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Abstract

Snow insulation effects across the Arctic

by Alexandra Pongracz

The effect of future changes in temperature and precipitation patterns on arctic ecosystem func-
tioning is often assessed using state-of-the-art ecosystem models. Many models however lack
detailed representation of wintertime processes, as pointed out by recent studies (Wang et al.,
2016; Slater and Lawrence, 2013). This bias may influence the derived outputs, such as soil tem-
perature, permafrost extent and global carbon budget estimations.

In this project, the dynamic vegetation model LPJ-GUESS was applied with different com-
plexity snow schemes, with the aim of assessing whether the developments in snow dynamics
enhance the performance of the model in relation to air-soil temperature relationships (snow
insulation effect). We hypothesise that refinement of the snow scheme can provide higher agree-
ment between modelled and observational entities.

The single site analysis showed that a newly developed Advanced multi-layer, intermediate
complexity scheme is best suited to simulate internal snow dynamics, and the derived snow
depth and soil temperature outputs are comparable to measured entities. The regional multi
site analysis showed that the Advanced multi-layer scheme can best capture the air-soil temper-
ature variability, but the insulation effect is smaller than observed. The effect of using different
snow schemes is evident from the simulated Arctic active layer depth and permafrost extent.

Based on these results, the quantification of the snow insulation effect on soil properties and
permafrost extent may prompt developments in the model’s structural scheme. These updates
could help to simulate physical and biogeochemical processes with reduced uncertainty at high
latitudes.

active layer depth, Arctic, LPJ-GUESS, snow, soil temperature
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1 Introduction

1.1 Background

Since the 1990s, numerous studies have investigated vegetation productivity at high latitudes,
and the impact of climatic changes on these ecosystems (Keenan and Riley, 2018). In recent
years there has been an increased attention on identifying the drivers of change in this region.
The Arctic is expected to be highly susceptible to the climatic changes it will face in the coming
years and decades (Meyer et al., 2014).

Recently, the Snow, Water, Ice and Permafrost in the Arctic (2017) report assessed the state of the
Arctic, potential future changes and their effect on the global scale. The report established that
temperature is rising faster at higher latitudes than in other regions. The Arctic is estimated to
undergo 4 °C warming of air temperature in the next 30 years and changes in precipitation pat-
terns are also predicted (Christensen et al., 2017). The main question remains how the terrestrial
biosphere would react to these proposed changes, in particular the net exchange of carbon with
the atmosphere. Due to uncertainties in model projections, it is still unclear whether the Arctic
will act as a source or a weak carbon sink in the future (McGuire et al., 2012; Le Quéré et al., 2018).

FIGURE 1.1: The Pan-Arctic study region and estimated permafrost cover by the
Circumpolar Active Layer Monitoring program (Brown et al., 2002). Retrieved
from http://www.grida.no/resources/5234; Accessed 3 January, 2019; Credit:

Hugo Ahlenius UNEP/GRID-Arendal.

Carbon dynamics

Permafrost - ground that has a temperature below 0 °C for at least two or more consecutive years -
has an important influence on arctic ecosystems, affecting hydrology, soil properties, vegetation
composition and distribution. Approximately 25 % of the ice-free land surface of the Northern
Hemisphere is underlain by permafrost, adding up to an estimated 16.2 x 106 km2 large area
(Zhang et al., 2014; McGuire et al., 2018). The assessment prepared by the Permafrost Carbon
Network projects a decrease of 1-6 million km2 in permafrost area by 2100, the magnitude of
which depends on the applied climate scenario (McGuire et al., 2018). This can influence the
substantial amount of buried organic C (estimated at 1300 Pg by Peng et al. (2016)) in permafrost
soils. Release of greenhouse gases due to thawing permafrost can act as a positive feedback on
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climate, and therefore it is important to further evaluate cause and effect relationships across
these regions (Koven, Riley, and Stern, 2013).

It is still uncertain how altered climatic patterns will affect permafrost distribution and active
layer depths (ALD). Zhang et al. (2014) state that, while on a continental scale permafrost dis-
tribution is governed by air temperature, at smaller scales vegetation cover and soil conditions
need to be considered. Snow is noted as the most important control on soil temperature at re-
gional scales (Lawrence and Slater, 2010). Soil temperature affects the permafrost covered area,
greenhouse gas fluxes and soil carbon stock.

1.2 Snow-soil interactions

Snow provides an insulating cover over the ground, dampening the loss of heat during cold pe-
riods (Mackiewicz, 2012). This insulation effect is dependent on a number of factors, such as
the length of the snow season and snow depth. The most relevant snow related entities used to
estimate snow insulation are listed below. Table 1.1 provides a theoretical range of key variables
based on literature sources.

depth (d s) - Calculated from snow water equivalent (SWE, for instance millimetres of water) and
density, that is used as a proxy of the size of the snow pack. SWE is a key variable to keep track of
the snow pack’s mass and water balance. In short, a thicker snow pack better prevents cooling of
the surface, which results in higher underlying soil temperatures.

density (ρ) - Density of snow in a snow pack varies on temporal, as well as at spatial scales. The
density of fresh snow is low and increases as snow ages. Denser snow has higher thermal conduc-
tivity and thus decreased insulating capacity (Lawrence and Slater, 2010). There are differences in
density within the snow pack as well. Density is the primary control on snow thermal properties
(conductivity, heat capacity and diffusivity), which can be derived from density using empirical
relationships.

thermal conductivity (K s) - Thermal conductivity is matter’s capacity to transfer thermal energy.
It is determined by pre-defined, observation-based relationships. In the past 30 years, more
than 20 regression relationships were determined and applied in different schemes (Sturm et
al., 1997). The question arises: What range is appropriate from a modelling perspective?

volumetric heat capacity (C s) - Ratio of the energy (heat) added to 1 m3 of matter, resulting in a
change of its temperature. It depends on density, just as K s .

diffusivity (D s) - Ratio between thermal conductivity and heat capacity. Describes the propaga-
tion of temperature through matter (in this case snow or soil layers).

TABLE 1.1: Approximate ranges for key snow variables retrieved from literature
sources.

Variable Range Unit Reference

ρ 70-560 kg m−3 Ling and Zhang (2006) and Sturm et al. (1997)
Ks 0.021-0.65 W m−1 K−1 Pomeroy and Brun (2001) and Sturm et al. (1997)
Cs 7.5-9 x 105 J m−3 K−1 Ling and Zhang (2006)
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These entities are dependent on the composition of the snow pack, namely, the fractions of ice,
liquid water and air content. For the sake of simplicity, liquid water content of the snow pack is
not represented in this study. In reality, snow density can increase due to a number of different
mechanisms - through snow ageing, overburden pressure or destructive metamorphism - and
melting-refreezing cycles.

FIGURE 1.2: Theoretical subsurface temperature profile (Koven, Riley, and Stern,
2013). Potential snow cover - shown by the shaded grey area - effectively dampens
the cooling effect of air during the cold season. The dashed line shows the aver-
age temperature profile; solid lines the seasonal maximum and minimum annual

curves.

Figure 1.2 shows the theoretical snow-soil temperature profile for a permafrost underlain area. In
permafrost regions, 50-100 % of spatial soil temperature variation can be attributed to changes in
snow conditions (Lawrence and Slater, 2010). Soil temperature governs the ALD and permafrost
dynamics, and is therefore crucial to take into account. Other aspects to consider are the changes
in snow covered area (SCA), directly relating to the albedo feedback. Snow with a high albedo re-
flects a large portion of the incoming solar radiation, mitigating surface warming. To limit the
scope of the study and to be able to attribute divergences in model output variables to struc-
tural differences in the applied snow schemes, neither albedo, nor the effects of wind, vegetation
cover and composition on snow dynamics are considered in this study. The effects of snow cover
changes on surface albedo is not simulated and wind is not included in this model version either.
The influence of snow on vegetation is planned to be represented through a cold hardiness sub-
model within LPJ-GUESS, but as of now is not treated. As a result, these aspects are not discussed
in this project.

CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models project that the win-
ter snowfall rate will increase with a maximum of 45 %, by the year 2100 at high latitudes under
a moderate warming scenario, but at the same time the snow season will most likely shorten
(Lawrence and Slater, 2010). Collectively, these studies imply that more focus is needed to in-
vestigate the dampening effect of snow cover - since the simulated snow dynamics influences
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significantly the simulated soil thermal regime and indirectly the computed carbon budget esti-
mates. The relationship with thawing of near surface permafrost is also of interest to be able to
thoroughly assess potential changes in the Arctic.

Various projects investigate snow and winter season related processes. The European Space
Agency supported GlobSnow project creates spatially large extent, long term datasets of key snow
variables (snow depth and snow cover) (Luojus et al., 2011). The Snow Model Intercomparison
Project (SnowMIP) highlighted the advances in integrating winter processes, and its importance
for the Arctic region (Krinner et al., 2018). These advances prompt development in incorporating
snow dynamics in different projection frameworks.

1.3 Ecosystem modelling

A well-established tool is using state-of-the-art, process-based models to simulate potential ecosys-
tem responses to climatic and environmental changes. Models are, by definition, simplifications
of reality, and defining the appropriate complexity with which certain processes should be rep-
resented is a challenge. This is valid for winter-time processes as well. Abundant available obser-
vational data and technical advances promote the evolution of more complex and realistic snow
modules. Recently, there has been an increased focus on incorporating these developments in
land surface models. Model evaluations regarding snow related processes in global land sur-
face models point to the importance of using a multi-layer snow scheme over a the single-layer
scheme (Gouttevin et al., 2012; Krinner et al., 2018).

Recent snow related modelling

Wang et al. (2016) assessed the performance of nine land surface models, in order to reflect on
cross-model differences in snow insulation effect in the Northern high latitudes. Their investi-
gation highlighted that there are large deviations between models applying different snow struc-
tural representations. They found that models including multiple snow layers and dynamic snow
processes performed better compared to other models. The study mentions that besides snow
representation, other factors such as soil and vegetation properties and related processes influ-
ence the analysed modelled temperature outputs.

LPJ-GUESS

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) is one of the complex mod-
els used to evaluate vegetation responses under different climate scenarios and to determine
global carbon budget estimates. The model’s performance has been validated both on the re-
gional and the global scale (Zaehle et al., 2014; Smith et al., 2014; Peters et al., 2018).
The simulations provided by models carry a certain uncertainty, and are influenced by the pro-
cess representations incorporated in the systems. Slater and Lawrence (2013) conclude that cer-
tain models have significant snow depth and air temperature biases, stemming from structural
representations of cold season processes. Besides affecting soil temperatures, snow changes can
also influence carbon stock estimates. Spatially heterogeneous snow thermal conductivity can
result in a change in the modelled soil C stocks of 8 % (Gouttevin et al., 2012). The study of Wang
et al. (2016) also suggests that model predictions can be adversely affected by a simplistic snow
scheme. The snow insulation effect in LPJ-GUESS is smaller than in other models and the differ-
ence between air and near surface temperature shows an offset compared to observations.
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1.4 Aim

This project sets out to develop the representation of internal snow processes in LPJ-GUESS by
adding a new, more complex multi-layer snow scheme. The main aim is to evaluate the model’s
performance by comparing model simulations to observations, using different complexity snow
schemes. In addition, I will assess the potential impact of snow condition changes on soil tem-
perature and permafrost properties across the Arctic.

Approach

The primary model evaluation was implemented through single-site analyses, by assessing the
performance of the new, intermediate complexity snow scheme (Advanced multi-layer scheme),
using customised model simulations driven by observed meteorological data at a Finnish site.

Additionally, to assess the performance of the applied snow schemes, multi-site and regional
analyses were used to compare modelled and observed entities using a large set of Russian sites
and to assess permafrost active layer depth and spatial extent, compared to previous estimates
We hypothesise that improving the currently applied simplistic snow scheme in LPJ-GUESS en-
hances the accuracy of modelled entities - such as soil temperature - compared to observations.
Improving the model will also enable a reassessment of soil-snow-vegetation interactions and
their impact on the global carbon cycle.
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2 Materials and Methods
For this study, a customised Arctic version of LPJ-GUESS 4.0 (Wania, Ross, and Prentice, 2009;
Gerten et al., 2004) was used, with changes to the snow scheme and related modules (LPJ-GUESS
SVN Code Repository, revision 7185). LPJ-GUESS uses atmospheric CO2, precipitation and short-
wave (SW) radiation as basic forcing data. In each gridcell, LPJ-GUESS simulates vegetation
growth and population dynamics of PFTs (plant functional types) explicitly as a result of growth
and competition for resources (Smith, Prentice, and Sykes, 2001). This model includes a complex
interaction between processes, including physiological and biogeochemical cycling, plant-soil
N-cycling, soil and permafrost dynamics. LPJ-GUESS also has the ability to simulate permafrost
(soil thermal) dynamics, which enables us to study soil temperature, ALD and permafrost distri-
bution using this model (Wania, Ross, and Prentice, 2009). For details on model structure, see
Smith, Prentice, and Sykes (2001), Smith et al. (2014), Wania, Ross, and Prentice (2009) and refer-
ences therein.

The spatial extent of this project is limited to the Northern-hemisphere permafrost region.
The spatial resolution of simulations is 0.5 x 0.5 degree. Model simulations are initialised with
a 500 year long spin-up period - required to initialise potential soil and vegetation conditions -
followed by 115 simulation years from 1901 to 2015.

2.1 Data

A summary of used datasets for the model simulations and validation for the project sections are
listed in Table 2.1.

Single-site analysis: Sodankylä, Finland

Sodankylä is a site located at lat. 67.37, lon. 26.63 in the Northern boreal region, and is main-
tained by The Finnish Meteorological Institute - Arctic Space Center (FMI-ARC). This site is marked
as an intensive observation area and representative of high latitude ecosystems, thus fitting for
our evaluation and validation purposes. The station is on a forest clearing, and the surrounding
area consist of forests and some wetlands. The area is characterised by a thin mineral soil, con-
sisting of sand, silt and clay (70, 29 and 1 % respectively) (Essery et al., 2013). Measurements are
made in the proximity of trees, but they are not shaded by them, and the measured snow related
variables are therefore not biased (Rautiainen et al., 2014). The snow season at the site spans
from October to May. The maximum snow depth was 80 cm, and the maximum SWE was 165-
240 mm in the period 2009-2012. Sodankylä is characterised by low snow densities and little or
no depth hoar formation (Leppänen et al., 2016). This site hosts the so-called Sodankylä manual
snow survey program, which provides quality checked snow related observational datasets. Data
from Sodankylä may be used in upcoming snow model intercomparison projects as reported
by Essery et al. (2013). With the aim of testing how the model performs at a single site com-
pared to observed snow dynamics and soil temperature variations, we forced LPJ-GUESS with
climatic data collected from Sodankylä. A 7 year long (2007-2014) continuous meteorological
dataset of air temperature, short-wave radiation and precipitation was used, provided by FMI.
Besides supplying the climatic input for the model, snow depth, air-, snow- and soil temperature
measurements at several heights (-80, -40, -20, -10, -5, 0, 10, 20, 30, 40, 50 cm; negative values
represent sub-surface, positive values above ground heights) were used to evaluate the model’s
performance regarding vertical temperature profiles. To align the available observations, the pe-
riod 2011-2014 was chosen for model validation.

svn://stormbringer.nateko.lu.se/svn/LPJ-GUESS/branches/tech_soil_wintersnow
svn://stormbringer.nateko.lu.se/svn/LPJ-GUESS/branches/tech_soil_wintersnow
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Multi-site analysis

For the multi-site and regional analysis, the CRU-NCEP global reanalysis climate product version
7 - covering the time period 1901-2016 - was used as input for LPJ-GUESS. This is a global gridded
atmospheric forcing dataset with 0.5° x 0.5° resolution, including monthly values of air temper-
ature, precipitation and incoming solar radiation. This dataset is commonly applied as an input
to land surface models (Viovy, 2016).

Air-soil temperature relationships
The purpose of this regional application is to run LPJ-GUESS with global climatic data and evalu-
ate its performance using a large set of sites with available validation data. Similarly, to the study
of Wang et al. (2016), the focus period of this sub-project spans from 1980 to 2000. The model
was run for 256 Russian stations, with the aim of comparing observations and simulations of key
entities. For this step, quality checked snow depth, monthly near surface air and soil tempera-
ture at 25 cm depth data obtained from the Russian Research Institute of Hydrometeorological
Information, World Data Center was used (RIHMI-WDC; http://meteo.ru/).

Active Layer Depth evaluation
The Circumpolar Active Layer Monitoring (CALM) program, initiated in 1991, sets out to monitor
how ALD is affected by climatic changes on long temporal and wide spatial scales. There are
more than 200 sites involved and data is made available to the public free of charge. Due to the
long measurement period and global extent, a set of 10 CALM sites were chosen for this part
of the study (see selected sites in the appendix, Table A.2). These stations have a continuous
observational period of more than 10 years, and are spatially representative of the permafrost
region.

TABLE 2.1: Input and evaluation data used for this project. Observations are re-
trieved from: 1FMI, 2Russian Research Institute of Hydrometeorological Informa-

tion: World Data Centre, 3CALM Summary Data Table

Time frame Simulation forcing Validation variables

Si
n

gl
e

si
te Sodankylä 2007-2014

precipitation
SW radiation
air T1

SWE
snow depth
soil T
air T1

M
u

lt
i

si
te

Russian sites
(n=256)

1980-2000 CRU-NCEP
air T
precipitation
SW-radiation

air T
soil T (20 cm)
snow depth2

CALM sites
(n=10)

1996-2015
end of thaw
season ALD3

2.2 Simulation set-up

We tested three set-ups with different complexities of snow representation in LPJ-GUESS - the
details of each scenario is shown below and summarised in Table 2.3. Table 2.2 describes the
variables used in this project.
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TABLE 2.2: Description of key snow variables.

Variable Description Unit Equation
ρk layer density kg m−3 2.1, 2.2, 2.3, 2.5, 2.6
ρ0 reference density kg m−3 2.5, 2.6
g gravitational constant m s2 2.5

Mk mass above the middle of the snow layer kg 2.5
ηk compactive viscosity Pa s 2.5
Tm reference temperature °C 2.5
Tk layer temperature °C 2.5

Tsnow snow threshold temperature °C 2.7
mel t daily melt water mm day−1 2.7

t time step day 2.5, 2.8
z layer thickness m 2.8
D diffusivity W J−1 m−2 2.8

Static scheme

Simplistic version as used in the model intercomparison project by Wang et al. (2016). The
snow pack is not divided into layers. Compaction is not considered, snow density and thermal
properties are set as constants, following literature recommended values (362 kg m−3 and 0.196
Wm−1K−1respectively).

Simple multi-layer scheme

Basic multi-layer snow scheme. Snow layers are defined daily, based on the size of the snow pack
(total SWE) and the user defined maximum layer thickness (50 mm), without preserving informa-
tion of the potential snow layer distribution from the previous day. Snow density varies between
150 and 500 kg m−3, according to a simple compaction scheme based on snow ageing following
Wania, Ross, and Prentice (2009) as expressed in Eq. 2.1:

ρk =


ρmi n Scur r ent ≤ 0.75∗Spr ev

ρmi n + (
ρmax −ρmi n

) Scur r ent−0.75∗Spr ev

0.25∗Spr ev
0.75∗Spr ev < Scur r ent ≤ Spr ev

ρmax Scur r ent > Spr ev

(2.1)

Fresh snow density (ρmi n) is assumed until the current year’s number of snow days (Scur r ent )
reaches 75% of the previous year’s total number of snow days (Spr ev ). Afterwards, snow density
evolves following Eq. 2.1. This means that compaction only occurs at the last fourth of the snow
season and that the updated density is confined between the defined range (ρmi n and ρmax ).
Even though the snow pack is divided into sub-layers (maximum of 5), the layers do not have
individual properties, such as density and thermal conductivity and heat capacity. This results
from the fact that the layers are defined each day, without taking into account the layer distribu-
tion of the previous day. Using the snow ageing scheme, the Simple multi-layer set-up preserves
constant (low density, freshly fallen snow) snow layer density for all defined layers in the first 75%
of the current snow season - behaving much like the Static scheme. During the latter quarter of
the snow season the snow pack’s density (each layer having the same density) will increase daily,
following Eq. 2.1. Thermal conductivity (Ks) is dependent on the the layer’s calculated density,
based on Ling and Zhang (2006), as shown in Eq. 2.2.
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Ks = 0.138− 1.01ρk

1000
+3.233

( ρk

1000

)2
(2.2)

Heat capacity (Cs) is calculated using Eq. 2.3, following Ling and Zhang (2006), using air temper-
ature (Tai r ) and snow layer density:

Cs = 1000ρk (0.185+0.00689Tai r ); (2.3)

Both in the Static scheme and in the Simple multi-layer scheme, density is assumed to be equal
to ice density in the heat capacity calculation (917 kg m−3). Since this value is almost twice the
potential snow density, the derived heat capacity values is approximately 1.9 x 106. These values
are higher than the literature suggested guidelines. Snow layer diffusivity (Ds) is computed as the
ratio between thermal conductivity and heat capacity as shown in Eq. 2.4:

Ds = Ks

Cs
(2.4)

Advanced multi-layer scheme

This intermediate complexity multi-layer snow scheme is the most advanced scheme tested and
it was incorporated in LPJ-GUESS in this project. Snow layers are defined using the pre-set max-
imum layer threshold (50 mm), but opposed to the Simple multi-layer scheme, the layers are
handled dynamically, preserving the layers distribution and properties from the previous day.
The Advanced mulit-layer scheme applies mechanical compaction (Eq. 2.5), based on Best et al.
(2011):

∂ρk

∂t
= ρk g Mk

ηk
exp

(
ks

Tm
− ks

Tk
− ρk

ρ0

)
(2.5)

The increase in the snow layer’s density (∂ρk ) depends on the mass of overlying layers (Mk ).
The calculated snow density is confined between 150 and 500 kg m−3. Tm denotes the melting
point of water and ηk the compactive viscosity factor (see Table 2.2). ks is an empirical constant
defined by Best et al., 2011, with a value of 4000 K. The snow layers are dynamically handled,
using precipitation and air temperature as forcing. If a layer’s thickness exceeds a prescribed
threshold, a new layer is initiated. If all the layers reach the pre-defined maximum layer depth
(50 mm in this case), excess snow is transferred to the bottom layer. This way, the topmost layer
is always the thinnest. After snow melt occurs, the layers are reviewed, and snow is redistributed
between the existing layers, to ensure realistic snow pack dynamics. Each layer has its own thick-
ness (depth, dk ), mass, density, temperature and thermal properties. Ks in this set up is calcu-
lated using a power function on layer density and a reference density (ρ0)(Eq. 2.6, following (Best
et al., 2011)).

Ks = 2.22

(
ρk

ρ0

)1.88

(2.6)

Melting, computed by Choudhury and DiGirolamo (1998) (Eq. 2.7) occurs if the temperature of
a layer (Tk ) is above 0 °C, and melt water directly runs to the soil. Each applied snow scheme
uses Eq. 2.7 for calculating the amount of daily melt water in the existing layers, where Tsnow

expresses the set threshold temperature for snowfall (0 °C in this case).

mel t = (1.5+0.007∗pr eci pi t ati on)(Tk −Tsnow ) (2.7)

Each existing layer participates in the compaction process. The increase in layer density due
to overburden pressure is dependent on half of the mass of the current layer and the mass of the
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overlaying snow cover. The resulting pack’s density is weighed by the amount of old and new
snow present, each day when new snow comes on top of an already existing layer.

Soil and snow layer temperatures are computed taking into account each layer’s diffusivity
(D) and height (z), using the Crank-Nicholson finite difference method (Eq. 2.8).

∂T

∂t
= ∂

∂z

(
D(z)

∂T

∂z

)
(2.8)

FIGURE 2.1: Snow pack design of the Advanced multi-layer scheme (C1-C5 de-
notes the compaction in each layer).

Figure 2.1 provides a sketch of the updated multi-layer snow pack design. The work-flow of the
Advanced multi-layer scheme is presented in Figure 2.2. The snow related processes are handled
in five major stages. In contrast to previous model versions, each layer has individual physical
and thermal properties which are forwarded to the soil-snow temperature calculation function.

The multi-layer approach enables the simulation of thermal gradients inside the snow pack.
However, there is no separation between ice and liquid water fractions in the snow layers. Since
snow density governs the thermal properties in all applied schemes, we assume that assigning
values for each perspective layer and applying a mass-based mechanic compaction scheme will
provide a more realistic simulation of the snow profile and the snow pack’s internal dynamics.
Table 2.3 summarises the structure of the applied snow schemes, based on their key characteris-
tics.
A dynamic and individual representation of snow layers make it possible to save layer specific
model outputs, such as density. This way, unlike other models, - such as the model CLM 4.5
(Oleson, Lawrence, and Bonan, 2013) - snow depth is calculated from snow water equivalent
based on the simulated daily layer densities, instead of an assumed average density value.
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FIGURE 2.2: Work-flow of the updates in the Advanced multi-layer scheme.

TABLE 2.3: Characteristics of the applied schemes.
1Wania, Ross, and Prentice (2009), 2Best et al. (2011), 3Ling and Zhang (2006)

Static Simple multi-layer Advanced multi-layer

Snow layers
static

1 layer
dynamic
5 layers

dynamic
5 layers

Compaction
fixed

density
snow ageing 1

Eq. 2.1
mechanical 2

Eq. 2.5

Thermal conductivity fixed
linear 3

Eq. 2.2
power on density 2

Eq. 2.6

Heat capacity fixed
density based 3

Eq. 2.3
Water phases ice only

2.3 Analysis methods

Firstly, we conducted a single-site (local) analysis, in order to ensure that all integrated snow
schemes are functional and to evaluate if the modelled snow and soil temperature dynamics are
comparable to site measurements. We extended the area covered by simulations as a next stage,
since LPJ-GUESS is calibrated for regional rather than local scale analysis. The Russian sites’ anal-
ysis made it possible to replicate a methodology applied for the recent study of snow insulation
by Wang et al. (2016) and to make use of a large areal cover observation dataset of soil tempera-
ture and snow depth variables for validation. The Pan-Arctic simulations were conducted with a
diagnostic purpose, visually interpreting the modelled permafrost distribution. The main aim of
this latter step was to assess whether the differences in snow depth and soil temperature variables
using the three snow schemes for the small scale simulations are shown at a broad scale.

Single-site analysis

For the single-site investigation, LPJ-GUESS was run with observed climatic data for the So-
dankylä site (see Table 2.1).

Diagnostics of the new scheme
To evaluate the updates in snow representation in the Advanced multi-layer scheme, individual
snow layer properties, soil and snow temperature outputs were compared to literature references
and observational data. This step was necessary to test if the model is able to simulate realistic
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conditions and to ensure it can be used for further analysis. Differences in snow representation
within the three snow schemes (Static, Simple- and Advanced multi-layer schemes) are discussed
in the corresponding Results section (3.1.1).

Comparison to observations
To study the correspondence between simulated and modelled entities, snow depth and vertical
temperature profiles were investigated in the period between October 2007 and October 2014. It
is not possible to simulate coinciding rain and snow events by the model, therefore it is necessary
to set a threshold temperature to determine when snow fall occurs. Essery et al. (2016) estab-
lished that the possibility of snowfall is high around 0 °C, and preliminary simulations showed
an improved fit when adjusting this temperature threshold to 2 °C. Thus, to account for site spe-
cific properties, the temperature threshold in the model below which snow falls was adjusted
from the default 0 to 2 °C for all three applied schemes. Since Sodankylä experiences low snow
densities (Rautiainen et al., 2014), the density range governing the mechanical compaction in
the Advanced multi-layer scheme was modified to 100-350 kg m−3 and the compaction rate low-
ered (to 20 % of the default set-up) for the Advanced multi-layer scheme. The constant density
of the Static scheme was defined as 200 kg m−3, taking into account the average snow density
at the site reported by Rautiainen et al. (2014), based on observations. The preliminary analysis
showed that these alterations increased the agreement between observed and estimated entities.
These optimisations made possible to relate/appoint differences in the schemes’ performance to
structural differences, rather than parameter uncertainties.

Multi-site and regional analysis

Air-soil temperature differences
The method used in Wang et al. (2016) was followed to determine whether the higher complex-
ity snow scheme provided a better fit to observations. We assessed the modelled air-soil (25 cm
depth) temperature relationship at the same set of Russian sites as in Wang et al. (2016). For this
task, the winter months (December-January-February) were used (DJF), between 1980 and 2000.
The emphasis was on inspecting the air-soil temperature and soil temperature-snow depth rela-
tionships.

Trend in ALD and spatial permafrost extent
Observed end of thaw season ALD between 1996-2015 was compared to simulated maximum
ALD at each site. Trends in ALD evolution were assessed and results compared with literature
references (such as Luo et al. (2016)). A Pan-Arctic wide spatial analysis was conducted to assess
modelled permafrost extent over the study region. Thaw depth is defined in the model as the 0
°C isotherm in the soil, which means that the maximum ALD was derived from the simulations
based on the modelled soil temperature. In this study, near-surface permafrost was defined as ar-
eas where the maximum ALD was less than 150 cm. Due to time constraints, the areal permafrost
cover was compared only qualitatively to the map of Brown et al. (2002) and other modelling
studies (McGuire et al., 2018; Koven, Riley, and Stern, 2013).
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3 Results

3.1 Single-site analysis

3.1.1 Evaluation of the Advanced multi-layer scheme

The seasonality of snow cover and the SWE of each layer is shown in Figure 3.1 a. Since this figure
summarises the snow layer characteristics averaged over all simulation years, the fourth layer is
only visible in March-May. Due to the low SWE at this site, the potential fifth layer is not simu-
lated.

FIGURE 3.1: Average snow layer properties in So-
dankylä, applying the Advanced multi-layer snow

scheme. Colours denote the different snow layers.
a) Snow layer division and layer snow water equiva-
lent (SWE) averages per month. b) Simulated snow
pack structure at Sodankylä, during a selected snow

season.

Figure 3.1 b shows the structure and dynamics
of the snow pack from September 1974 to May
1975. It indicates that Layer 1 (bottom layer) is
the deepest layer and its height decreases after
mid-December, due to compaction and po-
tentially melting. This simulated density pat-
tern within the snow pack - lower layers hav-
ing higher density and top layers lower den-
sity - is consistent with the snow pack char-
acteristics reported from the same site by Es-
sery et al. (2016). The differences in simulated
snow cover for the different complexity snow
schemes can be seen in Figure A.1. The dif-
ferences in patterns suggest that indeed the
complexity of snow representation influence
significantly snow cover dynamics.

3.1.2 Validation of soil temperature and
snow depth

Figure 3.2 compares the simulated and ob-
served snow depths throughout seven snow
seasons between November 2007 and 2014.
As a result of the site specific optimisation,
all schemes show skill to approximate snow
depth dynamics at Sodankylä. Figure 3.2 a
shows that the Static scheme generally overes-
timates the snow depth, except for 2010, when
all schemes show larger deviations from the
observations. The Simple multi-layer scheme
provides a good fit in certain years - such as
2011 - but overestimates snow height at the
beginning of the snow season in all years - except 2010. The Advanced multi-layer scheme seems
to consistently underestimate the maximum snow height by 10-15 cm, but follows the seasonal
trend of measurements well. Figure 3.2 b confirms the skill of the Advanced multi-layer scheme
in capturing snow depth dynamics correctly. The scatter of Simple multi-layer’s points suggests
that this scheme cannot capture snow height dynamics with high precision. The coefficient of de-
termination (R2) is 0.84, 0.71 and 0.88 for the Static, Simple- and Advanced multi-layer schemes
respectively. The RMSE applying the three schemes is 12.41, 15.45 and 10.7 cm, respectively (see
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Appendix Table A.1). The highest calculated R2 and the lowest RMSE for the Advanced multi-
layer scheme suggest that the agreement between observed and modelled entities is highest for
the Advanced multi-layer set up.

Simulated snow depth controls the insulation capacity of snow, and therefore influences mod-
elled soil temperatures directly. To evaluate the differences in snow insulation effect of the new
scheme, the simulated soil temperature profiles were compared (Figure 3.3). In general, we can
clearly distinguish the different schemes’ temperature profiles from one another, which suggests
that the complexity and structural representation of snow cover have a significant influence on
near surface soil temperatures. This finding aligns with recent modelling studies (Best et al., 2011;
Gouttevin et al., 2012; Essery et al., 2013).

FIGURE 3.2: a) Observed and simulated snow depth at Sodankylä, 2007/11 to
2014/7. Continuous lines represent different model set-ups, the dashed line ob-
served snow height. b) Observed and measured snow depth relationship at So-

dankylä (2007-2014). Colours represent different model set-ups.

FIGURE 3.3: Observed and modelled soil temperature at six depths, between
2011/11 and 2014/7.
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TABLE 3.1: Soil temperature R2 for the three snow schemes at Sodankylä (2011-
2014).

0 cm -5 cm -15 cm -25 cm -35 cm -75 cm
Static 0.84 0.89 0.9 0.9 0.9 0.86
Simple multi-layer 0.95 0.95 0.94 0.94 0.95 0.94
Advanced multi-layer 0.95 0.96 0.97 0.97 0.92 0.95

TABLE 3.2: Soil temperature RMSE (°C) for the three snow schemes at Sodankylä
(2011-2014)

0 cm -5 cm -15 cm -25 cm -35 cm -75 cm
Static 5.34 4.28 4.35 4.06 4.11 4.5
Simple multi-layer 2.56 2.83 2.51 2.6 2.41 2.21
Advanced multi-layer 2.16 1.58 1.63 1.35 1.43 2.13

Soil temperature observations were available from 2011 onward, thus the sub-surface tempera-
ture analysis focuses on this period. All schemes capture spring and autumn temperatures accu-
rately. The Static scheme consistently underestimates soil temperatures at all depths during the
cold season. On the other hand, the Simple multi-layer scheme simulates higher than measured
winter temperatures during the study period. The Advanced multi-layer scheme has a small neg-
ative bias of soil temperature compared to observations, for all investigated layers.
Computed R2 and RMSE between measured and simulated soil temperatures (presented in Table
3.1 and Table 3.2 indicate the highest agreement applying the Advanced multi-layer scheme at all
depths.

An interesting feature on Figure 3.3 is that there is a slight difference between measured and
simulated soil temperatures at the summer peak, which suggests that the summertime soil ther-
mal properties are not accurate.

3.2 Multi-site analysis

3.2.1 Evaluation of air-soil temperature differences

To quantify and evaluate the snow insulation effect in LPJ-GUESS , the simulations were con-
ducted on a set of 256 Russian sites, as used in (Wang et al., 2016).

Air-Soil temperature & snow depth relationship
The difference between air and soil temperature, ∆T, is used as a proxy for measuring insula-
tion capacity of snow. ∆T relationships for different snow regimes can be seen on Figure 3.4 a.
Three temperature classes were defined to assess how snow influences the air-soil temperature
relationship during cold, intermediate and warmer air temperature periods. Air temperature can
affect snow internal processes, and it is therefore an important factor to account for.

According to observations, the insulation capacity is increasing with snow depth, and shows an
asymptotic trend. Snow during warm air temperature conditions (-5 to -15 °C) has lowest ∆T
values, while the insulation capacity is at its maximum during the coldest conditions. At low ∆T
values, the three analysed temperature regimes show a more similar behaviour in the simula-
tions, while at higher temperature differences the three series are easily distinguishable. Except
for the Static scheme, the other set-up can reproduce the increasing insulation capacity at higher
snow depths. The magnitude of∆T is smaller for the Advanced scheme, and higher for the Simple
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multi-layer scheme compared to observations. It stands out that the Static scheme shows a sig-
nificantly different pattern than both the observations, other schemes, and the results of Wang
et al. (2016). A plausible cause of the deviation between the published and current results may be
the fact that the Wang et al. (2016) article used another climate dataset (CRU TS30, Harris et al.,
2014), compared to the more recent CRU-NCEP version 7 dataset applied in this study.

FIGURE 3.4: Snow insulation effect 1980-2000, DJF, observations and model simu-
lations using three snow schemes. Snow depth presented on the horizontal axis is
classified in 5 cm depth bins. Colours indicate different air temperature regimes.
Upper and lower bars present the 25th and 75th percentiles. a). Difference in
air-soil temperature and snow depth relationship. b). Soil temperature and snow

depth relationship.

Soil temperature & snow depth relationship
Previous studies confirm the insulating effect of snow depth up to a certain point. This threshold
is called the effective snow depth, which can vary depending on site location between approxi-
mately 25-40 cm snow height (Slater, Lawrence, and Koven, 2017; Wang et al., 2016). The effec-
tive snow depth threshold can be seen from the observational soil-snow relationship on Figure
3.4 b). The Static scheme can reproduce neither the range nor the trend of the soil-snow relation-
ship. The Simple- and Advanced multi-layer schemes can adequately simulate the range of soil
temperatures, with the Advanced multi-layer scheme showing lower soil temperatures than ob-
served, a behaviour also observed at the single site simulations (Figure 3.3). On the other hand,
the Simple multi-layer scheme levels off at lower snow depth, than indicated by the measure-
ments.

Bias analysis
Wang et al. (2016) ascertained that the CRU-NCEP version 4 - covering the time period 1901-
2008 - climate forcing has a 4.7 °C negative air temperature bias compared to the observations
from the set of Russian sites. To test how the meteorological driving data affects the derived
outputs, we conducted a sensitivity like analysis by increasing air temperature with 4.7 °C (the
bias reported by Wang et al. (2016)). Figure A.2 displays the results of the test simulation for the
Advanced multi-layer scheme. The ∆T range is higher than with the default simulations, better
resembling the measurements. Soil temperature shows a steeper increase at low snow depth,
and the shape of the curve compares to the observed relationship. Since the current CRU NCEP
driving data is an updated version of the one used in Wang et al. (2016), we additionally calculated
the air temperature statistics regarding our applied climate dataset. The RMSE is 1.4 °C and the
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model bias compared to observations is -0.4 °C, both of which are smaller deviations from the
measurements than in the previous NCEP product.

3.2.2 Permafrost properties at CALM sites

Trends in maximum ALD
To assess the model’s ability to capture observed trends in ALD, the statistical characteristics of
each CALM study site was computed, which is presented in Table 3.3. The sites are distributed
across the Arctic and the ALD measurements are made using different methods (thaw tubes,
probing and ground temperature measurements). Besides the different methodology, the spa-
tial resolution of observations also differs. The comparison between modelled and simulated
values is thus challenging. It is clear from this table that regarding the 20-year average maximum
ALD values the three model schemes show deviations from the observed mean values.

TABLE 3.3: Average annual maximum ALD of selected CALM sites (1996-2015).

Site name Site code Observed ALD (cm)
Modelled ALD (cm)

Static Simple m-l. Advanced m-l.
Barrow U2 35.9 61.5 66 60.5
Deadhorse U6 64.8 118.1 122 121
Pearl Creek U19 70.3 150 150 150
Zackenberg G2 64 37 40.5 37.9
Abisko S2 72 78.6 150 108.5
Vaskiny Dachy R5 80.2 93.8 128 91.9
Lake Glukhoe R19 87 98.4 129 117.9
Bykovsky R29A 84.6 93.1 115.4 94.6
Ayach-Yakha R2 33 133.5 150 149.3
Reindeer Depot C7A 134.8 148.9 148.9 129.3

The observed end of season ALD and simulated maximum ALD when applying the different snow
schemes can be seen on Figure 3.5. In this project, permafrost was defined having ALD < 150 cm,
therefore at the sites where the modelled ALD reaches this threshold - such as U19 and S2- we
can conclude that the model does not simulate permafrost conditions. There are big differences
in model performance at the sites. In general, the Simple multi-layer scheme is predicting the
deepest active layer, and the Static scheme the shallowest. The Advanced multi-layer scheme
provides a close fit to the observations at sites R5 and C7A. At other sites - such as U6 and R29A -
the model detects the trend, but overestimates ALD. Given that these simulations were run with
global and not site specific climate data, soil conditions and that the measurements represent
conditions at a constrained locations, evaluating the model performance quantitatively is chal-
lenging. Hence, the focus in evaluation is more qualitative and focuses on determining if the
model version has the skill to reproduce trends in ALD, and not the absolute accuracy of outputs.
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FIGURE 3.5: Maximum seasonal ALD for 10 CALM sites, observations and model
simulations, applying three different snow schemes. Sites with a ∗ are marked by

Luo et al. (2016) having significant observational trends in ALD.
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3.2.3 Pan-Arctic permafrost extent

Large scale ALD patterns were observed by conducting Pan-Arctic simulations while applying
each of the three snow schemes. This analysis step had a qualitative focus, aiming at inspect-
ing whether the single-site and multi-site simulation findings hold for the whole Pan-Arctic. The
modelled ALD and winter time (DJF average) soil temperature at 25 cm depth is shown on Figure
3.6.

FIGURE 3.6: Pan-Arctic simulations applying the three tested snow schemes, aver-
age 1996-2015. Top row: Maximum ALD (in meters), Bottom row: Average winter

(DJF) soil temperature at 25 cm depth (in °C).

The permafrost covered area (ALD < 1.5 m) is the smallest using the Simple multi-layer scheme,
which aligns with the previous findings in Figure 3.3 and 3.4, which show that this scheme sim-
ulates a higher than measured insulation effect and increased soil temperatures. The calculated
modelled permafrost covered area for the is 11.87 x 106 km2, 8.351 x 106 km2 and 10.77 x 106 km2

for the Static, Simple multi-layer and Advanced multi-layer schemes respectively. The Static and
Advanced multi-layer schemes’ permafrost extent is similar to each other, the Static one has a
shallower ALD in Eastern Russia. Although permafrost areal cover estimates show a large spread,
the estimates of these two set ups correspond to the approximate range reported by McGuire et
al., 2018; Koven, Riley, and Stern, 2013. The shallow soil temperature figures at the bottom row of
Figure 3.6 explains the noted patterns in ALD. The Simple multi-layer scheme simulates signif-
icantly higher winter soil temperatures across the Arctic region, red and consequently the com-
puted permafrost extent is lower than for the other schemes. The Advanced multi-layer scheme
shows higher soil temperature values in Northern Europe and Northernmost parts of America.
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4 Discussion

4.1 Overall assessment of performance

The results obtained by applying the three snow schemes are in agreement with previous find-
ings, suggesting that the complexity of the representation of snow within LPJ-GUESS has a sig-
nificant influence on both simulated snow and soil properties.

The major disagreement between the Static simulation and observed temperatures in Figure
3.4 for the set of Russian sites suggests that this scheme could, potentially, only yield realistic re-
sults if the constant parameters are optimised for the chosen study region. This is supported by
the relatively good performance of the optimised Static set-up for the Sodankylä site. The Sim-
ple multi-layer scheme performed better at broad scales - predicting the insulation capacity for
the set of Russian sites - than in the single-site analysis. Based on the outcomes of this study,
it appears that the new intermediate complexity snow scheme (Advanced multi-layer scheme)
has the skill to adequately simulate snow dynamics both at the local and regional scale. The
computed R2 and RMSE values suggest that this new dynamic snow scheme is able to simulate
snow micro-structure, layer distribution and density variability more realistically than the other
schemes. Snow density is a key variable, since the variables regulating insulation capacity (ther-
mal properties, conductivity and heat capacity) are derived from it. Hence, it is a link between
above- and sub-surface conditions. Simulating density mechanistically is an important step to
assess complex snow-soil relationships in the future. The misfit compared to measurements,
however, suggests that further improvements in the scheme could enhance the model’s perfor-
mance.

This section has reviewed the key aspects of the results, the behaviour of each scheme is
discussed in detail in the following sections, according to the project’s structure.

4.2 Sodankylä site simulations

The single-site analysis sought to investigate how the optimised models’ performance differs us-
ing the three applied snow schemes, while validating results with observational station data.

In Figure 3.2 we can see that the Static scheme with constant snow density and thermal con-
ductivity can reproduce the snowfall patterns at the Finnish site. Rautiainen et al. (2014) stated
that the average annual snow density is 170-200 kg m−3, which explains why the customised
Static scheme with a constant 200 kg m−3 snow density corresponds well to the measured snow
height. Using observed precipitation as model input data also increased the fit between simu-
lated and measured snow depths. As pointed out in the Results section, the Simple multi-layer
scheme captures the snow height, although Figure 3.2 b shows that there is a broad spread of
simulated snow depths. This finding suggests that, in general terms, the Static scheme performs
better than the Simple multi-layer one. The Simple multi-layer scheme is unable to capture the
snow dynamics at this site, which in turn affects the sub-surface thermal regime. Even though
the Advanced multi-layer scheme is more complex, the fit between observed and modelled snow
depth and soil temperature entities are comparable - after customising the snow temperature
threshold and density range parameters to match local conditions. The design of the integrated
compaction scheme could be the reason why the Advanced multi-layer scheme is consistently
underestimates snow height at Sodankylä. The compaction rate was significantly lowered for
these simulations, yet the resulting layer densities prove to be higher than the observations. An-
other reason behind this misfit could be that compaction occurs continuously for each day that
at least one snow layer exists. In reality, compaction is dependent on several factors, e.g. wind
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forcing, grain size, temperature gradient within the snow pack and liquid water content among
others. Aiming at the simplest structural representation, these processes are not taken into ac-
count in this study, but will be addressed in the future.

Regarding the soil thermal regime, an interesting feature in Figure 3.3 is that the Static scheme
consistently underestimates soil temperature during the winter period. The modelled snow depth
values are higher than measured, which suggests a higher insulation capacity and thus higher
than measured soil temperatures - as observed for the Simple multi-layer set-up. The devia-
tions between simulated and measured soil temperatures during the winter period, using the Ad-
vanced multi-layer set-up, can be attributed to the thinner simulated snow pack, shown in Figure
3.2 a. Denser snow layers build up a thinner snow pack, with a lower insulation capacity, which
could contribute to the underestimation of soil temperatures. The computed soil temperatures
are also influenced by the structural representation of snow layers, which can be observed in the
temperature profile sketch in Figure 1.2. In case the layers have the same density and thermal
properties (Simple multi-layer scheme), the change in temperature from the atmosphere towards
the soil surface would be abrupt, without a gradient in the snow pack (blue dashed line). On the
other hand, accounting for the layer’s specific density and conductivity (Advanced multi-layer
scheme) makes it possible to simulate a step-wise change in temperature within the snow pack
(minimum curve). This calculation method suggests that applying the Simple multi-layer set up
the temperature difference between atmosphere and soil would be bigger, and the calculated soil
temperatures therefore higher than with the Advanced multi-layer scheme with individual snow
layers. Differences during the summer peak period for all three schemes may be caused by soil
upper layer moisture content, which affects soil thermal conductivity. Phase changes and inter-
nal, sub-daily transport of water between snow layers towards the soil are not simulated, even
though these features could affect soil hydrological conditions. After implementing a more real-
istic melt-water treatment and frozen-liquid water fractionation, this feature can be re-evaluated,
and potentially corrected.

Thus far, we evaluated the potential for small scale application and argued that the newly
developed Advanced multi-layer scheme is suitable for further analysis. The section that follows
moves on to assess the snow insulation effect at a regional scale, while applying the different
set-ups.

4.3 Evaluation of air-soil temperature differences

The main objective of this section is to compare the performance of the three snow schemes to
the findings of Wang et al. (2016).

Air-soil temperature
Regarding the insulation effect (∆T), the Simple multi-layer scheme results resemble the most the
observational pattern, although it overestimates ∆T for snow depths from 40-50 cm and higher.
The Sodankylä site runs (Figure 3.3) also showed that the Simple multi-layer scheme simulates
higher than measured soil temperatures along the soil profile. Applying the Advanced multi-layer
scheme, the model is able to capture the differences between the three temperature regimes,
where the air-soil temperature difference is the highest for the group with an air temperature of -
25 °C or colder. Wang et al. (2016) point out that the snow insulation effect is expected to be lower
in case the model is underestimating snow height, because thick snow insulates better than thin
snow. This feature can be seen in Figure 3.4 a, where the magnitude of insulation is significantly
lower for the Advanced multi-layer scheme compared to the observations.

The insulation saturation effect can be noted in the observation and Simple multi-layer scheme
plots in Figure 3.4. It appears that increases in already thick snow influences soil temperature
less, since the curves level off at a height of approximately 40 cm. This feature is consistent with



Chapter 4. Discussion 22

the findings of Slater, Lawrence, and Koven (2017), although they suggest that the snow insula-
tion effect drops above approximately 25 cm. The Advanced multi-layer scheme has a lower am-
plitude for ∆T, and the threshold effective snow depth is barely visible. The lower than observed
insulation capacity along all snow depth classes indicates that the calculated snow thermal con-
ductivity is probably higher than in reality. This results in a lower air-soil temperature difference
due to a weaker insulation.

Soil temperature
Looking at soil temperature variations, the Static scheme performs poorly, which could be ex-
pected from the corresponding graph in Figure 3.4 a. Minor developments on the model since
the publication by Wang et al. (2016), along with the different meteorological forcing data might
be the reasons why the Static scheme provides significantly different results than the ones re-
ported by Wang et al. (2016). This is discussed in the next paragraph. Just as for ∆T, the Simple
multi-layer scheme set up resembles the observational pattern the most. The decrease in soil T
with increasing snow height is, however, steeper than the measured rate. The Advanced multi-
layer scheme captures the soil temperature-snow height relationship between different temper-
ature regimes, but shows a negative shift by approximately 5 °C compared to the reference plot.
Although the Advanced multi-layer scheme is the most complex out of the three tested schemes,
there are still important processes missing from the framework, as mentioned in the previous
paragraph. Pomeroy and Brun (2001) state that the presence and quantity of liquid water within
a snow layer can influence the compaction rate by changing the snow’s viscosity factor. Including
ice-liquid water fractionation may affect the simulated insulation behaviour.

As indicated previously, the Static scheme performed poorly both in regard to ∆T and soil tem-
perature relationships. The insulation effect observed for this scheme was well below the re-
ported results of Wang et al. (2016). Given the different climatic forcing dataset and the computed
bias compared to measured air temperature, we decided to test how warmer conditions would
influence the insulation capacity for the Static and Advanced multi-layer schemes. We saw no
effect on the performance for the Static set-up.

Increasing the air temperature by 4.7 °C - the reported bias for CRU NCEP4 dataset (Viovy and
Ciais, 2011) - resulted in a stronger insulation effect for the Advanced multi-layer scheme. What
stands out on Figure A.2 is that, while the soil temperature curve follows a similar asymptotic
trend as the observations, the warmest temperature class behaves much like the default simu-
lations. The air temperature bias computed for the CRU NCEP version 7 dataset used for our
simulations is -0.4 °C - significantly lower than for the earlier dataset. The 1.4 °C RMSE (root
mean squared error) suggests that the applied version is suitable for the regional analysis and
that the results presented in Figure 3.4 are valid. The higher air temperature test nevertheless
showed that the accuracy of air temperature forcing data can considerably influence small scale
simulations. Even though the increased air temperature test resulted in a higher insulation ef-
fect for the Advanced multi-layer scheme (seen in Figure A.2, left column), the findings of the
bias analysis suggest that the model-observation deviations are caused primarily by structural
differences in the schemes, and not by the different climatic forcing data.
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4.4 Evaluation of permafrost dynamics

Surface conditions, such as snow cover and snow height, directly influence sub-surface condi-
tions at high latitudes. During the winter period, snow dampens the air’s cooling effect, result-
ing in higher near surface soil temperatures which affect the rate and depth of thawing. We ex-
pected that the structural differences would significantly influence simulated permafrost prop-
erties, since the previous sections showed that the representation of snow related processes has
an effect on both simulated snow dynamics and soil temperatures.

ALD trends at CALM sites (1996-2000)
Figure 3.5 and Table 3.3 confirm this hypothesis, showing the differences between the used schemes’
performance. As mentioned in the Results section, the average observed and modelled ALD be-
tween 1996-2015 does not align well at the selected sites. The time series analysis (Figure 3.6)
shows that at sites U19, S2, R2 and C7A the simulated ALD reaches the predefined maximum of
150 cm. At other locations - U6, S2, R19, R5, C7A - the Advanced multi-layer scheme is able to
capture the inter-annual variability, even though there’s an offset in the active layer depth. Luo et
al. (2016) studied the spatio-temporal variations in active layer thickness based on observations
at several CALM sites, including the ones chosen for this project. They found a significant trend
in ALD at 6 out of our 10 sites - U6, U19, G2, S2, R19, R2. These sites are marked with a star on
Figure 3.6. From these marked sites, LPJ-GUESS can simulate similar trends at sites S2, R19, U6
and G2.

Quantitatively comparing observed and modelled ALD is a challenging task. The observa-
tional scale and the model’s spatial resolution do not correspond, and with the use of global
gridded climatic forcing and other global forcing datasets the site specific characteristics that
may influence permafrost properties cannot be replicated. Given that LPJ-GUESS is customised
to regional and not local applications, the misfit at the selected CALM sites does not necessarily
mean that the model performs poorly in terms of permafrost related entities. The Sodankylä site
analysis confirmed that using site specific meteorological data and optimising snow parameters
to capture the site characteristics improved the fit between observed and modelled snow depth
and soil temperature. Accounting for soil types, soil organic material content, and possibly peat
at the sites would also increase the accuracy of simulated permafrost-related entities.

Spatial analysis
Spatial patterns of permafrost cover were investigated to get a fuller picture of how accurate the
ALD simulations are at a broad scale. In Figure 3.6 we can observe the pattern seen at the So-
dankylä site earlier: the Simple multi-layer scheme simulates warmer winter-time soil temper-
atures than the other two schemes, and consequently estimates a smaller permafrost covered
area. The other schemes simulate the lowest ALD in Northern-Central Siberia, where the coldest
wintertime soil temperatures are noted. The model’s estimated permafrost underlain area with
the Static and Advanced multi-layer schemes is comparable to estimations seen in Figure 1.1 by
Brown et al. (2002) and reported by Koven, Riley, and Stern (2013) and McGuire et al. (2018).

Even though this sub-project provided a qualitative interpretation and comparison of the
three schemes’ performance, we can conclude that the differences observed at the local and
multi-site analysis are visible on the Arctic scale as well. These results suggests that further in-
vestigation is needed to quantify these deviations and provide a quantitative assessment of per-
mafrost conditions - including ALD, permafrost extent, soil carbon stock estimates - using the
three applied snow schemes. Advances in this direction can enable to assess the importance of
snow for the soil thermal dynamics on the Pan-Arctic region.
Adequately simulating snow-soil interactions and soil thermal dynamics is key in estimating
changes in active layer thickness, which can be used as a proxy for the degree and rate of per-
mafrost degradation through time and space.
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4.5 Shortcomings and future improvements

The main goal of this study was to test and compare the different complexity snow schemes in
LPJ-GUESS and assess their influence on derived model outputs. For this reason, the model was
used in a default set up, not including a litter or moss cover on the soil surface, nor with Arctic-
specific PFTs (plant functional types). These factors could be important to account for when the
aim is to evaluate global greenhouse gas fluxes. Wind is not included in LPJ-GUESS, which would
be an important agent in defining snow microtopography, redistributing freshly fallen snow and
affecting density by creating high density wind-slab layers. Horizontal processes and shading
effects by vegetation are not accounted for. Due to the hard snow temperature threshold, rain
and snow cannot coexist in the simulations. The effect of this, however, on the evaluated output
entities is probably marginal.

Even though the new Advanced multi-layer scheme presented here is the most complex of
the three tested frameworks in this project, there is room for potential structural improvements
within the scheme. A recent model evaluation study (Slater, Lawrence, and Koven, 2017) high-
lighted that there are several potential biases in evaluating modelled soil temperatures. The re-
sults could be considerably different if the models include a highly insulating organic layer, in-
formation about soil texture, thickness and number of soil layers and water phases within the
snow pack. Regarding the Advanced multi-layer scheme, the snow pack’s internal topography
may be further refined. Enabling ice and liquid water differentiation within layers would be an
important process to take into account regarding the storage and refreezing of liquid water (Es-
sery et al., 2013). Simulations of phase changes and the transport of melt water between layers,
and finally to the soil, can connect the updated scheme with the hydrology module. Changes in
soil moisture in relation to snow cover changes can be analysed after applying these refinements.
Collectively, these alterations can further improve the performance of LPJ-GUESS in relation to
wintertime processes.
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5 Conclusion
The purpose of this project was to examine the snow insulation capacity in LPJ-GUESS, while
applying three different complexity snow schemes. The study found that the representation of
snow within the model has a significant effect on the soil thermal regime, and directly on the
derived permafrost-related properties. The findings of this study complement those of earlier
studies, suggesting that snow cover is a key factor in determining soil thermal dynamics.

Confirming our hypothesis, the project showed that LPJ-GUESS has the skill to adequately
simulate snow dynamics at a local scale, when forced with site meteorological data. The re-
gional analysis highlighted that the Advanced multi-layer scheme produces a lower insulation
effect than suggested by observations, although it is able to capture the observed soil-air temper-
ature and snow depth relationship. The Simple multi-layer scheme performed best at capturing
the snow insulation effect at the Russian sites, but the single-site and Pan-Arctic analyses high-
lighted that the simulated soil temperatures are significantly higher than observed for this model
set-up. We also identified that some key processes are currently missing from the intermediate
complexity framework.

Developing the structural representation in the model enables an assessment of regional
snow-soil-vegetation interactions. This could help to evaluate how carbon-rich permafrost soils
will behave at high latitudes under future climate scenarios. Permafrost degradation, which can
lead to increased greenhouse gas emissions, and vegetation composition shifts are some of the
most significant projected changes that will be investigated in future projects.

Notwithstanding some limitations, the results suggest that with an intermediate complexity
snow scheme LPJ-GUESS can achieve a more realistic simulation of wintertime processes. Fur-
ther research will explore the implications of these changes in relation to global greenhouse gas
cycles and spatio-temporal patterns.
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A Supplementary data

FIGURE A.1: Average spatial snow depth patterns between 1996 and 2000, apply-
ing the Static, Simple- and Advanced-multi-layer schemes, respectively.

FIGURE A.2: Sensitivity-like test results at the Russian study sites (Advanced
multi-layer scheme), increasing air temperature by 4.7 °C. a) Delta T and snow

depth relationship. b) Soil T at 25 cm depth and snow depth relationship.
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TABLE A.1: R2 and root mean squared error (RMSE) between observed and mod-
elled snow depth at Sodankylä, 2007-2014 for each tested schemes.

R2 RMSE (cm)
Static 0.84 12.41
Simple multi-layer 0.71 15.45
Advanced multi-layer 0.88 10.7

TABLE A.2: Selected CALM sites for the ALD trend analysis.

Site name Site code Location (lat/lon)
Barrow U2 71.32°N, 156.6°W
Deadhorse U6 70.17°N, 148.47°W
Pearl Creek U19 64.9°N, 147.8°W
Zackenberg, ZEROCALM 2 G2 74.46°N, 20.56°W
Abisko area, Sweden S2 68.33°N, 18.84°W
Ayach-Yakha,Vorkuta R2 67.58°N, 64.18°E
Vaskiny Dachy, Yamal Peninsula R5 70.28°N, 68.9° E
Lake Glukhoe, Kolyma R19 68.8°N, 160.95°E
Bykovsky (Lena delta) R29A 71.78°N, 129.42°E
Reindeer Depot C7A 68.68°N, 134.13° W
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