
Multiclass Cross-selling Model
for Savings and Investments
Using Gradient Boosting

Arwin Sohrabi

Master’s thesis
2018:E76

Faculty of Engineering
Centre for Mathematical Sciences
Numerical Analysis

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M

Master of Science
Engineering Mathematics

Multiclass Cross-selling Model
for Savings and Investments
Using Gradient Boosting

Arwin Sohrabi

Principal supervisor

Alexandros Sopasakis
Lund University

Assistant supervisor

Philip R. Jarnhus
Danske Bank

2018

”I am not a number, I am a free man!”

Number Six, The Prisoner (1967)

Abstract

Danske Bank has for several years modelled customer purchase behavior on cat-
egory level (e.g. savings or investments). This thesis is a first attempt at pre-
dicting (first time) customer purchase behaviour on product level. Five products
within two categories were chosen and modelling was done with python using
gradient boosters (mainly XGBoost, but also Light GBM). Results indicated
that predicting product purchase is possible, although not with the target se-
lected for this thesis. Multiclass modelling gives additional insight into customer
behaviour compared to models on category level, however, additional tuning of
the models are required before the accuracy reaches the same level as the cate-
gory prediction models.

Keywords: Machine learning, gradient boosting, multiclass target, XGBoost,
finance, Danske Bank, customer behaviour

1

Acknowledgements

I am very grateful to everyone, my family in particular, that in various ways
aided me during the conduction of this thesis. Still, there are a few who deserve
a special thanks:

A great thanks to my supervisor Alexandros Sopasakis, who helped me from
start to finish. His much appreciated support and suggestions made the process
significantly easier and the thesis notably better.

A big thanks to the entire Commercial Analytics team at Danske Bank. Having
the opportunity of being with these bright minds on a day-to-day basis allowed
me to get inspiration as well as much appreciated insights. But perhaps more
importantly, their company made the entire process much more enjoyable. A
special thanks to the head of the team, Michael Aamand, who authorized the
collaboration on behalf of the bank and allowed me to conduct it at location for
the whole period. Also, a thanks to the members of the surrounding teams.

My biggest thanks goes to Danske Bank senior analyst Philip R. Jarnhus. Not
only for supervising me at the bank, but also for being a mentor as well as a
great friend. His knowledge in his field of work is matched only by his wonderful
personality.

Thank you all!

3

Popular science

How well does your bank know
you? As artificial intelligence
becomes increasingly sophisti-
cated, the demand for it increases
throughout various industries.
The financial sector is no excep-
tion. Being one of the largest
banks in the Nordics, Danske
Bank has already employed ma-
chine learning for several years.
But can these techniques be even
more refined?

As a customer oriented bank, Danske
Bank aims at being relevant for its
customers and their needs. For many
years, the banks advisers have received
A.I. generated leads on customer pur-
chase behavior. These leads will let
an adviser know if a specific customer
is interested in a product from one
of the banks many product categories
(e.g. savings or investments). How-
ever, as the categories are not nec-
essarily known the customer, the ad-
visers are often required to make some
research on their own before approach-
ing the customer with suggestions on
specific products. This brought up the
question: Can customer behaviour be
modelled on product level, rather than
category level? If so, it would move
leads from internal business definitions
to customer oriented definitions (as the
customers often are familiar with basic

bank products). It would further give
advisers a more clear entry point into
the conversation with the customer,
saving them time spent on research.
Using a machine learning technique
known as ”gradient boosting”, it was
shown that one could indeed model
customer behaviour on product level.
Gradient boosters use an ensemble
of ”weak” predictors (predictors that
are only slightly better than random
guessers) to generate a prediction that
is like one from a ”strong” predictor (a
predictor that has a high accuracy). In
recent years, sophisticated free-to-use
boosters have emerged which allows
anyone to employ the power of ma-
chine learning. This project used two
boosters known as XGBoost and Light
GBM; the former being more accurate
and the latter being faster. Through-
out the project, the model was tuned
using feature engineering and hyper-
parameter optimizers. In the end, the
final model showed clearly that addi-
tional information could be gained by
modelling on product level. However,
a different target and finer tuning is re-
quired before the product level result
is satisfactory enough for deployment.

Hyperparameter - Parameter whose
value is decided manually (e.g. by the
user) rather than by the machine learn-
ing algorithm.

5

Contents

Abstract 1

Acknowledgements 3

Popular science 5

1 Introduction 3

2 Background 5

2.1. Research background 5

2.2. Business background 6

3 Theory 9

3.1. Loss functions 9

3.2. Boosters . 10

3.3. Hyperparameter optimization 16

3.4. Feature engineering 20

3.5. Hierarchical clustering 20

4 Modelling 23

4.1. Target . 23

4.2. Basic model . 29

4.3. Advanced model 34

5 Discussion 45

6 Future work 47

Bibliography 49

1

Chapter 1

Introduction

Over the past few years, profound changes and adaptations have taken place
regarding machine learning applications throughout various industries. Not be-
ing restricted by the field of work, cutting edge machine learning techniques
allow for ever increasing gains no matter the industry. The financial sector is no
different; for several years these models have been employed for activities such
as e.g. trading, fraud detection, churn prediction and marketing. Danske Bank,
the largest bank in Denmark, is no exception. Incorporating machine learning
models in the marketing activities within the bank has been common practice
for a couple of years now. These activities have proven to be an essential part
in contacting customers with relevant products and information.

Up until this point the models have only predicted whether or not a customer
is going to buy from a product category. While this helps marketing efforts, it
still leaves a lot to be desired. Most notably, it is not possible for neither the
sales advisor nor the marketer to know which specific product that should be
suggested to the customer. To further this knowledge would benefit both the
bank as well as the customer (who will be approached with relevant advice).

Modelling the problem at this level has previously not been attempted at the
bank; partly because the need has not arisen until now, and partly because it
has been assumed to be too noisy to model.

As far as methods go, the thesis will revolve around classical, supervised ma-
chine learning methods. Though there is theoretically a freedom of choice in
terms of algorithms, boosting algorithms have previously been employed with
great success in modelling these problems. As such, the main focus will be on
XGBoost, and limited focus will be on Light GBM.

From the above mentioned information, and some added to it, the full problem
formulation can be stated as

3

4 CHAPTER 1. INTRODUCTION

Given the banks information about a specific customer (acquired
through ordinary channels, i.e. no additional information has been
gathered as part of the project), is it possible to, three months in
advance, predict the purchase of one of five specific products within
the investment and savings categories that said customer does not
at the moment of prediction own?

The thesis title has been chosen to reflect the problem formulation – and the
content of the thesis – as accurately and sparsely as possible:

Multiclass Cross-selling Model for Savings and Investments Using
Gradient Boosting

Explaining non-trivial components of the title:

Multiclass Within machine learning the problem of classifying instances
into one of three or more (in this case six) classes.

Cross-selling Aiming at current clients that do not own any of the target
products.

Gradient boosting A machine learning technique which produces a prediction
model in the form of an ensemble of weak prediction models.

Regarding the four key chapters:

2. Background
Basic insights and formal definitions regarding key business and theory
aspects. Most focus is on business, as the reader is assumed to be familiar
with basic theory.

3. Theory
Although highly relevant to the thesis, the content is unrelated to this
specific project. Readers interested in specific aspects of the theory are
referred to the source material.

4. Modelling
The process and methods of this specific project. Some theory tied into the
chapter, when deemed relevant. Much of the analysis will be performed
throughout the chapter, as the results are presented.

5. Discussion
Key insights and obstacles. Contains some general analysis.

Chapter 2

Background

2.1 Research background

Machine learning as an academic term emerged as early as 1959 [1], when
studying the game of checkers. However, research in proximal fields had been
going on since World War II as the field is closely related to (perhaps even a
merge of) computer science and mathematics. There is no single formal defini-
tion of what constitutes as machine learning, but a general definition could be
formulated as simply as

An algorithm that learns from experience rather than requiring ex-
plicit guidance.

Whereas a conventional program needs to be explicitly told that ”an e-mail
fulfilling conditions C is spam”, a machine learning algorithm simply requires
(large) amounts of spam and non-spam email to be able to make distinctions.
As such, it can adapt its pattern of detection given new data, whereas the con-
ventional program requires to be manually rewritten. Today, machine learning
is not only a popular field on its own, but is also present as an important tool
in other fields, and researched by almost every major university that has a
technology/nature science faculty. Machine learning is often classified into two
categories:

Supervised learning: When both input as well as desired output are given to
an algorithm, with the intent to find a good mapping between the two (which
can then be used to properly classify new input). For instance: decision trees
(e.g. this project), linear- and logistic regression, support vector machines and
artificial neural networks.

Unsupervised learning: When only input is given to an algorithm, with-
out any labeling, with the desire to find a structure. For instance: clustering
and principal component analysis.

5

6 CHAPTER 2. BACKGROUND

In general, a data set in machine learning is split in two different sets; train and
test. The model is tuned on the train set, but its performance is ultimately
tried on the test set. As such, it is very important for the modeller not to
include any information from the test set when creating the model. It is not
uncommon to have multiple test sets, e.g. one for ”day-to-day tuning” and one
for ”testing the final model”. Another method is to have algorithms randomly
split ones data into test and train for every new tune, and thus ensuring that
the test set is never twice the same.

In addition to what has been stated above, the reader is assumed to be familiar
with introductory mathematical concepts as well as basic machine learning.

2.2 Business background

Danske Bank (translates to Danish Bank) is Denmark’s largest bank. For
almost 150 years, they have helped people and businesses in the Nordics and
are currently present in 16 countries with over 20 000 employees. Today, they
serve personal, business and institutional customers, and in addition to banking
services, they offer life insurance and pension, mortgage credit, wealth manage-
ment, real estate and leasing services [2].

Figure 2.1: Danske Bank Group corporate logo

The thesis has been conducted with Commercial analytics - a unit within
Group Development responsible for data driven analysis. Employees here have
backgrounds in all natural sciences, at masters or PhD level. In recent years, the
demand for cutting edge data driven analysis (which includes machine learning)
has increased throughout the entire financial sector, and consequently the unit
has grown rapidly.

The following terms, relevant for the thesis, as defined by the bank [2]:

Analytics Any form of analysis of data, including manipulation, aggrega-
tion, segmentation and visualization. For example, Danske Bank
uses analytics for product development, reporting, segmentation
and modelling.

Modelling Any form of process for creating or employing a model.

Model Any scriptable transformation of data that seeks to derive infor-
mation not readily available in the data through aggregation or
segmentation.

2.2. BUSINESS BACKGROUND 7

Segmentation Any limits placed on attributes in a data set to divide it into
subsets.

Profiling Any form of automated processing of personal data consisting
of the use of personal data to evaluate certain personal aspects
relating to a natural person, in particular to analyze or predict
aspects concerning that natural person’s performance. Profiling
is a concept that enables businesses, organizations and public
institutions to collect and use personal data to determine, an-
alyze and predict an individual’s personality or behaviour, in-
terests and habits. Almost any data can potentially be used to
profile. Danske Bank uses profiling for different activities and
purposes. First and foremost, profiling helps us to create better
experiences for our customers. For example, profiling enables
the bank to target and personalize its marketing and offer prod-
ucts and services that are relevant to specific customers based
on their personal preferences. But profiling is not only used for
marketing purposes. It is also used for e.g. credit ratings and
risk assessments.

The bank has been using machine learning techniques for the past few years, and
is currently expanding its data driven analysis units. As far as gradient boost-
ers go, they are frequently being employed. Employees responsible for machine
learning analysis have a solid (theoretical as well as practical) understanding of
various kinds of boosters as well as other machine learning algorithms.

As mentioned in the previous chapter, this project emerged due to a desire to
predict customer behaviour on a deeper level than currently done. With the
current category level prediction model, advisers get leads on company defined
categories (who are not available to customers), and then have to spend time
preparing appropriate products. Successful prediction on product level would
save time and increase accuracy.

Chapter 3

Theory

Most theory here covers general topics relevant to the thesis as a whole; niched
theoretical aspects relevant only to sub-sections are explained in the (next)
chapter Modelling.

3.1 Loss functions

The Loss function is simply a method for evaluating the result of a model com-
pared to the true value. As such, any function (including constants, even though
they would be useless in practice) could theoretically be passed as a valid loss
function. Many loss functions measure the ”distance” between right and wrong,
and thus it’s often an objective to minimize them (e.g. as part of an objective
function).

However, even though any function can be a loss function, the choice is anything
but arbitrary. There are numerous properties that can be used to define the
choice of loss function. We will focus on four that provide obvious benefits, the
so called completeness properties [10]:

1. Completeness of Information
Ensures that new observations xn contain information about a parameter
function which can be used for reducing the risk of estimation of said
parameter function, i.e. that one should use all available observations.

2. Lack of Randomization Condition
Restricts attention to non-randomized estimators since it shows that for
every randomized estimator there exists a non-randomized one with less
or equal risk.
Note: An estimator is randomized if it doesn’t only depend on determin-
istic observations, but also on random variables.

9

10 CHAPTER 3. THEORY

3. Symmetrization Condition
The estimation of the value of the parametric function should be indepen-
dent of the order in which the observations were received and analyzed.

4. Rao-Blackwell Condition
Allows for rejection of non-informative components in the selection. A
strengthening of the previous condition.

The formal proof for all properties has been omitted but can be found in [10].
The proofs might not be trivial, but it’s trivial why the conditions are desired for
a loss function - they greatly reduce randomness when estimating. The natural
follow-up question thus becomes; which loss functions are complete, i.e. satisfy
these conditions?

Theorem 3.1.1. A family is weakly reducible iff for each integer n ≥ 2 and
each choice of real numbers s1, ..., sn there exists a point s∗n = s∗n(s1, ..., sn),
which is a measurable function of s1, ..., sn and such that

1
n

∑n
i=1Wt(si) ≥Wt(s

∗
n) , ∀t ∈ T

Further, if the family is continuous and there for every t ∀ T exists limits such
that lims→∞Wt(s) = lims→−∞Wt(s) > Wt(x) for all x ∈ R, the family is
reducible.

Given a general loss function w(s, t) it has to belong to a so called reducible
family (for some conditions strongly- or weakly reducible is specified) to satisfy
all four conditions [10].

There are a lot of functions that satisfy [3.1.1]. For instance, it can be proven
that an arbitrary family of convex and real functions on R is reducible [10].
Even simpler, e.g. w(x) = |x| is reducible (albeit not strictly convex). But
to ensure satisfaction of all four completeness conditions, a strongly reducible
function is required, e.g. the so called quadratic loss function (θ̂− θ)2 where

θ̂ is an estimation of θ. Note that even this loss function has its limitations;
being unbounded it limits the class of estimators to those with finite second
moment.

3.2 Boosters

To understand Boosters, it is crucial to understand the so called Decision
tree. Trees are a flowchart-like method for arriving at a result by repeated
categorization of data. At every branch, data is split into one of several groups
until it finally is classified into one of several leafs.

3.2. BOOSTERS 11

Figure 3.1: Novel tree attempting to answer ”Is person a student?” with three
leafs (”Yes”, ”No” and ”No”) and two branches (”Age” and ”Employed?”).
It crudely predicts that an unemployed person below age 25 is a student. Of
course, any model is only as good as its data; providing the novel tree with data
on young adults (e.g. age 18-30) will probably yield a higher accuracy than
providing it with general population data (where it would e.g. classify even
small children as students).

Boosters grow trees sequentially, with every new tree reducing the error of the
previous one. In essence, they are the answer to a question first asked (but not
answered!) three decades ago by Michael Kearns; paraphrased as “Can a set of
weak learners create a single strong learner?” [3]. As it turns out, the answer
is yes.

A weak classifier is one whose error is, roughly speaking, only slightly better
than random guessing (i.e. 50% accuracy). Thus, a single weak learner won’t
produce any useful result. However, the prediction from several of them can be
weighted through a “majority vote”, employing the so called wisdom of the
crowd, to produce a final prediction G(x), which is considered a classification
by a single strong learner:

G(x) = sign

(
M∑
m=1

wmGm(x)

)
(3.1)

where wm is the weight of the m:th weak learner for M weak learners. This is
essentially Boosting [4]. Note that the method is similar to so called Bootstrap
aggregating (Bagging), except that the underlying models are not built in
parallel nor are random, but instead constructed sequentially based on the per-
formance of the previous ones. Of course, selecting classifiers Gm is a field in
itself. Nonetheless, for a more formal definition we need to introduce a few key
concepts [3] (to improve and ease understanding, the original formulations have
only been slightly modified):

Let c be a parameterized class of representation of a Boolean function; that

12 CHAPTER 3. THEORY

is, c = ∪k≥1ck where ck is a representation of a Boolean functions on {0, 1}k.
Let further c be polynomially evaluable, i.e. that there is a polynomial-time
algorithm that on input of a representation c and a vector x computes the value
of c(x). We assume that the representations of c is written under some standard
encoding, and will denote the length in bits by |c|. For a given target represen-
tation c we further assume that there are fixed but arbitrary target distributions
D+ and D− over the positive and negative examples of c respectively. Finally,
assume access to two oracles (i.e. an abstract black-box machine used to study
problems) POS and NEG that sample these distributions.

Using two classes of type c, the target class C and the hypothesis class
H, we can now introduce the formal definitions of strong and weak learnability
as put forward by Kearns [3]:

Definition 3.2.1. C is strongly learnable by H if there is an algorithm A
with access to POS and NEG, taking inputs 0 < {ε, δ} < 1, with the property
that it – for any target representation c ∈ Ck, for any target distributions D+

and D−, and for any ε and δ – runs in time polynomial in 1
ε , 1

δ , |c| and k and
outputs a representation h ∈ H that with probability at least 1 − δ satisfies
D+(c−h) ≥ ε and D−(h) ≥ ε. We have identified c and h with the set of points
on which they evaluate to 1.

Definition 3.2.2. C is weakly learnable by H if there is a polynomial p
and an algorithm A with access to POS and NEG, taking inputs 0 < δ < 1,
with the property that it – for any target representation c ∈ Ck, for any target
distributions D+ and D−, and for any δ – runs in time polynomial in 1

δ , |c|
and k and outputs a representation h ∈ H that with probability at least 1 − δ
satisfies D+(c− h) ≥ 1

2 −
1

p(|c|,k) and D−(h) ≥ 1
2 −

1
p(|c|,k) .

As stated above, these defitions are the formal ways of stating that weak learners
are classifiers that have an accuracy only slightly better than 50%, whereas
strong learners can be arbitrary accurate. Going back to the original question,
it can be formulated the way Kearns himself posed it: “Is it the case that
any C that is weakly learnable is in fact strongly learnable?” This question was
answered two years later by Robert Schapire [5], who effectively proved that
the notion of strong and weak learning are equivalent; one can convert – or
”boost” (hence the name) – a weak learner into one that achieves arbitrarily
high accuracy (i.e. into a strong learner).

Theorem 3.2.1. C is weakly learnable iff it is strongly learnable

Trivially, strong implies weak. But Schapire [6] managed to prove the converse
too, and subsequently invented AdaBoost (see 3.2.1) as a result. Essentially, he
described a technique by which the accuracy of a weak learner could be boosted
by a small but significant amount. Then he shows how this mechanism can be
applied recursively to make the error arbitrarily small - a strong learner.

As apparent from [3.1], Boosters rely on their choice of classifier Gm. Being

3.2. BOOSTERS 13

themselves sums of other, even simpler, functions b (characterized by a set of
parameters γn) these classifiers are also denoted as basis functions [4]

Gm(x) =

N∑
n=1

βnb(x; γn) ∈ {−1, 1} (3.2)

where βn is the expansion coefficient. For instance, b(x; γ) = 1/(1 + e−γx); the
so called sigmoid function. Typically, basis functions are fit by minimizing
loss functions averaged over the training data. As will be seen below; there
are various kinds of boosting. Even though the newer boosters are of type
Gradient booster (e.g. XGBoost and Light GBM are both Gradient Boosting
Decision Trees), there was initial success with so called Adaptive boosters
(e.g. AdaBoost).

3.2.1 AdaBoost

AdaBoost hasn’t been used for this thesis. However, due to its historical impor-
tance for boosters, a summarized description has been included.

The first widely used boosting algorithm, who remained the most popular one
until the inception of XGBoost (2016), came a decade after the initial Kearns
paper [3]; AdaBoost (a so called Adaptive Booster) (1995). It successfully
trained multiple weak classifiers on weighted versions of the input data before
combining them into a final strong prediction:

Algorithm 1 AdaBoost [4]

1: Initialize the observation weights wi = 1
N , i = 1, 2, ..., N

2: For m = 1 to M :
3: Fit a classifier Gm(x) to the training data using weights wi
4: Compute errors εm

5: Compute αm = log
(

1−εm
εm

)
6: Update weights wi, i = 1, 2, ..., N

7: Output G(x) = sign
[∑M

m=1 αmGm(x)
]

Despite it’s relatively “simple” layout, AdaBoost can dramatically increase the
performance of even a very weak classifier. For instance, consider a two leaf
classification tree. On its own it will (based on empirical testing, as the result
is stochastic [4]) yield a test set error that is only slightly better than random
guessing. However, with 400 boosting iterations the error is down significantly,
reduced by a factor of four.

Note that the booster is basically just a straightforward implementation of [3.1];
for every iteration it updates its weights to increase accuracy of classification.

14 CHAPTER 3. THEORY

Although not initially designed for this purpose, it was later discovered [4] that
AdaBoost also happens to minimize the so called exponential loss function

L(y,Gm(x)) = exp [−yGm(x)] (3.3)

3.2.2 XGBoost

The eXtreme Gradient Booster, known as XGBoost, is currently one of the
most powerful and popular boosters, according to the creators due to its ”scal-
ability in all scenarios” [7]. It’s a gradient booster, which means that gradient
descent optimizers are used to sequentially add new ”weak” models to improve
the final ”strong” model. Each new model is fitted based on the residuals of the
prior models.

The following regularized objective is minimized [7]:

n∑
i=1

l(ŷi, yi) +

K∑
k=1

Ω(fk) , Ω(f) = γT +
1

2
λ‖w‖2 (3.4)

for n data points and K different tree structures where T is the number of leaves
in the tree and w are the leaf weights. l is simply any differentiable convex loss
function that measures the difference between the prediction ŷi and the target yi
(e.g. RMSE or a Log-loss function). Ω is the so called regularization function
and controls the complexity (to avoid overfitting), with γ and λ being tuning
parameters. Note that complex models with several leaf notes (i.e. large T)
are penalized, but the penalty can be adjusted using γ. Depending on the loss
function, there’s no guarantee that every objective function can be analytically
derived, so a second order Taylor approximation of [3.4] is used instead. Note
that [3.4] includes functions as parameters, and thus additive methods are used
to optimize it. For a fixed tree structure the optimal weight is given by

w∗ = −
∑
i gi∑

i hi + λ
(3.5)

where h and g are first and second order derivative of the chosen loss func-
tion. [3.5] can be inserted into [3.4] to calculate the optimal value, which can be
used to measure the quality of a tree (since trees in practice seldom are optimal).

A major problem when considering trees in general, is to find the optimal split.
A primitive booster would simply enumerate over all possible splits on all fea-
tures before picking the best option, and for a limited set of (preferably discrete)
features this would be doable. However, when dealing with complex models that
contain multiple continuous features, it becomes computationally too expensive.
XGBoost solves this by using an approximate algorithm [7]; it first proposes can-
didate splitting points according to percentiles of feature distribution. The goal
is to find candidate split points sk,j (for the k:th tree structure) such that

3.2. BOOSTERS 15

|rk(sk,j)− rk(sk,j+1)| < ε

for a rank function rk(s) and an approximation factor ε. This rank function rep-
resents the proportion of instances whose feature value is smaller than a certain
threshold and is designed such that there will roughly be 1

ε points. The algo-
rithm then maps the continuous features into buckets split by these candidate
points, aggregates the statistics and finds the best solution among proposals
based on the aggregated statistics. The gain of every split is calculated through
comparison with ”the optimal gain”, which is found using [3.5].

Another common problem for boosters is how to handle sparse data, which is
common in real world applications (e.g. whenever excessive encoding is used).
According to the original XGBoost paper [7], most tree learning algorithms are
optimized for dense data, and handle sparsity naively. XGBoost’s improvement
comes mainly from visiting only non-missing entries whilst treating the missing
ones as missing values. Unlike previous boosters, XGBoost has default direc-
tions in each tree node; whenever values classified as missing values show up,
they are simply directed to the default direction, the classification algorithms
thus only has to spend time on non-missing entries.

Early 2017, i.e. roughly the same time as the deployment of the first stable
version of Light GBM (see 3.2.3), a histogram setting was added to XGBoost.
Unlike the default XGBoost ”tree-grower” it uses only a subset of possible splits
and, rather than generating new sets of bins for each iteration, it reuses bins
over multiple iterations. This made the algorithm significantly faster, at the
cost of slightly reduced accuracy.

3.2.3 Light GBM

The Light Gradient Boosting Machine was developed by Microsoft [8] and de-
ployed in early 2017. Its algorithms increase both efficiency and scalability for
high feature dimension and large data size.

Handling big data efficiently is non-trivial, even when using a straight-forward
approach such as data- and feature reduction. However, it is this exact straight-
forward approach that Light GBM has chosen. The key to its success lies in
two new algorithms for dealing with both aspects of the approach [8]:

Data reduction: Gradient-based One-Side Sampling (GOSS)
Since Gradient Boosters, unlike Adaptive Boosters, don’t have any native sam-
ple weights, sampling becomes a non-trivial problem. Instead, gradients are
used. The general idea is to simply discard low-gradient data instances. Sim-
ple as it may seem, it can’t be done straight-forwardly as the data distribution
might be changed by doing so. Instead, the algorithm keeps instances with gra-
dient over a certain threshold, the top a×100% instances, and performs random

16 CHAPTER 3. THEORY

sub-sampling among the remanding data (b× 100% instances). To compensate
for any eventual non-stationarity, GOSS uses the constant multiplier 1−a

b to
amplify the sub-sampled data instances. The multiplier will ensure focus on
under-trained data whilst keeping the distribution mostly unchanged.

Feature reduction: Exclusive Feature Bundling (EFB)
Many times, sparse feature spaces contain mutually exclusive features, i.e. cer-
tain features never take non-zero values simultaneously (e.g. encoding). These
kinds of features can be bundled into special single features called ”exclusive
feature bundles”. A correct implementation of the bundling algorithm will gen-
erate the same feature histograms as when using all the individual features.
Note that the EFB algorithm is a mere approximation (albeit a very efficient
one), since

Theorem 3.2.2. The problem of partitioning features into a smallest number
of exclusive bundles is NP-hard

which can be proven by reducing a NP-hard problem known as ”the graph col-
oring problem” to the partitioning problem at hand. This is also the way in
which the algorithm is designed; an adaptation of an efficient solution to the
graph coloring problem.

Light GBM allows the user to choose between various objective functions [8],
the default multiclass one being the so called logloss objective function

−
M∑
c=1

yo,clog(po,c) (3.6)

where M is number of possible classes, c the class label, o the observation,
y a binary indicator for whether c is a correct classification for o and p the
probability that o is indeed of c. The binary case M = 2 is simply

− [y log(p) + (1− y) log(1− p)] (3.7)

3.2.4 Other boosting algorithms

Boosters (like the ones already mentioned) commonly only handle numerical
data; any categorical data has to be encoded into numerical. Shortly after
the release of Light GBM, a new open source booster was released that could
handle categorical data: Catboost [15]. This Categorical booster uses various
statistical methods on combinations of categorical and numerical features. The
method is dependent on properly tuning and identifying the categorical features.

3.3 Hyperparameter optimization

Hyperparameter is a commonly used term in Machine Learning applications.
Although sometimes used interchangeably, the term is de facto different from

3.3. HYPERPARAMETER OPTIMIZATION 17

Parameter. A parameter is set during training by the model whereas a Hy-
perparameter is manually decided before training takes place.

Most models have a wide range of hyperparameters that can be adjusted, and it
is rare to tune them all. Many of them can be set as their default values, and it
is not uncommon to gain the most benefit by tuning a few key parameters. The
range of parameter values being considered for optimization is often referred
to as the parameter space. Of course, in an ideal scenario, all parameters
should be considered for a parameter space that covers all possible reasonable
combinations, however, this approach is neither time nor computationally vi-
able. Rather, (more or less) sophisticated methods are employed for testing a
chosen parameter space. Trivially, the optimal hyperparameters are those that
minimize the specified loss function.

3.3.1 Grid search

This is the ”naive” approach. Given a parameter space, grid search will train
and evaluate the model for every possible combination of the provided hyper-
parameters [12]. However, despite being obviously computationally inefficient
(even for smaller parameter spaces), it doesn’t require any synchronization for
the different models being trained. Thus, it can train multiple models simul-
taneously in parallel (a so called embarrassingly parallel problem). When
the parameter space is small, perhaps three or fewer dimensions, grid search is
a good option as one can provide a fine mesh and still be - per construction -
guaranteed to find the best combination within the provided space. [12]

3.3.2 Randomized search

As the parameter space grows, it is no longer viable to explore every combina-
tion. Instead, a more feasible approach is to randomly pick parameter combi-
nations in the parameter space. This might seem like an inferior method, but
it is in fact (especially for high-dimension parameter spaces) more efficient than
grid search [9].

For a hyperparameter response function Ψ the object is minimization over
the hyperparameter space [9]. This function most definitely has a low effective
dimensionality, i.e. is more sensitive to changes in certain parameters (since
rarely, if ever, every hyperparameter affects the model equally).

18 CHAPTER 3. THEORY

Figure 3.2:

Consider Figure 3.2; A simple low effective two dimensional parameter space
for a function consisting of two parameters (whom are visualized around each
square); note that one is by far more dominant (labeled Important parame-
ter). Even though both of the methods evaluate nine combinations each, the
grid only manages to sample three distinct values of the important parameter,
whereas the random search samples nine distinct values. Of course, one has to
provide reasonable distributions for the random search, but even a fine uniform
mesh will evaluate more distinct values compared to a course grid layout. In
the figure, as only nine combinations are evaluated, the grid is very coarse since
it only has nine locations that all must be evaluated, whereas the random grid
can still be arbitrarily granular since there are no restrictions on how many
locations that can be provided. In higher dimensions, this difference is only
further enhanced in favor of randomized search.

Unless you can have an arbitrary fine mesh for your grid search, the random
search will be better [9]. In fact, random search has all the practical advan-
tages of grid search (e.g. conceptual simplicity, easy implementation, embar-
rassing parallelism). Its main trade-off is a small reduction in efficiency in low-
dimensional spaces for a large improvement in efficiency in high-dimensional
search spaces.

3.3.3 Bayesian search

Even though randomized search might be superior to grid search, it is still
”naive” in the sense that every new evaluation is independent of the previous
one. There’s no consideration of the sub-space it is investigating. Basyesian
search will ”guess” a new set of parameters to evaluate, based on the perfor-
mance of the previously evaluated set. Its guesses are essentially a trade-off
between exploring new areas of the parameter space, or further probe areas

3.3. HYPERPARAMETER OPTIMIZATION 19

with known (good) performance [11].

Brielfy explained [11], Bayesian optimization assumes that the unknown func-
tion was sampled from a (often Gaussian) process; to pick the next combination
it optimizes the expected improvement over the current best result. Unlike gra-
dient based approaches, it doesn’t rely on Hessians or convexity, instead the
computational powers are spent on determining the next combination to evalu-
ate rather than actually evaluating it. As models become increasingly complex,
this approach can save considerable time. However, it requires user-provided
prior probabilities (so called hyperpriors) for the evaluated parameters (often
a Gaussian prior will do, and if not, many hyperparameters can be empirically
evaluated).

Figure 3.3: The Bayesian grid might start randomly; in this example bottom
left and mid-bottom right. It might then consider something in-between, and
then finally try a fourth parameter set near the most recent one (based on it
being better than the first two).

Despite its apparent superiority, Bayesian optimization isn’t as widely used as
randomized (or even grid!) search. Perhaps due to its aforementioned depen-
dence on choosing suitable hyperpriors, and since its more difficult to implement
compared to grid- and randomized search.

3.3.4 Other optimization techniques

The human touch is not to be underestimated. Often an optimal method of find-
ing the best setup when using ”naive” optimizes, is to run several iterations,
and manually tune the parameter space after every iteration. One doesn’t even
have to specify a ”rectangular” grid as that of grid search, but could rather try
custom grids. The optimal parameter setting shouldn’t be found in the outer

20 CHAPTER 3. THEORY

limits of the space, as it may indicate that an even better combination exists
beyond the frontier. Thus, manual tuning of algorithms should aim at capturing
an optimal combination that’s safely contained within the space.

As far as other automated techniques go; as it is possible to compute the gradi-
ents of hyperparameters, one could optimize using gradient-based tools. How-
ever, as mentioned above, gradient-based tools can be computationally heavy.

3.4 Feature engineering

A feature is best described as an attribute shared by all individual elements
of data (e.g. a column). Although essential in machine learning, feature engi-
neering is a de facto informal topic. It is about manipulating data features (e.g.
removing unwanted ones, adjusting existing ones or adding self-made) in order
to simplify data interpretation for the machine learning algorithm of choice.
Preferably, one would engineer their features first, before trying to optimize
the hyperparameters. Even though sophisticated automated feature engineer-
ing tool-kits have started to emerge [13], optimal features are best identified
through expert knowledge of ones data. Feature engineering might be one of the
main reason why machine learning isn’t yet fully automated, as it depends heav-
ily on intuition, context and practical experience. As put by world-renowned
computer scientist professor Andrew Ng [14]:

”Applied machine learning” is basically feature engineering.

There are multiple ways of performing feature engineering; a common method
is to rely on various forms of grading (often provided by the machine learning
algorithm of choice) to separate features that contain relevant information from
those that do not. For instance when working with boosters, a metric may be
how often a feature is split at the nodes; more splits imply more usage of said
feature whereas e.g. zero splits imply no usage of the feature. Creating new
features is also heavily dependant on the machine learning algorithm of choice;
a common method is to transform existing features so that they better ”fit”
ones algorithm.

3.5 Hierarchical clustering

Clustering means to group data into subsets (or clusters) based on statistical
features and is perhaps the most common form of unsupervised learning [20].
Every cluster should be internally coherent and distinct from the others. Note
that this is not classification, which is a supervised form of learning!

There are numerous forms of clustering, and many require the number of clus-
ters to be prespecified. However, so called hierarchical clustering does not.

3.5. HIERARCHICAL CLUSTERING 21

This form will output a hierarchy - a structure that is typically visualized by a
dendrogram (see figure 3.4).

Figure 3.4: Dendrogram created with randomly generated data. The y-axis
(length of dendrogram) is the similarity of the two clusters that were merged.
For instance, elements 2 and 5 are more similar to each other than 3 and 4
are. This value (the height) can be used for manual partitioning, by cutting the
dendrogram at some pre-determined height.

Although ultimately different based on data, there are a few ways to determine
the cutting-point [20]:

1. Cut at a prespecified level of similarity.

2. Cut where the gap between two successive similarities is largest, i.e. cre-
ating ”natural” clusters based on the shape of the dendrogram. For figure
3.4 this could be at 300; creating four clusters.

3. Apply a formula, e.g. the median similarity value.

4. Prespecify the numbers of clusters, and select a cutting point accordingly.

The standard algorithm for hierarchical clustering is called Hierarchical Ag-
glomerative Clustering (HAC). It basically treats each data point as a single
cluster at the outset and then successively merges (or agglomerates) pairs of
clusters until all clusters have been merged into a single cluster that contains all
data points [20]. The ”merges” and similarities can be depicted using a dendro-
gram: Each node is a cluster and has two ”children” representing the clusters
that formed it. Each leaf is a data point. The root will always contain the entire
analyzed data set.

The key to clustering lies in the choice of two cluster dissimilarity measures,
Metric and Linkage criteria, which decide how ”close” two clusters are. Met-
rics are a mathematical field of their own; they concern how one calculates the

22 CHAPTER 3. THEORY

distance between elements. For numerical data, the measure can be trivial
(e.g. Euclidean), but there are measures even for non-numeric data. Linkage
measures the dissimilarity between groups. Common measures includes various
metrics between individual data points in the two clusters being analyzed (e.g.
”single linkage”; smallest distance between two clusters).

There is no single right method for picking cluster dissimilarity measures; it
depends entirely on the data. If lucky, experimentation and proper visualization
might reveal ”natural” clusters within the data. Clusters can be used to e.g.
exclude features/data points that are too dissimilar to the rest of the data
and/or to find hidden patterns and similarities.

Chapter 4

Modelling

As detailed numbers regarding e.g. product purchase is considered confidential
information, graphs will either - if possible - be normalized or - if not possible
to normalize - be plotted without their descriptive axis.

4.1 Target

Note! The initial target consisted of an additional product. However, when
initial (basic) modelling began, it was discovered that this product behaved
strange compared to the others; being modelled very poorly. After some business
research, it was discovered that this product was in fact a bundle of several other
(to each other unrelated) products. It was therefore removed from the target.

Crucial for any model is the Target; the feature which you want to under-
stand and create a model around. Depending on the target, a machine learning
algorithm is picked. For this thesis the target is of multiclass type, i.e. non-
binary containing more than two classes. More specifically, the target consists
of five different products and one non-purchase class - six classes in total. The
products (exclusively of type Investment or Savings) are listed below accord-
ing to their encoding number (and will henceforth be interchangeably referred
to as either their name or their encoding number):

1. Flexinvest Fri
Professional care and advisory for investments of 100 000 DKK or more.

2. June
An algorithm-driven portfolio management tool based on Modern Port-
folio Theory. Customers choose one of five funds based on personal risk
aversion. Minimum invested sum is 100 DKK.

3. Mutual funds
A professionally managed investment fund that pools money from multiple
investors in order to purchase securities.

23

24 CHAPTER 4. MODELLING

4. Savings one off
Any single deposit into a savings account (note: an account used for saving
money is not necessarily the same as a savings account).

5. Savings recurring
When numerous consecutive savings fulfill a set of requirements the ac-
count is considered as this product.

Of these products, Mutual funds had to be further adjusted, using provided
“corrections data” to remove certain sales that would otherwise distort the pre-
diction. Savings one off is the odd one out, as it can be argued whether or not
it’s actually a product in the same sense as the rest; however, it may indicate
a possible first contact with the bank (e.g. a customer acquiring a savings ac-
count). But it may also be someone allocating capital (perhaps for purchasing
a different product). Savings one off is, as can perhaps be guessed from its
description, the most common product acquired:

Figure 4.1: Normalized distribution of products. Expected result given product
descriptions (i.e. Savings one off being the most popular).

4.1. TARGET 25

Figure 4.2: Time series depicting product purchases over time. X-axis denotes
time and Y-axis denotes number of products (restricted from business). Note
that June was launched after inception of time series, and that it has been
(almost) steadily increasing ever since.

As can be seen, there’s been a decline for Flexinvest Fri that contrasts against
the inception of June (and increase of Managed account). Both June and Flex-
invest Fri are essentially, from consumer point of view, automated investment
products. The main difference is in the amount handled; June requires a min-
imum deposit of 100 DKK whereas Flexinvest Fri is aimed at investors with a
minimum deposit of 100 000 DKK. Thus, it’s not a stretch to imagine that new
clients choose to allocate their assets to June (perhaps slowly over time) rather
than putting (perhaps most of it) in a Flexinvest Fri account at once. June is
also cheaper than Flexinvest Fri.

When modelling, an approach of one-date-one-sale was used, meaning that dates
with multiple sales had to be handled. From a business point-of-view, it’s ar-
gued that multiple sales on the same date imply a possibility that one (or more)
of the products were sold on the advisers suggestion rather than independently
chosen previously by the customer.

The non-trivial procedure of acquiring the final target can roughly be summed
up as following:

1. Import two sets of data; one containing information about the sales (Sales)
and another containing information about every customer (denoted by the
bank as ABT).

2. Add to ABT an additional column denoting whether or not a customer

26 CHAPTER 4. MODELLING

already owns a product of type ”Savings” or ”Investments”. As the model
is targeting first-time customers, those that already have purchased are
not of interest for the target.

3. Label encode products (encoding presented above).

4. Date sales three months before occurrence; as this is when the sale is
trying to be predicted based on existing observations.

5. Merge ABT with Sales; this will however include the dates where mul-
tiple sales have occurred (roughly 3% of events); since the target aim is
to have one-date-one-sale, this has to be handled. Four methods were
considered (in all cases some sales data will be removed) before d) was
selected (reason explained below).

(a) Remove all dates with multiple sales, and only keep those that have
one sale.

(b) Remove additional sales from every date, only keeping the first oc-
curring sale on each date. As the sales are logged in an arbitrary
order this won’t necessary preserve the customer initiated sale.

(c) Group all multiple sale events into a new category: class 7.

(d) Reallocate duplicate pairs into their respective category and remove
the 4’s (Savings one off) from all pairs (e.g. [2, 2] is logged as a 2
and [4, 1] is logged as 1). Remove remaining multi-sales.

6. Match the final target to the ABT.

7. Remove all rows that indicate a previous customer purchase, or an initi-
ated purchase, i.e. purchase within next three months; this will only leave
the so called negative targets.

8. Re-add first product purchase for customers; these are the positive tar-
gets.

4.1. TARGET 27

The complete target is now acquired. It might not have been clear why option
d) was chosen at step 5. One has to look at some underlying data:

Figure 4.3: Normalized distribution of multisale events reveals absence of non-
dual sales.

The first obvious insight is the almost complete absence of non-dual multisale
events, which begs the question; what are the most common dual-sale combina-
tions?

Figure 4.4: Normalized combinations of multisale events shows dominance of
product 4; Savings one off.

28 CHAPTER 4. MODELLING

There appears to be a clear dominance of pairs containing product 4. As sug-
gested above; the pairs containing a 4 are most likely just about money being
moved from savings to purchase a product, and should thus most likely be con-
sidered a sale event for the non-4 product in the pair. As the aim is to predict
customer purchase, the duplicate sales can also be moved to their respective
products (e.g. a [2, 2] sale to product 2). Doing these two adjustments would
annihilate most multi-sales, as only 25% of its original volume would remain
(equivalent to less than 1% of the full data).

Even still, there’s the question of whether the pairs reflect the distribution
of product occurrences. To test this, one million random product pairs were
generated where the drawing was weighted according to the real data product
distribution. If the real pairs are truly random, the generated pairs plot should
match the real one.

Figure 4.5: Real pairs minus generated pairs. Y-axis is percentage; difference is
of one-digit integer size (i.e. not decimals) apart from pair [2,4]. Real pairs are
apparently not randomly distributed.

The distribution of the real pairs is far from random. In fact, some of the lesser
frequent random pairs are over 10 times as frequent as their real-world counter-
parts.

Looking more closely at the pairs more frequent in the real data, we see nu-
merous pairs that occur more often than they should according to the random
pairing, e.g. the most popular pair [1, 4] occurs twice as often as its random
counterpart. This suggest that product 4 is popular for pairing. The expla-

4.2. BASIC MODEL 29

nation can be as simple as customer convenience; first a sum is allocated into
a savings accounts of sorts, being “Savings one off”, and then transferred to
purchase the other product of the pair, i.e. an allocation where the Savings one
off simply is a “middle man” (as speculated above).

After reallocating the sales that contain a 4, and the dual sales, the multisale
category becomes to insignificant to keep, and the rest of the pairs are discarded.

4.2 Basic model

Note! The target used in this section is a rudimentary one which proved
insufficient for deployment due to business reasons - i.e. certain anomalous fea-
tures were detected when doing advanced analysis (see next section advanced
model). All results presented in this section are thus, although theoretically
valid, not comparable to those in the next section (including the final model).
This target should be seen as a simpler version of the final target.

In this thesis, the term basic model implies applying a package without much
(or any) tuning. Any adjustments should be near-trivial and understandable for
an amateur machine learner and not requiring any deep knowledge of the algo-
rithms to employ. The subsections are in order of development; a basic model
was first trained, then default multiclass models were trained before engineering
their features. Finally, a hyperparameter optimization was performed.

4.2.1 Binary model

The very first model wasn’t a multiclass. Instead, all products were bundled
into one positive target (1) and the rest of the data got denoted as the negative
target (0). Also, the first models were using only two months of data for train-
ing, rather than employing the full set. The reason was strictly computational;
Python (Pandas) store loaded files directly onto memory; which is limited even
for the banks Heavy Load Memory machines.

A third month (two months after the training set) is used for testing. The
training months where deliberately chosen such that they will have the same
test month as the full data set. This way, the simple model can be compared
against the final one. The hypothesis is that the final model should predict more
accurately, having far more data to train on, and if this is the case, the learning
curve of the simple model shouldn’t stagnate.

After suitable cleaning and preparation of both test and train set (e.g. merging
the aforementioned target), standard XGBoost and Light GBM are used for the
first models. All information has been converted/encoded to numerical types.
As can be suspected, the classes are heavily imbalanced.

30 CHAPTER 4. MODELLING

Figure 4.6: Normalized confusion matrix. Upper right value not actually 0;
classes too imbalanced to reveal the significant amount of false positives. As
this is the simplest model to generate, this will be considered the ”worst case”
performance.

Due to the heavy class imbalance the clients predicted as False positive (e.g.
as incorrectly wanting to purchase, upper right corner) are seen as being 0. But
there’s a significant amount hiding behind the 0.00; especially considering that
every client predicted as customer will result in a marketing attempt. Roughly
one eighth of the purchase predictions would aim marketing at these clients that
do not intend to purchase anything. Purchase was correctly predicted 55% of
times, i.e. almost half of the potential customers would be lost with this model.
On the plus side, Light GBM is very fast; training took less than four minutes.

The XGBoost model took two hours to run, which is 40x longer than the Light
GBM. However, the results were also notably better; here the 0.00 is indeed
0 since there are virtually no false positives. The number of “lost” customers
(i.e. potential purchases predicted as no purchase) remains the same. Thus,
the benefit of using XGBoost seems to be that you’d avoid marketing towards
customers with no intention to purchase: It is better at avoiding False positives.

Strictly counting marketing approaches, the two models both manage to capture
roughly the same amount of potential customers actually willing to purchase,
and loose roughly the same amount of them too. The difference lies in market-
ing towards unwilling customers; for the extra hours the XGBoost model would
save roughly 12% of total effort – not an insignificant number.

4.2. BASIC MODEL 31

Fortunately, as the models are both “out-of-the-package” and use only a small
subset of the available data, there is room for improvement. Further, the models
aren’t even simple versions of the desired model; the one sought after is the
multiclass one.

4.2.2 Multiclass model

The first basic multiclass models are, like the binary ones, trained on merely
two months of full data.

The very first multiclass model employs Light GBM. As before, the non-purchases
are virtually all correctly predicted; however, a significant percentage of the calls
will be made to people with no intent of purchase. Regarding the accuracy
(i.e. percentage of product purchases correctly predicted), the result can be
considered mediocre at best; one third were correctly predicted. The percent-
age of correctly predicted customers (55%) is the same as when doing binary
prediction: No information is lost when predicting multiclass.

The next model was the standard XGBoost. In the multiclass case this model
took roughly half a day to train, compared to Light GBM taking 15 minutes. It
did however manage to almost completely eliminate the false positives, which
makes it well worth the extra hours: Every marketing outreach will be to a
customer, albeit maybe for the wrong product. The accuracy remains at one
third.

4.2.3 Feature engineering

Gradient Boosters, including XGBoost, use a measure known as feature im-
portance [4] to indicates how useful or valuable each feature was in the con-
struction of the boosted decision trees within the model. Essentially, at each
node, the region associated with the node is partitioned into two sub-regions;
within each a separate constant is fit to the response values. The idea is to
choose variables such that one gets maximal estimated improvement î2t for the
entire region associated with the node. To generalize over additive trees, one
simply averages over said trees, which also gives a stabilizing effect. In practice,
the feature measure values are relative, and thus the largest is often set to 100,
and the others are then scaled accordingly [4].

Using feature importance, calculated automatically by XGBoost, columns are
ranked and removed to see how significantly performance is affected. The mea-
sure ranks features based on how often they are split: more split means the
feature is used more often. A feature with no splits isn’t being used at all.
To measure efficiency, the percentage of correct product purchase predictions is
used as a first indicator (i.e. the same accuracy measure as before). With a full

32 CHAPTER 4. MODELLING

set of columns, the accuracy is one third.

Both XGBoost and Light GBM have near-identical lists for their 15 most im-
portant features; only the internal order for a few of them is different. Some
testing indicates that one can remove over 85% of the columns, and still retain
the same accuracy (roughly one third) for both models. In fact, keeping only
the 15 most important features (a fraction of the total) is sufficient enough for
an accuracy of almost 30%.

Figure 4.7: Correlation matrix for the top 100 features (ranked by importance).
Clusters of correlation appear, but features mostly uncorrelated. A quick check
indicates that many of the heavily correlated clusters are filled with NaN and
have no business correlation.

There seems to be local clusters of correlation, which is to be expected as many
columns simply provide the same information, albeit for a few (e.g. three)
consecutive months. If then customers have regular savings, a correlation will
appear. A quick check reveals that most of the highly correlated columns are
indeed the same category but for different months (e.g. two investment columns
that have nearly 1 in correlation; as they both almost entirely consist of NaN).
Many of these columns should be only NaN, as the aim is to target clients with
neither savings nor investment products, so the absence of NaN values in those
columns indicates a missclassification (although, often the faulty values are no
more than a handful of percent). The fact that some of these features also
popped up as ”important” implies that the boosters exploit this missclassifica-
tion in some way. This will be dealt with in the next section Advanced model.

As far as the models and prediction goes, the feature engineered data with fewer
columns generated little to no change, which in itself is a minor achievement as

4.2. BASIC MODEL 33

both the data size as well as the runtime are reduced. In fact, the trimming of
features reduced the data size to such an extent that the entire data now can
(without much difficulty) be loaded directly into the RAM of the banks Heavy
Load Virtual Machine.

When employing the full data, the result (for XGBoost) barely differs. In fact,
the full data provides a slightly worse fit compared to when only using two
months data. The accuracy is at just below one third and the overall prediction
of customers is stable at around 55%. Notably, the amount of false positives
have increased. Looking at a self-provided learning curve (generated using Light
GBM), this result becomes apparent:

Figure 4.8: Graph implies that more data does not imply higher accuracy;
there seems to be severe stagnation after using 60% of the data. The picture is
deceiving, as the y-axis is broken. This knowledge will be used when determining
what section of the data to use as ”test”.

4.2.4 Hyperparameter optimization

Boosters have numerous hyperparameters that can be tuned and with a dataset
this major, it’s highly non-trivial to find an optimal setting. Focus will thus be
to tune a subset consisting of the most important parameters based on sugges-
tion from senior data scientists at the bank who have had previous hands-on
experience with applying boosters to similar data. As far as tuning methods go,
there are two main approaches; grid- and randomized search (see 2.3). Both
are crude and non-intelligent in the sense that they do not take previous results
into consideration.

As the data is quite big, and the parameter space very large, randomized search

34 CHAPTER 4. MODELLING

is the only viable option as it will cover a far larger section of the parameter
space compared to grid search during the same time. Hyperparameter tuning
was done for both Light GBM as well as for XGBoost.

So far, whilst the XGBoost has provided better results, it’s been far slower.
However, XGBoost has a histogram setting that allows it to bucket continuous
features into discrete bins (much like Light GBM), thus saving time. A full
run with reduced features took a mere hour, which is faster than the default
XGBoost, but still slower than Light GBM. However, given the superior results,
it is well worth the wait. The Histogram XGBoost didn’t fail in performance,
and provided a near-identical result to the default XGBoost with an accuracy of
around one third and almost no false negatives (this was before optimizing any
hyperparameter). Taking this into consideration; from this point and on-wards
only XGBoost was employed. Light GBM wasn’t accurate enough for this
particular project.

An initial tuning of the non-histogram XGBoost using randomized search for
five parameters with a total of 42 000 combination was finished in roughly
eight hours. Even though the accuracy remains at a solid one third, there are
certain improvements; only products 1 and 4 see a drop in performance. On the
downside, there are a few more false positives, but still well within the range of
being considered as insignificant. Looking at the cross validation, with RMSE
as measure, there are no indications of overfitting with this setup. As far as the
elementary methods go, which most people with basic knowledge of python can
learn (given the prepared data), this was the best possible model.

4.3 Advanced model

An advanced model is one that requires either deep insights of the data, provided
through e.g. professional knowledge or non-trivial statistical tools (for advanced
feature engineering), or advanced non-trivial tools (such as implementation of
a sophisticated hyperparameter optimizer).

There was an attempt to model the two categories Savings and Investments
separately, and then merge the results into a single prediction. The hypothesis
was that the two categories should have distinct behaviors, which the booster
could exploit. However, when running two models and merging them, the result
(albeit satisfactory) wasn’t as accurate as when running a single model. There
might be a business reasons behind this, e.g. that for customers savings and in-
vestments just are two sides of the same coin: asset allocation. Someone might
purchase a Flexinvest Fri in order to invest a large sum, whilst someone else
might purchase the same exact product for saving (because they have higher
risk adversity).

The first attempt at sophisticated feature engineering was to exploit any even-

4.3. ADVANCED MODEL 35

tual differences of distributions. Essentially, one product at a time was selected
for analysis (the method doesn’t differ depending on product); in this section
we’ll highlight product four who had most false negatives (but the method is
similar for all products). The predictions were divided into True negatives
(0 predicted as 0), False negatives (4 predicted as 0) and True positives (4
predicted as 4). False positives (0 predicted as 4) are de facto negligible. The
idea was to find differences in distribution for the features in these three groups
that could help manually categorize some of the mismatches.

Two statistical methods were used: Bhattacharyya’s distance [16] (for cat-
egorical features) and Kolmogorov-Smirnov 2-sample-test [17] (for contin-
uous features). Both of them compare the distribution of two identical features
from two different datasets, and return a number depending on their similarity.
Identity means 0 for Bhattacharyya, as it is a distance, and 1 for Kolmogorov-
Smirnov, as it is a p-value.

Bhattacharyya’s distance is closely related to the Bhattacharyya coeffi-
cient which can be used to determine how similar two (discrete) samples are.
It has benefits over other similar measures, e.g. it also considers differences in
standard deviations (and not only for mean). For two probability distributions
p and q the distance is defined as

BD(p, q) = − ln [BC(p, q)] , BC(p, q) =
∑√

p(x)q(x) (4.1)

If the distributions are identical, the sum will be one and the distance zero.
However, if there’s no similarity, the coefficient will be zero and thus the dis-
tance will go to infinity.

Kolmogorov-Smirnov 2-sample-test is used to determine how similar two
(continuous) samples are. It is, like Bhattacharyya, superior to similar tests
since it’s sensitive to differences in both location and shape of the empirical
cumulative distribution functions of the two samples being compared. The
null hypothesis, that the samples (of size n and m) are drawn from the same
distribution, is rejected at level α if

sup
x
|F1,n(x)− F2,m(x)| >

√
− ln

(α
2

)n+m

2nm
(4.2)

The left term is known as the Kolmogorov-Smirnov statistic on 2 samples
where F1,n(x) and F2,m(x) are the empirical distribution functions of the first
and the second sample respectively and x thus being an element of the sample.
As the statistic can be seen as a p-value, it can then be treated accordingly (i.e.
compared to tables with common levels for α).

36 CHAPTER 4. MODELLING

Figure 4.9: Illustration of the two-sample Kolmogorov–Smirnov statistic [18].
Red (above arrow) and blue (below arrow) lines each correspond to an empirical
distribution function, and the black arrow (maximum difference) is the statistic.
Data used for plot is generated from a normal distribution with X being gener-
ated values (4 being the ultimate value implies that all values are less than or
equal to 4). If e.g. customer age was depicted instead, the x-axis would range
from 18 to 123.

No categorical feature of value was detected, but several continuous one; many
of them related to savings and investment volume. This was an interesting find,
as per definition of the target, these features are supposed to be zero. The
investment volume is indeed zero for most clients, but a handful have non-zero
values, and a majority of that handful have a positive target. The reason is
that the bank has a threshold for when a client is considered as owning ”invest-
ments”, and all non-zero values here are below that threshold (and thus, as far
as the bank is concerned, they don’t have any investment volume). However,
there’s an additional binary feature that keeps track of whether or not someone
owns any investment products. This feature was also deemed as very significant,
which is even more noteworthy as, per construction of the target, it is supposed
to be entirely zero.

A similar situation occurred for clients having non-zero savings, as savings can
be defined in two main ways; either someone who owns a savings product (for
instance a product 5; savings recurring) or someone who has money in their
account (without it being specifically listed as e.g. a savings account). The
thesis (as it aims at marketing products) uses the former definition and thus
there will still be many clients who have money in their accounts. Removing
anyone who has any sum of money in their account makes no sense as it will
delete almost all the data (a main reason for approaching a bank in the first
place is to store money). As with investments, there’s a feature that keeps track

4.3. ADVANCED MODEL 37

of whether or not someone own any savings products, and again, there where
non-zero elements here.

As may be recalled from section 2.3, the booster has a metric known as feature
importance, which ranks features based on number of splits. The single most
important feature was customer age. This category ranged from age 0 to 123
– as Danske Bank is the largest bank in Denmark, it is natural that all ages are
covered. Some age-ranges have explanations; although young children can’t be
customers themselves, their parents can purchase products, e.g. funds, in their
name. Similarly, as the oldest living Danish person at the time of writing this
thesis is reportedly almost 110 years old, those with ages above that most likely
belong to deceased customer whose accounts haven’t been terminated yet for
various reasons. However, customers above age 100 are an insignificant portion
of the clientele, whereas customers under age 18 (who can’t be marketed to, and
thus are irrelevant for this thesis) make up a significant portion of the data.

Removing all customer below age 18 significantly improved accuracy. In ret-
rospect, it can be argued that this group should have been removed already
when constructing the target, for business and legal reasons. The improvement
isn’t a surprise; customers below age 18 haven’t made purchases themselves,
and thus their personal data won’t aid in predicting their purchase behavior (if
anything, it could provide faulty patterns). Plotting product purchases against
age reveals why the model regards customer age as one of the most important
features, as there appears to be distinct preferences related to customer age:

Figure 4.10: Normalized plot of product purchase related to age. Distinct pur-
chase preferences are picked up by the model - hence why ”customer age” is the
most important feature.

38 CHAPTER 4. MODELLING

The final attempt at exploiting features was to use hierarchical clustering to
reveal useful patterns (and perhaps be able to exclude some more features).
The dendrogram seen in image 4.11 was generated using a linkage known as
Ward’s criterion [20]. Also known as ”Ward’s minimum variance method”, it
defines the distance between two clusters A and B as

nAnB
nA + nB

||mA −mB ||2 (4.3)

where ni is the number of elements in cluster i and mi is the center of cluster
i. As can be seen, if clusters are equally far apart, Ward’s method will merge
the smaller ones.

Figure 4.11: Data presented as a dendrogram of hierarchical clusters. Features
that contain much NaN are in one cluster (green). It appears that there are
two distinct clusters. Looking at the data, it’s clear that the green cluster (as
seen in the figure) is nothing more than NaN-heavy columns. Within the larger
red cluster there are, per definition, two distinct subclusters. Even though one
is smaller than the other, it’s still too large to be removed without significantly
affecting the accuracy. The median distance is 1.1, but cutting the branches at
that value didn’t improve the model but instead reduced its accuracy.

When predicting on new clients, none of them will of course have neither Savings
nor Investment products, and hence these two features were removed altogether
from both test and train data. The real question is whether to keep or remove
clients that previously own a product in any of the categories. It might seem
counter-intuitive to keep them, as none of the customer we’ll be predicting on
will own a product in any of the categories. However, the booster might pick up
valuable patterns (without actually knowing who owns a product, as the fea-
tures are removed!). Trivially, these clients will be removed from the test data,
as clients who previously owned products aren’t of interest to predict (per defini-
tion of the project). The testing method was five fold cross validation with

4.3. ADVANCED MODEL 39

stratified shuffle split. ”Cross validation” means testing the model on data
previously not seen by it, and ”five fold” implies that five different train/test
splits were tried (from the same data). ”Stratified shuffling” is a method that
preserves the distribution of the target in every split.

A ROC-AUC calculation was also done [19]. The Receiver Operating
Characteristics (ROC) curve is a commonly used tool for visualizing the per-
formance of classifiers. Let tp rate be true positives over total positives and
fp rate be false positives over total negatives. The ROC curve is simply a 2D
graph plotting tp rate on the y-axis and fp rate on the x-axis. Thus, points on
the northwestern part of the graph are desired as they indicate a low amount
of false positives and a high amount of true positives. The diagonal line, x=y,
indicates random guessing. The Area Under the Curve (AUC), reduces the
curve to a single value between 0 and 1 (as it is a portion of the unit square).
However, note that the random guess will generate 0.5 and as such, no actual
classifier will have an AUC close to that value (even a value far below it, e.g.
0.2, is satisfactory as this implies that predictions can simply be ”turned” to
achieve a 0.8 in AUC). Likewise, it is very rare to see values over 0.9 with big
real-life data. A machine learner can use the AUC-value to detect anomalies in
the model. In fact, one of the first advanced models for this project showcased
a stunning 0.92 in AUC-value, which was deemed too high for this type of data.
After meticulously checking the code, a few errors were detected, and removing
them provided a more ”reasonable” AUC (presented below).

Since the data is multiclass and the curve can only be plotted for binary, some
manipulation was required: A probability prediction was run, and the proba-
bility of all positive targets was summed and stored as a single positive target,
and compared against the negative target. The highest probability of the two
was selected as the prediction.

As known from before, the classes are highly imbalanced, and after removing
customers with savings and investment products from the data there is even
more imbalance. During initial tries, the model had severe problems in being
able to model any product at all; generating low one digit values as accuracy.
However, there was patterns in the probabilities of prediction that indicated
non-homogeneity, i.e. the booster might predict one product as more likely
than the other (but all products are clearly less probable than no-purchase,
and thus customer is predicted as 0). One solution to this is to change the
threshold for when the algorithm considers a customer as being a specific tar-
get. Of course, this will increase the number of false positives, so it’s a trade-off.

Experimentation with the data had shown that keeping savings and investment
customers in the training set improves the accuracy, despite leaving them out in
the test set. This implies that the behaviour of customers already owning the
product is similar enough to first time customers for the booster to be able to
exploit the information.

40 CHAPTER 4. MODELLING

Four different stratified shuffle split cross-validated models were created with
varying thresholds (based on a heuristics; the mean percentage of every target).
Results clearly indicated that different thresholds generated different accuracy,
with lower thresholds resulting in higher accuracy as well as a higher rate of
false positives (since the model would classify a lot more client as customers,
and thus capturing more ”real” ones whilst also letting in a lot of ”false” ones).
The threshold is a trade-off decided based on business knowledge; a few key
aspects to look at would be the profit of a sale versus the cost of a marketing
approach aimed at an unwilling customer. One must also consider the channel;
phone is more labour expensive (but also has a higher potential pay-off) than
e.g. an encouraging email or banner at the customers personal banking web-
site. Further, Danske Bank is a customer oriented bank, aiming at maximizing
customer satisfaction as well as profits; an undesired phone call from ones bank
may not lead to a canceled account, but could very well reduce the overall sat-
isfaction!

The final model is now ready to be trained. So called model stacking will be
employed; the idea is to combine multiple models (in this case two models, but
it could be multiple ones). Here an XGBoost model is used as primary model,
and a standard Decision tree as secondary model.

Figure 4.12: Training data is first given to an XGBoost model. The fitted model
will predict the probability for every one of the six targets for the test set. The
output will be a six-column matrix consisting of continuous probabilities, and is
given to the Decision tree model, together with a binary target (assembled from
the original multiclass target by letting class 0 remain 0 and classes 1-5 become
a new class 1). This tree only has one split to find; at what probability will a
customer is purchase (or not). The model will output a vector that contains
predictions of whether or not clients are customers. From this tree it can also
be extracted a cut-off probability for purchase/no purchase.

Note that the stacked model is essentially a custom Decision tree with two
branches - each one a model. Additional models could be added based on how
much data that is available after every stack. One could also add models in
parallel rather than sequentially, e.g. a categorical booster that trains on only
the categorical data. The output of the two boosters could then be averaged.
Note that whereas parallel models are trained on the same data (albeit perhaps
subsets of it, e.g. one on categorical features and one on the rest), sequential
models must be trained on the test set of the previous model.

4.3. ADVANCED MODEL 41

The ultimate model, this time testing on a new test set (same month as when
testing the basic model), had poor accuracy for predicting products. However,
the ROC generated 0.83 for AUC. Compared to other models in the bank,
this is considered a good AUC value. Trying different test data generated a
similar value and no apparent faults in the code were detected by neither the
author nor by senior data scientist at the bank. Applying the ”classic” ROC to
the multiclass model requires certain data manipulation as described above.

Figure 4.13: ROC for the final model with multiclass merged to binary by
classifying all products as ”purchase”. Dotted gray line denotes ROC AUC of
0.5, i.e. random guess.

There are however other methods of generating a ROC curve and an AUC value
[19]. One way of handling n classes is to plot n different ROC graphs. A bigger
issue is how to calculate an AUC. The two-class problem allows for a simple
area measure, but an n-class introduces problems. One approach is to calcu-
late n separate AUC, and then weight them according to the class prevalence
in the data (in our case, it would most likely reduce to the above-mentioned
binary case). A different, more sophisticated, approach would be to exploit the
fact that the AUC is equivalent to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly chosen negative
instance. One plots the zero class against the others, and then every positive
target against the others. In our case it would be 15 plots. The individual AUC
could then be visualized in a matrix, and an averaged ROC could be plotted.

A common way in the bank to measure the efficiency of models is to looks at
segments of the prediction; often many models are very confident about a subset
of their predictions. The probability predictions for all customers are sorted
(descending according to probability to purchase a product) and then binned,
and the percentage of actual purchases in every bin is then plotted. This allows

42 CHAPTER 4. MODELLING

marketeers see how many successful leads they can expect simply by selecting
the top n predictions (without considering if the model actually predicted them
as a purchase or not). The benchmark is the average probability of purchase
(which simply is true events divided by all events), and the gain is termed lift
for the top n purchases, i.e. percentage of true events for top n predictions
divided by percentage of true events for entire data.

Figure 4.14: Every red dot is a bin with 15 predictions, y-axis depicts percentage
of purchase in bins and x-axis is the probability of non-purchase. The vertical
blue line is the cut-off for when the model is confident enough to classify an event
as a purchase (65%) and the horizontal blue line is the average event rate (0.2
%). As can be seen, the model managed to find the cutoff (containing roughly
100 customers) before a sharp decline in purchase per bin. The lift for this
model is 8.6 for the top 5% of predictions (which is considered good). Advisers
can select an acceptable lift (or accuracy) and then call customers accordingly.

As noted, the lift is calculated as a binary measure; one simply looks at ”any
purchase”. In a practical scenario an adviser would call the customers that
have strong leads, and then use the suggested product as a starting point for
the conversation.

4.3. ADVANCED MODEL 43

Looking at the distribution for the predictions above the cut-off:

Figure 4.15: A clear majority of customers among the top leads have purchase
as intent. When including customers beyond the cut-off (i.e. more than top
100), the amount of non-purchases increase a lot faster than purchases (due to
far lower accuracy). Product 2, June, is the most commonly predicted.

Compared to the overall product distribution of the test set (no purchase is
obviously most dominant among the entire test set, but has been removed):

Figure 4.16: Similar to the top leads, product (denoted as target) 1 and 3 are
badly represented due to poor predictions. For the other products, there’s a
slight skew in distribution.

Chapter 5

Discussion

The good performance of the ROC indicates that the model can sort products
and non-products well, but the low accuracy (without threshold manipulation)
is far from satisfactory. In fact, in order to get a satisfactory accuracy, one
would have to lower the threshold until the false positives became dominant
(and essentially ”killed” the model). To keep the model intact, and increase
accuracy, the only other option is to include clients who own either investment
or savings products; and thus only be able to predict one of the categories. In
the end, the question of whether or not it is possible to model on product level
turned out to be similar to the question of whether or not it is possible to model
on category level - in some cases ’yes’, and in other cases ’no’; it depends on the
target. More importantly is thus the insights about ones data, to be able to in
advance predict whether or not product modelling is possible.

This particular target, with its most narrow definition, could not be modelled.
As such, the specific answer to the question posed in the introduction is no
(as predicted by Betteridge’s law of headlines).

Still, there are clear indications that modelling on product level rather than
category level provides additional information about customer behaviour (e.g.
with a slightly redefined target for this project). The complexity and approach
differ slightly compared to a binary model, but not so much that a professional
machine learner can’t adapt to it. The additional time spent will pay off in
increased understanding of customer behaviour. But even though there are
clear advantages with modelling on product level rather than on category level,
there’s still room for significant improvements of the model. Adjusting market-
ing strategy requires solid results from a business point of view: the ratio of
accurately predicting specific products needs to increase; as a first step above
random guess, and on the long run above 50%.

Perhaps the leads aren’t optimally aimed at advisers, but rather better used for
online marketing (e.g. banners on the customers personal banking site). And

45

46 CHAPTER 5. DISCUSSION

perhaps the most gain is to be made by looking at a few (perhaps only one)
specific products, rather than all five (depending on what type of gain the bank
is trying to maximize).

Not every product can be modelled alongside others as a ”product level” ob-
ject. Some products are, due to business reasons, bundles of other products.
These are, as far as modelling concerned, not on equal term as ”true” individual
products, and will model worse as they contain noise. With that being said,
they can still be modelled, but should not be bundled with actual product level
products. As they aren’t actually categories, they shouldnt be modelled with
categories either, and are most likely best modelled alone.

There are no practical benefits of optimizing with grid search. Practical settings
(and not only when big data is being employed) often have too large parameter
spaces to make an efficient grid search worthwhile. Given the time often avail-
able, only very small sub-spaces can be explored. Rather, using randomized
search will circumvent this issue and let the user decide how much time they
want to explore a sub-space of user-decided size. Of course, the best optimizer
is the Bayesian one, but far more difficult to employ on a multiclass target com-
pared to ”out-of-the-package” randomized search ones.

Feature engineering is in many cases ”hit or miss”, but nontheless a crucial step
in any modelling process. Often, as with this project, sheer ”feature adjust-
ment” (e.g. capping age) will show significant improvements that perhaps even
many optimizes can’t achieve. There is a multitude of methods to choose from,
and the optimal approach depends on the project.

In the end, XGBoost proved to be the only booster fit for this project. Mi-
crosoft’s Light GBM was faster, but less accurate, and when employing XG-
Boost’s histogram option the time difference became narrow enough for Light
GBM to be discarded from the thesis. With that being said, Light GBM’s speed
makes it a worthwhile option when it comes to experimenting, as the difference
in performance and usage isn’t too extreme. Yet, it is significant enough for it to
be worth the extra time when deploying an actual business project. Given the
multitude of boosters (and other machine learning algorithms) that are freely
available, stacking models are recommended as they often increase accuracy.

Chapter 6

Future work

This thesis scraped the surface of a new approach to modelling: product level
rather than category level. As such, there are multiple different ways of further-
ing research in the field.

As far as this specific project is concerned, it would benefit from a pilot (i.e.
giving leads to advisers for a test on real customers). The pilot could help
determine how many of the accurately predicted product purchases that are
”trivial”, i.e. that an adviser would confidently pitch without having to do any
research. Before a pilot, one could also try to calculate the optimal thresholds.
Further, for a true comparison, there should also be an advanced binary model.

This thesis only looked at five products. There are of course no such limits as
far as the algorithms are concerned; additional products could be added. One
could perhaps look at if there’s a relationship between number of products being
investigated and prediction accuracy.

Regarding unrelated follow-up projects in the same field (product level predic-
tions) there are, as stated above, several different approaches. One idea could
be to not look at first time buyers of a category, but instead look at first time
buyers of a specific product, that already have purchased something different
from the same category (e.g. predict first purchase of fund Y given previous
purchase of fund X).

Of course the model, as it is, could be further polished and improved upon.
By tweaking the threshold of the decision tree appropriately, one could get a
new dataset where the event rate is increased four times. This data set is large
enough to be modelled, and could in turn be stacked an additional time, for
further event rate increase. The trade-off would be that the extra time spent
has to result in enough additional ”certain” leads apart from the 100 generated
by the model presented in the thesis.

47

Bibliography

[1] Arthur L. Samuel. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, vol 3, p. 210-229,
1959.

[2] Danske Bank. Retrieved from www.danskebank.com

[3] Michael Kearns. Thoughts on Hypothesis Boosting. Machine Learning class
project, 1988.

[4] Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. 2nd edition,
Springer, 2009.

[5] Robert E. Schapire. The Strength of Weak Learnability. Machine Learning,
5, 197-227, Kluwer Academic Publishers, 1990.

[6] Robert E. Schapire. Explaining AdaBoost. Empirical Inference, p. 37–52,
Springer, 2013.

[7] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting Sys-
tem. Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, p. 785–794, ACM, 2016.

[8] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient
Boosting Decision Tree. Advances in Neural Information Processing Systems,
p. 3149–3157, 2017.

[9] James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research, 13, p. 281-305, Micro-
tome Publishing, 2012.

[10] Lev B. Klebanov, Svetlozar T. Rachev and Frank J. Fabozzi. Robust and
Non-Robust Models in Statistics. Nova Science Publishers, 2009.

[11] Jasper Snoek, Hugo Larochelle and Ryan P. Adams. Practical Bayesian Op-
timization of Machine Learning Algorithms. Advances in Neural Information
Processing Systems, 25, p. 2960–2968, 2012.

49

50 BIBLIOGRAPHY

[12] Raul Garreta, Guillermo Moncecchi, Trent Hauck and Gavin Hackeling.
Scikit-learn: Machine Learning Simplified. Packt Publishing, 2017.

[13] Larry Hardesty. Automating big-data analysis. MIT News. October
16, 2015. Retrieved from news.mit.edu/2015/automating-big-data-analysis-
1016.

[14] Andrew Ng. Machine Learning and AI via Brain simulations.
Presentation given at Stanford University, 2013. Retrieved from
ai.stanford.edu/∼ang/slides/DeepLearning-Mar2013.pptx.

[15] Anna V. Dorogush, Vasily Ershov and Andrey Gulin. CatBoost: gradient
boosting with categorical features support. NIPS 2017 ML Systems Workshop.

[16] Anil K. Bhattacharyya. On a measure of divergence between two statistical
populations defined by their probability distributions. Bulletin of the Calcutta
Mathematical Society, 35, p. 99–109, 1943.

[17] John W. Pratt and Jean D. Gibbons. Concepts of Nonparametric Theory.
Springer, 1981.

[18] Bscan (username), CC0. Retrieved from
https://commons.wikimedia.org/w/index.php?curid=25223119

[19] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Let-
ters, 27, p. 861-874, 2006.

[20] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze. In-
troduction to Information Retrieval. Online edition, Cambridge University
Press, 2008.

Master’s Theses in Mathematical Sciences 2018:E76
ISSN 1404-6342

LUTFNA-3047-2018

Numerical Analysis
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Abstract
	Acknowledgements
	Popular science
	Introduction
	Background
	Research background
	Business background

	Theory
	Loss functions
	Boosters
	Hyperparameter optimization
	Feature engineering
	Hierarchical clustering

	Modelling
	Target
	Basic model
	Advanced model

	Discussion
	Future work
	Bibliography

