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Abstract

Over the years, game development has grown into a large business. Due to
the ever-increasing demand for new content, there is much time, money, and
effort that can be saved using automatic generation.

In this project, we have developed a procedural content generation tool to
automatically define spawn points in a wave-based shooter game. Our inten-
tion was to create missions that follow the designers’ desired difficulty and
intensity levels, and that can mimic human behavior.

We evaluated the project through a survey, letting several persons play and
rate the wave difficulty, intensity, and author. The results showed that it was
possible to generate waves that somewhat followed the direction of the diffi-
culty and intensity levels, but impossible to mimic human behavior.

We arrived at the conclusion that this was due to the nature of the problem:
assuming what controls the difficulty and intensity measures is easier than
predicting human design.

Keywords: genetic algorithm, evolutionary, direct evaluation, user survey, game de-
sign
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Chapter 1
Introduction

This chapter includes an introduction to procedural generation and a motivation to why
it is an important tool in today’s game development. In addition, the chapter covers a
description of the project and information about earlier work done in the area of search-
based procedural generation.

1.1 Background
Developing games has become a complex process throughout the years, often demanding
large teams of game designers, programmers, artists, sound engineers, and testers. At the
same time, the players’ demand for new content just keeps increasing, forcing the game
companies to spend a lot of money hiring content creators. The most obvious way to treat
these issues is to incorporate some automatic generation into the development process.
In computer science, this is called procedural generation and deals with algorithmically
creating data instead of doing it manually. In game development this is commonly known
as procedural content generation (PCG), where content includes all different elements of
a game such as rules, items, quests, spawn points, and structures.

One of the major issues with PCG is the difficulty of generating qualitative content
in a wide context. Either the tools become very specialized at performing one task, such
as in the commercial vegetation generator SpeedTree [1], or they try to encompass entire
worlds as in No Man’s Sky. In the latter case there have been problems with disappointed
customers [2], possibly due to lack of diversity among the solutions. The ultimate PCG tool
would be amulti-level, multi-content generator, as described by Shaker et al. [3, Chapter 1]:
for a given game engine, generate all of the content while still guaranteeing high quality and
full integration with the game. Although this is an unreasonable goal, every step toward
it is valuable. In this thesis we will continue the development of content generators, with
focus on the generation of qualitative and specialized content, similar to what SpeedTree
did.
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1. Introduction

1.2 Problem Description
The application central to this project is a 3D mobile shooter game with a static player,
whose objective is to shoot enemies spawning at different locations in a static environ-
ment. The gameplay is wave based, and the enemies are moving toward a fort that is to be
defended by the player. If the player manages to defend the fort through a set number of
waves, a mission is completed.

The task in this project is to partly define the spawn points for a certain mission, which
here means that the enemy distribution of every spawn point should be determined for each
wave in a mission. Every spawn point is responsible for spawning a group of enemies,
assembled by different enemy archetypes. The parameter defining a spawn point is thus
the quantity of each enemy type for a given wave. The actual content being generated is
therefore just a set of numbers and falls into the category of non-visible gameplay, but
how this content is generated is one of the most important factors concerning the game’s
dynamics and balance.

There are several different approaches to implementing procedural content generation,
and it is not trivial to choose the best method. Wewill use amethod known as search-based
procedural content generation (SBPCG), a method that uses evolutionary, stochastic, or
metaheuristic search techniques to find the content and an objective function to determine
its quality. These different techniques will be explained later in the report.

In order to frame this project, we make a proposition that is going to be used as a
reference point.

If we can create an algorithm that is able to define all the parameters concerning enemy
spawning in a way that

• follows the designer’s desired mission difficulty and intensity and that

• is inseparable to a handmade level,

that algorithm can be used to hasten the process of developing a game significantly. Re-
garding the second requirement, the goal is to construct an algorithm that strives toward
eliminating the differences between the computer-generated waves trying to imitate a hu-
man and the waves designed by a human. The idea of imitating a human is really an al-
ternate way of ensuring qualitative content. A human designer would create content with
some kind of intention and believability, and those are the qualities we want to replicate.

The research and supplementary questions will then be:

RQ: How can an algorithm that fulfills the above requirements be implemented using a
search-based approach?

SQ: Is it possible to accommodate for both requirements? Why/why not?

10



1.3 Related Work

1.3 Related Work
As SBPCG is the main method used in this project, we present a few attempts that have
already adopted this technique. The name search-based procedural content generation
was first proposed by Togelius et al. [4] in 2010, but the core ideas had already been used
to generate a wide range of content.

Also in 2010, Oranchak [5] used an evolutionary algorithm (EA) to generate Japanese
Shinro puzzles based on the validity and entertainment value of each puzzle. The enter-
tainment value was drawn from assumptions of what the player likes. They experienced
challenges when trying to generate difficult puzzles since those puzzles required a certain
type of symmetry.

Togelius et al. [6] generated racing tracks using a set target difficulty, evaluated by
letting a neural network-agent drive through different types of tracks. They managed to
produce drivable and seemingly well designed tracks, but as no humans took part in the
evaluation, they had no idea whether the tracks were entertaining or not.

In the area of map generation, Togelius et al. [7], [8] generated StarCraft maps by op-
timizing the playability, fairness, and skill differentiation at the same time making sure
the maps did not get bland and uninteresting. In order to achieve this, they had to make
several assumptions about what a fair and interesting level was. They came to the conclu-
sion that the use of a Pareto front (see section 2.1.4) is an excellent design support tool
for human designers. Uriarte and Ontañón [9] also generated StarCraft maps, but with
more focus on strategic balancing. By using a set of balance metrics, they showed the
computer-generated maps to be comparable with those made by humans.

In the area of using questionnaires for evaluating these kinds of problems, Classon
and Andersson [10] wrote a master thesis about how to procedurally generate levels with
controllable difficulty based on player input. They selected a genetic algorithm and con-
structed the levels in an iterative procedure, letting the result from the user tests direct
what parts had to be improved. They found that their method was a good way to ensure
the objective functions’ ability to evaluate the content correctly, but too slow for online
generation.

Another thesis using input from users were written by Baldwin and Holmberg [11].
They conducted an in-depth user study, where a few professional game designers, ani-
mators, and developers were the test subjects. Their goal was to develop an AI-based,
mixed-initiative tool to be used by the game designers, while still leaving them with a suf-
ficient level of control. The main results from their study suggested that a mixed-initiative
design tool is a good starting point when designing a game.

Similar to SBPCG, Jennings-Teats et al. [12] used an EA to generate levels for a plat-
form game. Their goal was to dynamically adjust the difficulty of a level depending on the
player performance, known as dynamic difficulty adjustment (DDA). After collecting data
of the perceived level difficulty from over 200 players, they built a model using a neural
network to correlate the obstacles with the difficulty. They developed a new strategy for
DDA and highlighted the difficulty of making the player unaware of the algorithm.

The most famous game using DDA is probably Left4Dead [13]. They implemented
an AI director responsible for controlling the game behavior. Their goals were to deliver
robust behavior performances, provide competent human player proxies, promote replaya-
bility, and to generate a dramatic game pacing.

11



1. Introduction

1.4 Scientific Contribution
Up to this point, search-based procedural generation has been used to produce puzzles,
rules, terrains, maps, and stories. With this project we will add gameplay definition to that
list and further discuss some of the questions stated by Togelius et al. [14].

• Which types of content are suitable to generate?

• How is game content best represented?

• How can we best assess the quality and potential of content generators?

as well as a question regarding the designer input:

• How should the interaction between the designer and the algorithm work to accom-
modate for both controllability and ease-of-use?

In addition, we will contribute with research to the rather unexplored area of using search-
based content generators to mimic human designers.

12



Chapter 2
Theory

This chapter covers background theory about search-based algorithms and evolutionary
search algorithms in general.

2.1 Search-based Algorithms
Search-based procedural content generation belongs to the family of generate-and-test al-
gorithms. As opposed to constructive algorithms which generate the content just once,
generate-and-test algorithms follow an iterative procedure and evaluate the generated con-
tent in every step.

The search-based approach is essentially an optimization technique that is able to solve
problems with the following formulation:

minimize f (x)
subject to gi(x) ≤ 0, i = 1, . . . , k

h j(x) = 0, j = 1, . . . , p
(2.1)

Here gi(x) are inequality constraints and h j(x) equality constraints. Constraints of all sorts
are common in real-world problems, but they unfortunately make the optimization much
more difficult to solve. Later on, we present different approaches on how to handle these
constraints.

As described by Shaker et al. [3, Chapter 2], the search-based approach consists of
three parts:

• a content representation,

• a search algorithm, and

• an evaluation method.

These parts are all described in more detail in the following sections.

13



2. Theory

2.1.1 Content Representation
In evolutionary algorithms, the content is usually expressed in two ways: as a genotype
and a phenotype. The genotype can be seen as the genome or DNA from biology and is
the representation the search algorithm uses. The phenotype is the representation used in
the evaluation stage and could be compared to an organism’s observable characteristics.

The mapping from genotype to phenotype could vary from direct to indirect. In a fully
direct encoding, every part of the genotype maps linearly to the phenotype, whereas the
genotype in a fully indirect encoding would just be a seed generating the phenotype. In
general, the preferred mapping is somewhere between these extremes [3]. A direct repre-
sentation works well for small problems, but for larger problems the size of the genotype
grows too large and causes convergence problems due to the curse of dimensionality. The
other end of the scale, where the genotype is just a seed number, would instead have a
locality problem; a small change of the seed number would most presumably generate a
completely different phenotype, making the likelihood of convergence infinitesimal.

If the task had been to generate a 10 by 10 grid of 90 white cells and 10 black cells,
a possible representation of the genotype would be a 10 by 10 matrix of zeros and ones
determining whether the color is black or white. This is an example of a fully direct
representation. A semi-direct approach to the encoding problem, however, could be a
vector of 10 coordinates specifying where the black cells are, which also would reveal
where the white cells are. That would in most cases make the convergence process faster,
and as long as the programmer knows how to map the genotype to the phenotype this
representation works.

2.1.2 Search Algorithm
Although search-based methods often rely on evolutionary algorithms to do the actual
search, other algorithms such as simulated annealing [15], particle swarm optimization
[16] and stochastic local search are also included in this group, as stated in [14]. In this
project we will use a genetic algorithm (GA), a subclass of EAs.

Evolutionary Algorithms
Evolutionary algorithms are inspired by biology and are thus based on three operators:
recombination, mutation, and selection [3]. Given a population, the process of finding
the fittest individuals includes evaluating all the individuals in one or several attributes,
select suitable parents, recombine them, mutate the offspring, and then select the next
generation. This is done iteratively until a certain stopping criterion is met, usually when
one individual within the current population has a satisfactory fitness value or when the
maximum number of iterations is reached. The fitness value is in this context a number
expressing how fit an individual is. This way of finding the optimal solution is better
than a fully random search as long as there is a positive correlation between the difference
in fitness and the distance to the optimal solution [17, p. 79]. This basically means that
altering an individual toward the optimal solution should make the fitness value approach
the optimal fitness value.

14



2.1 Search-based Algorithms

The most common type of EAs today are GAs, which use recombination as the pri-
mary search approach. Other EAs, such as the evolutionary strategy (ES), invented by
Rechenberg and Schwefel [18, p. 101], instead utilize mutations to explore the search
space. Which algorithm to choose depends mostly on the problem being solved, how the
content is represented, and how large the search space is. The GA uses a representation of
bit-strings, the ESworks best with real-valued vectors, while a tree structure representation
is preferred when using a method known as genetic programming (GP) [18, Chapter 6].

Genetic Algorithm
The genetic algorithm is a rather straight-forward algorithm, described in pseudo-code in
algorithm 1.

Algorithm 1 Genetic algorithm
1: Initialize a population of µ individuals
2: Evaluate the population
3: while maximum number iterations not reached do
4: for µ times do
5: Select two parents according to some criterion
6: Recombine the two parents into a new individual
7: Add the new individual to the offspring population
8: end for
9: Mutate the offspring
10: Replace the population with the offspring
11: Evaluate the population
12: end while
13: Choose the best individual from the population

The pseudo-code in algorithm 1 describes only an outline of the GA. By choosing
different ways of implementing the inner steps, a large variety of GAs can be achieved.
The most basic type of GAs is called Simple GA, and the sketch of its characteristics, as
described by Eiben and Smith [18, Chapter 6], is shown in table 2.1.

Table 2.1: Simple GA

Representation Bit-strings
Recombination 1-Point crossover
Mutation Bit flip
Parent selection Roulette wheel
Survival selection Generational

Representation: The representation referred to here is the genotype, the one that the
search algorithm uses, and should not be confused with phenotype used in the eval-
uation stage. Figure 2.1 shows a possible bit-string representation of 8 bits.

15



2. Theory

1 0 10 1001

Figure 2.1: Example of a bit-string

Recombination: The 1-point crossover is a method of combining two parents into one
child. A random number r ∈ [1, l − 1] (l is the length of the bit-string) marks where
to split the parents’ genotypes, giving the offspring a new, combined genotype. This
is visualized in figure 2.2.

1 0 10 1001
0 101 01

1 0 1
10

101 01

Figure 2.2: This figure shows the recombination of two bit-
strings. Here r = 3, giving the child three bits from the upper
parent and five bits from the lower parent.

Mutation: The mutation in a Simple GA is a bit flip of some bits controlled by a random
process, often with a uniform distribution. Usually, there is a small probability of
around 5 % that a bit is flipped. Even though mutation is not the primary search
method in GA, it helps to avoid getting stuck in local minima.

Selection: The parent selection in the Simple GA is implemented using a roulette wheel
technique. This method chooses a suitable parent by spinning a wheel where the
sizes of the holes represent the individuals’ fitness values.
The survival selection describes how the next generation is chosen. Letting the off-
spring replace the parents entirely is called generational survival selection.

2.1.3 Evaluation Method
The choice of evaluation method is presumably the part with the greatest impact on how
the final content will look, and again there are several options to choose from. Shaker
et al. [3] divide the options into three categories: direct, simulation-based, and interactive
evaluation. The evaluation method’s task is to convert the phenotype into a single fitness
value.

Direct Evaluation
This method evaluates the phenotype data of the individual. Either a theory-driven method
is used where a designer determines what makes content good or bad (expressed in ob-
jective functions), or a data-driven approach is used where the decision is based on data
gathered from questionnaires or some kind of user input.

Continuing on the example with the black and white squares, the phenotype would be
a matrix where each cell indicates if it is black or white. Imagine the final goal is putting
all the black squares close to each other. In that case, a theory-driven, direct evaluation
function could be a measure of the largest distance between all of the black squares. The

16



2.1 Search-based Algorithms

(a) Unfit individual (b) Fit individual

Figure 2.3: If the algorithm works properly, the unfit individual
in (a) is only apparent in the beginning of the search, while the
population only contains individuals such as (b) toward the end.

search algorithm’s goal would then be to minimize that number. A comparison between a
fit and an unfit individual in this case is illustrated in figure 2.3.

Simulation-based Evaluation
This kind of evaluation method instead uses an AI agent to measure the quality of the
generated content. In a platform game, where the goal might be to create a level with a
certain difficulty rate, it can be complicated for a designer to determine what is difficult
or not. In that case, measuring how well a bot performs would be a better way to evaluate
the level.

Interactive Evaluation
In interactive evaluation methods, the reaction from one or several players is used to deter-
mine the quality. A simple way would be to ask the players directly about what they think,
but another approach could be to measure the players’ reactions during a game session.

Constraint Handling
In evolutionary computing, there exist several approaches of handling constraints. Kim-
brough et al. [19] invented a method named feasible-infeasible two-population (FI-2Pop)
that explored the search space by dividing the individuals into two populations: one fea-
sible and one infeasible. The infeasible population does not fulfill the constraints, but is
kept nonetheless to prevent discarding valuable information. While the evaluation method
for the feasible population remains the same, the infeasible population is instead evaluated
by measuring how much they have exceeded the constraints. Another method, invented
by Deb [20], also keeps the infeasible solutions, but tries to discard them when there is a
better choice. This is done during the selection phase in the GA by following two rules:
always choose the feasible parent if possible, otherwise choose the least bad individual.

17



2. Theory

A third method [21] proposes a penalty function, effectively adding a large number to the
individual’s fitness value.

2.1.4 Multi-objective Evaluation
On top of all these choices there is also a question of how many objective (or fitness)
functions to use. Up to this point we have only considered assigning one fitness measure
to each individual, but an optimization problem in the real world generally consists of
more than one function. In many cases it is impossible to satisfy all the objectives at once.
When buying a car, for example, it would probably be impossible to optimize for both
price and speed.

Problems with more than one objective are called multi-objective problems (MOPs),
and there are many different ways to handle them. One way to deal with the conflicting
objectives is to introduce weights that determine how important a certain measure is. This
can be expressed by

min
x∈X

k∑
i=1

wi fi(x) (2.2)

where wi are the weights controlling the fitness values fi(x), and the parameter x is the
current phenotype from the set X, which in turn represents all the phenotypes in the popu-
lation. This approach is called linear scalarization and effectively reduces several measures
into one fitness value, which is handled by the same single-objective search algorithm de-
scribed in section 2.1.2.

One issue with this method is that the designer must define the weights before the
search algorithm starts. Another issue is that linear scalarization couldmiss an opportunity
to minimize the fitness value even further if the underlying optimization problem is non-
linear.

There are several methods to address these issues, where one alternative is to use a
so-called a posteriori method. This method calculates several solutions between the ob-
jectives’ different minima, and then a decision-maker can choose the desired solution. The
solutions are commonly presented in a Pareto front that visualizes the trade-offs between
the objectives. In a two-objective optimization problem where the ambition is to minimize
the functions  f1(x) = x2

f2(x) = (x − 2)2 (2.3)

the Pareto-optimal front resembles a second-degree curve, see figure 2.4.
The domain of the solution spacewould here be between the twominima: 0 ≤ x ≤ 2. In

order to use this method, an algorithm that is able to handleMOPsmust be used. One of the
most used algorithms of the so-called multi-objective evolutionary algorithms (MOEAs)
is non-dominated sorting genetic algorithm II (NSGA-II), invented by Deb et al. [22] (see
appendix A for a detailed description of NSGA-II).

2.1.5 Online versus Offline
SBPCG works in both online and offline implementations. In the offline version, the con-
tent is generated before the game starts and relies on input coming from the designer. This

18



2.1 Search-based Algorithms

Figure 2.4: This graph shows an optimal Pareto front when min-
imizing equation 2.3. It is generated using the NSGA-II with the
help of the library MOEAFRAMEWORK [23]. All of the dots are
equal solutions with trade-offs between the two objectives.

is the method we are going to use in this project. Online generation, on the other hand,
generates the content during gameplay and therefore puts a stricter speed requirement on
the algorithm. The advantage of online generation is being able to adapt the game to the
player, using some sort of DDA technique [24].
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Chapter 3
Approach

In this chapter we present andmotivate the choices made when using and applying SBPCG
on this problem.

3.1 Method
To be able to answer the questions presented in section 1.2, we will construct a computer
program and then evaluate it using bottom-up methods. This means we will evaluate the
program using incoming data (in this case data from a user study) instead of using top-
downmethods which evaluate the results by decomposing and interpreting the output from
the algorithm.

3.1.1 Program
The program should consist of an implementation of the search-based algorithm and must
include the three parts mentioned in section 2.1. The initial structure of the program is
prototyped in Java and later ported to C# when finalizing and merging it with the game.

3.1.2 Project Evaluation
To be able to evaluate the research questions given in section 1.2, there must be a way to
measure the quality of the two claims made.

... fulfills the designer’s desired mission difficulty and intensity: To succeed at mea-
suring these features, we want to find correlation between the input parameters – provided
by the designer – and the output parameters. The data will be collected from a set of test
subjects that will play through a version of the game and then rate the waves’ difficulties
and intensities. This data will later be compared to the designer input data.

21



3. Approach

... is inseparable to a handmade level: This quality is, in similarity with the difficulty
and intensity, hard to measure using a top-down approach, and we will therefore use the
same bottom-up evaluation method once again. The comparison in this case is not input-
output oriented; instead, the test subjects will play through one handmade and several
computer-generated waves and then try to classify them. The computer-generated waves
will be divided into two different types: one that tries to mimic a human-made wave and
one that does not. The goal is to find significant evidence that the players cannot determine
who or what created the content, and further to find data that suggest mimicking the human
designer works.

Bottom-up
The test groupmust play through ten different waves: one designer-made and nine computer-
generated, where all the waves should have a set difficulty and a set intensity. Four of the
nine computer-generated waves will try to mimic a human designer. After each wave, the
test group is required to answer three questions:

• On a scale from 1 to 10, how difficult was this wave?

• On a scale from 1 to 10, how intense was this wave?

• Do you think this wave was made by a human or constructed by an algorithm?

3.2 Implementation
In this section we present and motivate our different choices of the different parts in the
SBPCG implementation. First off, we chose the method SBPCG due to its versatile nature
and because of its relevance in the academic PCG research the recent years [3, Chapter 2].

3.2.1 Content Representation
Before we describe the content in numbers, we present how the game level looks, shown
in figure 3.1. Every spawn point is responsible for generating a number of enemies of
different enemy types, which only differ in speed, health, and attack power. To make the
player aware of the presence of the different types, they are rendered in separate colors.

Although a semi-direct representation of the data is preferred, as described in section
2.1.1, we decided to use a fully direct representation of the data. Themain reason is that the
data being generated is already in a very compressed state; it is not possible to reduce the
amount of data it takes to describe the spawn point characteristics without losing locality
(earlier described in section 2.1.1). The only difference between the genotype and the
phenotype is therefore how the data is stored. The genotype is a long vector of integers:

x = [x0, x1, . . . , xn−1, xn], xi ∈ [0,K] (3.1)

where K is the maximum number of enemies of one type for every spawn point and
n = numberSpawnPoints · numberEnemyTypes. The phenotype, on the other
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Figure 3.1: This is a sketch of the game level used in the project.
The gray boxes represent buildings and the half-moon shaped area
represents an elevated platform which acts as the fortification.

hand, better visualizes the distribution of the enemies across the spawn points, and con-
tains the same data as the genotype, put in a matrix. This matrix consists of M rows
representing the enemy archetypes and N columns representing the spawn points. Since
all the parts of the spawn point definition involve discrete numbers, we chose to use an
integer representation of the data. A phenotype with two types and two spawn points is
visualized in table 3.1. In this small example, we see that the first spawn point will release

Table 3.1: Example phenotype

SP 1 SP 2

Type 1 2 3
Type 2 0 1

two enemies of type 1 and zero enemies of type 2 while the second spawn point will re-
lease three enemies of type 1 and one enemy of type 2. The corresponding genotype in
this example would be the vector

x =
[
2 0 3 1

]
(3.2)

Most of the parameters controlling the algorithm setup are adjustable. In the user test

23



3. Approach

survey, however, a setup of six spawn points and six enemy archetypes is used, and the
parameter controlling the maximum amount of each type for every spawn point is set to
K = 10. The first genotype is assembled by random numbers in the range [0,K] and could
result in the following phenotype: 

2 9 6 4 9 9
8 7 4 9 7 6
7 5 1 8 2 3
1 4 8 4 0 7
7 1 7 5 8 8
0 4 8 7 9 1


(3.3)

3.2.2 Search Algorithm
We decided to use a genetic algorithm as search engine, mostly because of its compatibility
with integer representations (as long as the recombination uses the same set of operators
as for binary representations [18, Chapter 4]). We set the population size to µ = 40 after
some experimentation. This value does not seem to alter the convergence behavior of the
GA significantly.

Genetic Algorithm
As the content is represented using integers, we had to change the Simple GA on some
points.
Recombination: As described earlier, the recombination still works using a 1-Point cross-

over with the same operators as in the binary case. The only difference is that the
resulting genotype will inherit the integers from its parents.

Mutation: We had to change the mutation operator a bit more drastically than in the re-
combination case in order for it to work with integers. Two alternatives, presented
in [18, Chapter 4.3.1]: random resetting and creep mutation, handle the integer
representation in different ways. The former method is most suitable when there
is no clear relation between the numbers, but as the integers in our case represent
the actual number of enemies, we do have a clear relation between the numbers, en-
couraging us to choose the latter method. The idea behind creep mutation is to add a
small number to each gene with a probability p, drawn from a distribution symmetric
about zero. We chose to use a uniform distribution generating one number among
{−1, 0, 1}, and later adding that number to a gene with the probability p = 0.15.

Selection: Not because of the integer representation, but due to the roulette wheel selec-
tion not giving good sample of the population [18, p. 84], we instead chose to use
another method called tournament selection, which selects k individuals randomly
and then picks the fittest one. In our implementation we use k = 2.
Regarding the survival selection, we kept the generational method, completely re-
placing the parent generation with its offspring.

Due to all these changes, a summary of the Altered GA version used in this project is
described in table 3.2.
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Table 3.2: Altered GA

Representation Integer vector
Recombination 1-Point crossover
Mutation Creep mutation
Parent selection Tournament
Survival selection Generational

3.2.3 Evaluation Method
Presented with the phenotype matrix, we want to evaluate the two measures proposed in
section 1.2: how well the solution follows the designer’s wanted difficulty and intensity,
and the ability to mimic human behavior.

Given the problem is formulated using several objectives, we are committed to use
some sort of multi-objective optimization. If the measures had been independent of each
other, simply adding all the fitness values together would suffice. As the final application
is supposed to function as a non-iterative black box, using anMOEA is not preferred in our
case. Theoretically, we could let some algorithm be the decision-maker after the Pareto
front has been created, but that would only be advantageous if the front is discontinuous,
visualized in figure 3.2. If the weights had been ordered in a way that would put the final
solution close to the discontinuity in figure 3.2, it would be hard for a designer to choose
the right solution without looking at the Pareto front. A solution on the right side of
the discontinuity would have lower and therefore better values in both objectives, but this
would be impossible to know if only working with a priori weights. The final optimization
problem in this project, however, turned out to be continuous, shown in figure 4.1 in section
4.1, and an MOEA was not needed. Even so, as these measures still are in conflict with
each other to some extent, we utilize an a priori linear scalarization, which becomes an
additional input for the designer.

Considering the impossibility in creating an unplayable wave just by generating the
amount of enemies of different types, there should not be any need for constraints. How-
ever, as some characteristics of a wave are more important than others, we chose to pack
all the measurements addressing the human behavior into one constraint, while letting the
intensity and difficulty be normal fitness values. This choice also suits the purpose of
the algorithm well; a designer would most probably prefer losing some control over the
difficulty and intensity in favor of generating a well designed solution.

After experimenting with different ways to implement this constraint, we found that
the best solution was to enforce the constraint using a penalty function, as described in the
fourth subsection of 2.1.3. This means we treated the human factor as a fitness measure
with higher, non-normalized numbers. The high correlation between the human factor
versus the difficulty and intensity measures is probably the reason this method performed
better than the other methods. By not separating the constraint and the fitness functions,
the search algorithm receives more information about good versus bad individuals, mak-
ing the convergence process quicker. In an end version of the application the goal might
however be to generate human-like individuals, with less emphasis on strictly following
the designer input. In those cases, the second option incorporating constraint handling in
the tournament selection would be preferred.
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Figure 3.2: This is an example of a discontinuous Pareto front.
The test function is called Shaffer N. 2 and was developed by
Schaffer [25].

Using the problem formulation in section 2.1, the final fitness measure to minimize is:

f = wd fd + wi fi (3.4)

subject to the equality constraint:
h = ch (3.5)

The indices here are d: difficulty, i: intensity, and h: human factor. The weights wd and wi
control how important the difficulty and intensity are, and are kept normalized: wd+wi = 1.

The following part is a breakdown of the three factors fd , fi, and ch, which together
form all the rules of what makes a good or bad individual. Let capital D, I and H denote
difficulty, intensity, and human factor accordingly.

Difficulty: This fitness measure is a number fd ∈ [0, 1] and determines how well the
difficulty of an individual’s phenotypematches the designer’s desired difficulty level.
This is described by equation 3.6:

fd = |preferredD − actualD| (3.6)

Both preferredD and actualD range from very easy (0) to very difficult (1).
While the number preferredD is just a number chosen by the designer, actu-
alD is a number that must describe how difficult a wave is. This is done using a
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theory-driven direct evaluation method, simply assuming what makes a wave diffi-
cult or easy. The relation controlling this is given in equation 3.7.

actualD =
∑∑

Pi, jd j (3.7)

where P denotes the phenotype matrix and d is a vector that contains a difficulty
value for each enemy type. The total difficulty is thus a sum of all the enemies
multiplied by their difficulty value. This method works well if the difficulty vector
is correctly assessed. We calculate the difficulty of the enemy types by multiplying
their health, damage, and speed together. These values are found in appendix D. We
use the normalized values from D.2 to assert actualD is also normalized.

Intensity: The corresponding equation describing howwell the intensity matches the pre-
ferred intensity is:

fi = |preferredI − actualI| (3.8)

The quantities in equation 3.8 have the same intervals as in the difficulty equation
(3.6), and the function describing the estimated intensity is given in equation 3.9.

actualI =
∑∑

Pi, js j (3.9)

Here, s is instead a vector of the speeds of the enemy types. An intense individual
would thus contain many high-speed enemies, while a low-intense individual would
only consist of a few slow enemies. The intensity measure is similar to the difficulty
measure – both of the measures increase with the number of enemies – which is why
we anticipate some correlation between them.

Human factor: The number that controls howwell a wave imitates a human designer does
not require any input, and always strives to be zero. If the algorithm generates an
individual that trespasses any of the rules considered to describe human behavior, a
number is added to this measure depending on howmuch the rule has been violated.
The four following rules are based on a few assumptions of what characterizes a
human-made wave:

• One spawn point must not contain more than two different types.
• The total number of enemies per wave must be in the interval [5, 50].
• Slow enemies should not spawn too far away from the player.
• The wave should not contain more than four different types.

The implementation of the first rule adds a number, c1, equal to the number of types
for every spawn point that contains more than two different types. This is formally
described in equation 3.10, where i denotes the index of the current spawn point.

c1 =
∑

i

max(0,nbrTypes[i] − 2) (3.10)

The second rule adds a number equal to the amount of enemies above or below the
limit. An individual with 2 enemies would, for example, get a penalty value equal
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to c2 = 3. This is formulated in equation 3.11 when there are too few enemies and
3.12 when there are too many enemies.

c2 = max(0, 5 − totNbrEnemies) (3.11)

c2 = max(0,totNbrEnemies − 50) (3.12)

In the third constraint, only the two slowest types are being kept off the two most
remote spawn points. If this rule is violated, the number of incorrectly generated
enemies is added to c3. Equation 3.13 is only active if enemies from type 1 or type
5 are present at spawn point 3 or 4.

c3 = nbrOfEnemies (3.13)

Similarly to the two first constraints, this constraint adds a number if there are more
than four different types.

c4 = max(0,totNbrTypes − 4) (3.14)

The final constraint value is then the addition of these four values:

ch = c1 + c2 + c3 + c4 (3.15)

which together with equation 3.5 finalizes the constraint expression.

At this step in our implementation, we do a division between the user test version of
the generator and the final product. In the final product the designer’s task is to construct
a mission, and this is achieved by modifying two graphs controlling the difficulty and
intensity levels. An example of one of these graphs is found in figure 3.3. In addition, the
designer must define the weights using two interdependent sliders, shown in figure 3.4.

In the user test, on the contrary, we do not allow any modification of the weights. In
other words the difficulty and intensity levels are kept equally important in the testing
phase. The reason for this is that we want be able to measure how well the algorithm
performs when it is trying to accommodate for both measures at the same time.
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Figure 3.3: This figure shows the graphical layout of how the de-
signer controls the algorithm’s behavior. The red curve is inter-
active and sampled at the blue crosses. The number of samples
is determined by the amount of waves for the current mission and
are distributed equidistantly.

Figure 3.4: These two sliders control the weightswd andwi. Mov-
ing one slider will automatically move the other one, making sure
the weights are kept normalized.

3.3 User Study Setup
The user test is designed to last for approximately fifteen minutes. First, the test group
is introduced to two waves with known intensity and difficulty. The purpose of these
waves is to familiarize the player with the game and to set reference levels regarding the
difficulty and intensity. After the two introductory waves, the test group must play through
another eight waves with different levels of difficulty and intensity. Some of the waves are
generated using the constraint functions and thus try to simulate human design, while the
other waves are only using the fitness measures. In addition, there is one real human-made
wave that works as a reference point. The test group must not be aware of anything but the

29



3. Approach

intensity and difficulty of the two first levels. The entire testing phase is shown in table
3.3.

Table 3.3: Input values to the 10-wave mission used in the survey

Wave Index Difficulty Intensity Human-made Constraint Functions

1 1.0 1.0 Yes -
2 10.0 10.0 No Yes
3 5.4 3.7 No No
4 2.3 3.3 Yes -
5 2.9 1.8 No No
6 4.0 3.7 No Yes
7 3.2 5.4 No No
8 3.3 6.8 No Yes
9 7.5 7.8 No Yes
10 4.5 2.8 No No

Along with a copy of the game, the test group is provided with a questionnaire con-
cerning the eight test waves. After every wave, they have to answer the three questions
presented in section 3.1.2. The test group is restricted to answering the questions using
integers between 1 and 10 (and one yes/no question), which might seem rather peculiar
considering the true solutions use decimal values. There are two reasons for this: we want
to give the designer full control but still keep the common style of survey response scales.
In addition, the main goal is to be able to control the difference in difficulty and intensity,
not acquiring the exact values. The full questionnaire can be found in appendix B.

As described in section 2.1.3, we chose the human factor to be implemented together
with the fitness measure. This gives us the two following evaluation expressions:

f1 = fd + fi + ch (3.16)

f2 = fd + fi (3.17)

Here, f1 is used on waves 2, 6, 8, and 9 while f2 is used on waves 3, 5, 7, and 10.
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Chapter 4
Evaluation

This chapter contains the outcome of the project, starting with a presentation of the results,
followed by a discussion, and finally a section about further work in the area of SBPCG.

4.1 Results
The results are divided into three parts: first plots concerning the use of an MOEA, then
the results from the algorithm’s convergence behavior, and at last the outcome of the user
study.

4.1.1 Pareto Front
The arguments presented in section 3.2.3 about not using an MOEA for this project are
only valid if the optimal Pareto front is continuous. In figure 4.1, the optimal Pareto front
between the two objectives fd and fi is shown.

4.1.2 Convergence Behavior
The convergence behavior was investigated mainly in order to obtain a stopping criterion
for the search algorithm. In figures 4.2a, 4.2b and 4.2c the convergence of the total fitness
( f = fd + fi) for the entire population is shown. The parameters changed are the desired
difficulty and intensity values.

4.1.3 User Study
In this section we present plots summarizing the answers collected from the questionnaire.
All the answers can be found in appendix C. In figures 4.3 and 4.4, the perceived and true
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Figure 4.1: This graph shows the optimal Pareto front of the final
version of the generator between the conflicting objectives fd and
fi.

difficulty and intensity values are shown.
In an attempt to accommodate for the offset between the perceived and true values, the

plots in figures 4.5 and 4.6 show a re-scaling of all the values into the range [1, 10], done
separately for the true and perceived values. Further, these plots highlight the change of
the values by drawing lines between the points. This might seem a bit misleading since
the values are discrete, but they are there to easier see if the perceived values follow the
true values to some extent.

In figure 4.7, data from of the test group’s ability to determine who created each wave
is presented. The true values are found in table 3.3 in section 3.3.
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(a) preferredD = 0.2
preferredI = 0.8

(b) preferredD = 0.5
preferredI = 0.5

(c) preferredD = 0.8
preferredI = 0.2

Figure 4.2: Convergence of the total fitness values
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Figure 4.3: This plot visualizes the true and perceived difficulty
values for all the test waves. The perceived difficulty values are
average values visualized with one standard deviation.

Figure 4.4: This plot visualizes the true and perceived intensity
values for all the test waves. The perceived intensity values are
average values visualized with one standard deviation.
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Figure 4.5: A normalized version of the true and perceived diffi-
culty values for all the test waves

Figure 4.6: A normalized version of the true and perceived inten-
sity values for all the test waves
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Figure 4.7: This figure shows the score of the test group’s per-
ceived sense of whether the waves were constructed by a human
or by a computer algorithm. The letters in the parentheses repre-
sent the actual wave author: (h) if made by a human, (c) if trying
to imitate a human using constraint functions, and (n) if generated
without any constraint functions.
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4.2 Discussion
In this section we discuss the results in the same order as they were presented.

4.2.1 Pareto Front
Even if there seems to be a discontinuity when the difficulty fitness approaches zero in
figure 4.1, this is not considered a problem. The reason for this is that the discontinuity
would only appear when the intensity weight is zero, and in that case the designer would
not care. If the discontinuity would be in the middle, however, it would probably be a good
idea to involve an MOEA in the search process.

4.2.2 Convergence Behavior
In a one-objective GA, the most straight-forward approach to stop the search would prob-
ably be to use a threshold value, representing the boundary between a satisfactory and a
non-satisfactory individual or population. If the search algorithm cannot find a solution
that fulfills the requirements, the search should then terminate when a certain number of
iterations is reached.

In our case, however, we have an MOP, and setting a stopping criterion for only one
objective would not be ideal. Generally we do not want to stop searching for the solution if
only one fitness value is satisfied; it might be possible to improve the other objective while
still keeping the already satisfied value. Another approach would be to add the two fitness
values together and then use a relevant, possibly larger threshold value. This method also
has a drawback because it would be difficult to control which objective is performing better.

Both of the above approaches have the same problem of risking a too early stop as
the search algorithm might find an even better solution. To address this issue, we tried to
implement a way of determining when the search is no longer improving the fitness values,
and then stop the search at that point. This was however rather challenging due to noise
from the mutations.

We came to the conclusion, after several tests, that using a set number of iterations was,
after all, the best method for this project. In order to not waste a lot of computing time, we
graphically studied the point where the algorithm stops improving. This is shown in figures
4.2a, 4.2b and 4.2c. This point is very quickly reached in figure 4.2c, where the preferred
difficulty level is significantly larger than the intensity level. The slowest convergence to
this point is seen in 4.2a, and in this case the algorithm reaches the point after around 800
iterations. Conclusively, it should be safe to terminate the search after 800 iterations in
any case. This is important when using the SBPCG in online fashion, during gameplay.

4.2.3 User Study
As is evident from figures 4.3 and 4.4, the perceived values and the true values are consid-
erably far apart. Ideally, the perceived values should be closer to the true values and have
shorter corresponding vertical lines to indicate a lower spread. There are many potential
reasons for these results.
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Firstly, one problem seems to be a very large offset between the perceived and the true
values. As long as this offset is consistent, this is not a problem. The final goal is to be
able to control the difficulty and intensity values to match the user experience of the same
measurements, and a constant offset could easily be corrected by redefining the minimum
and maximum difficulty and intensity parameters.

Another issue is that the difficulty and intensity values resemble each other to a great
extent, even when they should not. Although the users had to play through two reference
waves, marking the extremes of the algorithms, they only covered the two parameter set-
tings: {d, i} = {1, 1} and {d, i} = {10, 10}. A better introduction could probably be achieved
by adding two additional waves showing different combinations of the difficulty and in-
tensity values. In that case, the perceived difficulty and intensity values would hopefully
not coincide as much.

The third factor we must consider is that the players improve their own skills while
taking the test, possibly making the perceived difficulty values in relation to the actual
values higher at the beginning of the test. Yet, there is no indication that the distance
between the perceived and actual values decreases throughout the test. In any case it would
have been better to let the test subjects play the game for a longer while before starting the
test. In addition, the level order could have been randomized to assure that everyone would
have followed a different learning path.

One thing that also has a large impact on the perceived difficulty and intensity levels is
how accurate our assumptions about these values were. We assumed the difficulty could
be expressed as a product of the enemy health, speed, and attack power, but we did not
consider weighing these factors any differently. Perhaps attack power is twice as relevant
compared to the other factors. If we experiment with these factors we might achieve more
accurate results, but it is probably better to not use assumptions at all. We will discuss
other methods to evaluate the content in section 4.3.

In conclusion, the most important result is that the perceived values at least change in
the same direction when altering the input values. By compensating for the offset differ-
ence, the results shown in figures 4.5 and 4.6 look promising. The intensity values seem
to follow more accurately than the difficulty values, which is probably due to the intensity
being constant disregarding the skill of the players. The accuracy of the difficulty values
will suffer more the larger the skill variation among the test subjects is.

The results concerning whether the test group could distinguish between human-made
and computer-generated waves are shown in figure 4.7. The first noticeable tendency
among the test subjects is to vote for the computer as the wave author. As the majority
of the waves were in fact generated using the computer algorithm, this might be consid-
ered a good thing. Following the goal stated in section 1.2, this is however not true; what
we would like to see is instead similar results between the waves that imitates human be-
havior and the human-designed wave (wave 4). There is no correlation here whatsoever.

If the waves that were constructed using the constraint functions had received more
votes for human-made than the other waves, there would at least have been some indication
that the assumptions about what makes a wave look human-made were correct. There is,
however, no indication of this either. On the contrary, these waves (6, 8, 9) are the waves
receiving the largest amount of votes for computer-generated, which is the opposite of
the presumed results. More extensive tests would have to be done to assert if this is a
coincidence or not.
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If there is no correlation between the usage of constraint functions and the wave author,
why is there a difference at all between the different waves? Comparing the perceived
intensity values in figure 4.4 to the bars representing the computer-generated votes in figure
4.7, there seems to be a slight correlation between increasing intensity and a tendency to
vote for computer-generated. It is possible that an increasing amount of enemies makes
the wave look disordered, no matter how well designed it is.

In summary, it is difficult to make correct assumptions about what makes a computer
game look human designed. Human intuition about design uses a large amount of parame-
ters, and many are more or less impossible to conceptualize. Our conclusion is that a better
approach to make an SBPCG implementation to mimic human behavior is to incorporate
humans in the process. We will discuss this more in section 4.3 about further work.

The difficulty and intensity measures are in theory much easier to determine using a
direct approach, and from the results we see that it works in practice to some extent. Even
if the variance among the players is large, which generally would indicate more testing of
this direct approach is needed, the results of our survey revealed that the fitness functions
were not ideal. Thoughts about how to improve the fitness functions are also found in
section 4.3.

4.2.4 General Discussion
Although the outline for this thesis is similar to the work of Classon and Andersson [10],
there are three major differences: they had a single objective problem, they used an in-
teractive evaluation method, and they generated visible gameplay content. In this section
we will further discuss different implementations by answering the questions formulated
in section 1.4. The first question concerns which types of content are suitable to generate.
In this project we have shown one example of non-visible content, and even if the most
documented variant of content is visible, this works just as well. In this regard, SBPCG is
very versatile. Problems did however arise when we tried to add more fitness functions to
the algorithm. If, for example, the task would be to both define the content and the position
of the spawn points, our approach would not be as effective. As described in section 1.1,
the ultimate PCG tool would be able to do this and much more. When developing small
scale PCG, SBPCG works more than adequately. If the generator must be able to handle
more complex and comprehensive content, the best way to improve it is to represent the
content more intelligently.

This leads us to the second question: how is game content best represented? We used
a direct mapping between the genotype and the phenotype, and this worked very well for
our problem. Adding the position of the spawn points to the requirements, as discussed
earlier, would force our algorithm to use a semi-direct mapping instead. We believe the
easiest way to discover the best representation is to experiment with different alternatives.
Also, plotting the convergence behavior is a good way to determine howwell the algorithm
performs. If a less direct representation is not needed for the algorithm to converge, as in
our case, the only reason to still implement it is to make the search process quicker.

The third question is about how to assess the quality and potential of content gener-
ators. We used a bottom-up approach in terms of a user study. This method is possibly
the best way to evaluate the capability and accuracy of the generator, but needs a lot of re-
sources. We recommend using a bottom-up approach whenever possible, mainly because
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all the content generated is going to be used and judged by the players. As discussed in
[3, Chapter 12], the preferred way is to either use few dedicated players that play through
the game and answer a set of in-depth questions, or to collect data from many players to
be used for machine-learning the evaluation functions.

The last question is about how the interaction between the game designers and the
algorithm should be arranged in a useful way. The answer to this question is specific
to each implementation, but the main goal is to make the process of designing a game
faster. The vegetation generator SpeedTree, mentioned in section 1.1, generates all kinds
of vegetation with just a few parameter settings. We aimed for a similar setup, but as the
original workflow of creating a mission mainly dealt with experimenting with numbers,
we wanted to make the control of the generator even simpler. The interactive graph, shown
in figure 3.3, was the result of this aim. With the help of this graph, the designer is able
to sketch the difficulty and intensity throughout the entire mission. This is advantageous
if they are striving for a flow-like mission design [26]. The idea of keeping the player
in a so-called flow-channel is to alternate the mission difficulty up and down while still
increasing it continuously. This keeps the players in a state between boredom and anxiety,
making them play for longer sessions.

4.3 Further Work
In this section we describe potential ways of improving the current implementation. This
is followed by a general outline of what can be developed further in the area of SBPCG.

We would like to theorize how to improve two aspects about the algorithm: the fitness
and constraint functions. One way to increase the accuracy of the fitness functions is
to continue the work of Classon and Andersson [10], running several iterations of the
user test. This would work to some extent, given they are functioning reasonably well
from the beginning. Another approach would be to collect data from the players, possibly
during a beta version of the game. The players would either have to answer questions
during gameplay, or an algorithm could collect data about how they perform. This data
would then be used to reverse engineer fitness functions that more accurately coincide with
the true difficulty and intensity levels. Both of these methods, however, rely heavily on
information gathered from the players, which is often a time-consuming and tedious task.
Without using any player input, the best approachwould presumably be to use a simulation-
based evaluation. By letting an agent analyze the levels, the entire process would become
automated. The issue with this method is that the agent might behave differently compared
to actual human beings. Nevertheless, a framework combining SBPCG with the latest
advances in reinforcement learning would be extremely powerful.

When it comes to the constraint functions controlling the ability of the algorithm to
mimic human designers, an agent would not be very helpful. Real human beings would
have to be used in the process, either by continuously collecting data from them or by
letting designers construct a large amount of human-made waves. In the latter method,
we would have to construct constraint functions that give these handmade waves a high
rating, though all this work would somewhat contradict the purpose of having an automatic
algorithm from the beginning.

Conclusively, our recommendation for problems similar to this is to prefer using some
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kind of simulation-based evaluation when possible, and otherwise somehow collect data
from players. We believe that SBPCG displays more advantages the closer the evaluation
method is to the end product’s purpose.

The last possible continuation of this project would be to implement an online version
of it. In an online version, as mentioned in 2.1.5, using DDA to adapt the difficulty and
intensity would be useful way to tailor the experience of the game to each individual player.
One thing to be aware of, however, is to not make the algorithm’s behavior visible to the
players, as noted in [12]. If they notice the game changes depending on their playing style,
they might try to exploit it.
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Chapter 5
Conclusion

In this project we have applied SBPCG exclusively to define spawn points. The content
was represented in two ways: one integer array being the genotype and one integer matrix
being the phenotype. The search for a good solution was done by a modified version of a
GA, and the fitness functions determining what makes a good solution were derived from
three assumptions: what makes an enemy wave difficult, intense, and look human-made.

The results from the test were collected using a bottom-up approach, asking a test
group of 20 persons questions about the waves’ difficulty and intensity levels and one
question about whether the waves were computer-generated or not. The study showed that
the algorithm performed better at following the designer’s desired difficulty and intensity
levels than trying to mimic a human designer. Our conclusion is that this mainly depends
on the nature of the different problems; it is much easier to estimate a difficulty value than
to predict how a human being thinks and acts. In other words: humans are unpredictable,
numbers are not.

Returning to the research question, we have shown one way to implement SBPCG.
The program was not able to fulfill both requirements, but we did get much insight into
how to further develop PCG and SBPCG algorithms. Our main recommendation is to
steer away from direct evaluationmethods toward either simulation-based evaluation using
reinforcement learning or some kind of interactive process, closer to the players. After all,
we are trying to develop games for the players.
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Appendix A
NSGA-II

In this appendix, we describe the NSGA-II that handles MOPs in more detail.

A.1 Background
The NSGA-II was first mentioned by Deb et al. [22], and is a successor of the origi-
nal non-dominated sorting genetic algorithm (NSGA). Both of these algorithms have the
characteristic of generating several Pareto-optimal solutions in one single simulation. The
Pareto-optimal solution is further described in section A.2. The problems concerning high
computational complexity, lack of elitism, and the need for specifying a sharing parame-
ter apparent in the NSGA is addressed in the NSGA-II version, which today is generally
considered to be the most popular Pareto dominance MOEA [27].

A.2 Algorithm
A Pareto-optimal or a non-dominated solution is a solution that is better than all other
solutions in at least one objective [28]. The NSGA-II tries to find all the non-dominated
solutions, while avoiding the more dominated solutions. The result is a set of equal solu-
tions with respect to all of the objectives. In figure A.1, a method of how to graphically
distinguish between dominating and dominated solutions is shown. Note that this only
applies to minimization problems using two objectives. The method when using three or
more objectives is similar, however much harder to visualize.

The Pareto-optimal solutions can be found analytically by using algorithm 2 several
times. The NSGA-II approach of finding the solutions is described in the following four
steps:

1: Given a population, form a new population twice the size of the original population.
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A. NSGA-II

Figure A.1: This plot shows a set of dominated and non-
dominated solutions. The non-dominated solutions must not be
shadowed by any quadrant emerging from the other solutions.

Algorithm 2 Find best front
1: Sort OrigPop on Objective1
2: Front← <empty list>
3: MinIndividual← SortedPop[0]
4: for all individuals in OrigPop do
5: if CurrentIndividual.Objective2 < MinIndividual.Objective2 then
6: MinIndividual← CurrentIndividual
7: Front.add(CurrentIndividual)
8: OrigPop.remove(CurrentIndividual)
9: end if
10: end for

If using a GA as search method, the original population could be extended by its
offspring, effectively creating a population double the size.

2: Use algorithm 2 until the original population OrigPop is empty. Add the layers
in the order they were produced to a new population. Go to step 3 if the current
front does not fit the new population. This population will be sorted according to
non-domination, with the first front being the only front with truly non-dominating
solutions.

3: If one front does not fit in its entirety, pick the correct amount of individuals from
this front by ensuring a uniformly spread-out Pareto-optimal front. This is achieved
by selecting the individuals that give rise to the largest crowding distance if they
were to be inserted in the new population. The crowding distance is calculated as
the distance between the nearest neighbors of the new individual.
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A.2 Algorithm

Objective 1

Objective 2

F1

F2

F3

F4

Figure A.2: This figure shows the sorted fronts after step 2. In
step 3, the first front chosen is going to be F1.

4: When the new population has the same size as the original population, one iteration
of NSGA-II is completed, and any GA can be used to apply the other evolutionary
operators.

This entire workflow of the algorithm is summarized in figure A.3, inspired by [22,
Figure 2].
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A. NSGA-II

Figure A.3: This figure visualizes the entire NSGA-II workflow
with a GA. The initial population Pn and its offspring On creates
a new population Rn, which is sorted producing several Pareto
fronts. The three first fronts are transferred directly to the next
generation Pn+1, while the crowding distance sorting is used to se-
lect survivors among the fourth front.
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Appendix B
Questionnaire

You have been chosen to participate in a user test about a mobile shooter game. Your task
is to play through ten waves and try to grade them in a few ways. The two first waves are
not included in the test, but they will introduce you to the game and set a few reference
levels.

Each wave has a difficulty (1-10) and an intensity (1-10) rating. The waves are either
human-made or computer-generated. Your task is to try to assess each wave’s difficulty
and intensity values and try to determine if it is made by an algorithm or a human.

Table B.2: Have you played mobile shooters before?

Yes No
� �
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B. Questionnaire

Table B.2: Difficulty ratings

1 2 3 4 5 6 7 8 9 10
Wave 1 � � � � � � � � � �
Wave 2 � � � � � � � � � �
Wave 3 � � � � � � � � � �
Wave 4 � � � � � � � � � �
Wave 5 � � � � � � � � � �
Wave 6 � � � � � � � � � �
Wave 7 � � � � � � � � � �
Wave 8 � � � � � � � � � �
Wave 9 � � � � � � � � � �
Wave 10 � � � � � � � � � �

Table B.3: Intensity ratings

1 2 3 4 5 6 7 8 9 10
Wave 1 � � � � � � � � � �
Wave 2 � � � � � � � � � �
Wave 3 � � � � � � � � � �
Wave 4 � � � � � � � � � �
Wave 5 � � � � � � � � � �
Wave 6 � � � � � � � � � �
Wave 7 � � � � � � � � � �
Wave 8 � � � � � � � � � �
Wave 9 � � � � � � � � � �
Wave 10 � � � � � � � � � �

Table B.4: Algorithm ratings

Human-made Computer-generated
Wave 3 � �
Wave 4 � �
Wave 5 � �
Wave 6 � �
Wave 7 � �
Wave 8 � �
Wave 9 � �
Wave 10 � �
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Appendix C
Test Results

A number of 20 persons participated in the survey, 19 of which had earlier experience with
mobile game shooters.

Table C.1: Perceived difficulty levels

W3 W4 W5 W6 W7 W8 W9 W10

Test Person 1 8 5 3 6 10 10 10 3
Test Person 2 7 6 3 6 8 5 6 6
Test Person 3 6 7 5 6 6 5 9 6
Test Person 4 8 10 5 3 9 6 10 7
Test Person 5 6 6 6 6 7 9 9 5
Test Person 6 8 3 2 4 3 1 10 3
Test Person 7 7 5 1 3 3 6 9 5
Test Person 8 4 9 2 7 5 9 8 5
Test Person 9 6 7 4 7 8 6 10 2
Test Person 10 7 5 4 6 5 6 9 5
Test Person 11 7 6 5 4 2 4 5 3
Test Person 12 2 9 3 7 5 5 7 6
Test Person 13 6 9 4 5 7 7 7 6
Test Person 14 6 9 2 5 6 6 6 6
Test Person 15 8 4 3 6 8 8 10 6
Test Person 16 5 5 6 7 7 7 8 9
Test Person 17 7 6 3 5 6 7 8 2
Test Person 18 5 9 3 9 7 7 10 5
Test Person 19 5 10 1 6 8 9 10 4
Test Person 20 7 7 3 3 5 5 8 6
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C. Test Results

Table C.2: Perceived intensity levels

W3 W4 W5 W6 W7 W8 W9 W10

Test Person 1 8 10 4 7 8 7 10 5
Test Person 2 7 8 3 6 5 4 5 4
Test Person 3 6 7 5 7 7 7 10 6
Test Person 4 9 10 5 5 10 10 8 7
Test Person 5 7 6 6 6 6 9 10 7
Test Person 6 6 5 2 3 2 1 5 1
Test Person 7 6 2 1 5 6 7 4 3
Test Person 8 6 5 3 8 7 9 8 5
Test Person 9 8 8 5 7 8 7 7 3
Test Person 10 7 10 2 6 5 8 10 4
Test Person 11 5 8 3 7 6 6 8 2
Test Person 12 2 8 4 9 7 5 6 6
Test Person 13 4 3 2 4 5 4 7 4
Test Person 14 3 5 3 3 4 7 4 4
Test Person 15 6 7 3 7 6 7 8 5
Test Person 16 5 5 6 7 8 8 8 9
Test Person 17 8 7 4 5 6 8 9 3
Test Person 18 5 4 3 8 7 6 8 5
Test Person 19 7 7 5 8 8 9 10 7
Test Person 20 7 8 3 3 4 4 8 5
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Table C.3: Perceived sense of whether the waves were made by a
human (H) or a computer (C)

W3 W4 W5 W6 W7 W8 W9 W10

Test Person 1 C C C C C C C C
Test Person 2 H H C C C C C C
Test Person 3 C C C C C C C C
Test Person 4 H C H H C C C H
Test Person 5 C H H C H C C C
Test Person 6 C H C H H C C C
Test Person 7 H H C C C H C H
Test Person 8 C H H C C C H H
Test Person 9 H C C H H H H H
Test Person 10 C C C H C C C C
Test Person 11 C H C C H C C C
Test Person 12 C C H C H C C H
Test Person 13 C H H H C H H C
Test Person 14 C H C C H H H H
Test Person 15 C C C H C C C C
Test Person 16 C C C C H C C H
Test Person 17 H H H C C C C H
Test Person 18 H H C C C H C C
Test Person 19 H C H C C H C H
Test Person 20 H C H C C C C H
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C. Test Results
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Appendix D
Enemy Statistics

Table D.1: Enemy statistics

Health Speed Attack
power

Type 1 300 0.8 320
Type 2 50 1.5 75
Type 3 150 2.8 150
Type 4 50 2.8 34
Type 5 275 0.8 325
Type 6 75 1.4 50

Table D.2: Normalized enemy statistics

Health Speed Attack
power

Type 1 1.000 0.286 0.985
Type 2 0.167 0.536 0.231
Type 3 0.500 1.000 0.462
Type 4 0.167 1.000 0.105
Type 5 0.917 0.286 1.000
Type 6 0.250 0.500 0.154
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Procedurell generering av spelinnehåll

POPULÄRVETENSKAPLIG SAMMANFATTNING Einar Nordengren

På grund av datorspelsindustrins stora framväxt de senaste åren är behovet av nytt
och varierat spelinnehåll större än någonsin. I detta arbete har vi tagit fram och testat
en algoritm som kan underlätta skapandet av spelinnehåll.

Tack vare den snabba utvecklingen av datorer de
senaste decennierna har möjligheterna inom da-
torspelsbranschen exploderat. Begränsningar om
hur mycket innehåll man kan inkludera i ett da-
torspel finns knappt i dag, vilket både har fört
med sig nya problem och ny potential. I takt med
att hårdvaran utvecklas ökar samtidigt spelarnas
behov av nytt material.
En stor utmaning spelbranschen har ställts in-

för är att kunna skapa allt detta spelinnehåll på
ett effektivt sätt. Att lösa problemet genom att
bara anställa fler grafiker och designer är inte ba-
ra problematiskt ur ett ekonomiskt perspektiv; att
skapa allt spelinnehåll för hand tar även ofta lång
tid.
I detta examensarbete har vi utvecklat ett sätt

att procedurellt (eller automatiskt) skapa det öns-
kade innehållet i stället för att behöva göra det för
hand. Spelet i fokus är ett skjutspel för mobil som
går ut på att, som statisk spelare, eliminera fien-
der som anfaller i vågform. Eftersom spelinnehåll
kan betyda så många olika saker, har vi avgränsat
oss till att endast definiera och generera antalet fi-
ender av olika typer i varje våg.
Det finns många utmaningar med att låta au-

tomatisk generering av spelinnehåll ta över: dels
måste det genererade innehållet gå att kontrollera,
och dels måste det se ordnat ut. Målet med arbe-
tet var därför att skriva en algoritm som automa-
tiskt definierar fiendevågor så att en viss svårig-

hetsgrad och intensitet följer speldesignerns öns-
kade värden. Samtidigt var avsikten att spelaren
inte skulle ha någon aning om att det faktiskt var
en algoritm som hade skapat innehållet.
Arbetet utvärderades i form av en studie där

ett antal testpersoner fick spela igenom spelet och
svara på frågor om hur svåra och intensiva fiende-
vågorna var, samt en fråga om de kunde avgöra om
det var en algoritm eller en människa som skapat
innehållet.
Resultatet av studien visade att det var svårt

att få algoritmen att skapa innehåll så naturligt
som en designer kan, men att det var möjligt att
skapa ett verktyg som till viss grad följde svårig-
hetsgraden och intensiteten.
Den metod vi använde för att generera inne-

hållet är baserad på en genetisk algoritm. Precis
som man kan vänta sig bygger genetiska algorit-
mer på liknande principer som evolutionen bygger
på. I början genereras helt slumpmässigt innehåll,
vilket i vårt fall endast var en massa tal som repre-
senterade antalet fiender på olika ställen i spelet.
Efter det utvärderas dessa tal utifrån vissa krite-
rier. En våg med högt betyg var här en våg som
uppskattades följa designerns önskade värden och
som bedömdes likna en människogjord våg. De in-
divider som får bra betyg överlever och används
senare som mall för att generera nya individer.
Denna process upprepas sedan flera gånger ända
tills en tillräckligt bra våg har skapats.
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