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Abstract

During recent years, Maxwell’s demon has regained interest in the work of understanding
the connection between thermodynamics and information theory. This thesis presents
transport properties of electrons in a double quantum dot system operated by Maxwell’s
demon. The demon transports electrons from a lower to higher chemical potential through
a pump-like scheme without performing any net work on the electrons. To describe and
simulate the dynamics of the system, we use rate equations, full counting statistics, and
a Monte Carlo method. We observe that the implementation of the demon works, and
that the three approaches give the same results.
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Chapter 1

Introduction

During the last decade, thermodynamics has gained new interest among scientists from
several research disciplines due to an improvement in experimental control of quantum
systems. The aim is to extend thermodynamics and non-equilibrium statistical physics
into quantum thermodynamics, a theory of thermodynamics including quantum effects
and ensemble sizes well below the thermodynamic limit [1]. As the size of technological
components is decreasing towards the nanoscale, quantum thermodynamics is believed to
play an important role in the industry, and as the field is developing, new technologies,
utilizing quantum thermodynamic properties, may be discovered [1].

Promising candidates for studying quantum thermodynamics are electronic circuits
operating at sub-Kelvin temperatures [2]. The temperatures of these systems can be
measured locally with precision, and they offer large statistical samples for experiments
[2]. Circuits equipped with nano-components, such as quantum dots, single electron
boxes and superconducting qubits, form basic units for studying heat transport, entropy
production and work [2].

A famous paradox in thermodynamics is Maxwell’s demon, a creature that appears
to violate the second law of thermodynamics in non-equilibrium processes. In 1961,
Rolf Landauer formulated the Laudauer erasure principle [3] that was used to solve the
paradox; the demon uses information and converts it to energy in the form of useful work
[4]. During recent years, Maxwell’s demon has gained lots of interest among scientists; it
has been sudied both theoretically and experimentally [5]-[9]. In experiments, the demon
can be realized as a detector gathering information about a system by measuring its
state. The information can then be used in a feedback loop to manipulate the system to
produce an output power. At the moment, the output effects are tiny, but are believed to
be enhanced with the help of feedback [2]. Further implementations of Mazwell’s demon
are of interest since they can contribute to the understanding of information-to-energy
conversion and how feedback can be used to increase the output effects.

This thesis investigates the transport properties and full counting statistics of electrons
in two coupled single level quantum dots that are operated by a Maxwell demon. Trans-
port properties, as current and current fluctuations, have been of great interest as these
properties have proven to be of importance in the understanding of mesoscopic systems
[10]. For example, shot noise measurements played important roles in the observation
of the fractional charge of quasi-particles [11]-[14]. We show that the implementation of
the demon works in theory by using three approaches. First, rate equations give basic
information about the electron transport, such as current and electrical power. Secondly,
full counting statistics gives the complete information about the transport properties
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through a probability distribution describing the number of electrons transferred through
the system within a given time; this study is performed both analytically, and numeri-
cally, and involves the cumulants of the probability distribution that are closely related to
current and current fluctuations. Finally, the analytics and numerics are compared with
a Monte Carlo simulation of the demon. We observe that the three approaches give the
same results. Furthermore, the study acts as a starting point for further research on the
system that can contribute to the understanding of information-to-energy conversion in
nano-sized systems.

The thesis is divided into four parts. Chapter 2 presents the double quantum dot
system, the theoretical tools that were used, and how they were applied. In chapter 3,
the results are presented and discussed, and chapter 4 and 5 are devoted to conclusions
and outlook.
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Chapter 2

Double quantum dot system and
theoretical tools

This chapter introduces the double quantum dot (QD) system that is studied in this
thesis. The general features of the system are described in Sec. 2.1, and the succeeding
sections introduce theoretical concepts and how they are applied to the system. These
concepts are: Maxwell’s demon in Sec. 2.2; rate equations for open systems in Sec. 2.3; full
counting statistics in Sec. 2.4; and finally, the methodology for a Monte Carlo simulation
of the double QD system is presented in Sec. 2.5.

2.1 The double quantum dot system

The system studied in this work is composed of two tunnel-coupled single level quantum
dots (QD). The QDs are, in their turn, in contact with one electron reservoir each; the
complete setup is displayed in Fig. 2.1. The reservoirs and the QDs will be referred to
as left or right, and the properties of the complete system will be marked with L or R to
distinguish whether they belong to the left- or the right-hand side. Electrons in the left
reservoir can tunnel into the left QD (QDL), and the tunneling rate for this process is
given by ΓL. The tunneling rate for electrons going from the left to the right QD (QDR)
is given by γ, and finally, the tunneling rate for electrons going from the right QD to the
right reservoir is given by ΓR.

Figure 2.1: A sketch of the system studied in this thesis. Two quantum dots, QDL and
QDR, are coupled in series. The dots are in contact with one electron reservoir each.
The reservoirs have the same temperature T , but different chemical potentials, µL and
µR, respectively. Electrons can tunnel between the system constituents, and this occurs
with tunneling rates ΓL, γ and ΓR.

The reservoirs are assumed to be in equilibrium, and have well defined temperatures,
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2.1. The double quantum dot system

TL and TR, and chemical potentials, µL and µR. Throughout this thesis, the two reservoirs
will have the same temperature T = TL = TR, but different chemical potentials, µL 6= µR.
The average electron occupation numbers of the reservoirs are hence described by the
Fermi distributions fL(εL) and fR(εR), respectively. These distributions are given by

fL(R)(εL(R)) =
(
e(εL(R)−µL(R))/kBT + 1

)−1
(2.1)

where kB is the Boltzmann constant.
The QDs sketched in Fig. 2.1 can, for instance, be realized in InAs/InP nanowire

heterostructures [15], or by growing wurtzite segments in zinc blende InAs nanowires [16].
A simplified depiction of a InAs/InP nanowire is displayed in Fig. 2.2. As can be seen
in the figure, the QDs are confined in the regions between InAs and InP. In addition,
two gates are in contact with the QDs, and the gate voltages VL and VR can control the
potential profiles of the dots.

Figure 2.2: The figure shows how the QDs can be fabricated in a nanowire. The regions
confined in between InAs and InP constitute the QDs. The gates can control the potential
profiles of the QDs by tuning the gate voltages VL and VR.

The QDs have one energy level each, εL and εR, which can be moved between three
positions by the tuning the gate voltages VL and VR. There is one lower position with
energy εl, one middle position with energy ε0 and one upper position with energy εu, see
Fig. 2.3. Here, it is assumed that at most one electron can occupy each energy level, and
this is achieved by having an infinitely large intra-dot Coulomb repulsion.

Figure 2.3: Illustration of the QD’s tunable energy levels and the Fermi distributions of
the electron reservoirs. The left and right boxes are the electron reservoirs, and the green
regions represent their Fermi distributions. In between the reservoirs, the energy levels of
the left (L) and right (R) QDs are sketched, and their positions are marked with solid or
dashed lines. The energy levels can be moved between the three positions by tuning the
gate voltages VL and VR (see Fig. 2.2).
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Chapter 2. Double quantum dot system and theoretical tools

It is also assumed that the Coulomb repulsion energy, U , between the two dots is so large
that only one of the dots can be occupied at a time. This can be achieved by choosing
U such that (εi + U − µL/R) � kBT , i = l, 0, u. It will also be assumed that εu and εl
are chosen such that (εu − µL/R)� kBT and (εl − µL/R)� kBT . In this way, we can in
practice set fL/R(εu) = 0 and fL/R(εl) = 1.

In addition, it is assumed that all the couplings in the system are weak. In particular,
the coupling between the QDs is assumed to be sufficiently weak such that environmental
noise suppresses any coherence between the dots. Hence, the system can be in one of
three states: empty, |00〉, or occupied by one electron either in the left QD, |10〉, or in
the right QD, |01〉. Since coherence will not be present, the dynamics of the system can
be described by a classical rate equation; this will be further discussed in Sec. 2.3.

2.2 Maxwell’s demon

This section discusses the paradox called Maxwell’s demon, and how it can be solved
by using Landauer’s erasure principle. In particular, Sec. 2.2.1 explains how Maxwell’s
demon is implemented in the double quantum dot system.

General description of Maxwell’s demon

Maxwell’s demon is a paradox introduced by James Clerk Maxwell in 1871 where he, in a
letter [17], presented a thought experiment that seems to violate the second law of ther-
modynamics. The thought experiment involves a gas-filled chamber which is divided into
two compartments by a wall with a door, see stage 1 in Fig. 2.4. The two compartments
are completely isolated when the door is closed.

Initially, the door is open so that the gas in the entire chamber can reach thermal
equilibrium, that is, when the temperature, T , of the gas is uniform throughout the
chamber. The average speed of the particles at this temperature is given by 〈v〉T . A
particle which has a speed greater than 〈v〉T is said to be fast, while a particle with a
speed smaller than 〈v〉T is slow.

Imagine a demon that can operate the door without exerting any work on it. In
addition, the demon can see individual particles, and determine their speed. If a fast
particle approaches the door from the left, the demon can open the door and allow the
particle to enter the right compartment. If instead a slow particle approaches the door
from the right, the demon can open the door, allowing passage for the slow particle into
the left compartment. In this manner, the demon can separate all the fast and slow
particles such that the two compartments reach new thermal equilibriums with different
temperatures, TL and TR, respectively, where TL < TR. After this separation process, the
system is in stage 2 in Fig. 2.4.

At stage 3 in Fig. 2.4, a heat engine is connected to the two compartments, and
by making use of their temperature difference, the work W can be extracted. In the
fourth stage, a heat bath brings the temperature of the compartments back to the initial
temperature T . In the end, it appears as if work has been extracted from a single heat
bath, something that violates the Kelvin-Planck statement of the second law.

It is, furthermore, well-known that the process going from stage 2 to 1, in Fig. 2.4,
is allowed by the second law since the change of entropy ∆S2→1 ≥ 0. As a consequence,
it is not allowed to go from stage 1 to 2 since ∆S1→2 < 0. One could, in other words,
argue that stage 2 is much more ordered than stage 1. The system, therefore, strives to
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2.2. Maxwell’s demon

be in stage 1 to maximize the entropy. Hence, it appears that the demon is violating the
second law when separating slow and fast particles.

Figure 2.4: A cyclic process extracting work from a single heat bath. The cycle starts
in (1) with a gas-filled chamber which is in thermal equilibrium and has temperature T .
A demon can separate slow (blue) and fast (red) particles by using the door between the
compartments. In (2), the slow and fast particles have been separated by the demon, and
the compartments end up having different temperatures. In (3), a heat engine utilizes the
temperature difference by converting heat to useful work. In (4), the door is open such that
particles from the different compartments can mix. In addition, a heat bath is connected
to the chamber to bring the gas back to the initial temperature and the cycle is completed.

This demon can be referred to as a temperature demon. Other types of Maxwell’s
demon are also possible; in [18], a pressure demon is described for example, and as we
will see in Sec. 2.2.1, a demon can be used to transport electrons against a voltage bias.
The latter type of demon has been realized experimentally in [7] and [?].

Landauer’s erasure principle as a solution to Maxwell’s demon

To understand why Maxwell’s demon does not violate the second law, one has to consider
the demon as a physical system itself. Therefore, the entropy production in the combined
unit, i.e. system + demon, must satisfy the second law. This means that the entropy can
be decreased in the system as long as the entropy production in the demon balances the
decrease such that the second law is fulfilled.

The process visualized in Fig. 2.4 appears impossible to construct physically, but the
paradoxical situation can be circumvented by considering Landauer’s erasure principle
[3, 4]. Landauer’s erasure principle states that the erasure of 1 bit of information requires
a minimum dissipation of heat, Qmin

erase = kBT ln(2), which is dissipated to a surrounding
environment in equilibrium that has the temperature T [1]. If the first stage of the cycle
in Fig. 2.4 is considered once again, it is assumed that the demon has a memory which
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initially is blank. When the demon separates the slow and fast particles, it first acquires
information about which type of particles that is approaching the door, and then stores
that information in its memory. To completely return to the initial state after one cycle,
the demon has to erase its memory. When erasing the memory, the demon dissipates
the heat Qerase ≥ W into the system [3, 4], and hence, the process is thermodynamically
allowed, and is not breaking the second law; this should be the case when treating the
memory as a thermodynamic system.

2.2.1 Maxwell’s demon in the double QD system

By operating the double QD system in the spirit of Maxwell’s demon, electrons can be
transported from a lower to a higher chemical potential without exerting any net work
on the electrons. This is something that is seemingly forbidden by the second law of
thermodynamics. The electron reservoirs in the double QD system can exchange electrons
with each other, and the change of entropy in the reservoirs caused by electrons leaving
or entering the reservoirs is given by

∆SL/R =
ε0 − µL/R

T
∆nL/R, (2.2)

where T is the temperature of the reservoirs, ∆nL/R is the change of number of electrons
in the left/right reservoir, and ε0 is the energy of the electrons when they leave or enter
the reservoirs. In this thesis, all electrons leave and enter the reservoirs with energy ε0.
Equation (2.2) is Clausius inequality ∆S ≥ Q/T with an equal sign which tells us that
the process of electrons leaving and entering the reservoirs is reversible. We can assume
the process to be reversible if we consider the reservoirs to be infinitely large. Then the
temperature changes in the reservoirs, due to electrons leaving and entering, are so small
that the temperature of the reservoirs in practice is constant. Therefore, we consider the
process to be quasi-static because the reservoirs never are driven out from equilibrium,
and reversibility is possible. The chemical potentials, µL and µR, are assumed to obey
µL < µR and it is further assumed that the number of electrons in the system is constant,
i.e. ∆nL = −∆nR. The total entropy change in the reservoirs is then given by

∆S = ∆SL + ∆SR =
∆nR
T

(µL − µR), (2.3)

and ∆nR must hence be negative to fulfill the second law. In conclusion, the second law
tells us that the electrons move towards the lower chemical potential if no net work is
exerted on the electrons.

A demon can, however, circumvent the second law, if the entropy production of the
demon is not taken into account, by operating according to the following scheme where
it is assumed that the demon can measure the electron occupation of the QDs perfectly:

1. Initially, the system is empty (|00〉), with the energy levels positioned at εL = ε0,
and εR = εu. With this positioning, electrons can tunnel from the left reservoir to
the left QD, but electrons in the right reservoir cannot tunnel to the right QD.

2. When an electron tunnels from the left reservoir to the left QD, the system transits
to the state |10〉, and the left and right energy levels are instantaneously moved by
the demon to the lower position, εL = εR = εl. From here, the only transit possible
is the one to |01〉, because of Coulomb repulsion.
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2.2. Maxwell’s demon

3. When the system transits to |01〉, the demon moves the energy levels instantaneously
to εL = εu, and εR = ε0. When the electron tunnels into the right reservoir, the
system returns to |00〉, and the cycle can start over in step 1.

A visualization of the process is displayed in Fig. 2.5.
In this thesis, we define work to be useful if W > 0, and heat to be released from

the reservoirs if Q < 0. Similarly, if Q > 0, heat is considered to enter the reservoirs. It
should also be noted that we, in this thesis, mostly consider the case where µL < ε0 < µR,
but this inequality is, as we will see, not a necessary condition for the demon to work.
For each electron that is transferred from the left to the right reservoir according to the
scheme above, heat from the reservoirs is converted into useful work. When an electron
leaves the left reservoir, and tunnels to the left QD, the heat QL = −(ε0− µL) is released
from the left reservoir. Similarly, when an electron tunnels to the right reservoir, the heat
QR = (ε0 − µR) is released from the right reservoir. The total heat released is given by
Qtot = QL +QR = eV if the voltage bias V across the reservoirs is µL − µR = eV . Here,
e is the elementary charge, and it is considered to be a positive quantity throughout the
thesis.

Figure 2.5: (1) Initially, the double QD system is in the state |00〉. (2) When an electron
tunnels into the left QD, the system transits to the state |10〉, and the energy levels are
moved to εl. (3) As the electron tunnels to the right QD, and the |01〉-state becomes
occupied, the energy levels are moved up. When the electron tunnels to the right reservoir,
the system starts over at step 1.

When m electrons have been transferred to the right reservoir, the total heat is Q
(m)
tot =

meV , and since the complete system does not exchange energy with its surroundings, the
first law of thermodynamics implies that the heat is converted into useful work. Thus, with
m electrons being transferred to the right reservoir, the total work is W

(m)
tot = −Q(m)

tot =
−meV . For V < 0, or in other words, when the right chemical potential is higher than
the left, W

(m)
tot > 0.

The demon can measure the occupation of the QDs by using a device that is sensitive
to electric charge; examples of such devices are single electron transistors or quantum
point contacts. Between step 1 and 2 in the scheme described above, the demon measures
that the left QD is occupied, and by tuning the gate voltages (see Fig. 2.2), the energy
levels can be moved. As the left energy level is moved, the work −(ε0 − εl) is performed
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on the electron by the left gate. Similarly, when the right energy level is moved between
step 2 and 3, the right gate performs the work (ε0 − εl) on the electron. Consequently,
the total work performed by the gates to transport one electron is

Wg = −(ε0 − εl) + (ε0 − εl) = 0. (2.4)

In the end, we see electrons being transferred from a lower to higher chemical potential
without any net work acting on them.

2.3 Rate equation for open systems

The first part of this section presents how rate equations can be used to describe the
dynamics of open systems without coherences. In Sec. 2.3.1, the rate equation for the
double QD system is introduced.

A system, S, which can exchange both energy and matter with its surroundings is
considered to be an open system. A typical surrounding is some energy or particle reservoir
which is coupled to the system.

Here, S is assumed to be tunnel-coupled to two particle reservoirs that can exchange
particles and energy with S. It is further assumed that S has N discrete states. Par-
ticle interactions can be present in S, and electron-electron interaction is one possible
example. These interactions play an important role when the transport properties of the
composite system (S + reservoirs) are studied since they determine the trajectories of the
particles. Moreover, the reservoirs are assumed to be in equilibrium, and has well de-
fined temperatures, T1 and T2, and chemical potentials, µ1 and µ2. It is further assumed
that no particle interactions are present, and therefore, the reservoirs are described by
distribution functions whose properties are determined by the particle type, i.e. boson or
fermion. The Hamiltonian of the composite system can be written as

Ĥ = ĤS + ĤB1 + ĤB2 + ĤI (2.5)

where ĤS is the Hamiltonian for S, ĤB1 and ĤB2 are the Hamiltonians for the reservoirs
and ĤI is the Hamiltonian describing the coupling between S and the reservoirs.

In the weak tunneling regime, the coupling Hamiltonian, ĤI , can be considered as a
weak perturbation, and hence, the transition rates for tunneling into different states in
S are given by Fermi’s golden rule. It is assumed that environmental noise decoheres
the system, and when no coherence is present, the probability for a state k in S to be
occupied is given by Pk(t) and satisfies [19]

d

dt
Pk(t) = −

N∑
l=1,l 6=k

MlkPk(t) +
N∑

l=1,l 6=k

MklPl(t). (2.6)

Here, Mkl is the transition rate for the transition going from state l to k. The first term
on the right hand side of Eq. (2.6) can be understood as the rate for leaving the state
k, provided that the system is in state k, and similarly, the second term is the rate for
entering the state k given that S was in some state l 6= k.

Since there are N states in S, Eq. (2.6) gives N coupled differential equations which
can be written in a more compact way as,

d

dt
P (t) = MP (t) (2.7)
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2.4. Full counting statistics

where P (t) = (P1(t), ..., PN(t)) is a column vector and M is a N × N -matrix with the
transition rates, Mkl, as elements. The probabilities are required to be normalized, i.e.∑

k Pk(t) = 1, and 0 ≤ Pk(t) ≤ 1 for all k. As a consequence, the elements of each column
in M sum up to zero, which of course can be seen directly from Eq. (2.6). A general
expression for the diagonal elements is given by

Mkk = −
N∑

l=1,l 6=k

Mlk. (2.8)

2.3.1 Rate equation for the double QD system

The probabilities of occupying the three different states, |00〉, |10〉 and |01〉, of the double
QD system are given by P00, P10 and P01, respectively. The following rate equation
describes the dynamics of these probabilities,

d

dt

P00

P10

P01

 =

−γL 0 γR
γL −γ 0
0 γ −γR

P00

P10

P01

 , (2.9)

where γL is the left transition rate for |00〉 → |10〉, γ is the transition rate for |10〉 → |01〉,
and γR is the right transition rate for |01〉 → |00〉. The left and right transition rates can
be written as

γL = ΓLfL(ε0) = ΓL
(
e(ε0−µL)/kBT + 1

)−1
(2.10a)

γR = ΓR
(
1− fR(ε0)

)
= ΓR

(
e−(ε0−µR)/kBT + 1

)−1
(2.10b)

where ΓL is the tunneling rate for electrons going from the left reservoir to the left QD,
and ΓR is, similarly, the tunneling rate for electrons going from the right QD to the right
reservoir. The transition rate γ can be understood as the tunneling rate going from the
left to the right QD. The Fermi functions, fL(ε0) and fR(ε0), are given by Eq. (2.1).

Equation 2.9 does not account for electron transitions in the direction towards the
left reservoir. In other words, it is assumed that the Maxwell demon makes perfect, real
time measurements, and operates the energy levels of the QDs infinitely fast. It should
therefore be noted that Eq. (2.9) describes the complete system under ideal conditions.

2.4 Full counting statistics

Full counting statistics (FCS) is a method, for calculating electronic currents and current
fluctuations, that was introduced by Levitov et al. [20]. The method is centered around
the probability distribution p(n, t) that describes the number of electrons, n, that have
been transferred through a conductor within the time t. The first four cumulants of this
distribution correspond to the mean, variance, skewness and kurtosis of the distribution
near its maximum. The cumulants of any probability distribution are defined as the
coefficients of the series expansion of the cumulant generating function, and the cumulant
generating function is defined as the logarithm of the moment generating function. The
mean and the variance of p(n, t) are related to the current and current fluctuations,
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Chapter 2. Double quantum dot system and theoretical tools

respectively. Below is a theoretical discussion on how FCS can be implemented into rate
and master equations. A similar discussion can be found in [21] or [22].

The rate equation says nothing about the number of particles that have passed through
the system, therefore we denote by P

(n)
k (t) the probability of occupying the state k when

n particles have been transferred through the system since the initial time t0 = 0. By
defining ρ(n)(t) ≡

(
P

(n)
1 (t), ..., P

(n)
N (t)

)
, the rate equation (Eq. (2.7)) can be modified as

follows

d

dt
ρ(n)(t) = M0ρ

(n)(t) + J+ρ
(n−1)(t) + J−ρ(n+1)(t), (2.11)

where J+(−), called jump operator, increases (decreases) the number of transferred par-
ticles, and M = M0 + J+ + J−. To recover the original rate equation, the probability
vector P (t) in Eq. (2.7) is defined as

P (t) ≡
∞∑
n=0

ρ(n)(t). (2.12)

The rate equation is hence recovered by summing over n in Eq. (2.11). Furthermore, the
probability distribution of the FCS is defined as

p(n, t) ≡ tr
[
ρ(n)(t)

]
= P

(n)
1 (t) + P

(n)
2 (t) + . . .+ P

(n)
N (t), (2.13)

where the trace is defined as the sum of all elements in ρ(n)(t).
By introducing the function

g(χ, t) ≡
∑
n

ρ(n)(t)einχ (2.14)

with the parameter χ, known as counting field, Eq. (2.11) can be rewritten as

ġ(χ, t) = L(χ)g(χ, t), (2.15)

with formal solution

g(χ, t) = eL(χ)tg(χ, 0) (2.16)

where the matrix L(χ) = M0 + eiχJ+ + e−iχJ− is called the Liouvillian. The initial
condition ρ(n)(t = 0) = δn,0P (t = 0) is commonly chosen such that zero particles have
passed through the system at t = 0. The resulting initial condition for g(χ, t) then
becomes g(χ, 0) = P (0) where P (0) specifies the initial state of the system.

From the definition of g(χ, t), in Eq. (2.14), it is evident that the probability distri-
bution of the FCS is given by

p(n, t) =
1

2π

∫ π

−π
tr
[
g(χ, t)

]
e−inχdχ (2.17)

where tr
[
g(χ, t)

]
, by definition, is the characteristic function of p(n, t). By computing

the trace of Eq. (2.14), it can be seen directly that the characteristic function is given by

M(χ, t) ≡ tr
[
g(χ, t)

]
=
∑
n

p(n, t)einχ. (2.18)

The k:th moment of p(n, t) is given by

14



2.4. Full counting statistics

〈nk(t)〉 = (−i)k ∂
k

∂χk
M(χ, t)

∣∣∣
χ=0

. (2.19)

Furthermore, the cumulant generating function is given by C(χ, t) ≡ ln
[
M(χ, t)

]
and the cumulants are calculated via

〈〈nk(t)〉〉 = (−i)k ∂
k

∂χk
C(χ, t)

∣∣∣
χ=0

. (2.20)

The current cumulants are, in turn, obtained by differentiating Eq. (2.20) with respect to
time,

〈〈Ik〉〉 =
d

dt
〈〈nk(t)〉〉, (2.21)

where the mean current and current fluctuations are given for k = 1 and k = 2, respec-
tively.

Here, we are interested in the cumulants in the long time limit for the case when
there only exists one unique steady state of the rate equation (Eq. (2.7)). Equation (2.15)
reduces to the rate equation when we chose χ = 0, and from the rate equation we see that
L(χ) must have one eigenvalue λ(χ), for which λ(0) = 0, with a corresponding, non-zero
eigenvector. Furthermore, with Q(χ) being the matrix diagonalizing L(χ), the moment
generating function can, by using Eq. (2.16), be written as

M(χ, t) = tr
[
eQ(χ)LD(χ)Q−1(χ)tg(χ, 0)

]
, (2.22)

where LD(χ) is the diagonal form of L(χ). Since we are looking at the case with only one
unique steady state, all other eigenvalues than λ(χ) must have a non-vanishing negative
real part near χ = 0 [22]. It is assumed that all eigenvalues have a negative real part
for finite χ where the real part of λ(χ) is the largest [22]. Then we observe that the
moment generating function M(χ, t) → eλ(χ)tc(χ) in the long time limit, where c(χ) is
a polynomial depending on Q(χ). Hence, we can approximate the cumulant generating
function by

C(χ, t) ≈ λ(χ)t (2.23)

in the long time limit where we neglect the term ln
(
c(χ)

)
. By neglecting this term, the

cumulant generating function is determined up to a small correction. This correction
is, however, negligible when calculating the current cumulants since ln

(
c(χ)

)
is time

independent. Hence, in the long time limit, Eq. (2.17) can be approximated with

p(n, t)
large t−−−→ 1

2π

∫ π

−π
eλ(χ)te−inχdχ, (2.24)

and the cumulants are given by

〈〈nk(t)〉〉 large t−−−→ (−i)k ∂
k

∂χk
λ(χ)

∣∣∣
χ=0

t. (2.25)

From Eq. (2.25), it is evident that the cumulants are linear in time in the long time limit.
It should, however, be noted that the above discussion only holds when a system has a
unique steady state; for systems with multiple steady states, other methods are needed
[22, 23, 24].
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Chapter 2. Double quantum dot system and theoretical tools

2.4.1 Full counting statistics in the double QD system

When applying FCS to the double QD system, the following Liouvillian is obtained,

L(χ) = M0 + eiχJ+ =

−γL 0 eiχγR
γL −γ 0
0 γ −γR

 , (2.26)

where only the jump operator J+ is present since electrons only are transferred towards
the right reservoir, i.e. the number of transferred particles cannot be decreased. The
transition rate γL(R) represents the transition of electrons between the left(right) reservoir
and the left(right) QD. The transition rates are given by Eqs. (2.10). The initial condition
for Eq. (2.15) is chosen as g(χ, 0) = (1, 0, 0) such that the double QD system is prepared
to initially be in the state |00〉 with zero electrons transferred to the right reservoir.

2.5 Monte Carlo simulation

This section presents the Monte Carlo method that was used to simulate the dynamics of
the complete system.

As was pointed out in Sec. 2.1, the double quantum dot system can be in the following
states: |00〉; |10〉; and |01〉, and the only transitions possible are |00〉 → |10〉 → |01〉 →
|00〉. Let the index i = 0, 1, 2 represent the states |00〉, |10〉, and |01〉, respectively. Thus,
if |i〉 is occupied, the only possible transition is to |i+ 1〉; e.g. if i = 2, i + 1 = 0. If
the state |i〉 is occupied at the time t, the probability of being in |i+ 1〉 at the time
t + δt is given by Pi+1(t + δt) = δtΓ|i+1〉,|i〉, where Γ|i+1〉,|i〉 is the transition rate going
from |i〉 to |i+ 1〉, and δt is chosen such that δtΓ|i+1〉,|i〉 � 1. By Pi(t + δt), we denote
the probability to stay in |i〉 after the time t + δt, and the total probability at this
time must be Pi+1(t + δt) + Pi(t + δt) = 1. If a closed interval between 0 and 1 is
considered, we can assign the subinterval [0, δtΓ|i+1〉,|i〉] to the probability Pi+1(t + δt).
When drawing a random number ε ∈ [0, 1], we say that the transition from |i〉 to |i+ 1〉
occurs if ε ∈ [0, δtΓ|i+1〉,|i〉]. If ε /∈ [0, δtΓ|i+1〉,|i〉], the system stays in |i〉. Therefore, the
following steps were used to simulate the dynamics of the complete system:

1. Start in |00〉.

2. Generate a random number ε ∈ [0, 1], and increase time by δt.

3. If ε ∈ [0, δtΓ|10〉,|00〉] go to |10〉, otherwise go back to step 2.

4. Generate a random number ε ∈ [0, 1], and increase time by δt.

5. If ε ∈ [0, δtΓ|01〉,|10〉] go to |01〉, otherwise go back to step 4.

6. Generate a random number ε ∈ [0, 1], and increase time by δt.

7. If ε ∈ [0, δtΓ|00〉,|01〉] go to |00〉 and start over from step 1, otherwise go back to step
6.
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Chapter 3

Results and discussion

In this chapter, the solutions and results of the equations and methods set up in chapter
2 are presented and discussed. Section 3.1 is devoted to rate equations, and Sec. 3.2 to
full counting statistics (FCS). The FCS is treated both analytically and numerically. In
Sec. 3.3, the Monte Carlo simulation of the complete system is compared to the FCS.

3.1 Rate equation

From the rate equation given by Eq. (2.9) in Sec. 2.3.1, the following differential equations
can be obtained

dP10

dt
=
(
γ + ΓLfL(ε0)

)
P10 − ΓLfL(ε0)− ΓLfL(ε0)P01, (3.1a)

dP01

dt
= ΓR

(
1− fR(ε0)

)
P01 + γP10, (3.1b)

where P00 = 1−P10−P01, and the transition rates γL = ΓLfL(ε0) and γR = ΓR
(
1−fR(ε0)

)
,

given by Eqs. (2.10), have been used. The steady state solution of these equations are

P00 =
γΓR

(
1− fR(ε0)

)
γ
(
ΓR + ΓLfL(ε0)− ΓRfR(ε0)

)
+ ΓLΓRfL(ε0)

(
1− fR(ε0)

) , (3.2a)

P10 =
ΓLΓRfL(ε0)

(
1− fR(ε0)

)
γ
(
ΓR + ΓLfL(ε0)− ΓRfR(ε0)

)
+ ΓLΓRfL(ε0)

(
1− fR(ε0)

) , (3.2b)

P01 =
γΓLfL(ε0)

γ
(
ΓR + ΓLfL(ε0)− ΓRfR(ε0)

)
+ ΓLΓRfL(ε0)

(
1− fR(ε0)

) . (3.2c)

By considering the techniques used in [25], it is possible to show that the form of Eqs. (3.2)
is general for systems like the one discussed in this thesis [26] which include a finite number
of states |j〉, j = 1, 2, ..., N , where the only transitions allowed are |j〉 → |j + 1〉 for all j,
where |N + 1〉 = |1〉.

The absolute charge on the left and right QDs are given by

QDL = eP10(t) and QDR = eP01(t), (3.3)
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Chapter 3. Results and discussion

where e is the elementary charge, here taken as a positive quantity. The time derivatives
of these two equations are given by

dQDL

dt
= e

dP10

dt
= IL − IS, (3.4a)

dQDR

dt
= e

dP01

dt
= IS − IR, (3.4b)

where IL is the current between the left reservoir and the left QD, IS is the current
between the QDs, and IR is the current between the right reservoir and the right QD.
The sign convention used here is chosen such that currents are positive when electrons
are moving from left to right, and negative in the opposite case. Putting Eqs. (3.1) into
Eqs. (3.4), one gets the following expressions for the currents,

IL = eΓLfL(ε0)P00, (3.5a)

IS = eγP10, (3.5b)

IR = eΓR
(
1− fR(ε0)

)
P01. (3.5c)

Using Eqs. (3.2), (3.4) and (3.5), we obtain the steady state current I = IL = IS = IR
which is given by

I =
eγΓLΓRfL(ε0)

(
1− fR(ε0)

)
γ
(
ΓR + ΓLfL(ε0)− ΓRfR(ε0)

)
+ ΓLΓRfL(ε0)

(
1− fR(ε0)

)
=

eγγLγR
γγL + γγR + γLγR

.

(3.6)

After the second equality, we have expressed the current in terms of the transition rates
(γ, γL, γR) given in Sec. 2.3.1. Through an Ohm’s law-like relation, Eq. (3.6) can be
interpreted as the current in an electric circuit with three resistors coupled in series. The
resistors correspond to the three tunnel barriers in the complete system. If the resistance
of the tunnel barriers are given by RL ∝ 1/γL, Rγ ∝ 1/γ and RR ∝ 1/γR, with V/e
as proportionality constant in the linear response regime, where V is the voltage bias,
the total resistance would be Rtot = RL + Rγ + RR. In an Ohmic circuit, the current
is proportional to 1/Rtot, and for our case, we get back the current given above when
calculating 1/Rtot. It should be stressed that Ohm’s law does not hold in general for the
double QD system, see Fig. 3.1. However, for small voltage biases, or high temperatures,
Ohm’s law is valid in the complete system.

The current is plotted in Fig. 3.1 in dimensionless units as a function of eV/kBT where
eV = µL − µR is the voltage bias between the left and right reservoirs. In the plot, the
left and right tunneling rates are chosen to be equal, Γ = ΓL = ΓR, and Γ/γ = 0.5. The
chemical potentials are further chosen symmetrically around ε0 as µL = ε0 + eV/2 and
µR = ε0−eV/2; ε0 = 0 is used here without loss of generality. Most interesting in the plot
is the positive current for negative voltage bias where electrons are transported towards
the right reservoir that has the higher chemical potential. This proves that the Maxwell
demon works properly. As the negative voltage bias becomes large, the current tends to
zero. For large negative voltage bias, and symmetrically chosen chemical potentials,
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3.1. Rate equation

Figure 3.1: Current given by Eq. (3.6) in dimensionless units as a function of eV/kBT .
Here, V is the voltage bias between the left and right reservoirs given by eV = µL − µR.
The chemical potentials are chosen symmetrically around ε0 such that µL = ε0 +eV/2 and
µR = ε0 − eV/2. For this plot, ε0 = 0. The left and right tunneling rates are here chosen
to be equal, Γ = ΓL = ΓR, and Γ/γ = 0.5.

Figure 3.2: The electrical power of the current in Fig. 3.1. Here, the power is given
in dimensionless units as a function of eV/kBT . The power for positive voltage bias is
omitted since it is unrelated to the operations of the Maxwell demon.
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Chapter 3. Results and discussion

the Fermi functions of the reservoirs take the values fL(ε0) = 0 and fR(ε0) = 1, respec-
tively. As a result, no electrons can be transported through the system. Similarly, for
large positive voltage bias, the current becomes constant. This is due to the fact that the
Fermi functions of the reservoirs take the values fL(ε0) = 1 and fR(ε0) = 0.

By defining the electrical power as P = −V · I, the power becomes positive when the
current runs against the voltage bias, i.e. when V < 0. The power is therefore negative
when the current is running in the direction of the voltage bias. The power can in general
be positive for V > 0, but in the double QD system, the currents are only traveling from
left to right, and hence, the reasoning above holds true. Figure 3.2 displays the power of
the current given in Fig. 3.1 in dimensionless units. The power for positive voltage bias
is omitted in the figure since it is unrelated to the operations of the Maxwell demon.

The electrical power is given, in terms of γkBT , by

P

γkBT
= − eV

kBT

(ΓL/γ)(ΓR/γ)fL(ε0)
(
1− fR(ε0)

)
(ΓL/γ)fL(ε0) + (ΓR/γ)

(
1− fR(ε0)

)
+ (ΓL/γ)(ΓR/γ)fL(ε0)

(
1− fR(ε0)

) ,
(3.7)

where ΓL/γ and ΓR/γ are dimensionless tunneling rates. In Fig. 3.3, three examples
of this dimensionless power are visualized as a function of the dimensionless quantities
ε0/kBT and eV/kBT . The chemical potentials are chosen as µL = eV/2 and µR = −eV/2.

Figure 3.3: The power given by Eq. (3.7) as a function of ε0/kBT and eV/kBT . The
chemical potentials are chosen as µL = eV/2 and µR = −eV/2. Three examples are given
in the figure for different dimensionless tunneling rates ΓL/γ and ΓR/γ: (a) ΓL/γ =
ΓR/γ = 1; (b) ΓL/γ = ΓR/γ = 20; and (c) ΓL/γ = 1, ΓR/γ = 0.5. The line ε0/kBT = 0
is marked as a white, dashed line.

As can be seen in Figs. 3.3a and 3.3b for ΓL/γ = ΓR/γ, the power is symmetric around
the line ε0/kBT = 0. This symmetry represents the transform ε0/kBT → −ε0/kBT
in Eq. (3.7) which in this case corresponds to exchanging γL ↔ γR. It is clear from
Figs. 3.3a and 3.3b that if the dimensionless tunneling rates are increased, then so is
the power. Noticeable is that the general shape of the power is stretched, and that the
position where the maximum is attained moves along the line ε0/kBT = 0 as the transition
rates are increased. However, if the tunneling rates are non-equal, the maximum is no
longer positioned on the line ε0/kBT = 0. This effect can clearly be seen in Fig. 3.3c. The
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3.2. Full counting statistics

positions where the maxima occur are given by

ε0
kBT

=
1

2
ln
[ΓL

ΓR

]
(3.8a)

eV

kBT
= −2

[
W
((ΓL/γ) + (ΓR/γ) + (ΓL/γ)(ΓR/γ)

2e
√

(ΓL/γ)(ΓR/γ)

)
+ 1
]

(3.8b)

where W (z) is the Lambert W function, also called the product logarithm function, which
fulfills z = W (zez). Note that the e in Eq. (3.8b) is Euler’s number and not the elementary
charge. When looking at these equations, it is evident that for equal tunneling rates,
ΓL = ΓR, the maximum occurs along the line ε0/kBT = 0, and this clearly agrees with
Figs. 3.3a and 3.3b. Equations 3.8 also predict the maximum of the power in Fig. 3.2
which occurs at eV/kBT ∼ −2.6.

3.2 Full counting statistics

This section is divided into three parts. In Sec. 3.2.1, the analytical results of the simplest
case, where γ = γL = γR, are presented. A more general case, where γ 6= γL 6= γR, is
evaluated analytically in Sec. 3.2.2. Furthermore, a numerical study of the FCS was
performed, with the results displayed in Sec. 3.2.3.

3.2.1 Analytic Case I: All transition rates equal

With all transition rates equal, γ = γL = γR, the following Liouvillian is obtained

L(χ) =

−γ 0 eiχγ
γ −γ 0
0 γ −γ

 , (3.9)

with eigenvalues

λl(χ) = γ(eiχ/3e2πli/3 − 1), l = 0, 1, 2. (3.10)

The eigenvalue for l = 0 is zero for χ = 0, and is hence, as seen in Eq. (2.23), the
eigenvalue that approximates the cumulant generating function in the long time limit,

C(χ, t) ≈ γ(eiχ/3 − 1) · t. (3.11)

A general expression for the k:th order cumulant is given by

〈〈nk〉〉 =
γt

3k
, k = 1, 2, 3, .... (3.12)

The cumulants normalized by 〈〈n〉〉 are calculated via 〈〈nk〉〉/〈〈n〉〉 = 1/3k−1. For k = 2,
we get the Fano factor 〈〈n2〉〉/〈〈n〉〉 = 1/3, and the normalized third cumulant (k = 3)
becomes 〈〈n3〉〉/〈〈n〉〉 = 1/9. It can be noted that the normalized cumulants are constants,
and independent of any of the parameters in the double QD system. It should be noted
that the Fano factor is defined as F = σ2/µ with σ2 being the variance of a distribution
and µ its mean. From this factor, we can read off information about a distribution. For a
Poisson distribution, F = 1 since σ2 = µ. A distribution with F > 1 or F < 1 is said to be
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Chapter 3. Results and discussion

super- or sub-Poissonian, respectively. When studying electron transport, the two cases
correspond to electrons coming in bunches or separately. For the case with γ = γL = γR,
the electron transport is sub-Poissonian.

The current cumulants are simply obtained by differentiating Eq. (3.12) with respect
to time, 〈〈Ik〉〉 = γ/3k, see Eq. (2.21).

In the long time limit, the probability distribution, p(n, t), can be evaluated with
Eq. (2.24) using the saddle point approximation method. The resulting distribution is
given by (derivation in Appendix A)

p(n, t)γ=γL=γR ≈
√

3

2πn

(γte
3n

)3n
e−γt. (3.13)

The shape of Eq. (3.13) can emerge from a Poisson distribution

(γt)Ne−γt/N !, (3.14)

by using Stirling’s approximation, N ! ∼
√

2πN(N/e)N . Eq. (3.14) can then be written as

1√
2πN

(γte
N

)N
e−γt. (3.15)

It should be noted that the discrete variable N is considered to be continuous after
applying Stirling’s approximation. Therefore, the variable exchange N = 3n gives back
Eq. (3.13). The application of Stirling’s approximation can be justified if we assume that
a large number of electrons, N = 3n, have been transferred through the system in the
long time limit. Furthermore, the 3n in Eq. (3.13) corresponds to the electrons having to
tunnel three times before reaching the right reservoir.

3.2.2 Analytic Case II: General case

In this section, the results for the case when the transition rates are non-equal are pre-
sented. The Liouvillian for this case is given by Eq. (2.26) and has the characteristic
polynomial

λ3 + λ2(γ + γL + γR) + λ(γγL + γγR + γLγR) + γγLγR(1− eiχ) = 0. (3.16)

It should be noted that this polynomial has a symmetry; it is invariant under the exchange
of any two transition rates.

As was pointed out in Sec. 2.4, the cumulant generating function can be approximated
with the eigenvalue of the Liouvillian which vanishes for χ = 0. The eigenvalues of
the Liouvillian are accessible as the solutions of Eq. (3.16), but results in cumbersome
expressions. In this thesis, however, we circumvent these cumbersome expressions by
utilizing the following method.

Denote by λ1(χ) the eigenvalue of the Liouvillian that satisfies λ1(χ = 0) = 0. If λ1(χ)
is put into the characteristic polynomial, we get the following when differentiating with
respect to χ,

3λ21
dλ1
dχ

+ 2λ1
dλ1
dχ

(γ + γL + γR) +
dλ1
dχ

(γγL + γγR + γLγR)− iγγLγReiχ = 0. (3.17)
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3.2. Full counting statistics

By putting χ = 0, the following expression for the first derivative at χ = 0 is obtained,

dλ1
dχ

∣∣∣∣∣
χ=0

= i
γγLγR

γγL + γγR + γLγR
, (3.18)

and from Eq. (2.25), we obtain the first cumulant in the long time limit,

〈〈n〉〉 =
γγLγR

γγL + γγR + γLγR
t. (3.19)

To get the second cumulant, one needs to differentiate Eq. (3.17) with respect to χ, and
then put χ = 0. From this stage, one can derive an expression for the second derivative at
χ = 0, and with the help of Eq. (2.25) we arrive at the second cumulant. The method is
able to generate cumulants of any order, and below are the second and third cumulants,

〈〈n2〉〉 = γγLγR
(γγL + γγR + γLγR)2 − 2γγLγR(γ + γL + γR)

(γγL + γγR + γLγR)3
t, (3.20)

and

〈〈n3〉〉 = γγLγR

(
(γγL + γγR + γLγR)4 − 6γ2γ2Lγ

2
R(γγL + γγR + γLγR)

− 6γγLγR(γ + γL + γR)
[
(γγL + γγR + γLγR)2 − 2γγLγR(γ + γL + γR)

])
t

/
(γγL + γγR + γLγR)5.

(3.21)
An expression for the fourth cumulant is given in Appendix B.

The Fano factor for the general case has a lower and upper bound that are given by

1

3
≤ 〈〈n

2〉〉
〈〈n〉〉

≤ 1. (3.22)

The lower bound corresponds to the case where all transition rates are equal, γ = γL =
γR, and this agrees with the results of Sec. 3.2.1. In addition, the second inequality in
Eq. (3.22) provides the upper bound 1 for the Fano factor indicating that the system is
sub-Poissonian when the inequality is strict. Sub-Poissonian means that electrons travel
one-by-one instead of coming in bunches, and this is what we expect for fermions. When
the Fano factor is 1, the system follows Poissonian statistics; this is the case when any
two transition rates are much larger than the third rate.

When Eq. (3.19) is differentiated with respect to time, the mean current is obtained,

〈〈I〉〉 =
γγLγR

γγL + γγR + γLγR
, (3.23)

and this is the same current that was obtained in Sec. 3.1. By choosing the transitions
rates as γL = ΓLfL(ε0) and γR = ΓR

(
1− fR(ε0)

)
(see Eqs. (2.10)), Eq. (3.6) is recovered.

When putting γ = γL = γR in Eqs. (3.19)-(3.21) and (B.1), the results given by
Eq. (3.12) are recovered. This acts as a sanity check verifying that the different approaches
yield the same results.

When a bottleneck is introduced in the system, for example by having γ � γL, γR,
the system follows Poissonian statistics. If it is assumed that γ is a small quantity such
that γr ≈ 0 for r > 1, the eigenvalues λ(χ) in Eq. (3.16) can be approximated with

23



Chapter 3. Results and discussion

λ(χ) ≈ a0(χ) + a1(χ)γ (3.24)

where a0(χ) and a1(χ) are functions of χ, γL and γR fulfilling a0(0) = a1(0) = 0 such that
λ(0) = 0. By plugging Eq. (3.24) into Eq. (3.16) and neglecting all higher order terms in
γ, we get a0(χ) = 0 and a1(χ) = eiχ − 1 such that λ(χ) = γ(eiχ − 1). Equation (2.24)
then gives the following distribution in the long time limit,

p(n, t) =
(γt)n

n!
e−γt. (3.25)

This shows that the complete system is Poissonian when γ � γL, γR. It should be noted
that the system follows Poissonian statistics when any transition rate is much smaller
than the others; the arguing above holds for any of the three transition rates.

Figure 3.4 visualizes: (a) the dimensionless first cumulant 〈〈n〉〉/γt; (b) the Fano
factor 〈〈n2〉〉/〈〈n〉〉; and (c) the normalized third cumulant 〈〈n3〉〉/〈〈n〉〉. All quantities
are plotted as functions of the dimensionless transition rates γL/R/γ, and the white, dashed
line in each graph emphasizes where γL = γR. It is clear that all cumulants are mirror
symmetric with respect to the line γL = γR, and this visualizes the symmetry of swapping
γL ↔ γR in Eq. (3.16). In both Figs. 3.4b and 3.4c, the regions where γ = γL = γR clearly
take the values 〈〈n2〉〉/〈〈n〉〉 = 1/3 and 〈〈n3〉〉/〈〈n〉〉 = 1/9 as pointed out in Sec. 3.2.1.
Furthermore, Fig. 3.4b clearly fulfills the lower and upper bound given by Eq. (3.22). For
the regimes where γ � γL, γR it is evident that both the Fano factor and the normalized
third cumulant are ∼ 1, and hence, the system follows Poissonian statistics in those
regimes as seen in Eq. (3.25). Furthermore, as γ is much smaller than both the left and
right transition rates, the system can be viewed as a single tunnel barrier.

Figure 3.4: (a) The first cumulant in dimensionless units. (b) The second cumulant
normalized by 〈〈n〉〉, this quantity is known as the Fano factor. (c) The third cumulant
normalized by 〈〈n〉〉. All cumulants are plotted as functions of γL/γ and γR/γ.

The cumulants of the electrical power can be calculated in dimensionless units via

〈〈P k〉〉
γ(kBT )k

=
(
− eV

kBT

)k 〈〈nk〉〉
γt

, k = 1, 2, 3, (3.26)

where the first three cumulants 〈〈nk〉〉, k = 1, 2, 3, are given by Eqs. (3.19)-(3.21). For
k = 1, Eq. (3.7) is re-obtained if γL = ΓLfL(ε0) and γR = ΓR

(
1 − fR(ε0)

)
are chosen.

A visualization of 〈〈P 〉〉 is displayed in Fig. 3.3. The second and third cumulants of the
electrical power are plotted in Fig. 3.5 for the dimensionless tunneling rates ΓL/R/γ = 1,
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3.2. Full counting statistics

and the chemical potentials µL = eV/2 and µR = −eV/2. For the second cumulant, in
Fig. 3.5a, two maxima are observed, one on each side of the line ε0/kBT = 0. The maxima
correspond to regions of increased variance in the probability distribution of the power.
Similarly, the third cumulant in Fig. 3.5b has also two maxima, and these tell us where
the probability distribution of the power has its largest skewness.

In Appendix D, the second and third cumulants are plotted for some different ΓL/γ
and ΓR/γ. For equal and small dimensionless tunneling rates, both cumulants decrease,
and 〈〈P 3〉〉 is reshaped, and becomes negative in some regions. For equal, and large
dimensionless tunneling rates, we observe that both 〈〈P 2〉〉 and 〈〈P 3〉〉 increase, and are
reshaped. Finally, as the dimensionless tunneling rates are non-equal, the cumulants are
reshaped and shifted with respect to the line ε0/kBT = 0.

Figure 3.5: (a) Second and (b) third cumulants of the power given in Eqs. (3.26). The
cumulants are plotted as functions of ε0/kBT and eV/kBT . The white, dashed line em-
phasizes the line ε0/kBT = 0, and the black, or white, cross is located where the power has
its maximum. The chemical potentials are here chosen as µL = eV/2 and µR = −eV/2.

Figure 3.6: The graph displays the quantity 〈〈P 2〉〉/〈〈P 〉〉 in terms of kBT as a function
of ε0/kBT and eV/kBT , here for ΓL/γ = ΓR/γ = 1. The chemical potentials are here
given by µL = eV/2 and µR = −eV/2. The white cross is located where the power has its
maximum.
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Chapter 3. Results and discussion

Figure 3.6 displays the quantity 〈〈P 2〉〉/〈〈P 〉〉 in terms of kBT for ΓL/R/γ = 1. The
quantity is clearly mirror symmetric with respect to the line ε0/kBT = 0, this is due to that
both 〈〈P 2〉〉 and 〈〈P 〉〉 are mirror symmetric with respect to the same line, see Figs. 3.3a
and 3.5a. For large negative voltage bias, i.e. eV/kBT ∼ −14, and ε0/kBT ∼ |3|, we
observe two regions where 〈〈P 2〉〉/〈〈P 〉〉 ∼ 14kBT . As eV/kBT is increased, the ratio
〈〈P 2〉〉/〈〈P 〉〉 decreases, around eV/kBT ∼ 0, 〈〈P 2〉〉/〈〈P 〉〉 ∼ kBT . For temperatures
that typically are used in experiments, i.e. T ∼ 0.1 K, 〈〈P 2〉〉/〈〈P 〉〉 ∼ 10−6 eV.

The black and white crosses in Figs. 3.5 and 3.6 shows the location of the maximum
power that is given by Eqs. (3.8). From Fig. 3.5, we see that the maximum positions for
both variance and skewness do not overlap with the position of the maximum power. This
means that we do not have maximum fluctuations and skewness when we have maximum
power.

3.2.3 Numerics

By letting the left and right transition rates be equal, Ω = γL = γR, the Liouvillian, given
in Eq. (2.26), can be rewritten as

L(χ)

γ
=

−Ω/γ 0 eiχΩ/γ
Ω/γ −1 0

0 1 −Ω/γ

 , (3.27)

where it only depends on the parameter Ω/γ. The probability distribution given by
Eq. (2.17) was calculated numerically for this Liouvillian, and the result is displayed
in Fig. 3.7a as a function of dimensionless time γt for Ω/γ = 0.5. The distribution
is visualized for ten different values of n, i.e. the number of electrons that have been
transported to the right reservoir. It is evident that zero electrons (n = 0) have been
transported initially in accordance with the initial condition, see Sec. 2.4.1.

Figure 3.7: (a) The numerically calculated probability distribution p(n, t) as a function
of dimensionless time γt. The distribution is visualized for ten different values of n, i.e.
the number of electrons that have been transferred to the right reservoir. (b) The same
distribution as in (a), but here displayed as a function of n at four different times γt.
Ω/γ = 0.5 and the initial condition g(χ, 0) = (1, 0, 0) have been used for both figures.

It is also clear that the probability distribution for n = 0 goes to zero as time increases, and
this is expected since the demon only is transporting electrons towards the right reservoir.
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3.2. Full counting statistics

When looking at n > 0, we see that the maximum position of p(n, t) is shifted towards
larger times. Furthermore, the width of the distribution increases as time proceeds. In
Fig. 3.7b, p(n, t) is visualized as a function of n at four different times, also for Ω/γ = 0.5.
The distribution clearly moves along the n-axis as time is increased. It can be noted that
the probability distribution is more narrow for smaller values of γt, and as larger γt are
studied, the distribution gets broader.

Figures 3.7a and 3.7b show similar behaviour, a narrow distribution at small γt that
gets broader as γt is increased. The narrow shape for small γt can be understood by
considering the initial condition. At γt = 0, no electrons have been transferred to the
right reservoir, and n is therefore well-known. As a result, the distribution becomes
narrow at small γt since the uncertainty in n is small. As γt increases, however, the
uncertainty in n increases, and a broader distribution is observed. Furthermore, as larger
n are studied, the distribution is centered around larger and larger values of γt. Since
electrons only are transported towards the right reservoir, the probability distribution of
having, for example, n = 2 is centered at a earlier time than the probability distribution
for n = 7.

Appendix C contains a validity check of the probability distribution in Fig. 3.7. The
validity check shows the normalization of p(n, t).

Figure 3.8: The first three cumulants of p(n, t) calculated for Ω/γ = 0.5. Here, all
cumulants are normalized by γ. The numerical (blue line) and analytical (orange line)
results are compared in the graphs. (a) The first normalized cumulant, 〈〈n〉〉/γ. (b) The
second normalized cumulant, 〈〈n2〉〉/γ. (c) The third normalized cumulant, 〈〈n3〉〉/γ. All
cumulants are displayed as functions of dimensionless time γt.

The first three cumulants of the probability distribution in Fig. 3.7 are presented as
the blue, solid lines in Fig. 3.8, while the orange, solid lines are the analytical cumulants
given by Eqs. (3.19)-(3.21). All cumulants are here normalized by γ, and displayed as
functions of dimensionless time γt, for Ω/γ = 0.5. For all three graphs, it can be seen
that the numerical cumulants account for both the short and long time behaviour of the
complete system. Here, the short time behaviour is the dynamics of the complete system
before steady state is reached. The analytical cumulants, however, only account for the
long time behaviour. Clearly, the numerics become linear as steady state is reached,
and this is expected since the long time cumulants are linear in time for any system,
see Eq. (2.25). It should be noted that there is a discrepancy between the numerics and
the analytics in all three plots. The discrepancy can be understood by considering the
cumulant generating function in the long time limit given by Eq. (2.23). This function
is, as discussed in Sec. 2.4, determined up to a small correction, and this correction is
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Chapter 3. Results and discussion

the origin of the discrepancy. From Fig. 3.8a it is evident that the mean number of
electrons that have been transferred to the right reservoir is increasing with time. This
agrees with the implementation of the demon; it only transports electrons towards the
right reservoir, and hence, the mean should increase with time. As seen in Fig. 3.8b, the
second cumulant is also increasing with time, this is in accordance with the observations
of Fig. 3.7 where the width of the probability distribution clearly increases with time.
The third cumulant describes the skewness of the distribution. In this study, a positive,
and increasing skewness is observed for all times as can be seen in Fig. 3.8c. The increase
in skewness is, however, not clearly visible in Fig. 3.7.

3.3 Monte Carlo simulation

This section is devoted to the results generated by the Monte Carlo simulation discussed
in Sec. 2.5. A comparison of the Monte Carlo simulation and the analytical and numerical
FCS is also presented.

Figure 3.9 displays a possible time trace of the state of the double quantum dot system
that can be recorded in a measurement; this time trace was generated by the Monte Carlo
simulation. Each time the system returns to |00〉, one electron has been transported to
the right reservoir. Hence, by counting the number of times the system returns to |00〉,
we can keep track of the number of transferred electrons. For the time trace displayed in
Fig. 3.9, five electrons have been transferred after 0.05 s.

Figure 3.9: The graph shows a possible time trace of how the state of the double QD
system evolves in time. The trace was generated in a Monte Carlo simulation. Here, the
tunneling rates are chosen as ΓL = ΓR = γ = 1000 s−1, the temperature is T = 0.1 K,
and the voltage bias is V = −24.0 µV, and the chemical potentials are symmetric around
ε0 = 0, µL = eV/2 and µR = −eV/2.

By performing a large number of simulations, and recording how many electrons, n,
that have been transferred to the right reservoir at each discrete time in every simulation,
the first central moment can be calculated via µ = 〈n〉, where 〈. . .〉 denotes the sample
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3.3. Monte Carlo simulation

mean. This corresponds to the first cumulant of the probability distribution p(n, t) dis-
cussed in Sec. 2.4. The second and third cumulants are given by the second and third
central moments, and are calculated using µi = 〈(n− 〈n〉)i〉, i = 2, 3.

In Figs. 3.10 and 3.11, the cumulants calculated from the Monte Carlo simulations
are displayed together with the cumulants obtained from the full counting statistics.
The system parameters are chosen differently for the various figures as specified in the
corresponding captions. For the first order cumulants in Figs. 3.10a and 3.11a, there is
good agreement between the numerical FCS and the Monte Carlo simulations. It can be
noted that both these methods account for small times as well as long times. As steady
state is reached, both the numerical FCS and the Monte Carlo simulations have the same
slope as the analytical cumulants.

Figure 3.10: The first three cumulants when using the following system parameters:
ΓL = ΓR = γ = 1000 s−1; T = 0.1 K; V = −24.0 µV; and a voltage bias symmetric
around ε0 = 0, i.e. µL = ε0 + eV/2 and µR = ε0− eV/2. The green, solid lines correspond
to the numerical cumulants generated by the FCS; the gray, dashed lines are the analytical
cumulants from the FCS; and the red, dashed and dotted lines are the cumulants calcu-
lated with data from 1 000 000 Monte Carlo simulations. (a) First cumulant, (b) second
cumulant, (c) third cumulant.

For the second and third order cumulants, the Monte Carlo simulation deviates from
the FCS. This is probably due to the number of performed Monte Carlo simulations;
if a larger number of simulations had been performed, the agreement would have been
enhanced. Higher order cumulants describe the behaviour of the tails of a probability
distribution. When drawing random numbers, as done in the Monte Carlo simulations,
it is most probable to draw numbers close to the mean value; it will be rare to draw
numbers close to the tails. Hence, to calculate higher order cumulants, a large number
of simulations is required to get good precision. For the data presented here, 1 million
simulations were run, and we clearly see that this number must be increased to get better
agreements for the second and third cumulants. As a conclusion, to measure the higher
order cumulants in a real experiment, a large number of recordings of the system dynamics
is required. Here we see, under ideal conditions, that 1 million recordings are not enough
to get good precision.
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Chapter 3. Results and discussion

Figure 3.11: The first three cumulants when using the following system parameters:
ΓL = 1525 s−1, ΓR = 2332 s−1, γ = 1309 s−1; T = 0.3 K; V = −71.5 µV; and a
voltage bias symmetric around ε0 = 0, i.e. µL = eV/2 and µR = −eV/2. The green,
solid lines correspond to the numerical cumulants generated by the FCS; the gray, dashed
lines are the analytical cumulants from the FCS; and the red, dashed and dotted lines are
the cumulants calculated with data from 1 000 000 Monte Carlo simulations. (a) First
cumulant, (b) second cumulant, (c) third cumulant.

It should be noted that it appears as if the numerics and analytics in Figs. 3.10 and
3.11 overlap for the second and third cumulants, but this is not the case. The discrepancy
that is visible in Fig. 3.8 is still present, but not as clearly visible. We can also note that
the system reaches steady state faster when the tunneling rates are increased.

Figure 3.12: (a) Steady state current as a function of voltage bias V , here calculated
for ΓL = ΓR = γ = 1000 s−1, T = 0.1 K, and the chemical potentials µL = eV/2 and
µR = −eV/2, with ε0 = 0. The dashed, gray line is calculated with Eq. (3.6); the red circles
are calculated with the Monte Carlo simulation; and the green plus-signs are calculated
with the numerical FCS. (b) The electrical power of the current displayed in Fig. 3.12a.

Figure 3.12a displays the steady state current in the double QD system as a function
of voltage bias V for the case when ΓL = ΓR = γ = 1000 s−1, T = 0.1 K, and µL = eV/2
and µR = −eV/2, with ε0 = 0. Three cases are presented in the figure, one where the
current is calculated with Eq. (3.6), one where the current is calculated with the Monte
Carlo simulation, and one where the numerical FCS has been used. The current obtained
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with the Monte Carlo method was calculated with the first cumulant from Fig. 3.10a for
t → ∞ according to I = e∂t〈〈n(t → ∞)〉〉. Clearly, the three methods agree, and the
current is in the order of tens of atto-Amperes. Figure 3.12b shows the electrical power
of the current in Fig. 3.12a as a function of negative voltage bias. The power is in the
order of one-tenth of a zepto-Watt.
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Chapter 4

Conclusions

This thesis has examined the transport properties and the full counting statistics of elec-
trons in a double quantum dot system that is operated by a Maxwell demon. Our results
clearly show that the implementation of the demon works in theory. To examine the
transport properties, rate equations and full counting statistics were used. These two
approaches yield the same analytical expressions for the electrical current through the
quantum dots as well as the electrical power. We see that the demon is transporting
electrons, without performing any net work on them, against voltage biases in the order
of tens of micro-Volts when the temperature of the complete system and the electron
tunneling rates are in the order of hundreds of milli-Kelvins and thousands of events per
second, respectively. These parameters are typical for systems similar to the one studied
in this thesis [27]. The currents in this regime are in the order of tens of atto-Amperes,
and the electrical power gained is in the order of one-tenth of a zepto-Watt. Experimen-
tally, it is fully possible to measure currents that are in the order of atto-Amperes, this
is done by counting the passage of individual electrons [27]; and this suggests that an
experimental realization of the system is possible.

In addition, full counting statistics gives the cumulants of the probability distribution
describing the number of electrons transferred through the system at a given time. These
cumulants have been calculated both analytically and numerically, and the results agree
in the long time limit due to the analytics only being valid in that regime. The statistical
nature of the probability distribution was mapped out for some different limits of the
transition rates. When one or two of the transition rates is much larger than the others, the
system follows Poissonian statistics. Furthermore, for equal transition rates, we obtained
an analytical expression for the probability distribution in the long time limit, and this
distribution is related to the Poisson distribution. Finally, the probability distribution
was also evaluated numerically, but for non-equal transition rates.

Furthermore, the dynamics of the system was simulated with a Monte Carlo method
for specific system parameters. The first order cumulants generated with this Monte Carlo
method agree well with the full counting statistics, but higher order cumulants leave a
lot to be desired. The poor agreement for higher order cumulants is most probably due
to the number of simulations. The agreement is believed to improve with an increased
amount of simulations. The convergence of the Monte Carlo cumulants as a function of
the number of simulations could in the future be studied.

The implementation of Maxwell’s demon presented in this thesis is based on the as-
sumption that the double quantum dot system can be operated infinitely fast, and that
the demon can measure the occupation of the quantum dots error-free and without delay.
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An experimental realization must therefore make sure that the feedback from the demon
is faster than the electron tunneling rates so that the energy levels of the quantum dots
can be moved up or down before unwanted tunneling events occur. In addition, the speed
at which the energy levels are moved plays a crucial role, it must also be faster than the
tunneling rates to avoid unwanted tunneling events. Furthermore, measurement errors
should be minimized in order to maximize the performance of the demon; the transition
rates should, in an experiment, be tuned to be smaller than the detection rate. Then the
risk of missing tunneling events is reduced.

Finally, as the electrons are transferred against the voltage bias, we see that heat from
the electron reservoirs is converted into useful work resulting in a cooling of the reservoirs.
Papers examining similar systems argue that an application of Maxwell’s demon could be
to cool down gases [1, 9], [2, 8]. We further suggest that it should be investigated whether
the output power can be used to power for example heat engines on the nano-scale. It
should, however, be stressed that the work made here is mainly concentrating on the
investigation whether it is feasible to implement a Maxwell demon in a double quantum
dot system that could be used to study information-to-energy conversion.
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Chapter 5

Outlook

The study made in this thesis stands as a starting point for further studies on the Maxwell
demon in the double quantum dot system. In future studies, the demon can be imple-
mented in the model as a detector measuring the state of the quantum dots. The detector
could be realized by using a single electron transistor (SET), that is a quantum dot cou-
pled to two leads. The SET is coupled, by Coulomb interaction, to the left and right
quantum dots asymmetrically. The current through the SET is affected by the state of
the double quantum dots, and is decreased when either of the dots is occupied. By using
the asymmetrical coupling, the amplitude of the current decrease is dependent on whether
the left or the right dot is occupied, and in this way, the transport of individual electrons
can be studied.

To experimentally realize the system, the setup visualized in Fig. 2.2 would be the
starting point. To this layout, a detector must be added, and two possible choices would
be either a SET, as discussed above, or a quantum point contact (QPC). A SET detector
has already been used in a similar system realizing Szilard’s engine with a single electron
[8]. On the other hand has a QPC been used in a double quantum dot system very similar
to the one discussed here to detect single electrons [28]. Both [8] and [28] indicate that
the system studied in this thesis is feasible to construct with a detector able to measure
the passage of single electrons. However, to be able to resolve fast system dynamics, the
detection rate should be faster than the fastest transition rate in the system. Another
challenge of an experimental realization would be to implement the cycle in Fig. 2.5; it
is important that the work related to lifting and lowering the energy levels sum up to
zero so that no net work has been put into the system. An experimental suggestion of a
similar scheme can be found in [6].

The theoretical work, on the other side, could involve an extension of the Monte
Carlo method where a more realistic detector model is implemented. At the present
moment, the state of the double quantum dots is assumed to be measured perfectly, and
without errors and delay. An extension could include realistic detector noise, and error-
detection. In this way, the simulations would be more comparable to real experiments.
Such simulations could be useful when designing experimental realizations of the system,
and when determining the number of measurements required for obtaining good statistics.
In the end, a more realistic Monte Carlo method could be a helpful tool for pointing
experimental work in the right directions.

Another interesting aspect of introducing the demon as a detector is that the role of
information can be studied. The information gathered by the detector should be used in
a feedback loop to operate the quantum dots, which opens up the possibility to study

34



information-to-energy conversion, and to verify whether the total entropy production in
the complete system is positive. A validity check of an implemented feedback loop could
be done by studying Jarzynski’s generalized equality for systems with feedback control,
and an investigation whether it is possible to derive a maximum efficiency for the system
could be carried out.

To this point, coherence between the quantum dots has been out of the picture. The
present model could be extended to a quantum version where coherent states are present
in the system. A natural question that arises is how Maxwell’s demon is implemented in
such a system.

As a last comment, the results from this thesis will, in the future, be published in a
peer reviewed journal.
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Appendix A

Derivation of probability distribution
- simple case

With the saddle point approximation method, the probability distribution, given by
Eq. (2.24), can be written as

p(n, t) ≈ 1√
2πf ′′(χ∗)

e−f(χ
∗), (A.1)

where f(χ) = inχ − λ(χ)t, with λ(χ) being the eigenvalue given by Eq. (3.10) for l = 0
when γ = γL = γR, and χ∗ is the number that solves the equation f ′(χ) = 0. The deriva-
tive of f(χ) is f ′(χ) = in− λ′(χ)t, and this gives that χ∗ = −3i ln(3n/γt). Furthermore,
f ′′(χ) = −λ′′(χ)t, and plugging this and the information given above into Eq. (A.1), the
following distribution is obtained,

p(n, t)γ=γL=γR ≈
√

3

2πn

(γte
3n

)3n
e−γt. (A.2)

The normalization of this distribution is displayed in Fig. A.1 as a function of dimension-
less time γt.

Figure A.1: Normalization of the distribution given in Eq. (A.2) as a function of dimen-
sionless time γt.
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Appendix B

Analytical expression for the fourth
cumulant

The analytical expressions for the first to third order cumulants are given in Eqs. (3.19)-
(3.21) in Sec. 3.2.2. The fourth cumulant is given below.

〈〈n4〉〉 =

γγLγR − 36

(
dλ1
dχ

∣∣∣
χ=0

)2

d2λ1
dχ2

∣∣∣
χ=0
− 2(γ + γL + γR)

[
3

(
d2λ1
dχ2

∣∣∣
χ=0

)2

+ 4dλ1
dχ

∣∣∣
χ=0

d3λ1
dχ3

∣∣∣
χ=0

]
γγL + γγR + γLγR

t.

(B.1)
The second and third derivatives in the fourth cumulant are obtained in the same way as
the first derivative in Eq. (3.18) was obtained.
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Appendix C

Validity check of full counting
statistics

Figure C.1 displays the normalization of p(n, t) as a function of time. This acts as a
validity check of the results presented in Fig. 3.7. The normalization clearly is 1 for all
times, p(n, t) is indeed a probability distribution.

Figure C.1: Validity check of the probability distribution displayed in Fig. 3.7. The
distribution is summed over the variable n, that is the number of electrons that have been
transferred to the right reservoir, and the distribution is clearly normalized over time.
Here, Ω/γ = 0.5.
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Appendix D

Second and third cumulants of the
electrical power

Figures D.1-D.3 display the second and third order cumulants for some different choices
of the normalized tunneling rates ΓL/γ and ΓR/γ.

Figure D.1: Second and third cumulants of the electrical power as functions of ε0/kBT and
eV/kBT , here plotted for equal, but small tunneling rates ΓL/γ and ΓR/γ. The chemical
potentials are µL = eV/2 and µR = −eV/2.
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Appendix D. Second and third cumulants of the electrical power

Figure D.2: Second and third cumulants of the electrical power as functions of ε0/kBT
and eV/kBT , here plotted for equal, but increasing tunneling rates ΓL/γ and ΓR/γ. The
chemical potentials are µL = eV/2 and µR = −eV/2.
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Figure D.3: Second and third cumulants of the electrical power as functions of ε0/kBT
and eV/kBT , here plotted for non-equal tunneling rates ΓL/γ and ΓR/γ. The chemical
potentials are µL = eV/2 and µR = −eV/2.

41





References

[1] S. Vinjanampathy, J. Anders. Quantum thermodynamics. Contemporary Physics, vol.
57, p. 545-579, 2016.

[2] J. Pekola. Towards quantum thermodynamics in electronic circuits. Nature physics,
vol. 11, p. 118-123, 2015.

[3] R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Res.
Develop., vol. 5, 1961.

[4] C.H. Bennett. The thermodynamics of computation - a review. International Journal
of Theoretical Physics, vol. 21, p. 905-940, 1982.

[5] P. Strasberg, G. Schaller, T. Brandes, M. Esposito. Thermodynamics of a Physical
Model Implementing a Maxwell Demon. Physical Review Letters, vol. 110, p. 04060(1)-
040601(5), 2013.
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