θ). Since ŷ depends on the trainable variables θ, one can attempt to min-
imize the loss function L(y, ŷ) in order to train the network. This is done by using an
optimization algorithm, such as gradient descent. Optimization algorithms are further
expanded on in Section 2.5.2. L(y, ŷ) is differentiated with the values of θ, which are
then updated accordingly. This update can occur after every training example or after a
so-called batch of training examples have been processed. The network is then updated
based on the mean of the loss function for all examples in a batch. With a greater batch
size, more examples are considered simultaneously during backpropagation. The magni-
tude with which the θ values are adjusted is based on a learning rate. The whole process
described in this paragraph is known as a backward pass, or backpropagation, and it is
during this time that a neural network is learning [15].

2.5.1 Loss Functions
A loss function, sometimes called a cost function, quantifies the disparity between the
output of a network and its ground truth, also known as the target [16]. In the following
sections, we present commonly utilized loss functions in deep learning, as well as one that
was built for this master’s thesis.

Mean Absolute Error
The mean absolute error (MAE) loss function calculates the absolute difference between
the output values and the target values. It is given by Equation (2.6), where y is the target
and ŷ is the output.

LMAE(y, ŷ) =
1
n

n∑
i=1

|yi − ŷi | (2.6)

Specifically, with the case of having images as inputs and outputs in a (fully convolutional)
neural network, the MAE loss function can be expressed as:

LMAE(y, ŷ) =
1

mn

n∑
i=1

m∑
j=1

|yi j − ŷi j | (2.7)

where n and m correspond to the width and height of the images.
This loss function is famously referred to as the L1-loss, which is what we will call it

for the remainder of the thesis.
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2.5 Neural Networks

Mean Squared Error
The mean squared error (MSE) loss function calculates the squared difference between the
output values and the target values, and is given by Equation (2.8).

LMSE(y, ŷ) =
1
n

n∑
i=1

(yi − ŷi)2 (2.8)

Similarly to the L1-loss, for the case of having images as inputs and outputs in a (fully
convolutional) neural network, the MSE loss function can be expressed as:

LMSE(y, ŷ) =
1

mn

n∑
i=1

m∑
j=1

(yi j − ŷi j)2 (2.9)

Also similarly to the L1-loss, the MSE loss is commonly known under another name,
namely the L2-loss. We will use this name to refer to the function going forward. In
terms of image processing, the L2-loss can correlate poorly with perceived image quality
according to Zhao et al. [17], and is often outperformed by the L1-loss function.

Huber Loss
The Huber loss, Lδ, got its name from Peter Huber [18], the person who defined the func-
tion. It is calculated as shown in Equation (2.10). For arguments below a certain threshold
δ, Lδ behaves as a squared error loss function, and above the threshold as an absolute error
loss function.

fcond(a, b) =

 1
2 (a − b)2 if |a − b| ≤ δ
δ(|a − b| − 1

2δ
2) if |a − b| > δ

Lδ(y, ŷ) =

n∑
i=1

fcond(yi, ŷi) (2.10)

L1 Pyramid Loss
The loss function LP defined in Equation (2.11) was specifically designed for this thesis.
The idea was to downsample the images and incorporate the loss of the downsampled im-
ages with the standard L1-loss. By downsampling, noise is reduced while most objects
should remain but appear smaller. Based on this assumption, this loss function was de-
signed as an attempt to punish networks for removing objects rather than noise. We refer
to it as the L1-pyramid loss.

Lp(y, ŷ) =
1
n

n∑
i=1

|yi − ŷi | +
1
n

n∑
i=1

|yi2 − ŷi2 | +
1
n

n∑
i=1

|yi4 − ŷi4 | (2.11)

Here yi2 and ŷi2 are downsampled by a factor 2 from yi and ŷi respectively, whereas yi4 and
ŷi4 are downsampled by a factor 4.
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2. Theoretical Background

2.5.2 Optimization
In machine learning, an optimization algorithm is often used to find the minimum of a
loss function in order to optimize a model. This section covers a number of different
optimization algorithms.

Gradient Descent
Gradient decent is an iterative algorithm for finding a (local) minimum [16]. Given some
initial values for x = x1, x2, ..., xn in the function F(x), the gradient vector is defined as:

∇F =

(
∂F
∂x1

,
∂F
∂x2

, ...,
∂F
∂xn

)T

(2.12)

By defining the vector of changes for the input parameters x, as ∆x = (∆x1,∆x2, ...,∆xn)T ,
the changes in F can be expressed as:

∆F ≈ ∇F · ∆x. (2.13)

By choosing ∆x = −α∇F and substituting ∆x in Equation (2.13), we get that:

∆F ≈ ∇F · −α∇F = −α‖∇F‖2 (2.14)

where it is guaranteed that ∆F ≤ 0 as long as the learning rate α is positive. So, for every
step of gradient descent, a new parameter vector x′ is computed according to:

x → x′ = x − α∇F. (2.15)

This way, F will decrease until it descends close to a local minimum. How close depends
on the learning rate, a smaller learning rate will most likely make the algorithm descend
slower, but eventually reach a value closer to the minimum.

Momentum
Gradient descent can be regarded as a ball slowly rolling down a hill until it reaches the
bottom. Something that exists in the real world but is lacking in gradient descent is mo-
mentum. By rolling a ball down a hill it would not simply stop at the bottom, because of
its momentum the ball would continue rolling until halted by friction. The same idea may
be applied in optimization algorithms and is exactly the case inmomentum-based gradient
descent [16]. By introducing a velocity variable vi for each parameter as well as a friction
term β, a new parameter vector is calculated after each iteration as can be seen in Equation
(2.16).

v → v′ = βv − α∇F (2.16)
x → x′ = x + v′
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2.5 Neural Networks

Adam Optimizer
A more modern optimization algorithm is Adam, conceived in 2014 by D. Kingma and
J. Ba [19]. A description of the algorithm can be seen in Equation (2.17), where f is the
objective function to minimize, α is the learning rate, β1 and β2 are the exponential decay
rates of first- and second-moment, and ε is a small constant.

t ← t + 1
gt ← ∇θ ft(θt−1)
mt ← β1 · mt−1 + (1 − β1) · gt

vt ← β2 · vt−1 + (1 − β2) · g2
t

m̂t ←
mt

(1 − βt
1)

(2.17)

v̂t ←
vt

(1 − βt
2)

θt ← θt−1 − α ·
m̂t

(
√

v̂t + ε )

The gradient vector of the function f for time step t is assigned to gt. mt and vt are the
moving averages of the gradients and squared gradients respectively, which approximates
the mean and variance of the gradients. In the final step, the trainable variables θ are
updated.

2.5.3 Convolutional Neural Networks
In the same way that an ANN is an attempt to model how the human brain learns, the idea
with convolutional neural networks (CNNs) is to mimic current belief of how our eyes
and brain interpret images. A typical CNN consists predominantly of convolutional and
pooling layers [20]. These allow for feature extraction, which is the process of breaking
down an input into smaller elements. A segment of fully connected layers which maps
features to classes, is put on top of the feature extraction mechanism.

CNNs are said to be of different dimensions, referring to how the convolutional op-
erations are used. To give a few examples, typically one-dimensional networks are used
for classification of sound whereas two-dimensional networks are better suited for image
classification. A two-dimensional convolutional layer takes as input X a two- or three-
dimensional matrix. An output Yi, or feature map, is obtained through:

Yi = φ(X ∗ Ki + Bi), i = 0, 1, . . . , n (2.18)

where φ is some activation function, Ki is a kernel, and Bi its respective bias. The number
of outputs n is commonly referred to as the output channels. The kernel contains what is
referred to as the weights of the layer. The output is added together with a bias and passes
as input to an activation function, often a ReLU, see Figure 2.2. This function outputs
zero for negative inputs, but increases linearly for positive values. There are variations
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2. Theoretical Background

Figure 2.2: The ReLU function.

such as the leaky ReLU, which slowly decreases linearly for inputs less than zero based on
a parameter α. Using ReLUs is a way to introduce nonlinearity in the network; a necessity
for carrying out complex tasks such as classification.

The way a layer convolves with the input depends not only on the weights and biases,
but also the following parameters:

1. Padding: Determines whether the edges of the matrix should be padded with zeros,
and to what extent. Having zero-padding set to one means that a single border of
zeroes will be placed around the matrix. Thus, the feature maps may be forced into
the same dimensions as the input [21].

2. Stride: The distance a kernel skips over the input between each sum of element-
wise multiplications. By increasing the stride in a convolutional layer, its output’s
dimensions are reduced.

Pooling layers downsample the input based on the stride and kernel size. An element in
the resulting matrix R of a max-pooling layer using input matrix X with dimensions m×n,
kernel size 2 × 2, and stride s, is defined as:

Ri, j = max (xsi,s j , xsi+1,s j , xsi,s j+1, xsi+1,s j+1), i = 1, 2, . . . ,
⌈m

s

⌉
and j = 1, 2, . . . ,

⌈n
s

⌉
. (2.19)

Convolutional layers may use particular kernels for extracting features in images, such as
edges. Pooling layers ensure invariant feature extraction with regards to scale, to some
degree. This is especially useful for classification problems, since the scale of objects
should not affect model accuracy.

22
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Figure 2.3: Receptive field in a CNN. The left matrix represents
an input image, and the right matrix an output image. The area of
the red box in the input indicates what input pixels an output pixel
could depend on, as an example.

2.5.4 Receptive Field
All neurons in a layer are each connected to every neuron of the following layer in a stan-
dard ANN. This means that all output neurons are individually dependent on the entire
input, unless specific weights are set to zero.

In a CNN, the output elements only depend on a certain area of the input. This area is
defined as the receptive field, see Figure 2.3. The size of the receptive field is determined
by the number of layers in addition to the sizes of the different kernels.

2.5.5 Fully Convolutional Neural Networks
A fully convolutional neural network (FCNN) doesn’t contain the classifier segment typ-
ically found in CNNs. Instead, an upsampling part is introduced, which allows for pixel-
wise predictions [22]. This architectural alteration leads to a positive side-effect. It allows
for FCNNs to take input of variable size, as long as the number of dimensions remain
constant.

So-called transposed convolutions are commonly used for upsampling in FCNNs, in
favor of classical interpolation methods such as nearest neighbor or bilinear interpolation.
By using transposed convolutions, the weights and biases for the upsampling becomes part
of the learning mechanism. This means that the network updates the way upsampling is
done, based on the loss function and the optimization algorithm.
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A standard convolution is expressed as Y = X ∗ K . As an example, with a stride equal to
one, the result YC from a convolution with a 4 × 4 matrix XC and 3 × 3 kernel KC may be
expressed as:

YC = XC ∗ KC =


x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

 ∗
k00 k01 k02
k10 k11 k12
k20 k21 k22

 (2.20)

The square matrix X with dimensions mX × nX can be flattened into a column vector XF
with dimensions mXnX × 1. By transforming K into a kernel matrix M with dimensions
mYnY × mXnX , where mY × nY are the dimensions of Y , the expression Y = M · XF is
obtained. In a practical example this may look like:

YC = MC · XFC =


k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0 0
0 k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0
0 0 0 0 k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0
0 0 0 0 0 k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22

 ·



x00
x01
x02
x03
x10
x11
x12
x13
x20
x21
x22
x23
x30
x31
x32
x33



(2.21)

Given a square matrix Z that is flattened into a column vector ZF , a transposed convolution
YTC can be expressed as YTC = MT · ZF , where MT is a transposed kernel matrix [23]. An
example of this is given in Equation (2.22).
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YTC = MT
C · ZFC =



k00 0 0 0
k01 k00 0 0
k02 k01 0 0
0 k02 0 0

k10 0 k00 0
k11 k10 k01 k00
k12 k11 k02 k01
0 k12 0 k02

k20 0 k10 0
k21 k20 k11 k10
k22 k21 k12 k11
0 k22 0 k12
0 0 k20 0
0 0 k21 k20
0 0 k22 k21
0 0 0 k22



·


z0
z1
z2
z3

 (2.22)

Let mT and nT denote the number of rows and columns of MT . If Z is interpreted as an
image with one channel, by having mT = c2nT , Z is upsampled with a factor c.

FCNNs are remarkably useful for image processing tasks since such networks can out-
put an entire processed image. Hence an FCNN can be viewed as a single, incredibly
complex, image filter.

2.6 Related Work
This section presents previous work in noise filtering with neural networks, related to this
master’s thesis.

U-Net
In 2015 an article by Ronneberger et al. [24] was published, describing a novel FCNN
architecture known as a U-net. It had shown excellent results in image segmentation tasks.
In a U-net, information is passed through connections symmetrically from earlier to later
layers, so that information from earlier contexts is propagated further in the network. This
leads to higher performance in for example image segmentation. An example of a U-net
structure is illustrated in Figure 2.4. It has also been adopted in multiple other research
projects [1] [25].

Learning to See in the Dark
In mid-2018, Chen et al. [1] built a model which produced excellent results for image pro-
cessing of low-light images. They assembled a new dataset containing short-exposure im-
ages with corresponding long-exposure ones, of the exact same physical scene. The short-
exposure versions were used to successfully simulate low-light conditions and served as
input for their network. The long-exposure images being bright and clear served as ground
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Figure 2.4: U-net architecture.

truths. After testing several networks, a conclusion was reached that an architecture like
the FCNNU-net structure [24] produced the best results. When comparing this model with
a traditional pipeline as well as with BM3D denoising, the results were indeed favorable
in regard to the U-net.

Deep Burst Denoising
A recent type of recurrent FCNN-architecture was presented in late 2017 by Godard et
al. [4]. Their approach to obtain high-quality low-light images involved capturing bursts
of short-exposure photos, as increasing a camera’s shutter speed may lead to undesirable
artifacts. These short-exposure photos would then be intelligently combined to obtain
satisfactory quality. However, since short exposure leads to extensive noise, the image
bursts had to be denoised first. The recurrent FCNN model was used for exactly this. The
achieved results were better than state-of-the-art methods.

Deep Joint Demosaicing and Denoising
In 2016, Gharbi et al. [10] developed a model for both demosaicing and denoising images.
Perhaps the most exciting point this article makes is the importance of having good data
in quantity. A network was first trained on around 2.3 million images. Poorly demosaiced
patches were then extracted from the training results, and around 2.5 million were selected
for a second training. The model’s performance reached some of the best results recorded
at that time, while doing inference immensely faster compared to its counterparts.
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Chapter 3
Method

We have built three different FCNN architectures that were trained and evaluated with dif-
ferent configurations. They were all implemented in Python using the TensorFlow frame-
work [26]. This chapter describes the designs of ourmodels, how our dataset was compiled
and processed, and what hardware was used during training. First, however, we present
the central idea with the thesis.

Figure 3.1: Sliding windows over a sequence of frames at three
different time steps t, where T = 3.

Noise Filtering Video
We define a scene as multiple adjacent frames in a video. A sliding window with a certain
length T may be applied over a scene, grouping T frames together, see Figure 3.1. T
is referred to as the sequence length. As the sliding window moves by one frame for
every new example, having S images in a scene would result in S − (T − 1) examples.
Our models take a video sequence as input and outputs a single frame according to the
following formalization.
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We denote a noisy input sequence with T adjacent frames as xT = (x1, . . . , xT ) and a
corresponding clean, ground truth sequence as yT = (y1, . . . , yT ). Here, xi and yi denotes
single frames. A frame is assumed to share information with a variable number of adjacent
frames. In other words, pixel areas in adjacent frames have luminous, chromatic, and
structural similarities. Let ym be the middle frame of yT , where m = dT2 e. For clarity, if
there is an even number of frames, the frame right before the middle cut is chosen as the
middle frame. The goal for our models is to learn a mapping f : xT 7→ ŷ where ŷ is a single
output frame that corresponds to the denoised version of xm. As the model is learning, ŷ
approaches ym . The clean middle frame ym is referred to as the ground truth.

Suppose that we have two clean neighboring frames, y1 and y2, such that y1 ≈ y2. If
there is some loss of information in y1 such that we observe x1 = y1 + µ1 (y1 and µ1 are
unknown), where x1 is said to be noisy, µ1 can be expressed as µ1 ≈ x1 − y2. Thereby,
y1 can be recovered. Consider a sequence yT of clean frames respectively affected by
T independent noise terms µ1, µ2, . . . , µT , of some unknown distribution so that we can
observe the sequence xT . We express a recovered, clean frame as ŷ = f (xT ; θ), where ŷ
approaches ym, and θ is the parameter vector of trainable variables that are updated during
backpropagation.

3.1 Architectures
The layers and filters used for the different architectures are shown in Table 3.1. As can be
seen, there are four levels of this U-net, meaning that the networks will contract and expand
four times each. Every convolutional layer is followed by a leaky ReLU with α = 0.2.
The input to each convolutional layer is zero-padded so that the height and width (and
depth for 3D) stay the same. The pooling layers downsample images by a factor two, and
analogously the upsample layers upsample the images by the same factor. The loss L as in
Equation (2.5), takes for all our networks the single frames ym and ŷ as arguments.

3.1.1 Two-Dimensional Sequential Input FCNN
The first idea for an architecture was to craft an extension of U-Net [24]. The U-net design
have shown great success, Chen et al. [1] built a model with a U-net-like architecture that
displayed excellent performance in low-light denoising. Being heavily inspired by this
paper, a slightly modified version of their network was chosen as a starting point. Our
modified network takes a sequence of variable length T as input instead of a single image.
Additional differences are that the original network takes input images in raw format, and
has 12 output channels in the final layer, whereas our network uses RGB images and have
3 final output channels. Our version with T = 1 will therefore serve as the state-of-the-art,
completely spatial noise filter mentioned in our first goal. This architecture will in this
thesis be referred to as 2D FCNN.

The dimensions of the input take the shape B × H ×W × (C · T ), where B denotes the
batch size, H the height, W the width, and C the color channels, for an input image with
dimensions H ×W × C. Since RGB images are used, C = 3. The channels of the input
images in the sequence are stacked together in chronological order. Note that the model is
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Table 3.1: The layers and the number of filters for the architec-
tures. The layers follow the U-net shape shown in Figure 2.4.

Layer Input Output
channels Function

input - 3 · T -
2×conv_1 input 32 Convolution 3 × 3 (×3 for 3D)
pool_1 conv_1 32 Max Pooling 2 × 2 (×2 for 3D)

2×conv_2 pool_1 64 Convolution 3 × 3 (×3 for 3D)
pool_2 conv_2 64 Max Pooling 2 × 2 (×2 for 3D)

2×conv_3 pool_2 128 Convolution 3 × 3 (×3 for 3D)
pool_3 conv_3 128 Max Pooling 2 × 2 (×2 for 3D)

2×conv_4 pool_3 256 Convolution 3 × 3 (×3 for 3D)
pool_4 conv_4 256 Max Pooling 2 × 2 (×2 for 3D)

2×conv_5 pool_4 512 Convolution 3 × 3 (×3 for 3D)
upsample_1 conv_5 ⊕ conv_4 256 Transposed convolution and concatenate
2×conv_6 upsample_1 256 Convolution 3 × 3 (×3 for 3D)
upsample_2 conv_6 ⊕ conv_3 128 Transposed convolution and concatenate
2×conv_7 upsample_2 128 Convolution 3 × 3 (×3 for 3D)
upsample_3 conv_7 ⊕ conv_2 64 Transposed convolution and concatenate
2×conv_8 upsample_3 64 Convolution 3 × 3 (×3 for 3D)
upsample_4 conv_8 ⊕ conv_1 32 Transposed convolution and concatenate
2×conv_9 upsample_4 32 Convolution 3 × 3 (×3 for 3D)
conv_10 conv_9 3 Convolution 1 × 1 (×1 for 3D)

not explicitly told which dimensions belong to which image - it is simply given a number
of channels in the final dimension C · T .

The number of weights that this network has for each layer is given by the following
equation:

w = Kh · Kw ·C · F (3.1)

where Kh and Kw is the height and the width of the kernel, C is the number of input
channels, and F is the number of output filters.

3.1.2 Three-dimensional Sequential Input FCNN
We wanted to build an architecture that more explicitly filters temporally, as this was the
focus of the thesis. Our ambition materialized in a switch to a 3D-convolutional network
[27], here referred to as 3D FCNN. In this type of network, a new depth dimension is
included in the convolutions. Hence the kernel dimensions must be extended from 3×3 to
3×3×3. Thus, for every step the kernel takes, input from 3 frames are taken into account.
This network therefore convolves both the spatial and the temporal dimensions explicitly.
The max-pooling layers consequently not only decrease the spatial dimensions, but also
the depth dimension. As an example, if the depth dimension of the input initially was 16,
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it would after the first layer be decreased to 8, then 4, and so on. By upsampling through
transposed convolutions, the depth dimension increases again so that the penultimate layer
has a depth of 16. The initial depth dimension is the same as the sequence length T .
Instead of having the channel dimension be (T ·C) as was the case with the 2D-convolution
networks, it is now simply C. With an input image of dimensions H ×W × C, the input
would have the shape B × T × H ×W ×C.

The number of weights for each layer is given by the following equation:

w = Kh · Kw · Kd ·C · F (3.2)

where Kd is the depth of the kernel and the rest of the parameters are the same as in
Equation 3.1.

Three-Level Variant
The architecture of the 3D-convolution network is, aside from the type of convolution,
equivalent to the 2D FCNN as they both contain the same number of layers and filters.
We did however introduce a variant where the bottom convolution and pooling layers,
i.e. the lowest level in the U-net, were removed, but the number of filters were doubled.
Consequently, the same number of weights were kept, despite the spatial dimensions being
downsampled one less time. We refer to this variant as the 3D FCNN having 3 levels.

Our idea was to combine the aforementioned architecture with halved values for H and
W while keeping T constant. As a result, the spatial dimensions at the bottom of the U-
net stay the same as in the standard four level architecture, while the temporal dimension
is doubled. The network would thereby use a larger proportion of temporal information
relative to other configurations.

3.1.3 Combined Three- and Two-dimensional FCNN
The final architecture that we wanted to try was to keep the U-net structure, similarly to the
2D FCNNs and 3D FCNNs, but use different strategies when contracting and expanding
the U-net. 3D convolutions were used when contracting and 2D convolutions for expand-
ing. This net required one additional convolution for each level in the U-net to transform
the downsampled 3D feature maps into the 2D domain, in order to perform the concate-
nation with the upsampled feature maps correctly. The idea was to use as much of the
temporal information as possible when contracting, but to expand with mainly the spatial
information in focus. We hypothesized that utilizing the spatial information when upsam-
pling could increase the image quality compared to doing this temporally. It is referred to
as Combined 3D and 2D FCNN.
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3.2 Data
Our goal when creating a dataset was to assemble a collection of relatively short video se-
quences. We sought after data that would be adequately difficult to denoise with regard to
temporal change. In other words, there should be a reasonable difference between frames
so that the network is challenged but not overwhelmed. Constant smooth movement was
sought after, since we hypothesized that having a moderate amount of difference between
frames would allow our models to learn how to process temporal information. This would
be in contrast to only considering the spatial dimensions. Video sequences should there-
fore only consist of frames from the same cut, and not have large objects travelling with
unnatural speed, such as a hand moving directly in front of the sensor.

The videos used for the dataset were provided by Axis Communications. They contain
scenes in raw format filmed in different settings by Axis personnel. As movement was
occasionally sparse in these videos, interesting crops of 100 frames-scenes were selected
based on magnitude of difference between temporally adjacent areas. In total, 153 such
scenes were selected which resulted in 15300 frames. Other versions of these images
were generated with noise applied. Both versions were pre-processed by a practical image
pipeline and extracted right after the demosaicing step, but before any denoising transpired.
After the extraction, the clean versions of the images served as ground truth and the images
with noise served as input.

We placed approximately 80% of the data into a training set, 10% into a validation
set, and 10% into a test set. The scenes were kept together as units but distributed ran-
domly. The selection was manually corrected afterwards to create the most diverse and
challenging validation and test set as possible. The validation set was not switched or
changed throughout training. We deemed this to be the best validation method all things
considered, at least to our knowledge. Our models were evaluated between each epoch on
the validation set, to make sure that they did not overfit to the training data. An indica-
tion of overfitting is if the training loss continues to decrease while the validation loss is
increasing. The test set was used for the final evaluation of the trained model.

3.2.1 Data from the State-of-the-art Camera
The images in this thesis that show the produced output from the state-of-the-art camera
were extracted directly after the denoising step in the image pipeline, and then minimally
post-processed. The same post-processing was applied to the denoised results from the
networks. The entire image pipeline is however designed with the idea that images go
through more extensive post-processing. Excluding these steps may therefore produce
output which diverges from what the final output of the camera would look like. It was
however the best method we could provide in order to exclusively compare denoising re-
sults.
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3.3 Noise Model
The goal of our noise model was to simulate noise from a real camera sensor, as described
in Section 2.2. To do this correctly, the synthetic noise was added to the images in raw
format. This is essential since real noise occurs when images are captured by the sensor.
Before the generation of noise, the images were scaled to have values between 0 and 1.
Because of the black level, the images actually only had pixel values between the scaled
black level and 1.

To correctly generate the noise, the pixel values were first multiplied by the given full
well so that the maximum possible pixel value was set to the full well. This is crucial since
it simulates the range of values the images would obtain after being captured by the sensor,
as described in Section 2.2.1, and since the noise distribution depends on what the pixel
values are. For each pixel, the shot noise was then simulated by collecting a sample from
a Poisson distribution with the pixel value as the expected value, and replacing the pixel
value with this sample. The read noise was simulated by adding a sample drawn from a
Gaussian distribution. Finally, the pixel values were scaled back to the same range they
were in before the noise was added, except that the values could now go below the black
level as well. The images were then put into the pipeline.

With this model we could easily control the extent of shot noise and read noise in our
data. To simulate real low-light conditions, the full well capacity was set to 25 and the
standard deviation for the Gaussian distribution of the read noise was set to 1. The mean
value for the read noise was set to 0, as stated in Section 2.2.2.

3.4 Hardware
Axis Communications provided hardware for training and testing our models. Two differ-
ent setups were used. The first had a single Nvidia GeForce GTX 1080 Ti GPU with 10
GBs of memory as well as an Intel Core i7-8700K CPU with 3.70GHz clock rate. The
second included four GPUs: one Nvidia GeForce GTX Titan V and three Nvidia GeForce
GTX Titan X, as well as an Intel Core i7-6850K CPU with 3.60GHz clock rate.

3.5 Metrics for Measuring Performance
Comparing the performance of different image processing algorithms is a difficult task.
Appropriatemetrics have to be defined, which accuratelymeasure the desired effect. When
comparing a single image to another, PSNR is a good measurement and will be used for
this purpose. Videos are more complex, where the flow and continuity of the video is im-
portant. This will be measured as something we call temporal coherence. Our evaluation
of a network will take both PSNR and temporal coherence into account.
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Figure 3.2: A patch cropped from a sequence of images with
length T = 5.

3.5.1 Temporal Coherence
We define temporal coherence as continuity and flow when watching a video. We noticed
that a high PSNR does not necessarily equate to satisfying temporal coherence. A video
could for example look fluttery even though the frame by frame comparison showed excep-
tional results. For this reason, we chose to measure performance using temporal coherence
in addition to PSNR. Objectively measuring temporal coherence in videos is however dif-
ficult, and there does not seem to be a good enough metric for doing this. When stating
how good a video’s temporal coherence is, we refer to how little flutter can be seen when
visually analyzing the videos. This measurement will therefore be subjective.

3.6 Standard Training Setup
For every sequence, a random area of P × P pixels in height and width was selected and
cropped to serve as input, see Figure 3.2. We refer to P as the patch size. The data was
shuffled and new patches were cropped for every epoch. The data was augmented so that
the crop had a 50% chance to be flipped horizontally and a 50% chance to be flipped
vertically. This augmentation of the input data yielded more diverse training examples,
which can often help with counteracting overfitting.

When deciding how many epochs to run the training sessions for, we had to make a
trade-off between time and performance. We trained a network for 300 epochs (which
when multiplied by 15300 ·0.8 becomes 3672000 training examples when T = 1) to see if
the performance would eventually start to decrease, see Figure 3.3. The increase in perfor-
mance remained stable, despite some temporary decline, and the network did not overfit
to the training data. The time required to train for 300 epochs was however substantial for
some of the networks, especially the 3D FCNNs. With T = 16 this took about two weeks.
Though it is likely that the performance of the models would increase by further training,
300 epochs was chosen as the standard training time due to time constraints of this thesis.
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(a) Input (b) Ground truth (c) Epoch 1
PSNR: 28.53

(d) Epoch 5
PSNR: 29.76

(e) Epoch 10
PSNR: 29.78

(f) Epoch 20
PSNR: 31.06

(g) Epoch 50
PSNR: 32.32

(h) Epoch 100
PSNR: 31.51

(i) Epoch 150
PSNR: 32.76

(j) Epoch 200
PSNR: 32.73

(k) Epoch 250
PSNR: 32.86

(l) Epoch 300
PSNR: 32.98

Figure 3.3: How the performance changed during 300 epochs of
training the 3D FCNN with T = 16, P = 128, and 3 levels.
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Results

Our experiments were conducted using the standard training setup explained in Section
3.6. Unless stated otherwise in the sections below, the parameter selection followed Table
4.1. The results presented here were produced through inference of our models on the test
set, which contained 1530 frames.

Table 4.1: Default parameter selection. Used for all experiments
presented if nothing else is stated.

Parameter Value
Number of epochs 300
Batch size 4
Loss function L1

Optimizer Adam, β1 = 0.9, β2 = 0.999, and ε = 10−8

Learning rate 10−4 initially, reduced by a factor 10 after 150 epochs
Patch size 256 × 256 pixels

The following four pages show our results from denoising four frames in video sequences
with different characteristics. The first image on every page is the noisy input, followed by
its corresponding ground truth. We show performance for the different configurations on
our three architectures as well as the denoising segment in the image pipeline of the state-
of-the-art camera∗. The first frame was produced by denoising an area in a video sequence
with no movement, meaning very little difference between adjacent frames. The second
frame features a bush affected by wind, which results in small movement. The third and
fourth frames show denoising of a frame in a sequence that depicts a person moving with
different speeds.

∗For how the results of the state-of-the-art camera were produced, see Section 3.2.1.
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(a) Input (b) Ground truth

(c) 2D FCNN T = 1
PSNR: 29.38

(d) 2D FCNN T = 5
PSNR: 32.10

(e) 2D FCNN T = 16
PSNR: 34.14

(f) 3D FCNN T = 5
PSNR: 32.43

(g) 3D FCNN T = 8
PSNR: 33.26

(h) 3D FCNN T = 16
PSNR: 34.60

(i) 3D FCNN T = 16 altered
PSNR: 35.18

(j) 3D + 2D FCNN T = 5
PSNR: 32.48

(k) State-of-the-art camera∗
PSNR: 34.21

Figure 4.1: The performances when denoising a frame in a still video sequence. Figure
4.1i refers to the network with P = 128 and 3 levels.
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(a) Input (b) Ground truth

(c) 2D FCNN T = 1
PSNR: 26.16

(d) 2D FCNN T = 5
PSNR: 28.85

(e) 2D FCNN T = 16
PSNR: 29.20

(f) 3D FCNN T = 5
PSNR: 29.02

(g) 3D FCNN T = 8
PSNR: 29.41

(h) 3D FCNN T = 16
PSNR: 29.89

(i) 3D FCNN T = 16 altered
PSNR: 29.92

(j) 3D + 2D FCNN T = 5
PSNR: 28.93

(k) State-of-the-art camera∗
PSNR: 26.38

Figure 4.2: The performances when denoising a frame in a sequence with some move-
ment. Figure 4.2i refers to the network with P = 128 and 3 levels.
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(a) Input (b) Ground truth

(c) 2D FCNN T = 1
PSNR: 29.14

(d) 2D FCNN T = 5
PSNR: 30.10

(e) 2D FCNN T = 16
PSNR: 30.06

(f) 3D FCNN T = 5
PSNR: 30.42

(g) 3D FCNN T = 8
PSNR: 30.68

(h) 3D FCNN T = 16
PSNR: 30.87

(i) 3D FCNN T = 16 altered
PSNR: 30.94

(j) 3D + 2D FCNN T = 5
PSNR: 30.37

(k) State-of-the-art camera∗
PSNR: 27.80

Figure 4.3: The performances when denoising a frame in a sequence with a person that
is moving relatively slowly. Figure 4.3i refers to the network with P = 128 and 3 levels.
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(a) Input (b) Ground truth

(c) 2D FCNN T = 1
PSNR: 35.30

(d) 2D FCNN T = 5
PSNR: 34.61

(e) 2D FCNN T = 16
PSNR: 32.14

(f) 3D FCNN T = 5
PSNR: 34.51

(g) 3D FCNN T = 8
PSNR: 33.11

(h) 3D FCNN T = 16
PSNR: 32.04

(i) 3D FCNN T = 16 altered
PSNR: 31.72

(j) 3D + 2D FCNN T = 5
PSNR: 34.61

(k) State-of-the-art camera∗
PSNR: 29.67

Figure 4.4: The performances when denoising a frame in a sequence with a person that
is moving quickly. Figure 4.4i refers to the network with P = 128 and 3 levels.
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4. Results

Measuring Performance
As stated in Section 3.5, we used PSNR and temporal coherence for measuring the perfor-
mance of the different networks and configurations. Unfortunately, since the evaluation
of temporal coherence can only be carried out by observing the resulting videos, we are
unable to display examples of this in a good way in the report. Before evaluating the
performance, the output images had their black level removed and underwent a gamma
correction. This is a simplification of the remaining steps of the image pipeline after the
denoising step where the input videos were extracted from, and will make the videos look
more like they were processed by a complete pipeline.

4.1 Experiments
The major experiments of this thesis are shown in Table 4.2 and Table 4.3. The tables
show several configurations for the 2D FCNN, the 3D FCNN, and the combined 3D and
2D FCNN with their respective performances. We carried out additional experiments, but
the ones listed in the tables showed the most promise and were thus prioritized to train for
a longer time. The results of the other experiments can therefore not be compared fairly
to the ones listed in these tables, and are instead described and evaluated in Section 4.2.

Table 4.2: Performance of the networks. The average PSNR is
calculated over every frame in the test set. The best performances
are written in green and the worst ones in red.

Network configuration \ Performance Average PSNR Temporal coherence
2D FCNN T = 1 29.69 Bad, very fluttery
2D FCNN T = 5 31.37 Mediocre
2D FCNN T = 16 32.37 Very stable
3D FCNN T = 5 31.57 Mediocre
3D FCNN T = 8 32.15 Stable
3D FCNN T = 16 32.72 Very stable
3D FCNN T = 16, P = 128, 3 levels 32.93 Very stable
Combined 3D and 2D FCNN T = 5 31.44 Mediocre
State-of-the-art camera∗ 30.57 Exceptionally stable
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4.1 Experiments

Table 4.3: Performance of the networks on single frames with
varying degrees of movement. The frames can be seen in Fig-
ure 4.1, 4.2, 4.3, and 4.4, respectively. The best performances are
written in green and the worst ones in red for each column.

Network configuration \ Frame No movement Tree Slow person Fast person
2D FCNN T = 1 29.38 26.16 29.14 35.30
2D FCNN T = 5 32.10 28.85 30.10 34.61
2D FCNN T = 16 34.14 29.20 30.06 32.14
3D FCNN T = 5 32.43 29.02 30.42 34.51
3D FCNN T = 8 33.26 29.41 30.68 33.11
3D FCNN T = 16 34.60 29.89 30.87 32.04
3D FCNN T = 16, P = 128, 3 levels 35.18 29.92 30.94 31.72
Combined 3D and 2D FCNN T = 5 32.48 28.93 30.37 34.61
State-of-the-art camera∗ 34.21 26.38 27.80 29.67

4.1.1 Increasing the Sequence Length
For the 2D FCNNs, increasing T resulted in a higher average PSNR as well as a significant
reduction of flutter, as can be seen in Table 4.2. Table 4.3 shows that a greater value
for T gave better performance on frames with no movement or some movement, such
as a frame with a person walking slowly. However, increasing T led to lower PSNR on
frames depicting rapid movement, such as a person moving quickly as seen in Figure 4.4.
Nevertheless, the network with T = 16 gave the best performance in general.

Similar behavior was seen for the 3D FCNNs. As T increased, the average PSNR got
better, along with the PSNR for images with some or no movement. Additionally, there
was a significant improvement in overall temporal coherence. The exceptions once again
were swiftly moving objects, which appeared grainier for higher values of T . The network
with 3 levels and a lower value for P resulted in the highest PSNR inmost of the categories.

Now, suppose xT depicts slow movement, meaning the difference between each adja-
cent frame is relatively small, or that there is no movement at all. Further assume that x1
denotes the input sequence with T = 1 which only contains the middle frame xm of xT .
Given ŷ1 = f (x1; θ1) and ŷ2 = f (xT ; θ2), we have showed that

PSNR(ŷ2, ym) > PSNR(ŷ1, ym) (4.1)

when T ≥ 5. For clarity, note that f (x1; θ1) describes a completely spatial noise filtering.
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4. Results

4.1.2 Comparing the Architectures
By comparing the 2D FCNNs with the 3D FCNNs in Table 4.2 and Table 4.3, we can
see that the difference in performance is relatively minor. A general trend is that the 3D
FCNNs produced higher average PSNR and PSNR for images with some or no movement,
but were more affected by graininess of objects that were moving quickly. The combined
3D and 2D FCNN performed similarly well to these architectures. Overall it had slightly
lower PSNR than the 3D FCNN and slightly higher PSNR than the 2D FCNN.

4.2 Additional Experiments
In addition to the experiments in Table 4.2, other attempts were made that resulted in no
significant difference in performance. These experiments were all conducted by using the
2D FCNN with T = 5 and are given in the following list:

• Experimenting with different loss functions. This resulted in three attempts where
the L1-loss was replaced with the L2, Lδ with δ = 0.5, and L1-pyramid loss functions.

• Using a variation of dropout. In this technique, one of the 5 images was turned black
for two thirds of the training, and then no dropout was used for the remainder of the
training. Note that this is not the same as using regular dropout, as that implies
removing some of the weights for each training example, whereas this technique
changed the actual input images.

• Using forced temporal as a pre-training method. By this we mean that the middle
frame in every input sequence was turned black while the rest of the frames were
noise free. The intent with this technique was to train the network to recover infor-
mation temporally in a more explicit way. We experimented with pre-trainings from
between a few epochs to two thirds of the total training time. Thereafter, the training
would proceed normally.

Several experiments were conducted in comparable ways to the above list, but showed
significantly worse performance. For example, these include using only one level in the
U-net (i.e., removing three of the levels) or having P = 64 or less. These experiments
produced output imageswhich turned out considerably grainy. Additionally, similar results
were produced when having the network output T frames, as opposed to only a single
frame, and picking the middle frame as the output.

4.2.1 Dynamic Noise Level
Further experiments were made on data with a dynamic noise level rather than a constant
one. While generating noise, the full well ranged from 12 to 25. This resulted in worse
performance on a fixed noise level, compared to a network only trained on that particular
level of noise. The performance was however drastically improved for inference on images
with the same dynamic noise range.
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Chapter 5

Discussion

With Equation (4.1) in our results we showed that when T ≥ 5, a higher PSNR was
achieved compared to when T = 1. It should be noted that we did not experiment with val-
ues for T in the range 1 < T < 5, so it is possible that this equation still holds for an input
sequence xT with a smaller value for T as well. In addition, we did not experiment with
values of T that was larger than 16, so we cannot be certain if the performance continues
to increase proportionally with T .

We believe there is an interesting discussion to be had regarding the number of frames
to consider in a sequence, and the related benefits when filtering videos. Our belief before
this project was that by increasing the sequence size, a sizable benefit could be expected,
while paying the price of a higher computational cost. This turned out to be mostly true,
but from our results, we have seen that adding temporal information by increasing T does
not only bring benefits. On one hand, a larger T implies better performance on most of our
example images, while also providing better stability and flow in the video. On the other
hand, the measured PSNR is worse on frames with quickly moving objects. It is therefore
not completely obvious which the best configuration is. It depends on what setting the
filter should be used in and what type of footage that is most important for the filter to
denoise correctly. For filtering very fast movement, the networks with T = 1 or T = 5
would be the most performant. In other cases, the 3D network with T = 16, P = 128, and
3 levels would be the best one.

We believe there is a rather simple reason why the networks trained with the T = 16
configuration performed so well. These networks were fed with a comparatively large
temporal dimension and therefore learned to use a larger amount of temporal information.
Specifically, the reason why the 3D FCNN with T = 16, P = 128, and 3 levels achieved
the best result was most likely because the network could focus even more on the temporal
information. As speculated in Section 3.1.2, with the temporal depth being halved one time
less and the number of filters doubled, the network could more accurately map information
from all frames in the input sequence to the output.
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5. Discussion

5.1 Comparing Computational Cost and
Number of Weights

Another aspect other than performance that should be taken into consideration is the com-
putational cost. Increasing T results in higher computational cost for both training and
testing. Training 300 epochs for the 2D FCNN with T = 1 took one day, whereas with
T = 16, two days were required. This difference is rather insignificant when considering
the performance increase in most of the images. The time difference is however quite sig-
nificant when comparing 3D FCNNs to 2D FCNNs. It took the 3D FCNN with T = 16
about two weeks to complete the 300 epochs. Although showing slightly higher perfor-
mance for most images, it is roughly 7 times slower to train and evaluate as the 2D FCNN
with the same value for T .

When comparing the 2D FCNN and 3D FCNN one also has to take into account that
the 3D FCNNs have more weights. A kernel that has a depth of 3, as was the case for
the 3D FCNNs, results in 3 times as many weights in accordance to Equation 3.1 and
Equation 3.2. An argument could therefore be made that the comparison between these
networks may not be entirely fair. At the same time, they are still utilizing an equivalent
U-net structure when just considering the spatial information. It is not exactly clear how to
fairly compensate the 2D FCNNs to attain the same number of weights as the 3D FCNNs.

5.2 Comparison with the State-of-the-art
Camera

Although the state-of-the-art camera∗ showcased themost stable output video, it performed
poorly relative to the neural networks. Nevertheless, one should take into consideration
that the computational cost of the state-of-the-art camera is multitudes cheaper than the
neural networks. By considering our performance, however, we believe that neural net-
works could have a promising future in practical image pipelines, either by reducing net-
work sizes or by using more powerful hardware in cameras.

5.3 Possible Improvements
We believe that a reason for why the overall best performing network, the 3D FCNN with
T = 16, P = 128, and 3 levels, couldn’t handle swift movement was because of inadequate
size of the receptive field. For the aforementioned network, the receptive field measured
140 × 140 pixels. If an object has such rapid movement that it exits out of the receptive
field during a sequence, certain frames become useless in the task of denoising this object.
We believe the network even tries to incorrectly incorporate temporal information from
frames where the object is outside of the receptive field, and thereby worsen the result.
One improvement could therefore be to increase the receptive field.

∗For how the results of the state-of-the-art camera were produced, see Section 3.2.1.
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5.4 Simulating Low-Light Videos

Still sequences might dilute the dataset, as moving objects are harder to denoise compared
to motionless areas. A high-quality dataset would in the context of this thesis involve con-
stant motion of varying speed. By further improving our dataset in this manner, higher
performance could possibly be obtained. It is also possible that a completely different
method, featuring a sophisticated motion-tracking technique to temporally denoise move-
ment over multiple frames, could prove to be effective.

The temporal coherence is, according to Table 4.2, improved as T is increased. We
believe that a loss function that correctly incorporates loss in the temporal dimension, as
opposed to working on a frame by frame basis, could lead to better results. This is however
difficult when there is movement, since it is not always trivial to make the distinction
between noise and movement. This type of loss function would require some kind of
motion detection.

5.3.1 Metrics for Video Comparison
Comparing videos posed a tough challenge, when something so seemingly simple as com-
paring single images is not entirely solved. PSNR is indeed a useful metric, but may fail
to account for errors that humans perceive as obvious. Naturally, there is more room for
errors with a third temporal dimension to consider as is the case for video. We failed to
find an accurate and objective way of measuring the flutter between frames and therefore
decided to compare the results through visual inspection. It is entirely possible that suit-
able metrics exists that we are not aware of, which could have been used to further validate
our conclusions.

5.3.2 Training Data
We never noticed any tendency for overfitting in any of our models during the training
sessions. To introduce a regularization term in the loss function was therefore deemed
unnecessary. A simple explanation for the behavior could be that the random selection
of patches and augmentation of our input data led to large enough variation, which kept
the model from overfitting during at least 300 epochs. Therefore, it is possible that a
bigger dataset would not be beneficial. The data could perhaps be improved in other ways.
Although our noise model appears to be accurate, a dataset featuring video sequences with
real noise would be optimal.

5.4 Simulating Low-Light Videos
Even though the goal of our thesis was to denoise videos under low-light conditions, most
of the videos in our dataset were captured in brightly lit situations. This may seem coun-
terintuitive, but was decided to avoid inherent noise in the clean images and to control
the noise fully with the noise model. Since the pixel values were scaled to an interval that
simulates a low-light situation, brightly lit images could therefore be used for this purpose.
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5. Discussion

5.5 Benefits with a Dynamic Noise Level
Training a noise filter on dynamic noise levels would most likely be more useful in a real-
life scenario. The noise level naturally varies significantly during the duration of a day,
since the amount of light that a camera sensor receives changes with time. A filter that is
capable of handling varying levels of noise would therefore be more flexible and overall
produce better images compared to a network that is trained to perform well on a single
noise level.
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Chapter 6
Conclusion

We have built three different architectures with better denoising performance than a solely
spatial filter as well as a noise filter in a state-of-the-art camera∗, as was our goal. We
have showed that by increasing the sequence length for the 2D FCNNs, higher PSNR is
achieved for denoising most of our example sequences. These include sequences with no
movement, slight movement (e.g. wind blowing against trees), and slowly moving objects.
In addition, a larger sequence length resulted in a higher overall PSNR and a drastically
better temporal coherence when inspecting the videos. However, increasing the sequence
length meant worse performance when an object moved quickly across the scene.

We can also conclude that the 3D FCNNs scored slightly higher PSNR than the 2D
FCNNs in almost every category, except for the objects that were moving rapidly. The
3D FCNNs took roughly 7 times longer to train and test for the higher values of sequence
length, though, so a trade-off between time and performance should be made between
these networks. The combined 3D and 2D FCNN scored somewhere in between the 3D
FCNNs and 2D FCNNs when it came to performance as well as time spent training. A
variant that further increased the performance of the 3D FCNNs used a smaller patch size
and one less level in the U-net.

Several different experiments were conducted for the 2D FCNNs that displayed similar
results with one another, both in terms of PSNR and visual performance. These include
replacing the loss function with either the L2, Huber, or L1 pyramid loss, using so-called
forced temporal, and using our variation of dropout.

In addition, some experiments for the 2D FCNN resulted in poor performances. These
include using only one level in the U-net, having the network output the same number of
frames as in the input sequence, and using a patch size of 64 or less.

∗For how the results of the state-of-the-art camera were produced, see Section 3.2.1.
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Chapter 7
Future Work

There is almost an endless number of configurations to train a neural network with. We
have found some configurations that work better than others, but there are many left unex-
plored. One way to continue from here could therefore be to optimize the parameters or
the structure of the network. One thing in particular that we mentioned in our discussion,
that could possibly increase the performance on swiftly moving objects, is to make the
receptive field larger and train the network specifically on data with more movement.

The loss function could be further developed in order to improve temporal noise filter-
ing. It was attempted to some degree, but unsuccessfully so. Optical flow may be a useful
metric for comparing temporal change [28], that could be worth looking into.

There are promising network architectures for capturing the temporal aspect not in-
cluded in this thesis. One of them is a RNN-based design, where the network keeps infor-
mation about previous frames in a state. This could certainly be something to experiment
with in order to enhance temporal denoising. A successful attempt was made by Godard
et al. [4], using combinations of recursive and convolutional layers. Another approach
discussed for this thesis was to use a generative adversarial network (GAN), resembling
Wang et al. [29]. This type of network could be used to dynamically learn the loss function
and incorporate the temporal dimension that way.
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